1
|
Molho W, Stiltner B, Raymond N, Kiely C, Trotti R, Harris C, Bannai D, Keshavan M, Silverstein S, Lizano P. Retinal electrophysiological alterations are associated with cognition in early course psychosis. Schizophr Res 2024; 274:137-141. [PMID: 39293251 DOI: 10.1016/j.schres.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024]
Abstract
Retinal electrophysiological alterations are implicated in psychosis, but their relationship with cognition in early course psychosis (ECP) is understudied. The Brief Assessment of Cognition (BAC) and flash electroretinography (fERG) were conducted in 24 controls (HC) and 27 ECP individuals. Partial Spearman correlations were performed between fERG and BAC. Lower Photopic-1b and Scotopic-3b amplitudes were identified in ECP vs. HCs. Correlations were significant (p<0.05) between BAC Composite score and a-wave S3a and S2a and b-wave S2b and S3b conditions. Thus, ECP was characterized by lower ERG responses, and lower rod/cone/bipolar cell responses were related to poorer cognition.
Collapse
Affiliation(s)
- Willa Molho
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Brendan Stiltner
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Nicolas Raymond
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Chelsea Kiely
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rebekah Trotti
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Caroline Harris
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Deepthi Bannai
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Steven Silverstein
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
2
|
Blose BA, Silverstein SM, Stuart KV, Keane PA, Khawaja AP, Wagner SK. Association between polygenic risk for schizophrenia and retinal morphology: A cross-sectional analysis of the United Kingdom Biobank. Psychiatry Res 2024; 339:116106. [PMID: 39079374 DOI: 10.1016/j.psychres.2024.116106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
We examined the relationship between genetic risk for schizophrenia (SZ), using polygenic risk scores (PRSs), and retinal morphological alterations. Retinal structural and vascular indices derived from optical coherence tomography (OCT) and color fundus photography (CFP) and PRSs for SZ were analyzed in N = 35,024 individuals from the prospective cohort study, United Kingdom Biobank (UKB). Results indicated that macular ganglion cell-inner plexiform layer (mGC-IPL) thickness was significantly inversely related to PRS for SZ, and this relationship was strongest within higher PRS quintiles and independent of potential confounders and age. PRS, however, was unrelated to retinal vascular characteristics, with the exception of venular tortuosity, and other retinal structural indices (macular retinal nerve fiber layer [mRNFL], inner nuclear layer [INL], cup-to-disc ratio [CDR]). Additionally, the association between greater PRS and reduced mGC-IPL thickness was only significant for participants in the 40-49 and 50-59 age groups, not those in the 60-69 age group. These findings suggest that mGC-IPL thinning is associated with a genetic predisposition to SZ and may reflect neurodevelopmental and/or neurodegenerative processes inherent to SZ. Retinal microvasculature alterations, however, may be secondary consequences of SZ and do not appear to be associated with a genetic predisposition to SZ.
Collapse
Affiliation(s)
- Brittany A Blose
- Department of Psychology, University of Rochester, Rochester, NY, United States; Department of Psychiatry, University of Rochester Medical Center, Rochester, New York, United States
| | - Steven M Silverstein
- Department of Psychiatry, University of Rochester Medical Center, Rochester, New York, United States; Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York, United States; Department of Neuroscience, University of Rochester Medical Center, Rochester, New York, United States; Center for Visual Science, University of Rochester, Rochester, New York, United States.
| | - Kelsey V Stuart
- NIHR Moorfields Biomedical Research Centre, London, United Kingdom; Institute of Ophthalmology, University College London, London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Pearse A Keane
- NIHR Moorfields Biomedical Research Centre, London, United Kingdom; Institute of Ophthalmology, University College London, London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Anthony P Khawaja
- NIHR Moorfields Biomedical Research Centre, London, United Kingdom; Institute of Ophthalmology, University College London, London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Siegfried K Wagner
- NIHR Moorfields Biomedical Research Centre, London, United Kingdom; Institute of Ophthalmology, University College London, London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
3
|
Sheehan N, Bannai D, Silverstein SM, Lizano P. Neuroretinal Alterations in Schizophrenia and Bipolar Disorder: An Updated Meta-analysis. Schizophr Bull 2024; 50:1067-1082. [PMID: 38954839 PMCID: PMC11349028 DOI: 10.1093/schbul/sbae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Schizophrenia (SZ) and bipolar disorder (BD) are characterized by major symptomatic, cognitive, and neuroanatomical changes. Recent studies have used optical coherence tomography (OCT) to investigate retinal changes in SZ and BD, but their unique and shared changes require further evaluation. Articles were identified using PubMed and Google Scholar. 39 studies met the inclusion criteria. Diagnostic groups were proband (SZ/BD combined), SZ, BD, and healthy control (HC) eyes. Meta-analyses utilized fixed and random effects models when appropriate, and publication bias was corrected using trim-and-fill analysis ("meta" package in R). Results are reported as standardized mean differences with 95% CIs. Data from 3145 patient eyes (1956 SZ, 1189 BD) and 3135 HC eyes were included. Studies identified thinning of the peripapillary retinal nerve fiber layer (pRNFL, overall and in 2 subregions), m-Retina (overall and all subregions), mGCL-IPL, mIPL, and mRPE in SZ patients. BD showed thinning of the pRNFL (overall and in each subregion), pGCC, and macular Retina (in 5 subregions), but no changes in thickness or volume for the total retina. Neither SZ nor BD patients demonstrated significant changes in the fovea, mRNFL, mGCL, mGCC, mINL, mOPL, mONL, or choroid thicknesses. Moderating effects of age, illness duration, and smoking on retinal structures were identified. This meta-analysis builds upon previous literature in this field by incorporating recent OCT studies and examining both peripapillary and macular retinal regions with respect to psychotic disorders. Overall, this meta-analysis demonstrated both peripapillary and macular structural retinal abnormalities in people with SZ or BD compared with HCs.
Collapse
Affiliation(s)
- Nora Sheehan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Deepthi Bannai
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Steven M Silverstein
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
| | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Komatsu H, Onoguchi G, Silverstein SM, Jerotic S, Sakuma A, Kanahara N, Kakuto Y, Ono T, Yabana T, Nakazawa T, Tomita H. Retina as a potential biomarker in schizophrenia spectrum disorders: a systematic review and meta-analysis of optical coherence tomography and electroretinography. Mol Psychiatry 2024; 29:464-482. [PMID: 38081943 PMCID: PMC11116118 DOI: 10.1038/s41380-023-02340-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 05/25/2024]
Abstract
INTRODUCTION Abnormal findings on optical coherence tomography (OCT) and electroretinography (ERG) have been reported in participants with schizophrenia spectrum disorders (SSDs). This study aims to reveal the pooled standard mean difference (SMD) in retinal parameters on OCT and ERG among participants with SSDs and healthy controls and their association with demographic characteristics, clinical symptoms, smoking, diabetes mellitus, and hypertension. METHODS Using PubMed, Scopus, Web of Science, and PSYNDEX, we searched the literature from inception to March 31, 2023, using specific search terms. This study was registered with PROSPERO (CRD4202235795) and conducted according to PRISMA 2020. RESULTS We included 65 studies in the systematic review and 44 in the meta-analysis. Participants with SSDs showed thinning of the peripapillary retinal nerve fiber layer (pRNFL), macular ganglion cell layer- inner plexiform cell layer, and retinal thickness in all other segments of the macula. A meta-analysis of studies that excluded SSD participants with diabetes and hypertension showed no change in results, except for pRNFL inferior and nasal thickness. Furthermore, a significant difference was found in the pooled SMD of pRNFL temporal thickness between the left and right eyes. Meta-regression analysis revealed an association between retinal thinning and duration of illness, positive and negative symptoms. In OCT angiography, no differences were found in the foveal avascular zone and superficial layer foveal vessel density between SSD participants and controls. In flash ERG, the meta-analysis showed reduced amplitude of both a- and b-waves under photopic and scotopic conditions in SSD participants. Furthermore, the latency of photopic a-wave was significantly shorter in SSD participants in comparison with HCs. DISCUSSION Considering the prior report of retinal thinning in unaffected first-degree relatives and the results of the meta-analysis, the findings suggest that retinal changes in SSDs have both trait and state aspects. Future longitudinal multimodal retinal imaging studies are needed to clarify the pathophysiological mechanisms of these changes and to clarify their utility in individual patient monitoring efforts.
Collapse
Affiliation(s)
- Hiroshi Komatsu
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan.
- Miyagi Psychiatric Center, Natori, Japan.
| | - Goh Onoguchi
- Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Steven M Silverstein
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Stefan Jerotic
- Clinic for Psychiatry, University Clinical Centre of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Atsushi Sakuma
- Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuhisa Kanahara
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Medical Treatment and Rehabilitation, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yoshihisa Kakuto
- Miyagi Psychiatric Center, Natori, Japan
- Department of Community Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Takeshi Yabana
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
- Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
5
|
Shew W, Zhang DJ, Menkes DB, Danesh-Meyer HV. Optical Coherence Tomography in Schizophrenia Spectrum Disorders: A Systematic Review and Meta-analysis. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:19-30. [PMID: 38021252 PMCID: PMC10654004 DOI: 10.1016/j.bpsgos.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 12/01/2023] Open
Abstract
Background Inner retinal atrophy has been demonstrated in schizophrenia spectrum disorder (SSD) using optical coherence tomography (OCT). This systematic review and meta-analysis investigated the role of contemporary Fourier domain OCT devices in SSD. Methods MEDLINE, PubMed, Scopus, Embase, PsycInfo, PYSNDEX, World Health Organization, and Cochrane databases were searched from inception until May 2022. All peer-reviewed adult SSD case-control studies using Fourier domain OCT were included. Ocular pathologies known to affect retinal OCT scans were excluded. Search, data appraisal, and summary data extraction were independently performed by 2 authors. Results The review criteria was met by k = 36 studies, with k = 24 studies (1074 cases, 854 controls) suitable for meta-analysis. The SSD group exhibited a thinner global peripapillary retinal nerve fiber layer (-3.26 μm, 95% CI, -5.07 to -1.45, I2 = 64%, k = 21), thinner average macular layer (-7.88 μm, 95% CI, -12.73 to -3.04, I2 = 65%, k = 11), and thinner macular ganglion cell-inner plexiform sublayer (-2.44 μm, 95% CI, -4.13 to -0.76, I2 = 30%, k = 8) compared with the control group. Retinal nerve fiber layer findings remained significant after exclusion of metabolic disease, low quality, outlier, and influential studies. Studies involving eye examinations to exclude eye disease were associated with greater atrophy in SSD. Except for cardiometabolic disease, most studies did not report clinically significant covariate data known to influence retinal thickness. Conclusions Individuals with SSD generally exhibited retinal atrophy, possibly paralleling reduced brain volumes documented in clinical imaging. Prospective longitudinal studies that collect clinical data, including various illness phases, and control for confounders will be necessary to evaluate retinal atrophy as a biomarker in SSD.
Collapse
Affiliation(s)
- William Shew
- Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Daniel J. Zhang
- Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - David B. Menkes
- Department of Psychological Medicine, University of Auckland, Auckland, New Zealand
| | - Helen V. Danesh-Meyer
- Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Kiely C, Douglas KAA, Douglas VP, Miller JB, Lizano P. Overlap between ophthalmology and psychiatry - A narrative review focused on congenital and inherited conditions. Psychiatry Res 2024; 331:115629. [PMID: 38029629 PMCID: PMC10842794 DOI: 10.1016/j.psychres.2023.115629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
A number of congenital and inherited diseases present with both ocular and psychiatric features. The genetic inheritance and phenotypic variants play a key role in disease severity. Early recognition of the signs and symptoms of those disorders is critical to earlier intervention and improved prognosis. Typically, the associations between these two medical subspecialties of ophthalmology and psychiatry are poorly understood by most practitioners so we hope to provide a narrative review to improve the identification and management of these disorders. We conducted a comprehensive review of the literature detailing the diseases with ophthalmic and psychiatric overlap that were more widely represented in the literature. Herein, we describe the clinical features, pathophysiology, molecular biology, diagnostic tests, and the most recent approaches for the treatment of these diseases. Recent studies have combined technologies for ocular and brain imaging such as optical coherence tomography (OCT) and functional imaging with genetic testing to identify the genetic basis for eye-brain connections. Additional work is needed to further explore these potential biomarkers. Overall, accurate, efficient, widely distributed and non-invasive tests that can help with early recognition of these diseases will improve the management of these patients using a multidisciplinary approach.
Collapse
Affiliation(s)
- Chelsea Kiely
- Department of Psychiatry, Beth Israel Deaconess Medical Center, 75 Fenwood Rd, 612, Boston, MA, United States
| | - Konstantinos A A Douglas
- Department of Psychiatry, Beth Israel Deaconess Medical Center, 75 Fenwood Rd, 612, Boston, MA, United States; Harvard Retinal Imaging Lab, Massachusetts Eye and Ear, Boston, MA, United States
| | | | - John B Miller
- Harvard Retinal Imaging Lab, Massachusetts Eye and Ear, Boston, MA, United States; Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, 75 Fenwood Rd, 612, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Boston, MA, United States.
| |
Collapse
|
7
|
Wagner SK, Cortina-Borja M, Silverstein SM, Zhou Y, Romero-Bascones D, Struyven RR, Trucco E, Mookiah MRK, MacGillivray T, Hogg S, Liu T, Williamson DJ, Pontikos N, Patel PJ, Balaskas K, Alexander DC, Stuart KV, Khawaja AP, Denniston AK, Rahi JS, Petzold A, Keane PA. Association Between Retinal Features From Multimodal Imaging and Schizophrenia. JAMA Psychiatry 2023; 80:478-487. [PMID: 36947045 PMCID: PMC10034669 DOI: 10.1001/jamapsychiatry.2023.0171] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/23/2023] [Indexed: 03/23/2023]
Abstract
Importance The potential association of schizophrenia with distinct retinal changes is of clinical interest but has been challenging to investigate because of a lack of sufficiently large and detailed cohorts. Objective To investigate the association between retinal biomarkers from multimodal imaging (oculomics) and schizophrenia in a large real-world population. Design, Setting, and Participants This cross-sectional analysis used data from a retrospective cohort of 154 830 patients 40 years and older from the AlzEye study, which linked ophthalmic data with hospital admission data across England. Patients attended Moorfields Eye Hospital, a secondary care ophthalmic hospital with a principal central site, 4 district hubs, and 5 satellite clinics in and around London, United Kingdom, and had retinal imaging during the study period (January 2008 and April 2018). Data were analyzed from January 2022 to July 2022. Main Outcomes and Measures Retinovascular and optic nerve indices were computed from color fundus photography. Macular retinal nerve fiber layer (RNFL) and ganglion cell-inner plexiform layer (mGC-IPL) thicknesses were extracted from optical coherence tomography. Linear mixed-effects models were used to examine the association between schizophrenia and retinal biomarkers. Results A total of 485 individuals (747 eyes) with schizophrenia (mean [SD] age, 64.9 years [12.2]; 258 [53.2%] female) and 100 931 individuals (165 400 eyes) without schizophrenia (mean age, 65.9 years [13.7]; 53 253 [52.8%] female) were included after images underwent quality control and potentially confounding conditions were excluded. Individuals with schizophrenia were more likely to have hypertension (407 [83.9%] vs 49 971 [48.0%]) and diabetes (364 [75.1%] vs 28 762 [27.6%]). The schizophrenia group had thinner mGC-IPL (-4.05 μm, 95% CI, -5.40 to -2.69; P = 5.4 × 10-9), which persisted when investigating only patients without diabetes (-3.99 μm; 95% CI, -6.67 to -1.30; P = .004) or just those 55 years and younger (-2.90 μm; 95% CI, -5.55 to -0.24; P = .03). On adjusted analysis, retinal fractal dimension among vascular variables was reduced in individuals with schizophrenia (-0.14 units; 95% CI, -0.22 to -0.05; P = .001), although this was not present when excluding patients with diabetes. Conclusions and Relevance In this study, patients with schizophrenia had measurable differences in neural and vascular integrity of the retina. Differences in retinal vasculature were mostly secondary to the higher prevalence of diabetes and hypertension in patients with schizophrenia. The role of retinal features as adjunct outcomes in patients with schizophrenia warrants further investigation.
Collapse
Affiliation(s)
- Siegfried K. Wagner
- NIHR Moorfields Biomedical Research Centre, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Mario Cortina-Borja
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Steven M. Silverstein
- Department of Psychiatry, University of Rochester Medical Center, Rochester, New York
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York
- Center for Visual Science, University of Rochester, Rochester, New York
| | - Yukun Zhou
- NIHR Moorfields Biomedical Research Centre, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - David Romero-Bascones
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Biomedical Engineering Department, Faculty of Engineering (MU-ENG), Mondragon Unibertsitatea, Mondragón, Spain
| | - Robbert R. Struyven
- NIHR Moorfields Biomedical Research Centre, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Emanuele Trucco
- VAMPIRE Project, School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| | - Muthu R. K. Mookiah
- VAMPIRE Project, School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| | - Tom MacGillivray
- VAMPIRE Project, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen Hogg
- VAMPIRE Project, School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| | - Timing Liu
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Dominic J. Williamson
- NIHR Moorfields Biomedical Research Centre, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Nikolas Pontikos
- NIHR Moorfields Biomedical Research Centre, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Praveen J. Patel
- NIHR Moorfields Biomedical Research Centre, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Konstantinos Balaskas
- NIHR Moorfields Biomedical Research Centre, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Daniel C. Alexander
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Kelsey V. Stuart
- NIHR Moorfields Biomedical Research Centre, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Anthony P. Khawaja
- NIHR Moorfields Biomedical Research Centre, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Alastair K. Denniston
- University of Birmingham, Birmingham, United Kingdom
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, United Kingdom
| | - Jugnoo S. Rahi
- NIHR Moorfields Biomedical Research Centre, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
- Ulverscroft Vision Research Group, University College London, London, United Kingdom
- NIHR Biomedical Research Centre at UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London, United Kingdom
| | - Axel Petzold
- NIHR Moorfields Biomedical Research Centre, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Pearse A. Keane
- NIHR Moorfields Biomedical Research Centre, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
8
|
Janti SS, Tikka SK. Retinal microvasculature in schizophrenia: A meta-analysis with trial sequential analysis of studies assessing vessel density using Optical Coherence Tomography Angiography. Asian J Psychiatr 2023; 84:103570. [PMID: 37030089 DOI: 10.1016/j.ajp.2023.103570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 04/10/2023]
Abstract
We performed a series of random-effects meta-analyses on cross-sectional studies assessing vessel density (VD) using Optical Coherence Tomography Angiography (OCTA) in schizophrenia. Five studies with a total sample size of 410 (schizophrenia-192;healthy-218) were analysed. Supplementary Trial Sequential Analyses (TSA) was also performed. Meta-analyses revealed significantly lower VD in schizophrenia patients compared to healthy controls in the peripapillary region of the optic disc, including both superior hemisphere and inferior hemisphere. TSA validated these significant effects. We conclude that reduced VD at the peripapillary region of the optic disc as measured by OCTA may have the potential to be a schizophrenia biomarker.
Collapse
Affiliation(s)
- Siddharam S Janti
- Department of Ophthalmology, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, India
| | - Sai Krishna Tikka
- Department of Psychiatry, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, India.
| |
Collapse
|
9
|
Choroidal structural analysis in ultra-high risk and first-episode psychosis. Eur Neuropsychopharmacol 2023; 70:72-80. [PMID: 36931136 DOI: 10.1016/j.euroneuro.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/02/2023] [Accepted: 02/22/2023] [Indexed: 03/19/2023]
Abstract
Both structural and functional alterations in the retina and the choroid of the eye, as parts of the central nervous system, have been shown in psychotic disorders, especially in schizophrenia. In addition, genetic and imaging studies indicate vascular and angiogenesis anomalies in the psychosis spectrum disorders. In this ocular imaging study, choroidal structure and vascularity were investigated using enhanced depth imaging (EDI) optical coherence tomography (OCT) in first-episode psychosis (FEP), ultra-high risk for psychosis (UHR-P), and age- and gender- matched healthy controls (HCs). There were no significant differences between groups in central choroidal thickness, stromal choroidal area (SCA), luminal choroidal area (LCA) and total subfoveal choroidal area. The LCA/SCA ratio (p<0.001) and the choroidal vascularity index (CVI) (p<0.001) were significantly different between FEP, UHR-P and HCs. CVI and LCA/SCA ratio were significantly higher in patients with FEP compared to help-seeking youth at UHR-P. CVI and LCA/SCA ratio were not different between UHR-P and HCs. However, CVI was higher in UHR-P compared to HCs after excluding the outliers for the sensitivity analysis (p = 0.002). Current findings suggest that choroidal thickness is normal, but there are abnormalities in choroidal microvasculature in prodromal and first-episode psychosis. Further longitudinal studies are needed to investigate oculomics, especially CVI, as a promising biomarker for the prediction of conversion to psychosis in individuals at clinical high-risk.
Collapse
|
10
|
Puvogel S, Alsema A, Kracht L, Webster MJ, Weickert CS, Sommer IEC, Eggen BJL. Single-nucleus RNA sequencing of midbrain blood-brain barrier cells in schizophrenia reveals subtle transcriptional changes with overall preservation of cellular proportions and phenotypes. Mol Psychiatry 2022; 27:4731-4740. [PMID: 36192459 PMCID: PMC9734060 DOI: 10.1038/s41380-022-01796-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
The midbrain is an extensively studied brain region in schizophrenia, in view of its reported dopamine pathophysiology and neuroimmune changes associated with this disease. Besides the dopaminergic system, the midbrain contains other cell types that may be involved in schizophrenia pathophysiology. The neurovascular hypothesis of schizophrenia postulates that both the neurovasculature structure and the functioning of the blood-brain barrier (BBB) are compromised in schizophrenia. In the present study, potential alteration in the BBB of patients with schizophrenia was investigated by single-nucleus RNA sequencing of post-mortem midbrain tissue (15 schizophrenia cases and 14 matched controls). We did not identify changes in the relative abundance of the major BBB cell types, nor in the sub-populations, associated with schizophrenia. However, we identified 14 differentially expressed genes in the cells of the BBB in schizophrenia as compared to controls, including genes that have previously been related to schizophrenia, such as FOXP2 and PDE4D. These transcriptional changes were limited to the ependymal cells and pericytes, suggesting that the cells of the BBB are not broadly affected in schizophrenia.
Collapse
Affiliation(s)
- Sofía Puvogel
- Department of Biomedical Sciences of Cells and Systems, section Cognitive Neuroscience, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Department of Biomedical Sciences of Cells and Systems, section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Astrid Alsema
- Department of Biomedical Sciences of Cells and Systems, section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Laura Kracht
- Department of Biomedical Sciences of Cells and Systems, section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, Rockville, MD, USA
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Iris E C Sommer
- Department of Biomedical Sciences of Cells and Systems, section Cognitive Neuroscience, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells and Systems, section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
11
|
Boudriot E, Schworm B, Slapakova L, Hanken K, Jäger I, Stephan M, Gabriel V, Ioannou G, Melcher J, Hasanaj G, Campana M, Moussiopoulou J, Löhrs L, Hasan A, Falkai P, Pogarell O, Priglinger S, Keeser D, Kern C, Wagner E, Raabe FJ. Optical coherence tomography reveals retinal thinning in schizophrenia spectrum disorders. Eur Arch Psychiatry Clin Neurosci 2022; 273:575-588. [PMID: 35930031 PMCID: PMC10085905 DOI: 10.1007/s00406-022-01455-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Schizophrenia spectrum disorders (SSDs) are presumed to be associated with retinal thinning. However, evidence is lacking as to whether these retinal alterations reflect a disease-specific process or are rather a consequence of comorbid diseases or concomitant microvascular impairment. METHODS The study included 126 eyes of 65 patients with SSDs and 143 eyes of 72 healthy controls. We examined macula and optic disc measures by optical coherence tomography (OCT) and OCT angiography (OCT-A). Additive mixed models were used to assess the impact of SSDs on retinal thickness and perfusion and to explore the association of retinal and clinical disease-related parameters by controlling for several ocular and systemic covariates (age, sex, spherical equivalent, intraocular pressure, body mass index, diabetes, hypertension, smoking status, and OCT signal strength). RESULTS OCT revealed significantly lower parafoveal macular, macular ganglion cell-inner plexiform layer (GCIPL), and macular retinal nerve fiber layer (RNFL) thickness and thinner mean and superior peripapillary RNFL in SSDs. In contrast, the applied OCT-A investigations, which included macular and peripapillary perfusion density, macular vessel density, and size of the foveal avascular zone, did not reveal any significant between-group differences. Finally, a longer duration of illness and higher chlorpromazine equivalent doses were associated with lower parafoveal macular and macular RNFL thickness. CONCLUSIONS This study strengthens the evidence for disease-related retinal thinning in SSDs.
Collapse
Affiliation(s)
- Emanuel Boudriot
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany
| | - Benedikt Schworm
- Department of Ophthalmology, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Lenka Slapakova
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Katharina Hanken
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany
| | - Iris Jäger
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany
| | - Marius Stephan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Vanessa Gabriel
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany
| | - Georgios Ioannou
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany
| | - Julian Melcher
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany
| | - Genc Hasanaj
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany
| | - Mattia Campana
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany
| | - Joanna Moussiopoulou
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany
| | - Lisa Löhrs
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, 86156, Augsburg, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany.,Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Oliver Pogarell
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany
| | - Siegfried Priglinger
- Department of Ophthalmology, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany.,NeuroImaging Core Unit Munich (NICUM), University Hospital, LMU Munich, 80336, Munich, Germany.,Munich Center for Neurosciences (MCN), LMU Munich, 82152, Planegg-Martinsried, Germany
| | - Christoph Kern
- Department of Ophthalmology, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Elias Wagner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany
| | - Florian J Raabe
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336, Munich, Germany. .,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany.
| |
Collapse
|
12
|
Retinal microvasculature and vasoreactivity changes in hypertension using optical coherence tomography-angiography. Graefes Arch Clin Exp Ophthalmol 2022; 260:3505-3515. [PMID: 35678840 DOI: 10.1007/s00417-022-05706-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/21/2022] [Accepted: 05/14/2022] [Indexed: 11/04/2022] Open
Abstract
PURPOSE To evaluate the retinal vasculature and vasoreactivity of patients with hypertension (HTN) using spectral domain optical coherence tomography angiography (SD-OCTA). METHODS Patients with and without a diagnosis of HTN were included in this cross-sectional observational study. All eyes were imaged with SD-OCTA using 3 mm × 3 mm and 6 mm × 6 mm centered on both the fovea and optic disk. A second 6 mm × 6 mm scan was taken after a 30 s breath-hold. Vessel density (VD), vessel skeletonized density (VSD), and fractal dimension (FD) were calculated using customized MATLAB scripts. Vessel diameter index (VDI) was obtained by taking the ratio of VD to VSD. Vasoreactivity was measured by subtracting the VD or VSD before and after breath-hold (∆VD, ∆VSD). RESULTS Twenty-three eyes with HTN (17 patients) and 17 control eyes (15 patients) were included. In the 6 mm × 6 mm angiogram centered on fovea, the superficial capillary plexus (SCP) VD (ß = - 0.029, p = 0.012), VSD (ß = - 0.004, p = 0.043) and the choriocapillaris VD (ß = - 0.021, p = 0.030) were significantly decreased in HTN compared to control eyes. Similarly, FD was decreased in both the SCP (ß = - 0.012, p = 0.013) and choriocapillaris (ß = - 0.009, p = 0.030). In the 3 mm × 3 mm angiogram centered on optic disk, SCP VDI (ß = - 0.364, p = 0.034) was decreased. ∆VD and ∆VSD were both reduced in the DCP (ß = - 0.034, p = 0.032; ß = - 0.013, p = 0.043) and ∆VSD was elevated in the choriocapillaris of HTN eyes (ß = 0.004, p = 0.032). CONCLUSIONS The study used SD-OCTA to show significant differences in the retinal vasculature of hypertensive patients. It was also the first to demonstrate the potential of OCT-A to investigate retinal vascular reactivity in patients with HTN.
Collapse
|
13
|
Green KM, Choi JJ, Ramchandran RS, Silverstein SM. OCT and OCT Angiography Offer New Insights and Opportunities in Schizophrenia Research and Treatment. Front Digit Health 2022; 4:836851. [PMID: 35252961 PMCID: PMC8894243 DOI: 10.3389/fdgth.2022.836851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
The human retina and retinal imaging technologies continue to increasingly gain the attention of schizophrenia researchers. With the same embryologic origin as the brain, the retina offers a window into neurovascular changes that may underlie disease. Recently, two technologies that have already revolutionized the field of ophthalmology, optical coherence tomography (OCT), and a functional extension of this, optical coherence tomography angiography (OCTA), have gained traction. Together, these non-invasive technologies allow for microscopic imaging of both structural and vascular features of the retina. With ease of use and no side effects, these devices are likely to prove powerful digital health tools in the study and treatment of schizophrenia. They may also prove key to discovering disease relevant biomarkers that underly neurodevelopmental and neurodegenerative aspects of conditions such as schizophrenia.
Collapse
Affiliation(s)
- Kyle M. Green
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, United States
| | - Joy J. Choi
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, United States
| | - Rajeev S. Ramchandran
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - Steven M. Silverstein
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, United States
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
- Center for Visual Science, University of Rochester, Rochester, NY, United States
| |
Collapse
|
14
|
Hoang D, Xu Y, Lutz O, Bannai D, Zeng V, Bishop JR, Keshavan M, Lizano P. Inflammatory Subtypes in Antipsychotic-Naïve First-Episode Schizophrenia are Associated with Altered Brain Morphology and Topological Organization. Brain Behav Immun 2022; 100:297-308. [PMID: 34875344 PMCID: PMC8767408 DOI: 10.1016/j.bbi.2021.11.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/01/2021] [Accepted: 11/26/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Peripheral inflammation is implicated in schizophrenia, however, not all individuals demonstrate inflammatory alterations. Recent studies identified inflammatory subtypes in chronic psychosis with high inflammation having worse cognitive performance and displaying neuroanatomical enlargement compared to low inflammation subtypes. It is unclear if inflammatory subtypes exist earlier in the disease course, thus, we aim to identify inflammatory subtypes in antipsychotic naïve First-Episode Schizophrenia (FES). METHODS 12 peripheral inflammatory markers, clinical, cognitive, and neuroanatomical measures were collected from a naturalistic study of antipsychotic-naïve FES patients. A combination of unsupervised principal component analysis and hierarchical clustering was used to categorize inflammatory subtypes from their cytokine data (17 FES High, 30 FES Low, and 33 healthy controls (HCs)). Linear regression analysis was used to assess subtype differences. Neuroanatomical correlations with clinical and cognitive measures were performed using partial Spearman correlations. Graph theoretical analyses were performed to assess global and local network properties across inflammatory subtypes. RESULTS The FES High group made up 36% of the FES group and demonstrated significantly greater levels of IL1β, IL6, IL8, and TNFα compared to FES Low, and higher levels of IL1β and IL8 compared to HCs. FES High had greater right parahippocampal, caudal anterior cingulate, and bank superior sulcus thicknesses compared to FES Low. Compared to HCs, FES Low showed smaller bilateral amygdala volumes and widespread cortical thickness. FES High and FES Low groups demonstrated less efficient topological organization compared to HCs. Individual cytokines and/or inflammatory signatures were positively associated with cognition and symptom measures. CONCLUSIONS Inflammatory subtypes are present in antipsychotic-naïve FES and are associated with inflammation-mediated cortical expansion. These findings support our previous findings in chronic psychosis and point towards a connection between inflammation and blood-brain barrier disruption. Thus, identifying inflammatory subtypes may provide a novel therapeutic avenue for biomarker-guided treatment involving anti-inflammatory medications.
Collapse
Affiliation(s)
- Dung Hoang
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Yanxun Xu
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Olivia Lutz
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Deepthi Bannai
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Victor Zeng
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology and Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
An Integrated Neuroimaging Approach to Inform Transcranial Electrical Stimulation Targeting in Visual Hallucinations. Harv Rev Psychiatry 2022; 30:181-190. [PMID: 35576449 PMCID: PMC9179829 DOI: 10.1097/hrp.0000000000000336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
For decades, noninvasive brain stimulation (NIBS), such as transcranial electrical stimulation (tES), has been used to directly modulate human brain mechanisms of visual perception, setting the groundwork for the development of novel circuit-based therapies. While the field of NIBS has grown considerably over recent years, few studies have used these technologies to treat visual hallucinations (VH). Here, we review the NIBS-VH literature and find mixed results due to shortcomings that may potentially be addressed with a unique multimodal neuroimaging-NIBS approach. We highlight methodological advances in NIBS research that have provided researchers with more precise anatomical measurements that may improve our ability to influence brain activity. Specifically, we propose a methodology that combines neuroimaging advances, clinical neuroscience developments such as the identification of brain regions causally involved in VH, and personalized NIBS approaches that improve anatomical targeting. This methodology may enable us to reconcile existing discrepancies in tES-VH research and pave the way for more effective, VH-specific protocols for treating a number of neuropsychiatric disorders with VH as a core symptom.
Collapse
|