1
|
Leung HW, Foo G, VanDongen A. Arc Regulates Transcription of Genes for Plasticity, Excitability and Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10081946. [PMID: 36009494 PMCID: PMC9405677 DOI: 10.3390/biomedicines10081946] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
The immediate early gene Arc is a master regulator of synaptic function and a critical determinant of memory consolidation. Here, we show that Arc interacts with dynamic chromatin and closely associates with histone markers for active enhancers and transcription in cultured rat hippocampal neurons. Both these histone modifications, H3K27Ac and H3K9Ac, have recently been shown to be upregulated in late-onset Alzheimer’s disease (AD). When Arc induction by pharmacological network activation was prevented using a short hairpin RNA, the expression profile was altered for over 1900 genes, which included genes associated with synaptic function, neuronal plasticity, intrinsic excitability, and signalling pathways. Interestingly, about 100 Arc-dependent genes are associated with the pathophysiology of AD. When endogenous Arc expression was induced in HEK293T cells, the transcription of many neuronal genes was increased, suggesting that Arc can control expression in the absence of activated signalling pathways. Taken together, these data establish Arc as a master regulator of neuronal activity-dependent gene expression and suggest that it plays a significant role in the pathophysiology of AD.
Collapse
Affiliation(s)
| | - Gabriel Foo
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Antonius VanDongen
- Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
- Correspondence:
| |
Collapse
|
2
|
Ruiz-Sánchez E, Jiménez-Genchi J, Alcántara-Flores YM, Castañeda-González CJ, Aviña-Cervantes CL, Yescas P, del Socorro González-Valadez M, Martínez-Rodríguez N, Ríos-Ortiz A, González-González M, López-Navarro ME, Rojas P. Working memory deficits in schizophrenia are associated with the rs34884856 variant and expression levels of the NR4A2 gene in a sample Mexican population: a case control study. BMC Psychiatry 2021; 21:86. [PMID: 33563249 PMCID: PMC7871565 DOI: 10.1186/s12888-021-03081-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/31/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cognitive functions represent useful endophenotypes to identify the association between genetic variants and schizophrenia. In this sense, the NR4A2 gene has been implicated in schizophrenia and cognition in different animal models and clinical trials. We hypothesized that the NR4A2 gene is associated with working memory performance in schizophrenia. This study aimed to analyze two variants and the expression levels of the NR4A2 gene with susceptibility to schizophrenia, as well as to evaluate whether possession of NR4A2 variants influence the possible correlation between gene expression and working memory performance in schizophrenia. METHODS The current study included 187 schizophrenia patients and 227 controls genotyped for two of the most studied NR4A2 genetic variants in neurological and neuropsychiatric diseases. Genotyping was performed using High Resolution Melt and sequencing techniques. In addition, mRNA expression of NR4A2 was performed in peripheral mononuclear cells of 112 patients and 118 controls. A group of these participants, 54 patients and 87 controls, performed the working memory index of the WAIS III test. RESULTS Both genotypic frequencies of the two variants and expression levels of the NR4A2 gene showed no significant difference when in patients versus controls. However, patients homozygous for the rs34884856 promoter variant showed a positive correlation between expression levels and auditory working memory. CONCLUSIONS Our finding suggested that changes in expression levels of the NR4A2 gene could be associated with working memory in schizophrenia depending on patients' genotype in a sample from a Mexican population.
Collapse
Affiliation(s)
- Elizabeth Ruiz-Sánchez
- grid.419204.a0000 0000 8637 5954Laboratory of Neurotoxicology, Instituto Nacional de Neurología y Neurocirugía, “Manuel Velasco Suárez”, SS, Av. Insurgentes Sur No. 3877, Col. La Fama, C.P. 14269 Mexico City, Mexico
| | - Janet Jiménez-Genchi
- Research Unit, Hospital Psiquiátrico Fray Bernardino Álvarez, Mexico City, Mexico
| | - Yessica M. Alcántara-Flores
- grid.419204.a0000 0000 8637 5954Laboratory of Neurotoxicology, Instituto Nacional de Neurología y Neurocirugía, “Manuel Velasco Suárez”, SS, Av. Insurgentes Sur No. 3877, Col. La Fama, C.P. 14269 Mexico City, Mexico
| | | | - Carlos L. Aviña-Cervantes
- grid.419204.a0000 0000 8637 5954Department of Psychiatry, Instituto Nacional de Neurología y Neurocirugía, “Manuel Velasco Suárez”, SS, Av. Insurgentes Sur No. 3877, Col. La Fama, C.P. 14269 Mexico City, Mexico
| | - Petra Yescas
- grid.419204.a0000 0000 8637 5954Department of Genetics, Instituto Nacional de Neurología y Neurocirugía, “Manuel Velasco Suárez”, SS, Av. Insurgentes Sur No. 3877, Col. La Fama, C.P. 14269 Mexico City, Mexico
| | | | - Nancy Martínez-Rodríguez
- grid.414757.40000 0004 0633 3412Epidemiology, Endocrinology & Nutrition Research Unit, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| | - Antonio Ríos-Ortiz
- Research Unit, Hospital Psiquiátrico Fray Bernardino Álvarez, Mexico City, Mexico
| | - Martha González-González
- grid.419204.a0000 0000 8637 5954Unit of Cognition and Behavior, Instituto Nacional de Neurología y Neurocirugía, “Manuel Velasco Suárez”, SS, Av. Insurgentes Sur No. 3877, Col. La Fama, C.P. 14269 Mexico City, Mexico
| | - María E. López-Navarro
- grid.419204.a0000 0000 8637 5954Laboratory of Neurotoxicology, Instituto Nacional de Neurología y Neurocirugía, “Manuel Velasco Suárez”, SS, Av. Insurgentes Sur No. 3877, Col. La Fama, C.P. 14269 Mexico City, Mexico
| | - Patricia Rojas
- Laboratory of Neurotoxicology, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suárez", SS, Av. Insurgentes Sur No. 3877, Col. La Fama, C.P. 14269, Mexico City, Mexico.
| |
Collapse
|
3
|
Ashad Alam M, Komori O, Deng HW, Calhoun VD, Wang YP. Robust kernel canonical correlation analysis to detect gene-gene co-associations: A case study in genetics. J Bioinform Comput Biol 2020; 17:1950028. [PMID: 31617462 DOI: 10.1142/s0219720019500288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The kernel canonical correlation analysis based U-statistic (KCCU) is being used to detect nonlinear gene-gene co-associations. Estimating the variance of the KCCU is however computationally intensive. In addition, the kernel canonical correlation analysis (kernel CCA) is not robust to contaminated data. Using a robust kernel mean element and a robust kernel (cross)-covariance operator potentially enables the use of a robust kernel CCA, which is studied in this paper. We first propose an influence function-based estimator for the variance of the KCCU. We then present a non-parametric robust KCCU, which is designed for dealing with contaminated data. The robust KCCU is less sensitive to noise than KCCU. We investigate the proposed method using both synthesized and real data from the Mind Clinical Imaging Consortium (MCIC). We show through simulation studies that the power of the proposed methods is a monotonically increasing function of sample size, and the robust test statistics bring incremental gains in power. To demonstrate the advantage of the robust kernel CCA, we study MCIC data among 22,442 candidate Schizophrenia genes for gene-gene co-associations. We select 768 genes with strong evidence for shedding light on gene-gene interaction networks for Schizophrenia. By performing gene ontology enrichment analysis, pathway analysis, gene-gene network and other studies, the proposed robust methods can find undiscovered genes in addition to significant gene pairs, and demonstrate superior performance over several of current approaches.
Collapse
Affiliation(s)
- Md Ashad Alam
- Tulane Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA 70118, USA
| | - Osamu Komori
- Department of Computer and Information Science, Seikei University 3-3-1 Kichijojikitamachi, Musashino-shi Tokyo 180-8633 Japan
| | - Hong-Wen Deng
- Tulane Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA 70118, USA
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA30302, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
4
|
Shao CZ, Xia KP. Sevoflurane anesthesia represses neurogenesis of hippocampus neural stem cells via regulating microRNA-183-mediated NR4A2 in newborn rats. J Cell Physiol 2018; 234:3864-3873. [PMID: 30191980 DOI: 10.1002/jcp.27158] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/10/2018] [Indexed: 12/23/2022]
Abstract
Sevoflurane has been commonly utilized in nonobstetric surgeries in pregnant women, and its impacts on fetal brain are still not completely known. Ectopic NR4A2 expression has been reported to be related with familial Parkinson disease, and through dual luciferase we found that NR4A2 is a target gene of microRNA-183 (miR-183). We proposed a hypothesis that miR-183 may participate in the process by targeting NR4A2 in neurons after sevoflurane anesthesia. To verify the effect of sevoflurane on hippocampal neural stem cells (NSCs) proliferation and differentiation, we conducted EdU assay and immunofluorescence staining. Next, for better understanding of the impact of miR-183, we altered the miR-183 expression using mimic and inhibitor. Meanwhile, the targeting relationship between miR-183 and NR4A2 was validated by a bioinformatics website and dual-luciferase reporter gene assay. Finally, expressions of miR-184, NR4A2, SRY (sex-determining region Y)-box 2 (Sox2), and brain-derived neurotrophic factor (BDNF) were determined and evaluated by reverse transcription quantitative polymerase chain reaction and western blot analysis. First, sevoflurane was determined a crucial factor in biological behaviors of hippocampal NSCs. Moreover, upregulated miR-183 expression by mimic inhibited the proliferation and differentiation of NSCs. Sevoflurane negatively regulated NR4A2 and Sox2 expressions but positively regulated miR-183 and BDNF expressions. Our findings revealed the underlying novel mechanism by which sevoflurane inhibits hippocampal NSC proliferation and differentiation through interaction with miR-183 and NR4A2. The study provides reliable reference for safe application of sevoflurane anesthesia in neonates.
Collapse
Affiliation(s)
- Chang-Zhong Shao
- Department of Anesthesiology, Linyi People's Hospital Affiliated to Shandong University, Linyi, China
| | - Kun-Peng Xia
- Department of Anesthesiology, Linyi People's Hospital Affiliated to Shandong University, Linyi, China
| |
Collapse
|
5
|
Xiao J, Prandovszky E, Kannan G, Pletnikov MV, Dickerson F, Severance EG, Yolken RH. Toxoplasma gondii: Biological Parameters of the Connection to Schizophrenia. Schizophr Bull 2018; 44:983-992. [PMID: 29889280 PMCID: PMC6101499 DOI: 10.1093/schbul/sby082] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
It is increasingly evident that the brain is not truly an immune privileged site and that cells of the central nervous system are sensitive to the inflammation generated when the brain is fighting off infection. Among the many microorganisms that have access to the brain, the apicomplexan protozoan Toxoplasma gondii has been one of the most studied. This parasite has been associated with many neuropsychiatric disorders including schizophrenia. This article provides a comprehensive review of the status of Toxoplasma research in schizophrenia. Areas of interest include (1) the limitations and improvements of immune-based assays to detect these infections in humans, (2) recent discoveries concerning the schizophrenia-Toxoplasma association, (3) findings of Toxoplasma neuropathology in animal models related to schizophrenia pathogenesis, (4) interactions of Toxoplasma with the host genome, (5) gastrointestinal effects of Toxoplasma infections, and (6) therapeutic intervention of Toxoplasma infections.
Collapse
Affiliation(s)
- Jianchun Xiao
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| | - Emese Prandovszky
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| | - Geetha Kannan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI
| | - Mikhail V Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Faith Dickerson
- Stanley Research Program, Sheppard Pratt Health System, Baltimore, MD
| | - Emily G Severance
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD,To whom correspondence should be addressed; Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287 USA; tel: +1-410-614-0004, fax: +1-410-955-3723, e-mail:
| |
Collapse
|
6
|
de Bartolomeis A, Buonaguro EF, Latte G, Rossi R, Marmo F, Iasevoli F, Tomasetti C. Immediate-Early Genes Modulation by Antipsychotics: Translational Implications for a Putative Gateway to Drug-Induced Long-Term Brain Changes. Front Behav Neurosci 2017; 11:240. [PMID: 29321734 PMCID: PMC5732183 DOI: 10.3389/fnbeh.2017.00240] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/22/2017] [Indexed: 12/12/2022] Open
Abstract
An increasing amount of research aims at recognizing the molecular mechanisms involved in long-lasting brain architectural changes induced by antipsychotic treatments. Although both structural and functional modifications have been identified following acute antipsychotic administration in humans, currently there is scarce knowledge on the enduring consequences of these acute changes. New insights in immediate-early genes (IEGs) modulation following acute or chronic antipsychotic administration may help to fill the gap between primary molecular response and putative long-term changes. Moreover, a critical appraisal of the spatial and temporal patterns of IEGs expression may shed light on the functional "signature" of antipsychotics, such as the propensity to induce motor side effects, the potential neurobiological mechanisms underlying the differences between antipsychotics beyond D2 dopamine receptor affinity, as well as the relevant effects of brain region-specificity in their mechanisms of action. The interest for brain IEGs modulation after antipsychotic treatments has been revitalized by breakthrough findings such as the role of early genes in schizophrenia pathophysiology, the involvement of IEGs in epigenetic mechanisms relevant for cognition, and in neuronal mapping by means of IEGs expression profiling. Here we critically review the evidence on the differential modulation of IEGs by antipsychotics, highlighting the association between IEGs expression and neuroplasticity changes in brain regions impacted by antipsychotics, trying to elucidate the molecular mechanisms underpinning the effects of this class of drugs on psychotic, cognitive and behavioral symptoms.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Elisabetta F Buonaguro
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Gianmarco Latte
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Rodolfo Rossi
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Federica Marmo
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Felice Iasevoli
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Carmine Tomasetti
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| |
Collapse
|
7
|
Methylphenidate and Atomoxetine-Responsive Prefrontal Cortical Genetic Overlaps in "Impulsive" SHR/NCrl and Wistar Rats. Behav Genet 2017; 47:564-580. [PMID: 28744604 DOI: 10.1007/s10519-017-9861-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/07/2017] [Indexed: 01/24/2023]
Abstract
Impulsivity, the predisposition to act prematurely without foresight, is associated with a number of neuropsychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD). Identifying genetic underpinnings of impulsive behavior may help decipher the complex etiology and neurobiological factors of disorders marked by impulsivity. To identify potential genetic factors of impulsivity, we examined common differentially expressed genes (DEGs) in the prefrontal cortex (PFC) of adolescent SHR/NCrl and Wistar rats, which showed marked decrease in preference for the large but delayed reward, compared with WKY/NCrl rats, in the delay discounting task. Of these DEGs, we examined drug-responsive transcripts whose mRNA levels were altered following treatment (in SHR/NCrl and Wistar rats) with drugs that alleviate impulsivity, namely, the ADHD medications methylphenidate and atomoxetine. Prefrontal cortical genetic overlaps between SHR/NCrl and Wistar rats in comparison with WKY/NCrl included genes associated with transcription (e.g., Btg2, Fos, Nr4a2), synaptic plasticity (e.g., Arc, Homer2), and neuron apoptosis (Grik2, Nmnat1). Treatment with methylphenidate and/or atomoxetine increased choice of the large, delayed reward in SHR/NCrl and Wistar rats and changed, in varying degrees, mRNA levels of Nr4a2, Btg2, and Homer2, genes with previously described roles in neuropsychiatric disorders characterized by impulsivity. While further studies are required, we dissected potential genetic factors that may influence impulsivity by identifying genetic overlaps in the PFC of "impulsive" SHR/NCrl and Wistar rats. Notably, these are also drug-responsive transcripts which may be studied further as biomarkers to predict response to ADHD drugs, and as potential targets for the development of treatments to improve impulsivity.
Collapse
|
8
|
Ruiz-Sánchez E, Yescas P, Rodríguez-Violante M, Martínez-Rodríguez N, Díaz-López JN, Ochoa A, Valdes-Rojas SS, Magos-Rodríguez D, Rojas-Castañeda JC, Cervantes-Arriaga A, Canizales-Quinteros S, Rojas P. Association of polymorphisms and reduced expression levels of the NR4A2 gene with Parkinson's disease in a Mexican population. J Neurol Sci 2017; 379:58-63. [PMID: 28716280 DOI: 10.1016/j.jns.2017.05.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/03/2017] [Accepted: 05/15/2017] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The NR4A2 transcription factor is important in the development, survival and phenotype of dopaminergic neurons and it is postulated as a possible biomarker for Parkinson's disease (PD). Therefore, our aim was to analyze in a sample of a Mexican population with idiopathic PD, mutations (in two hotspot mutation regions) and two polymorphisms (rs34884856 in promotor and rs35479735 intronic regions) of the NR4A2 gene. We also evaluate the levels of NR4A2 gene expression in peripheral blood for a Mexican population, and identify whether they are associated with NR4A2 gene polymorphisms. METHODS We conducted a case-control study, which included 227 idiopathic PD cases and 454 unrelated controls. Genetic variants of the NR4A2 gene were genotyped by high-resolution melting (HRM) and validated by an automated sequencing method. The gene expression was performed in peripheral blood using a real-time polymerase chain reaction. RESULTS The rs35479735 polymorphism was associated with a higher risk of developing PD. In addition, NR4A2 gene expression was significantly decreased in patients with PD. Linkage disequilibrium analysis showed a haplotype H4 (3C-3G) that showed lower levels of expression, and contained the risk alleles for both polymorphisms. CONCLUSIONS In summary, this is the first study in a Mexican population that considers the analysis of NR4A2 in patients with PD. An association was identified between genotype and mRNA expression levels of NR4A2 in patients with PD. These results suggest that polymorphisms and expression of the NR4A2 gene could play an important role in the risk of developing PD in Mexican populations.
Collapse
Affiliation(s)
- Elizabeth Ruiz-Sánchez
- Laboratory of Neurotoxicology, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suárez", SS, Mexico City, Mexico
| | - Petra Yescas
- Department of Genetics, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suárez", SS, Mexico City, Mexico
| | - Mayela Rodríguez-Violante
- Clinical Neurodegenerative Research Unit, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suárez", SS, Mexico City, Mexico
| | | | - Jesica N Díaz-López
- Laboratory of Neurotoxicology, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suárez", SS, Mexico City, Mexico
| | - Adriana Ochoa
- Department of Genetics, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suárez", SS, Mexico City, Mexico
| | - Sergio S Valdes-Rojas
- Direction of Geriatric Attention, Instituto Nacional de las Personas Adultas Mayores (INAPAM), Mexico City, Mexico
| | - Daniel Magos-Rodríguez
- Laboratory of Neurotoxicology, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suárez", SS, Mexico City, Mexico
| | | | - Amin Cervantes-Arriaga
- Clinical Neurodegenerative Research Unit, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suárez", SS, Mexico City, Mexico
| | | | - Patricia Rojas
- Laboratory of Neurotoxicology, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suárez", SS, Mexico City, Mexico.
| |
Collapse
|
9
|
Association between NR4A2 genetic variation and schizophrenia: A comprehensive systematic review and meta-analysis. Neurosci Lett 2015; 598:85-90. [PMID: 25982322 DOI: 10.1016/j.neulet.2015.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/13/2015] [Accepted: 05/09/2015] [Indexed: 01/22/2023]
Abstract
The homo sapiens nuclear receptor subfamily 4, group A (NR4A2) genetic variation has been implicated as a risk factor for schizophrenia (SZ). Nevertheless, the results are inconclusive. We conducted a comprehensive systematic review and meta-analysis to quantify the impact of NR4A2 variation on the risk of SZ. All eligible case-control studies published up to September 2014 were identified by searching PubMed OVID, EBSCO, PsycINFO and ISI web of knowledge. Pooled odds ratio with 95% confidence interval were used to access the strength of association in fixed- or random-effects model. Seven studies that reported 17 variants with a total of 3027 participants were included. Of these variants, five ones (rs143618355, rs199674295, c.366-369 del TAC, c.-469delG and P4) were present only in cases, and three ones (rs35479735, rs3832066 and rs397706674) were available for meta-analysis. Overall, there was no significant association between the three variants and SZ risk under allele model, dominant model and recessive model. The results failed to reveal significant link between NR4A2 polymorphism and SZ risk. However, large-sized and well-designed studies are warranted to validate our findings.
Collapse
|
10
|
Eells JB, Varela-Stokes A, Guo-Ross SX, Kummari E, Smith HM, Cox AD, Lindsay DS. Chronic Toxoplasma gondii in Nurr1-null heterozygous mice exacerbates elevated open field activity. PLoS One 2015; 10:e0119280. [PMID: 25855987 PMCID: PMC4391871 DOI: 10.1371/journal.pone.0119280] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/20/2015] [Indexed: 12/19/2022] Open
Abstract
Latent infection with Toxoplasma gondii is common in humans (approximately 30% of the global population) and is a significant risk factor for schizophrenia. Since prevalence of T. gondii infection is far greater than prevalence of schizophrenia (0.5-1%), genetic risk factors are likely also necessary to contribute to schizophrenia. To test this concept in an animal model, Nurr1-null heterozygous (+/-) mice and wild-type (+/+) mice were evaluate using an emergence test, activity in an open field and with a novel object, response to bobcat urine and prepulse inhibition of the acoustic startle response (PPI) prior to and 6 weeks after infection with T. gondii. In the emergence test, T. gondii infection significantly decreased the amount of time spent in the cylinder. Toxoplasma gondii infection significantly elevated open field activity in both +/+ and +/- mice but this increase was significantly exacerbated in +/- mice. T. gondii infection reduced PPI in male +/- mice but this was not statistically significant. Aversion to bobcat urine was abolished by T. gondii infection in +/+ mice. In female +/- mice, aversion to bobcat urine remained after T. gondii infection while the male +/- mice showed no aversion to bobcat urine. Antibody titers of infected mice were a critical variable associated with changes in open field activity, such that an inverted U shaped relationship existed between antibody titers and the percent change in open field activity with a significant increase in activity at low and medium antibody titers but no effect at high antibody titers. These data demonstrate that the Nurr1 +/- genotype predisposes mice to T. gondii-induced alterations in behaviors that involve dopamine neurotransmission and are associated with symptoms of schizophrenia. We propose that these alterations in murine behavior were due to further exacerbation of the altered dopamine neurotransmission in Nurr1 +/- mice.
Collapse
Affiliation(s)
- Jeffrey B. Eells
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
- * E-mail:
| | - Andrea Varela-Stokes
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Shirley X. Guo-Ross
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Evangel Kummari
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Holly M. Smith
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Arin D. Cox
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - David S. Lindsay
- Department of Biomedical Sciences & Pathobiology, Virginia–Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
11
|
Tokuoka H, Hatanaka T, Metzger D, Ichinose H. Nurr1 expression is regulated by voltage-dependent calcium channels and calcineurin in cultured hippocampal neurons. Neurosci Lett 2013; 559:50-5. [PMID: 24291696 DOI: 10.1016/j.neulet.2013.11.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/19/2013] [Indexed: 12/01/2022]
Abstract
Nurr1 is an orphan nuclear transcription factor expressed in the brain. While Nurr1 is assumed to be an immediate early gene, it is not fully understood how Nurr1 expression is regulated in an activity-dependent manner in the central nervous system. Here, we investigated the molecular mechanisms underlying the regulation of Nurr1 expression in cultured hippocampal and cortical neurons. We found that upregulation of neural activity by high KCl and bicuculline enhances Nurr1 levels, while blockade of its activity by tetrodotoxin reduces Nurr1 levels. The induction of Nurr1 expression was mediated by voltage-dependent calcium channels (VDCCs), as shown by cadmium and VDCC-specific inhibitors. Furthermore, calcineurin, but not calcium/calmodulin-dependent protein kinase (CaMK) was critical for the induction. Thus, Nurr1 expression is regulated by VDCC and calcineurin in a cell-autonomous, neural activity-dependent manner.
Collapse
Affiliation(s)
- Hirofumi Tokuoka
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Takayuki Hatanaka
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Daniel Metzger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch F-67400, France; CNRS UMR7104, Illkirch, France; INSERM U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Hiroshi Ichinose
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|