1
|
Xu FL, Wang BJ. Hsa-miR-874-3p Reduces Endogenous Expression of RGS4-1 Isoform In Vitro. Genes (Basel) 2024; 15:1057. [PMID: 39202417 PMCID: PMC11353307 DOI: 10.3390/genes15081057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/11/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND The level of the regulator of G-protein signaling 4-1 (RGS4-1) isoform, the longest RGS4 isoform, is significantly reduced in the dorsolateral prefrontal cortex (DLPFC) of people with schizophrenia. However, the mechanism behind this has not been clarified. The 3'untranslated regions (3'UTRs) are known to regulate the levels of their mRNA splice variants. METHODS We constructed recombinant pmir-GLO vectors with a truncated 3' regulatory region of the RGS4 gene (3R1, 3R2, 3R3, 3R4, 3R5, and 3R6). The dual-luciferase reporter assay was conducted to find functional regions in HEK-293, SK-N-SH, and U87cells and then predicted miRNA binding to these regions. We performed a dual-luciferase reporter assay and a Western blot analysis after transiently transfecting the predicted miRNAs. RESULTS The dual-luciferase reporter assay found that regions +401-+789, +789-+1152, and +1562-+1990 (with the last base of the termination codon being +1) might be functional regions. Hsa-miR-874-3p, associated with many psychiatric disorders, might target the +789-+1152 region in the 3'UTR of the RGS4 gene. In the dual-luciferase reporter assay, the hsa-miR-874-3p mimic, co-transfected with 3R1, down-regulated the relative fluorescence intensities. However, this was reversed when the hsa-miR-874-3p mimic was co-transfected with m3R1 (deletion of +853-+859). The hsa-miR-874-3p mimic significantly decreased the endogenous expression of the RGS4-1 isoform in HEK-293 cells. CONCLUSIONS Hsa-miR-874-3p inhibits the expression of the RGS4-1 isoform by targeting +853-+859.
Collapse
Affiliation(s)
- Feng-Ling Xu
- School of Forensic Medicine, China Medical University, Shenyang 110122, China;
- School of Forensic Medicine, Wannan Medical College, Wuhu 241002, China
| | - Bao-Jie Wang
- School of Forensic Medicine, China Medical University, Shenyang 110122, China;
| |
Collapse
|
2
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
3
|
Shriebman Y, Yitzhaky A, Kosloff M, Hertzberg L. Gene expression meta-analysis in patients with schizophrenia reveals up-regulation of RGS2 and RGS16 in Brodmann Area 10. Eur J Neurosci 2023; 57:360-372. [PMID: 36443250 DOI: 10.1111/ejn.15876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/10/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022]
Abstract
Regulator of G-protein signalling (RGS) proteins inhibit signalling by G-protein-coupled receptors (GPCRs). GPCRs mediate the functions of several important neurotransmitters and serve as targets of many anti-psychotics. RGS2, RGS4, RGS5 and RGS16 are located on chromosome 1q23.3-31, a locus found to be associated with schizophrenia. Although previous gene expression analysis detected down-regulation of RGS4 expression in brain samples of patients with schizophrenia, the results were not consistent. In the present study, we performed a systematic meta-analysis of differential RGS2, RGS4, RGS5 and RGS16 expression in Brodmann Area 10 (BA10) samples of patients with schizophrenia and from healthy controls. Two microarray datasets met the inclusion criteria (overall, 41 schizophrenia samples and 38 controls were analysed). RGS2 and RGS16 were found to be up-regulated in BA10 samples of individuals with schizophrenia, whereas no differential expression of RGS4 and RGS5 was detected. Analysis of dorso-lateral prefrontal cortex samples of the CommonMind Consortium (258 schizophrenia samples vs. 279 controls) further validated the results. Given their central role in inactivating G-protein-coupled signalling pathways, our results suggest that differential gene expression might lead to enhanced inactivation of G-protein signalling in schizophrenia. This, in turn, suggests that additional studies are needed to further explore the consequences of the differential expression we detected, this time at the protein and functional levels.
Collapse
Affiliation(s)
- Yaen Shriebman
- Shalvata Mental Health Center, affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Assif Yitzhaky
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Mickey Kosloff
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Libi Hertzberg
- Shalvata Mental Health Center, affiliated with the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Micale V, Di Bartolomeo M, Di Martino S, Stark T, Dell'Osso B, Drago F, D'Addario C. Are the epigenetic changes predictive of therapeutic efficacy for psychiatric disorders? A translational approach towards novel drug targets. Pharmacol Ther 2023; 241:108279. [PMID: 36103902 DOI: 10.1016/j.pharmthera.2022.108279] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
The etiopathogenesis of mental disorders is not fully understood and accumulating evidence support that clinical symptomatology cannot be assigned to a single gene mutation, but it involves several genetic factors. More specifically, a tight association between genes and environmental risk factors, which could be mediated by epigenetic mechanisms, may play a role in the development of mental disorders. Several data suggest that epigenetic modifications such as DNA methylation, post-translational histone modification and interference of microRNA (miRNA) or long non-coding RNA (lncRNA) may modify the severity of the disease and the outcome of the therapy. Indeed, the study of these mechanisms may help to identify patients particularly vulnerable to mental disorders and may have potential utility as biomarkers to facilitate diagnosis and treatment of psychiatric disorders. This article summarizes the most relevant preclinical and human data showing how epigenetic modifications can be central to the therapeutic efficacy of antidepressant and/or antipsychotic agents, as possible predictor of drugs response.
Collapse
Affiliation(s)
- Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Martina Di Bartolomeo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Scientific Core Unit Neuroimaging, Max Planck Institute of Psychiatry, Munich, Germany
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milan, Italy, Department of Mental Health, ASST Fatebenefratelli-Sacco, Milan, Italy; "Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan Medical School, Milan, Italy; Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Jeon JH, Oh TR, Park S, Huh S, Kim JH, Mai BK, Lee JH, Kim SH, Lee MJ. The Antipsychotic Drug Clozapine Suppresses the RGS4 Polyubiquitylation and Proteasomal Degradation Mediated by the Arg/N-Degron Pathway. Neurotherapeutics 2021; 18:1768-1782. [PMID: 33884581 PMCID: PMC8608952 DOI: 10.1007/s13311-021-01039-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 02/04/2023] Open
Abstract
Although diverse antipsychotic drugs have been developed for the treatment of schizophrenia, most of their mechanisms of action remain elusive. Regulator of G-protein signaling 4 (RGS4) has been reported to be linked, both genetically and functionally, with schizophrenia and is a physiological substrate of the arginylation branch of the N-degron pathway (Arg/N-degron pathway). Here, we show that the atypical antipsychotic drug clozapine significantly inhibits proteasomal degradation of RGS4 proteins without affecting their transcriptional expression. In addition, the levels of Arg- and Phe-GFP (artificial substrates of the Arg/N-degron pathway) were significantly elevated by clozapine treatment. In silico computational model suggested that clozapine may interact with active sites of N-recognin E3 ubiquitin ligases. Accordingly, treatment with clozapine resulted in reduced polyubiquitylation of RGS4 and Arg-GFP in the test tube and in cultured cells. Clozapine attenuated the activation of downstream effectors of G protein-coupled receptor signaling, such as MEK1 and ERK1, in HEK293 and SH-SY5Y cells. Furthermore, intraperitoneal injection of clozapine into rats significantly stabilized the endogenous RGS4 protein in the prefrontal cortex. Overall, these results reveal an additional therapeutic mechanism of action of clozapine: this drug posttranslationally inhibits the degradation of Arg/N-degron substrates, including RGS4. These findings imply that modulation of protein post-translational modifications, in particular the Arg/N-degron pathway, may be a novel molecular therapeutic strategy against schizophrenia.
Collapse
Affiliation(s)
- Jun Hyoung Jeon
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Tae Rim Oh
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Seoyoung Park
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Sunghoo Huh
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Korea
| | - Ji Hyeon Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Jung Hoon Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Se Hyun Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Korea.
- Department of Psychiatry, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, 03080, Korea.
| | - Min Jae Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
6
|
Yoon SY, Roh DH, Yeo JH, Woo J, Han SH, Kim KS. Analgesic Efficacy of α 2 Adrenergic Receptor Agonists Depends on the Chronic State of Neuropathic Pain: Role of Regulator of G Protein Signaling 4. Neuroscience 2020; 455:177-194. [PMID: 33359660 DOI: 10.1016/j.neuroscience.2020.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022]
Abstract
The analgesic effect of alpha-2 adrenergic receptor (α2AR) agonists, which relieve chronic neuropathic pain, is highly variable among individuals. Here, we used a mouse model of spared nerve injury (SNI) to show that treatment time after the establishment of neuropathic pain was important for the variability in the analgesic efficacy of α2AR agonists, which was related to the activity of regulator of G-protein signaling protein 4 (RGS4). Intrathecal treatment with α2AR agonists, clonidine (0.1-1 nmol) or dexmedetomidine (0.3-1 nmol), relieved mechanical allodynia and thermal hyperalgesia on postoperative day (POD) 14, but their efficacy was weaker on POD28 and absent on POD56. The RGS4 level of plasma membrane was increased on POD56 compared to that on POD14. Moreover, in RGS4-deficient or RGS4 inhibitor (CCG50014)-treated mice, the analgesic effect of the α2AR agonists was conserved even on POD56. The increased plasma membrane RGS4 expression and the reduced level of active Gαi after clonidine injection on POD56 were completely restored by CCG50014. Higher doses of clonidine (10 nmol) and dexmedetomidine (3 nmol) relieved neuropathic pain on POD56 but were accompanied with serious side effects. Whereas, the coadministration of CCG50014 with clonidine (1 nmol) or dexmedetomidine (1 nmol) did not cause side effects. These findings demonstrated that SNI-induced increase in plasma membrane RGS4 expression was associated with low efficacy of α2AR agonists in a model of persistent, chronic neuropathic pain. Furthermore, α2AR agonist administration together with RGS4-targeted intervention represents a novel strategy for the treatment of neuropathic pain to overcome dose-limiting side effects.
Collapse
Affiliation(s)
- Seo-Yeon Yoon
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; College of Korean Medicine, Dongshin University, Gunjae Road 185, Naju-si, Jeonnam 58245, Republic of Korea.
| | - Dae-Hyun Roh
- Department of Oral Physiology, School of Dentistry, Kyung Hee University, Seoul 02454, Republic of Korea
| | - Ji-Hee Yeo
- Department of Oral Physiology, School of Dentistry, Kyung Hee University, Seoul 02454, Republic of Korea
| | - Jiwan Woo
- Research Animal Resource Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Se Hee Han
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Key-Sun Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Research Animal Resource Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
7
|
Smigielski L, Jagannath V, Rössler W, Walitza S, Grünblatt E. Epigenetic mechanisms in schizophrenia and other psychotic disorders: a systematic review of empirical human findings. Mol Psychiatry 2020; 25:1718-1748. [PMID: 31907379 DOI: 10.1038/s41380-019-0601-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/26/2022]
Abstract
Schizophrenia and other psychotic disorders are highly debilitating psychiatric conditions that lack a clear etiology and exhibit polygenic inheritance underlain by pleiotropic genes. The prevailing explanation points to the interplay between predisposing genes and environmental exposure. Accumulated evidence suggests that epigenetic regulation of the genome may mediate dynamic gene-environment interactions at the molecular level by modulating the expression of psychiatric phenotypes through transcription factors. This systematic review summarizes the current knowledge linking schizophrenia and other psychotic disorders to epigenetics, based on PubMed and Web of Science database searches conducted according to the PRISMA guidelines. Three groups of mechanisms in case-control studies of human tissue (i.e., postmortem brain and bio-fluids) were considered: DNA methylation, histone modifications, and non-coding miRNAs. From the initial pool of 3,204 records, 152 studies met our inclusion criteria (11,815/11,528, 233/219, and 2,091/1,827 cases/controls for each group, respectively). Many of the findings revealed associations with epigenetic modulations of genes regulating neurotransmission, neurodevelopment, and immune function, as well as differential miRNA expression (e.g., upregulated miR-34a, miR-7, and miR-181b). Overall, actual evidence moderately supports an association between epigenetics and schizophrenia and other psychotic disorders. However, heterogeneous results and cross-tissue extrapolations call for future work. Integrating epigenetics into systems biology may critically enhance research on psychosis and thus our understanding of the disorder. This may have implications for psychiatry in risk stratification, early recognition, diagnostics, precision medicine, and other interventional approaches targeting epigenetic fingerprints.
Collapse
Affiliation(s)
- Lukasz Smigielski
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland. .,The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland.
| | - Vinita Jagannath
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.,Merck Sharp & Dohme (MSD) R&D Innovation Centre, London, UK
| | - Wulf Rössler
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland.,Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland.,Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany.,Laboratory of Neuroscience, Institute of Psychiatry, Universidade de São Paulo, São Paulo, Brazil
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.,The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Amoah SK, Rodriguez BA, Logothetis CN, Chander P, Sellgren CM, Weick JP, Sheridan SD, Jantzie LL, Webster MJ, Mellios N. Exosomal secretion of a psychosis-altered miRNA that regulates glutamate receptor expression is affected by antipsychotics. Neuropsychopharmacology 2020; 45:656-665. [PMID: 31775160 PMCID: PMC7021900 DOI: 10.1038/s41386-019-0579-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/24/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022]
Abstract
The ability of small secretory microvesicles known as exosomes to influence neuronal and glial function via their microRNA (miRNA) cargo has positioned them as a novel and effective method of cell-to-cell communication. However, little is known about the role of exosome-secreted miRNAs in the regulation of glutamate receptor gene expression and their relevance for schizophrenia (SCZ) and bipolar disorder (BD). Using mature miRNA profiling and quantitative real-time PCR (qRT-PCR) in the orbitofrontal cortex (OFC) of SCZ (N = 29; 20 male and 9 female), BD (N = 26; 12 male and 14 female), and unaffected control (N = 25; 21 male and 4 female) subjects, we uncovered that miR-223, an exosome-secreted miRNA that targets glutamate receptors, was increased at the mature miRNA level in the OFC of SCZ and BD patients with positive history of psychosis at the time of death and was inversely associated with deficits in the expression of its targets glutamate ionotropic receptor NMDA-type subunit 2B (GRIN2B) and glutamate ionotropic receptor AMPA-type subunit 2 (GRIA2). Furthermore, changes in miR-223 levels in the OFC were positively and negatively correlated with inflammatory and GABAergic gene expression, respectively. Moreover, miR-223 was found to be enriched in astrocytes and secreted via exosomes, and antipsychotics were shown to control its cellular and exosomal localization in a cell-specific manner. Furthermore, addition of astrocytic exosomes in neuronal cultures resulted in a significant increase in miR-223 expression and a notable reduction in Grin2b and Gria2 mRNA levels, which was strongly inversely associated with miR-223 expression. Lastly, inhibition of astrocytic miR-223 abrogated the exosomal-mediated reduction in neuronal Grin2b expression. Taken together, our results demonstrate that the exosomal secretion of a psychosis-altered and glial-enriched miRNA that controls neuronal gene expression is regulated by antipsychotics.
Collapse
Affiliation(s)
- Stephen K Amoah
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
- Autophagy inflammation and metabolism (AIM) center, Albuquerque, NM, USA
| | - Brian A Rodriguez
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | | | - Praveen Chander
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jason P Weick
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Steven D Sheridan
- Center for Genomic Medicine, Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Experimental Drugs and Diagnostics, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Lauren L Jantzie
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, Chevy Chase, MD, USA
| | - Nikolaos Mellios
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA.
- Autophagy inflammation and metabolism (AIM) center, Albuquerque, NM, USA.
| |
Collapse
|
9
|
O'Brien JB, Wilkinson JC, Roman DL. Regulator of G-protein signaling (RGS) proteins as drug targets: Progress and future potentials. J Biol Chem 2019; 294:18571-18585. [PMID: 31636120 PMCID: PMC6901330 DOI: 10.1074/jbc.rev119.007060] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) play critical roles in regulating processes such as cellular homeostasis, responses to stimuli, and cell signaling. Accordingly, GPCRs have long served as extraordinarily successful drug targets. It is therefore not surprising that the discovery in the mid-1990s of a family of proteins that regulate processes downstream of GPCRs generated great excitement in the field. This finding enhanced the understanding of these critical signaling pathways and provided potentially new targets for pharmacological intervention. These regulators of G-protein signaling (RGS) proteins were viewed by many as nodes downstream of GPCRs that could be targeted with small molecules to tune signaling processes. In this review, we provide a brief overview of the discovery of RGS proteins and of the gradual and continuing discovery of their roles in disease states, focusing particularly on cancer and neurological disorders. We also discuss high-throughput screening efforts that have led to the discovery first of peptide-based and then of small-molecule inhibitors targeting a subset of the RGS proteins. We explore the unique mechanisms of RGS inhibition these chemical tools have revealed and highlight the most up-to-date studies using these tools in animal experiments. Finally, we discuss the future opportunities in the field, as there are clearly more avenues left to be explored and potentials to be realized.
Collapse
Affiliation(s)
- Joseph B O'Brien
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242
| | - Joshua C Wilkinson
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242
| | - David L Roman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242; Iowa Neuroscience Institute, Iowa City, Iowa 52242; Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242.
| |
Collapse
|
10
|
MicroRNAs and Child Neuropsychiatric Disorders: A Brief Review. Neurochem Res 2019; 45:232-240. [DOI: 10.1007/s11064-019-02917-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/23/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
|
11
|
He Z, Yu L, Luo S, Li Q, Huang S, An Y. RGS4 Regulates Proliferation And Apoptosis Of NSCLC Cells Via microRNA-16 And Brain-Derived Neurotrophic Factor. Onco Targets Ther 2019; 12:8701-8714. [PMID: 31695428 PMCID: PMC6821062 DOI: 10.2147/ott.s221657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/11/2019] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Regulator of G-protein signaling (RGS) proteins are GTPase-activating proteins that target the α-subunit of heterotrimeric G proteins. Many studies have shown that RGS proteins contribute to tumorigenesis and metastasis. However, the mechanism in which RGS proteins, especially RGS4, affect the development of non-small cell lung cancer (NSCLC) remains unclear. The aim of this study was to characterize the role of RGS4 in NSCLC. METHODS RGS4 expression in NSCLC tissues was assessed using an immunohistochemistry tissue microarray. Additionally, RGS4 was knocked down using short-hairpin RNA to assess the regulatory function of RGS4 in the biological behaviors of human NSCLC cell lines. A xenograft lung cancer model in nude BALB/c mice was established to study whether RGS4 knockdown inhibits cancer cell proliferation in vivo. RESULTS We observed an increase in RGS4 protein levels in NSCLC samples. RGS4 knockdown inhibited cell proliferation and induced apoptosis in H1299 and PC9 cell lines, but did not affect cell migration. Moreover, we found that RGS4 negatively regulated the expression of microRNA-16 (miR-16), a tumor suppressor. The inhibition of miR-16 resulted in upregulated RGS4 expression. We also found that RGS4 regulated the expression of brain-derived neurotrophic factor (BDNF) and activated the BDNF-tropomyosin receptor kinase B signaling pathway. CONCLUSION This study revealed that RGS4 overexpression positively correlated with the development of NSCLC. TDownstream RGS4 targets (eg, miR-16 and BDNF) might be involved in the development of NSCLC and may serve as potential therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Zheng He
- Biotechnology Department, Beijing Center for Physical and Chemical Analysis, Beijing100094, People’s Republic of China
- Department of Clinical Laboratory, Chinese People’s Liberation Army General Hospital, Beijing100853, People’s Republic of China
| | - Lianhua Yu
- Department of Laboratory Medicine, Taizhou Municipal Hospital, Taizhou318000, People’s Republic of China
| | - Shiyi Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College and Chemical Engineering, Xiamen University, Xiamen361005, People’s Republic of China
| | - Qi Li
- Department of Clinical Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing100091, People’s Republic of China
| | - Shuhong Huang
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong250062, People’s Republic of China
| | - Yunhe An
- Biotechnology Department, Beijing Center for Physical and Chemical Analysis, Beijing100094, People’s Republic of China
| |
Collapse
|
12
|
Romain K, Eriksson A, Onyon R, Kumar M. The psychosis risk timeline: can we improve our preventive strategies? Part 1: early life. BJPSYCH ADVANCES 2019. [DOI: 10.1192/bja.2018.66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
SUMMARYPsychosis is a complex presentation with a wide range of factors contributing to its development, biological and environmental. Psychosis is a feature present in a variety of psychiatric disorders. It is important for clinicians to keep up to date with evidence regarding current understanding of the reasons psychosis may occur. Furthermore, it is necessary to find clinical utility from this knowledge so that effective primary, secondary and tertiary preventative strategies can be considered. This article is the first of a three-part series that examines contemporary knowledge of risk factors for psychosis and presents an overview of current explanations. The articles focus on the psychosis risk timeline, which gives a structure within which to consider key aspects of risk likely to affect people at different stages of life. In this first article, early life is discussed. It covers elements that contribute in the prenatal and early childhood period and includes genetic, nutritional and infective risk factors.LEARNING OBJECTIVESAfter reading this article you will be able to:
•give an up-to-date overview of psychosis risk factors that can affect early life•describe some important genetic risk factors•understand more about the role of environmental factors such as nutrition and infection.DECLARATION OF INTERESTNone.
Collapse
|
13
|
Migdalska-Richards A, Mill J. Epigenetic studies of schizophrenia: current status and future directions. Curr Opin Behav Sci 2019. [DOI: 10.1016/j.cobeha.2018.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
John YJ, Zikopoulos B, Bullock D, Barbas H. Visual Attention Deficits in Schizophrenia Can Arise From Inhibitory Dysfunction in Thalamus or Cortex. COMPUTATIONAL PSYCHIATRY (CAMBRIDGE, MASS.) 2018; 2:223-257. [PMID: 30627672 PMCID: PMC6317791 DOI: 10.1162/cpsy_a_00023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/17/2018] [Indexed: 01/13/2023]
Abstract
Schizophrenia is associated with diverse cognitive deficits, including disorders of attention-related oculomotor behavior. At the structural level, schizophrenia is associated with abnormal inhibitory control in the circuit linking cortex and thalamus. We developed a spiking neural network model that demonstrates how dysfunctional inhibition can degrade attentive gaze control. Our model revealed that perturbations of two functionally distinct classes of cortical inhibitory neurons, or of the inhibitory thalamic reticular nucleus, disrupted processing vital for sustained attention to a stimulus, leading to distractibility. Because perturbation at each circuit node led to comparable but qualitatively distinct disruptions in attentive tracking or fixation, our findings support the search for new eye movement metrics that may index distinct underlying neural defects. Moreover, because the cortico-thalamic circuit is a common motif across sensory, association, and motor systems, the model and extensions can be broadly applied to study normal function and the neural bases of other cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Yohan J. John
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, USA
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, USA
- Graduate Program for Neuroscience, Boston University, and School of Medicine, Boston, Massachusetts, USA
| | - Daniel Bullock
- Graduate Program for Neuroscience, Boston University, and School of Medicine, Boston, Massachusetts, USA
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, USA
- Graduate Program for Neuroscience, Boston University, and School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Datta D, Arnsten AF. Unique Molecular Regulation of Higher-Order Prefrontal Cortical Circuits: Insights into the Neurobiology of Schizophrenia. ACS Chem Neurosci 2018; 9:2127-2145. [PMID: 29470055 DOI: 10.1021/acschemneuro.7b00505] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Schizophrenia is associated with core deficits in cognitive abilities and impaired functioning of the newly evolved prefrontal association cortex (PFC). In particular, neuropathological studies of schizophrenia have found selective atrophy of the pyramidal cell microcircuits in deep layer III of the dorsolateral PFC (dlPFC) and compensatory weakening of related GABAergic interneurons. Studies in monkeys have shown that recurrent excitation in these layer III microcircuits generates the precisely patterned, persistent firing needed for working memory and abstract thought. Importantly, excitatory synapses on layer III spines are uniquely regulated at the molecular level in ways that may render them particularly vulnerable to genetic and/or environmental insults. Glutamate actions are remarkably dependent on cholinergic stimulation, and there are inherent mechanisms to rapidly weaken connectivity, e.g. during stress. In particular, feedforward cyclic adenosine monophosphate (cAMP)-calcium signaling rapidly weakens network connectivity and neuronal firing by opening nearby potassium channels. Many mechanisms that regulate this process are altered in schizophrenia and/or associated with genetic insults. Current data suggest that there are "dual hits" to layer III dlPFC circuits: initial insults to connectivity during the perinatal period due to genetic errors and/or inflammatory insults that predispose the cortex to atrophy, followed by a second wave of cortical loss during adolescence, e.g. driven by stress, at the descent into illness. The unique molecular regulation of layer III circuits may provide a nexus where inflammation disinhibits the neuronal response to stress. Understanding these mechanisms may help to illuminate dlPFC susceptibility in schizophrenia and provide insights for novel therapeutic targets.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| | - Amy F.T. Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| |
Collapse
|
16
|
Huang MW, Lin YJ, Chang CW, Lei FJ, Ho EP, Liu RS, Shyu WC, Hsieh CH. RGS4 deficit in prefrontal cortex contributes to the behaviors related to schizophrenia via system x c--mediated glutamatergic dysfunction in mice. Am J Cancer Res 2018; 8:4781-4794. [PMID: 30279737 PMCID: PMC6160762 DOI: 10.7150/thno.25189] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/09/2018] [Indexed: 01/08/2023] Open
Abstract
Rationale: Although molecular investigations of regulator of G-protein signaling 4 (RGS4) alterations in schizophrenia patients yielded partially inconsistent findings, the previous studies suggested that RGS4 is both a positional and functional candidate gene for schizophrenia and is significantly decreased in the prefrontal cortex. However, the exact role of RGS4 in the pathophysiology of schizophrenia is unclear. Moreover, a whole genome transcription profile study showed the possibility of RGS4-regulated expression of SLC7A11(xCT), a component of cysteine/glutamate transporter or system xc-. We hypothesized that system xc- is a therapeutic target of RGS4 deficit-mediated schizophrenia. Methods: Pharmacological and genetic manipulation of RGS4 in organotypic brain slice cultures were used as an ex vivo model to investigate its role in system xc- and glutamatergic function. Lentiviral-based mouse models with RGS4 deficit in the prefrontal cortex and treatment with system xc- activator, N-acetyl cysteine (NAC), were utilized to observe their impacts on glutamatergic function and schizophrenic behaviors. Results: Genetic and pharmacological inhibition of RGS4 resulted in a significant decrease in SLC7A11 (xCT) expression and hypofunction of system xc- and reduced glutamatergic function in organotypic brain slice cultures. However, NAC restored the dysregulation of RGS4-mediated functional deficits of glutamate. Moreover, knockdown of RGS4 specifically in the prefrontal cortex caused mice to exhibit behaviors related to schizophrenia such as increased stereotypy, impaired prepulse inhibition, deficits in social interactions, working memory, and nesting behavior, while enhancing sensitivity to the locomotor stimulatory effect of MK-801. These mice displayed glutamatergic dysfunction in the prefrontal cortex, which may have contributed to the behavioral deficits. RGS4 knockdown mice that received NAC treatment had improved glutamatergic dysfunction and schizophrenia behaviors. Conclusion: Our results suggest that RGS4 deficit induces dysregulation and dysfunction of system xc-, which further results in functional deficits of the glutamatergic system and subsequently to schizophrenia-related behavioral phenotypes. Activation of system xc- offers a promising strategy to treat RGS4 deficit-mediated schizophrenia.
Collapse
|
17
|
Schwarz E. A gene-based review of RGS4 as a putative risk gene for psychiatric illness. Am J Med Genet B Neuropsychiatr Genet 2018; 177:267-273. [PMID: 28544755 DOI: 10.1002/ajmg.b.32547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/10/2017] [Indexed: 12/15/2022]
Abstract
Considerable efforts have been made to characterize RGS4 as a potential candidate gene for schizophrenia. Investigations span across numerous modalities and include explorations of genetic risk associations, mRNA and protein levels in the brain, and functionally relevant interactions with other candidate genes as well as links to schizophrenia relevant neural phenotypes. While these lines of investigations have yielded partially inconsistent findings, they provide a perspective on RGS4 as an important part of a larger biological system contributing to schizophrenia risk. This gene-based review aims to provide a comprehensive overview of published data from different experimental modalities and discusses the current knowledge of RGS4's systems-biological impact on the schizophrenia pathology.
Collapse
Affiliation(s)
- Emanuel Schwarz
- Medical Faculty Mannheim, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| |
Collapse
|
18
|
Abstract
Schizophrenia is a complex disorder lacking an effective treatment option for the pervasive and debilitating cognitive impairments experienced by patients. Working memory is a core cognitive function impaired in schizophrenia that depends upon activation of distributed neural network, including the circuitry of the dorsolateral prefrontal cortex (DLPFC). Accordingly, individuals diagnosed with schizophrenia show reduced DLPFC activation while performing working-memory tasks. This lower DLPFC activation appears to be an integral part of the disease pathophysiology, and not simply a reflection of poor performance. Thus, the cellular and circuitry alterations that underlie lower DLPFC neuronal activity in schizophrenia must be determined in order to identify appropriate therapeutic targets. Studies using human postmortem brain tissue provide a robust way to investigate and characterize these cellular and circuitry alterations at multiple levels of resolution, and such studies provide essential information that cannot be obtained either through in vivo studies in humans or through experimental animal models. Studies examining neuronal morphology, protein expression and localization, and transcript levels indicate that a microcircuit composed of excitatory pyramidal cells and inhibitory interneurons containing the calcium-binding protein parvalbumin is altered in the DLPFC of subjects with schizophrenia and likely contributes to DLPFC dysfunction.
Collapse
Affiliation(s)
- Jill R Glausier
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|