1
|
Feng Y, Wu J, Yuan M, Xu T, Li J, Hou D. Causal association between brain structure and obstructive sleep apnea: A mendelian randomization study. Sleep Med 2024; 122:14-19. [PMID: 39106615 DOI: 10.1016/j.sleep.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
OBJECTIVE Previous studies have reported contradictory findings regarding the relationship between obstructive sleep apnea (OSA) and abnormal brain morphology. Furthermore, the causal relationship between OSA and brain morphology has not been clearly established. The aim of this study was to utilize Mendelian randomization (MR) analysis to investigate the impact of obstructive sleep apnea (OSA) on brain morphology and determine its potential causal relationship. METHODS Firstly, the inverse-variance weighted (IVW) method was employed to assess the causal effects of OSA on cortical surface area and brain structure volume. Additionally, two additional MR methods, namely weighted median and MR-Egger, were used to supplement the results from IVW. Subsequently, a reverse MR analysis was conducted to determine the direction of causality. Furthermore, sensitivity analyses were performed including Cochrane's Q test, MR-Egger intercept test, MR-PRESSO global test, and leave-one-out analysis. RESULTS The results of the study showed that OSA patients had a tendency towards decreased cortical surface area and hippocampal volume in the precuneus region compared to individuals without OSA, while the superior temporal cortical surface area showed an increase. The results from the weighted median and MR-Egger analyses were consistent with those from the IVW analysis. Sensitivity tests confirmed the reliability of the causal estimates. CONCLUSIONS This study provides preliminary evidence of an association between OSA and brain structure using large-scale genome-wide association data. The results demonstrate that OSA is associated with changes in brain structure. Therefore, individuals with OSA should be vigilant about the risks of related diseases due to alterations in brain tissue.
Collapse
Affiliation(s)
- Yanjing Feng
- Department of Neurology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, China; Department of Neurology, Baoding No. 1 Central Hospital of Heibei Medical University, Baoding, Hebei, 071000, China
| | - Jinze Wu
- Department of Neurology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Mingyang Yuan
- Department of Neurology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Ting Xu
- Department of Neurology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Jiaxin Li
- Department of Neurology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Deren Hou
- Department of Neurology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, China.
| |
Collapse
|
2
|
Ozdinler PH. Sleep Apnea and Amyotrophic Lateral Sclerosis: Cause, Correlation, Any Relation? Brain Sci 2024; 14:978. [PMID: 39451992 PMCID: PMC11505663 DOI: 10.3390/brainsci14100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a motor neuron disease with progressive neurodegeneration, affecting both the cortical and the spinal component of the motor neuron circuitry in patients. The cellular and molecular basis of selective neuronal vulnerability is beginning to emerge. Yet, there are no effective cures for ALS, which affects more than 200,000 people worldwide each year. Recent studies highlight the importance of the glymphatic system and its proper function for the clearance of the cerebral spinal fluid, which is achieved mostly during the sleep period. Therefore, a potential link between problems with sleep and neurodegenerative diseases has been postulated. This paper discusses the present understanding of this potential correlation.
Collapse
Affiliation(s)
- P Hande Ozdinler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
3
|
Mueller C, Nenert R, Catiul C, Pilkington J, Szaflarski JP, Amara AW. Relationship between sleep, physical fitness, brain microstructure, and cognition in healthy older adults: A pilot study. Brain Res 2024; 1839:149016. [PMID: 38768934 DOI: 10.1016/j.brainres.2024.149016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND There is a critical need for neuroimaging markers of brain integrity to monitor effects of modifiable lifestyle factors on brain health. This observational, cross-sectional study assessed relationships between brain microstructure and sleep, physical fitness, and cognition in healthy older adults. METHODS Twenty-three adults aged 60 and older underwent whole-brain multi-shell diffusion imaging, comprehensive cognitive testing, polysomnography, and exercise testing. Neurite Orientation Dispersion and Density Imaging (NODDI) was used to quantify neurite density (NDI) and orientation dispersion (ODI). Diffusion tensor imaging (DTI) was used to quantify axial diffusivity (AxD), fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD). Relationships between sleep efficiency (SE), time and percent in N3 sleep, cognitive function, physical fitness (VO2 peak) and the diffusion metrics in regions of interest and the whole brain were evaluated. RESULTS Higher NDI in bilateral white and gray matter was associated with better executive functioning. NDI in the right anterior cingulate and adjacent white matter was positively associated with language skills. Higher NDI in the left posterior corona radiata was associated with faster processing speed. Physical fitness was positively associated with NDI in the left precentral gyrus and corticospinal tract. N3 % was positively associated with NDI in the left caudate and right pre- and postcentral gyri. Higher ODI in the left putamen and adjacent white matter was associated with better executive function. CONCLUSION NDI and ODI derived from NODDI are potential neuroimaging markers for associations between brain microstructure and modifiable risk factors in aging. If these associations are observable in clinical samples, NODDI could be incorporated into clinical trials assessing the effects of modifiable risk factors on brain integrity in aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Christina Mueller
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States.
| | - Rodolphe Nenert
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States
| | - Corina Catiul
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States
| | - Jennifer Pilkington
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States
| | - Jerzy P Szaflarski
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States
| | - Amy W Amara
- University of Alabama at Birmingham, Department of Neurology, 1719 6(th) Ave S, Birmingham, AL 35233, United States; University of Colorado Anschutz Medical Campus, 1635 Aurora Ct, Aurora, CO 80045, United States
| |
Collapse
|
4
|
De Guia IL, Eslick S, Naismith SL, Kanduri S, Shah TM, Martins RN. The Crosstalk Between Amyloid-β, Retina, and Sleep for the Early Diagnosis of Alzheimer's Disease: A Narrative Review. J Alzheimers Dis Rep 2024; 8:1009-1021. [PMID: 39114553 PMCID: PMC11305848 DOI: 10.3233/adr-230150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/17/2024] [Indexed: 08/10/2024] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia, which is characterised by progressive memory loss and accumulation of hallmark markers amyloid-β (Aβ) and neurofibrillary tangles in the diseased brain. The current gold standard diagnostic methods have limitations of being invasive, costly, and not easily accessible. Thus, there is a need for new avenues, such as imaging the retina for early AD diagnosis. Sleep disruption is symptomatically frequent across preclinical and AD subjects. As circadian activity, such as the sleep-wake cycle, is linked to the retina, analysis of their association may be useful additions for achieving predictive AD diagnosis. In this narrative review, we provide an overview of human retina studies concerning the deposition of Aβ, the role of the retina in sleep-wake cycle, the disruption of sleep in AD, and to gather evidence for the associations between Aβ, the retina, and sleep. Understanding the mechanisms behind the associations between Aβ, retina, and sleep could assist in the interpretation of retinal changes accurately in AD.
Collapse
Affiliation(s)
| | - Shaun Eslick
- Macquarie University, North Ryde, NSW, Australia
| | - Sharon L. Naismith
- Faculty of Science, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | | | | | - Ralph N. Martins
- Macquarie University, North Ryde, NSW, Australia
- Edith Cowen University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Nedlands, WA, Australia
| |
Collapse
|
5
|
Lui KK, Dave A, Sprecher KE, Chappel-Farley MG, Riedner BA, Heston MB, Taylor CE, Carlsson CM, Okonkwo OC, Asthana S, Johnson SC, Bendlin BB, Mander BA, Benca RM. Older adults at greater risk for Alzheimer's disease show stronger associations between sleep apnea severity in REM sleep and verbal memory. Alzheimers Res Ther 2024; 16:102. [PMID: 38725033 PMCID: PMC11080222 DOI: 10.1186/s13195-024-01446-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/01/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) increases risk for cognitive decline and Alzheimer's disease (AD). While the underlying mechanisms remain unclear, hypoxemia during OSA has been implicated in cognitive impairment. OSA during rapid eye movement (REM) sleep is usually more severe than in non-rapid eye movement (NREM) sleep, but the relative effect of oxyhemoglobin desaturation during REM versus NREM sleep on memory is not completely characterized. Here, we examined the impact of OSA, as well as the moderating effects of AD risk factors, on verbal memory in a sample of middle-aged and older adults with heightened AD risk. METHODS Eighty-one adults (mean age:61.7 ± 6.0 years, 62% females, 32% apolipoprotein E ε4 allele (APOE4) carriers, and 70% with parental history of AD) underwent clinical polysomnography including assessment of OSA. OSA features were derived in total, NREM, and REM sleep. REM-NREM ratios of OSA features were also calculated. Verbal memory was assessed with the Rey Auditory Verbal Learning Test (RAVLT). Multiple regression models evaluated the relationships between OSA features and RAVLT scores while adjusting for sex, age, time between assessments, education years, body mass index (BMI), and APOE4 status or parental history of AD. The significant main effects of OSA features on RAVLT performance and the moderating effects of AD risk factors (i.e., sex, age, APOE4 status, and parental history of AD) were examined. RESULTS Apnea-hypopnea index (AHI), respiratory disturbance index (RDI), and oxyhemoglobin desaturation index (ODI) during REM sleep were negatively associated with RAVLT total learning and long-delay recall. Further, greater REM-NREM ratios of AHI, RDI, and ODI (i.e., more events in REM than NREM) were related to worse total learning and recall. We found specifically that the negative association between REM ODI and total learning was driven by adults 60 + years old. In addition, the negative relationships between REM-NREM ODI ratio and total learning, and REM-NREM RDI ratio and long-delay recall were driven by APOE4 carriers. CONCLUSION Greater OSA severity, particularly during REM sleep, negatively affects verbal memory, especially for people with greater AD risk. These findings underscore the potential importance of proactive screening and treatment of REM OSA even if overall AHI appears low.
Collapse
Affiliation(s)
- Kitty K Lui
- San Diego State University/University of California San Diego, Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Abhishek Dave
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
- Department of Cognitive Sciences, University of California, Irvine, CA, USA
| | - Kate E Sprecher
- Department of Population Health Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Miranda G Chappel-Farley
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA
| | - Brady A Riedner
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Margo B Heston
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Chase E Taylor
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Cynthia M Carlsson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Institute, Madison, WI, USA
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI, USA
| | - Ozioma C Okonkwo
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Institute, Madison, WI, USA
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI, USA
| | - Sanjay Asthana
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Institute, Madison, WI, USA
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI, USA
| | - Sterling C Johnson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Institute, Madison, WI, USA
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI, USA
| | - Barbara B Bendlin
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Alzheimer's Institute, Madison, WI, USA
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI, USA
| | - Bryce A Mander
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA.
- Department of Cognitive Sciences, University of California, Irvine, CA, USA.
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA.
| | - Ruth M Benca
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA.
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA.
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA.
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Psychiatry and Behavioral Medicine, Wake Forest University, Winston-Salem, NC, USA.
| |
Collapse
|
6
|
Bao J, Zhao Z, Qin S, Cheng M, Wang Y, Li M, Jia P, Li J, Yu H. Elucidating the association of obstructive sleep apnea with brain structure and cognitive performance. BMC Psychiatry 2024; 24:338. [PMID: 38711061 DOI: 10.1186/s12888-024-05789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is a pervasive, chronic sleep-related respiratory condition that causes brain structural alterations and cognitive impairments. However, the causal association of OSA with brain morphology and cognitive performance has not been determined. METHODS We conducted a two-sample bidirectional Mendelian randomization (MR) analysis to investigate the causal relationship between OSA and a range of neurocognitive characteristics, including brain cortical structure, brain subcortical structure, brain structural change across the lifespan, and cognitive performance. Summary-level GWAS data for OSA from the FinnGen consortium was used to identify genetically predicted OSA. Data regarding neurocognitive characteristics were obtained from published meta-analysis studies. Linkage disequilibrium score regression analysis was employed to reveal genetic correlations between OSA and related traits. RESULTS Our MR study provided evidence that OSA was found to significantly increase the volume of the hippocampus (IVW β (95% CI) = 158.997 (76.768 to 241.227), P = 1.51e-04), with no heterogeneity and pleiotropy detected. Nominally causal effects of OSA on brain structures, such as the thickness of the temporal pole with or without global weighted, amygdala structure change, and cerebellum white matter change covering lifespan, were observed. Bidirectional causal links were also detected between brain cortical structure, brain subcortical, cognitive performance, and OSA risk. LDSC regression analysis showed no significant correlation between OSA and hippocampus volume. CONCLUSIONS Overall, we observed a positive association between genetically predicted OSA and hippocampus volume. These findings may provide new insights into the bidirectional links between OSA and neurocognitive features, including brain morphology and cognitive performance.
Collapse
Affiliation(s)
- Jiahao Bao
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, China
| | - Zhiyang Zhao
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, China
| | - Shanmei Qin
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Mengjia Cheng
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, China
| | - Yiming Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, China
| | - Meng Li
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, China
| | - Pingping Jia
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jinhui Li
- Department of Urology, Stanford University Medical Center, Stanford, CA, USA.
| | - Hongbo Yu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, No. 639 Zhizaoju Road, Shanghai, China.
| |
Collapse
|
7
|
Wrzesień A, Andrzejewski K, Jampolska M, Kaczyńska K. Respiratory Dysfunction in Alzheimer's Disease-Consequence or Underlying Cause? Applying Animal Models to the Study of Respiratory Malfunctions. Int J Mol Sci 2024; 25:2327. [PMID: 38397004 PMCID: PMC10888758 DOI: 10.3390/ijms25042327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative brain disease that is the most common cause of dementia among the elderly. In addition to dementia, which is the loss of cognitive function, including thinking, remembering, and reasoning, and behavioral abilities, AD patients also experience respiratory disturbances. The most common respiratory problems observed in AD patients are pneumonia, shortness of breath, respiratory muscle weakness, and obstructive sleep apnea (OSA). The latter is considered an outcome of Alzheimer's disease and is suggested to be a causative factor. While this narrative review addresses the bidirectional relationship between obstructive sleep apnea and Alzheimer's disease and reports on existing studies describing the most common respiratory disorders found in patients with Alzheimer's disease, its main purpose is to review all currently available studies using animal models of Alzheimer's disease to study respiratory impairments. These studies on animal models of AD are few in number but are crucial for establishing mechanisms, causation, implementing potential therapies for respiratory disorders, and ultimately applying these findings to clinical practice. This review summarizes what is already known in the context of research on respiratory disorders in animal models, while pointing out directions for future research.
Collapse
Affiliation(s)
| | | | | | - Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.W.); (K.A.); (M.J.)
| |
Collapse
|
8
|
Astara K, Tsimpolis A, Kalafatakis K, Vavougios GD, Xiromerisiou G, Dardiotis E, Christodoulou NG, Samara MT, Lappas AS. Sleep disorders and Alzheimer's disease pathophysiology: The role of the Glymphatic System. A scoping review. Mech Ageing Dev 2024; 217:111899. [PMID: 38163471 DOI: 10.1016/j.mad.2023.111899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is highly intertwined with sleep disturbances throughout its whole natural history. Sleep consists of a major compound of the functionality of the glymphatic system, as the synchronized slow-wave activity during NREM facilitates cerebrospinal and interstitial long-distance mixing. OBJECTIVE The present study undertakes a scoping review of research on the involvement of the glymphatic system in AD-related sleep disturbances. DESIGN we searched Medline, Embase, PsychInfo and HEAL-link databases, without limitations on date and language, along with reference lists of relevant reviews and all included studies. We included in vivo, in vitro and post-mortem studies examining glymphatic implications of sleep disturbances in human populations with AD spectrum pathology. A thematic synthesis of evidence based on the extracted content was applied and presented in a narrative way. RESULTS In total, 70 original research articles were included and were grouped as following: a) Protein aggregation and toxicity, after sleep deprivation, along with its effects on sleep architecture, b) Glymphatic Sequalae in SDB, yielding potential glymphatic markers c) Circadian Dysregulation, d) Possible Interventions. CONCLUSIONS this review sought to provide insight into the role of sleep disturbances in AD pathogenesis, in the context of the glymphatic disruption.
Collapse
Affiliation(s)
- Kyriaki Astara
- Department of Psychiatry, Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Neurology, 417 Army Equity Fund Hospital (NIMTS), Athens, Greece
| | - Alexandros Tsimpolis
- Department of Pharmacology, Medical School, University of Crete & Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas, Heraklion, Crete, Greece
| | - Konstantinos Kalafatakis
- Faculty of Medicine & Dentistry (Malta campus), Queen Mary University of London, VCT 2520, Victoria, Gozo, Malta.
| | - George D Vavougios
- Department of Neurology, Faculty of Medicine, University of Cyprus, Lefkosia, Cyprus; Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Neurology, Athens Naval Hospital, Athens, Greece
| | - Georgia Xiromerisiou
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| | - Nikos G Christodoulou
- Department of Psychiatry, Faculty of Medicine, University of Thessaly, Larissa, Greece; Medical School, University of Nottingham, Lenton, Nottingham, UK
| | - Myrto T Samara
- Department of Psychiatry, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Andreas S Lappas
- Department of Psychiatry, Faculty of Medicine, University of Thessaly, Larissa, Greece; Aneurin Bevan University Health Board, Wales, UK
| |
Collapse
|
9
|
Ercolano E, Bencivenga L, Palaia ME, Carbone G, Scognamiglio F, Rengo G, Femminella GD. Intricate relationship between obstructive sleep apnea and dementia in older adults. GeroScience 2024; 46:99-111. [PMID: 37814196 PMCID: PMC10828345 DOI: 10.1007/s11357-023-00958-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023] Open
Abstract
Numerous evidence reports direct correlation between cognitive impairment, Alzheimer's disease and sleep disorders, in particular obstructive sleep apnea. Both obstructive sleep apnea and Alzheimer's disease are highly prevalent conditions whose incidence increases with age. Several studies demonstrate how sleep-disordered breathing may lead to poor cognition, even though the underlying mechanisms of this association remain partially unclear. According to the most recent studies, obstructive sleep apnea may be considered a modifiable risk factor for cognitive dysfunction. In the present review, the authors aim to integrate recent research examining obstructive sleep apnea and Alzheimer's disease biomarkers, also focusing on the mechanisms that support this correlation, including but not limited to the role of hypoxia and cardiovascular risk. Moreover, the potential favourable effect of obstructive sleep apnea therapy on cognitive function is discussed, to evaluate the benefits deriving from appropriate treatment of sleep-disordered breathing on cognition.
Collapse
Affiliation(s)
- Erica Ercolano
- Department of Translational Medical Sciences, University of Naples "Federico II", Via Pansini, 5, Naples, Italy
| | - Leonardo Bencivenga
- Department of Translational Medical Sciences, University of Naples "Federico II", Via Pansini, 5, Naples, Italy
| | - Maria Emiliana Palaia
- Department of Translational Medical Sciences, University of Naples "Federico II", Via Pansini, 5, Naples, Italy
| | - Giovanni Carbone
- Department of Translational Medical Sciences, University of Naples "Federico II", Via Pansini, 5, Naples, Italy
| | - Francesco Scognamiglio
- Department of Translational Medical Sciences, University of Naples "Federico II", Via Pansini, 5, Naples, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples "Federico II", Via Pansini, 5, Naples, Italy
- Istituti Clinici Scientifici ICS Maugeri - S.P.A. - Istituti Di Ricovero E Cura a Carattere Scientifico (IRCCS) Istituto Scientifico Di Telese Terme, Telese, Italy
| | - Grazia Daniela Femminella
- Department of Translational Medical Sciences, University of Naples "Federico II", Via Pansini, 5, Naples, Italy.
- Department of Brain Sciences, Imperial College London, London, UK.
| |
Collapse
|
10
|
Liu Y, Tan J, Miao Y, Zhang Q. Neurogenesis, A Potential Target for Intermittent Hypoxia Leading to Cognitive Decline. Curr Stem Cell Res Ther 2024; 19:63-70. [PMID: 37005547 DOI: 10.2174/1574888x18666230330083206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 04/04/2023]
Abstract
As a sleep breathing disorder, characterized by intermittent hypoxia (IH) and Obstructive sleep apnea (OSA), is believed to decrease the cognitive function of patients. Many factors are thought to be responsible for cognitive decline in OSA patients. Neurogenesis, a process by which neural stem cells (NSCs) differentiate into new neurons in the brain, is a major determinant affecting cognitive function. However, there is no clear relationship between IH or OSA and neurogenesis. In recent years, increasing numbers of studies on IH and neurogenesis are documented. Therefore, this review summarizes the effects of IH on neurogenesis; then discusses the influencing factors that may cause these effects and the potential signaling pathways that may exist. Finally, based on this impact, we discuss potential methods and future directions for improving cognition.
Collapse
Affiliation(s)
- Yuxing Liu
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Jin Tan
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Yuyang Miao
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Qiang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| |
Collapse
|
11
|
Sawyer RP, Bennett A, Blair J, Molano J, Timmerman E, Foster F, Karkoska K, Hyacinth HI, Manly JJ, Howard VJ, Petrov ME, Hoffmann CM, Yu F, Demel SL, Aziz Y, Hooper D, Hill EJ, Johnson J, Pounders J, Shatz R. History of obstructive sleep apnea associated with incident cognitive impairment in white but not black individuals in a US national cohort study. Sleep Med 2023; 112:1-8. [PMID: 37801859 PMCID: PMC11071160 DOI: 10.1016/j.sleep.2023.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/01/2023] [Accepted: 09/23/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND We sought to determine if risk for obstructive sleep apnea (OSA), a history of OSA, and/or treatment of OSA has a different association with incident cognitive impairment or cognitive decline in Black individuals and White individuals. METHODS To determine whether the risk for OSA, a history of OSA, and/or treatment of OSA has a different association with incident cognitive impairment or cognitive decline in Black individuals and White individuals; data from the REasons for Geographic and Racial Differences in Stroke (REGARDS) was used. Participants that completed the sleep questionnaire module, had baseline cognitive assessment, and at least one cognitive assessment during follow-up were included. Risk of OSA was determined based on Berlin Sleep Questionnaire. History of sleep apnea was determined based on structured interview questions. Optimally treated OSA was defined as treated sleep apnea as at least 4 h of continuous positive airway pressure use per night for ≥5 nights per week. RESULTS In 19,017 participants stratified by race, White participants with history of OSA were 1.62 times more likely to have incident cognitive impairment compared to White participants without history of OSA after adjusting for demographic characteristics, history, and lifestyle factors (OR = 1.62, 95% CI = 1.05-2.50, p-value = 0.03). This relationship was not seen in Black participants (OR = 0.92, 95% CI = 0.60-1.43, p-value = 0.72). DISCUSSION A previous diagnosis of OSA is associated with incident cognitive impairment in White Americans but not Black Americans. Further investigations are required to determine the mechanism for this difference.
Collapse
Affiliation(s)
- Russell P Sawyer
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA.
| | - Aleena Bennett
- Biostatistics Department, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Jessica Blair
- Biostatistics Department, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Jennifer Molano
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Emerlee Timmerman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Forrest Foster
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Kristine Karkoska
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Hyacinth I Hyacinth
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Jennifer J Manly
- Department of Neurology, Gertrude H. Sergievsky Center, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York City, NY, 10032, USA
| | - Virginia J Howard
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Megan E Petrov
- Center for Innovation in Healthy & Resilient Aging, Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, 85004, USA
| | - Coles M Hoffmann
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Fang Yu
- Center for Innovation in Healthy & Resilient Aging, Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, USA
| | - Stacie L Demel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Yasmin Aziz
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Destiny Hooper
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Emily J Hill
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Jamelle Johnson
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Johnson Pounders
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Rhonna Shatz
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| |
Collapse
|
12
|
Gao J, Cao J, Chen J, Wu D, Luo K, Shen G, Fang Y, Zhang W, Huang G, Su X, Zhao L. Brain morphology and functional connectivity alterations in patients with severe obstructive sleep apnea. Sleep Med 2023; 111:62-69. [PMID: 37722341 DOI: 10.1016/j.sleep.2023.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND It has been demonstrated that widespread structural and functional brain alterations influence the development of cognitive impairment in patients with obstructive sleep apnea (OSA). However, the literature has limited evidence regarding the neuropathophysiological mechanisms behind these impairments. This research aimed to investigate brain morphologic and functional connectivity (FC) abnormalities related to neurocognitive function in OSA. METHODS Fifty treatment-naïve males, newly diagnosed patients with severe OSA, and 50 well-matched healthy controls (HCs) were enrolled prospectively. All subjects underwent an MRI scan, cognitive psychological and sleep scale assessment. The differences of brain morphological and seed-based FC between the two groups were compared. The correlation analysis and receiver operating characteristic curve were performed for further analysis. RESULTS Compared with HCs, the right brainstem, left dorsal-lateral superior frontal gyrus (SFGdor), and superior temporal gyrus (STG) exhibited atrophy in the OSA group. In addition, FC between the left SFGdor and the right postcentral gyrus (PoCG) was increased, which was positively correlated with disease duration (r = 0.312, FDR-corrected P = 0.027). The Jacobian values of the brainstem were negatively correlated with MoCA and recall scores (r = -0.449, FDR-corrected P = 0.0025; r = -0.416, FDR-corrected P = 0.005). Furthermore, the Jacobian values of the left SFGdor demonstrated a relatively high diagnostic performance (sensitivity: 86%, specificity: 56%, AUC: 0.740, 95% CI: 0.643-0.836, P < 0.0001). CONCLUSIONS Structural atrophy in brainstem and frontotemporal lobe and altered FC may be the neurobiological hallmark of brain impairment in OSA. Notably, brainstem atrophy has been associated with cognitive impairment, which may provide new insights into understanding the neuropathophysiological mechanisms of cognitive impairment in OSA patients.
Collapse
Affiliation(s)
- Jing Gao
- The First Clinical Medical College of Gansu University of Chinese Medicine(Gansu Provincial Hospital), Lanzhou, 730000, China
| | - Jiancang Cao
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Jieyu Chen
- The First Clinical Medical College of Gansu University of Chinese Medicine(Gansu Provincial Hospital), Lanzhou, 730000, China
| | - Dan Wu
- The First Clinical Medical College of Gansu University of Chinese Medicine(Gansu Provincial Hospital), Lanzhou, 730000, China
| | - Ke Luo
- The First Clinical Medical College of Gansu University of Chinese Medicine(Gansu Provincial Hospital), Lanzhou, 730000, China
| | - Guo Shen
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Yanyan Fang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Wenwen Zhang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Gang Huang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Xiaoyan Su
- Sleep Medicine Center, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Lianping Zhao
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, 730000, China.
| |
Collapse
|
13
|
Zhou M, Li Y. Effect of different doses of almorexant on learning and memory in 8-month-old APP/PS1 (AD) mice. Peptides 2023; 167:171044. [PMID: 37330110 DOI: 10.1016/j.peptides.2023.171044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVE To explore the effects of different doses of almorexant (an dual orexin receptor antagonist) on learning and memory in Alzheimer's disease (AD) mice. METHODS Forty-four APP/PS1 (model of Alzheimer's disease; AD) mice were randomly divided into 4 groups: the control group (CON) and those that received 10mg/kg almorexant (low dose; LOW), 30mg/kg almorexant (medium dose; MED) and 60mg/kg almorexant (high dose; HIGH). During the 28-day intervention period, mice received an intraperitoneal injection at the beginning of the light period (6:00 am). The effects of different doses of almorexant on learning and memory and 24-hour sleep-wake behaviour were assessed by immunohistochemical staining. The above continuous variables are expressed as the mean ± standard deviation (SD), and then univariate regression analysis and generalized estimating equations were performed to compare the groups; these results are expressed as the mean difference (MD) and 95% confidence interval (CI). The statistical software used STATA 17.0 MP. RESULTS Forty-one mice completed the experiment (3 died: 2 mice in the HIGH group and 1 mouse in the CON group). Compared with the CON group, the LOW group (MD=6,803s, 95% CI: 4,470 to 9,137s), MED group (MD=14,473s, 95% CI: 12,140 to 16,806s) and the HIGH group (MD=24,505s, 95% CI: 22,052 to 26,959s) had significantly longer sleep durations. The Y maze results showed that LOW group (MD=0.14,95%CI: 0.078 to 0.20) and MED group (MD=0.14,95%CI = 0.074 to 0.20) mice compared to the CON group, and the low-medium dose of Almorexant did not damage the short-term learning and memory performance of APP / PS1 (AD) mice.Compared with the CON, LOW, and MED groups, the HIGH group exhibited a significant decrease in the Aβ plaque-positive area in the cortex (MD= -0.030, 95% CI: -0.035 to -0.025; MD=-0.049, 95% CI: -0.054 to -0.044; and MD=-0.07, 95% CI: -0.076 to -0.066, respectively). CONCLUSION The moderate dose of almorexant (30mg/kg) prolonged the sleep duration of APP/PS1 (AD) mice to a greater extent than the low dose (10mg/kg) without altering learning and memory. The MED mice showed a good sleep response and a small residual effect on the next day. High-dose (60mg / kg) almorexant impaired behavioral learning and memory performance in mice.Compared to the CON group and the LOW group, the MED group exhibited improved working memory. Thus, treatment with almorexant may reduce β-amyloid deposition in AD, slowing neurodegeneration. Additional studies are needed to determine the mechanism of action.
Collapse
Affiliation(s)
- Mengzhen Zhou
- Department of Neurology, Qianfo Mountain Hospital affiliated to Shandong First Medical University ,Jinan, Shandong, China.
| | - Yanran Li
- Department of Neurology, Qianfo Mountain Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
14
|
Li M, Sun C, Xue S, Leng B, Sun H, Shen T, Liu X, Li Z, Shang X, Zhang J. Complement protein levels in serum astrocyte-derived exosomes are associated with cognitive impairment in obstructive sleep apnea. J Clin Sleep Med 2023; 19:727-739. [PMID: 36692174 PMCID: PMC10071385 DOI: 10.5664/jcsm.10412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 01/25/2023]
Abstract
STUDY OBJECTIVES An association between neuroinflammation and cognitive decline has been established. The complement system regulates neuroinflammation. Dysregulation, impairment, or inadvertent activation of complement components contribute to preclinical Alzheimer's disease. The astrocyte-derived exosome (ADE) complement proteins, including C3b and C5b-9, may be predictive biomarkers of mild cognitive impairment conversion to Alzheimer's disease dementia. We hypothesized that complement proteins might be involved in cognitive impairment during obstructive sleep apnea (OSA). The aim of our study was to explore the correlation between the complement system and mild cognitive impairment (MCI) in patients with OSA. METHODS All participants with subjective snoring complaints from the Sleep Medicine Center underwent polysomnography. OSA was defined as apnea-hypopnea index ≥ 5 events/h. MCI was defined as the Montreal Cognitive Assessment < 26 and met the criteria: (1) a subjective cognitive impairment; (2) an objective impairment in 1 or more cognitive domains; (3) complex instrumental daily abilities can be slightly impaired but independent daily living abilities are maintained; and (4) no dementia. The ADEs were isolated immunochemically for enzyme-linked immunosorbent assay quantification of complement proteins, including C3b, C5b-9, and CD55. The participants who received continuous positive airway pressure were followed up and their complement protein levels were reassessed after 1 year of treatment. RESULTS A total of 212 participants (66.98% males; mean age of 56.71 ± 10.10 years) were divided into the OSA+MCI group (n = 90), OSA-MCI group (n = 79), and controls (normal cognitive state without OSA) (n = 43). The ADE levels of C3b and C5b-9 in the OSA+MCI group were higher than those in the OSA-MCI and control groups. The C3b and C5b-9 were independently associated with cognitive impairment in patients with OSA. The relationship between apnea-hypopnea index and Montreal Cognitive Assessment scores was mediated by C3b and C5b-9. We found no linear correlation between the complement proteins and the severity of OSA. The complement proteins were negatively correlated with global cognitive performance and cognitive subdomains. The complement protein levels significantly decreased after continuous positive airway pressure treatment. CONCLUSIONS Complement proteins were implicated in cognitive impairment in patients with OSA and may be promising biomarkers for predicting cognitive impairment in patients with OSA. CLINICAL TRIAL REGISTRATION Registry: Chinese Clinical Trial Registry; Name: Study on early diagnostic markers in patients with dementia and mild cognitive impairment; URL: https://www.chictr.org.cn/; Identifier: ChiCTR1900021544. CITATION Li M, Sun C, Xue S, et al. Complement proteins levels in serum astrocyte-derived exosomes are associated with cognitive impairment in obstructive sleep apnea. J Clin Sleep Med. 2023;19(4):727-739.
Collapse
Affiliation(s)
- Mengfan Li
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Chao Sun
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Song Xue
- Weifang Medical University, Weifang, Shandong, China
| | - Bing Leng
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Hairong Sun
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Tengqun Shen
- Department of Resident Standardized Training Management, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Xiaoxiao Liu
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Zhenguang Li
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Xiuli Shang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jinbiao Zhang
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| |
Collapse
|
15
|
Ahmad I, Singh R, Pal S, Prajapati S, Sachan N, Laiq Y, Husain H. Exploring the Role of Glycolytic Enzymes PFKFB3 and GAPDH in the Modulation of Aβ and Neurodegeneration and Their Potential of Therapeutic Targets in Alzheimer's Disease. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04340-0. [PMID: 36692648 DOI: 10.1007/s12010-023-04340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Alzheimer's disease (AD) is presently the 6th major cause of mortality across the globe. However, it is expected to rise rapidly, following cancer and heart disease, as a leading cause of death among the elderly peoples. AD is largely characterized by metabolic changes linked to glucose metabolism and age-induced mitochondrial failure. Recent research suggests that the glycolytic pathway is required for a range of neuronal functions in the brain including synaptic transmission, energy production, and redox balance; however, alteration in glycolytic pathways may play a significant role in the development of AD. Moreover, it is hypothesized that targeting the key enzymes involved in glucose metabolism may help to prevent or reduce the risk of neurodegenerative disorders. One of the major pro-glycolytic enzyme is 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3); it is normally absent in neurons but abundant in astrocytes. Similarly, another key of glycolysis is glyceraldehyde-3-phosphate dehydrogenase (GAPDH) which catalyzes the conversion of aldolase and glyceraldehyde 3 phosphates to 1,3 bisphosphoglycerate. GAPDH has been reported to interact with various neurodegenerative disease-associated proteins, including the amyloid-β protein precursor (AβPP). These findings indicate PFKFB3 and GAPDH as a promising therapeutic target to AD. Current review highlight the contributions of PFKFB3 and GAPDH in the modulation of Aβand AD pathogenesis and further explore the potential of PFKFB3 and GAPDH as therapeutic targets in AD.
Collapse
Affiliation(s)
- Imran Ahmad
- Department of Biochemistry, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India.
| | - Ranjana Singh
- Department of Biochemistry, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India.
| | - Saurabh Pal
- Department of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, Uttar Pradesh, India
| | - Soni Prajapati
- Department of Biochemistry, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Nidhi Sachan
- Cell and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Yusra Laiq
- Department of Biochemistry, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Hadiya Husain
- Department of Zoology, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India
| |
Collapse
|
16
|
Yang Y, Li M, Leng B, Yao R, Xue S, Tan M, Sun H, Zhang J. Alzheimer's Disease Biomarkers and Complement Proteins Mediate the Impact of Sleep Fragmentation on Cognitive Impairment in Obstructive Sleep Apnea Patients Without Dementia. J Alzheimers Dis 2023; 95:1685-1696. [PMID: 37718794 DOI: 10.3233/jad-221288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Cognitive impairment is common in patients with obstructive sleep apnea (OSA). Previous studies indicated that intermittent hypoxia, sleep fragmentation, and depressive symptoms were associated with cognitive impairment in OSA patients. OBJECTIVE The study aimed to investigate whether sleep characteristics and depressive symptoms affected cognitive abilities mediated by Alzheimer's disease (AD) biomarkers and complement proteins in OSA patients without dementia. METHODS A total of 317 subjects without dementia who had undergone polysomnography, cognitive and neuropsychological evaluations, were recruited. Neuronal-derived exosomes (NDEs) levels for amyloid-β (Aβ), total tau (T-tau), and tau phosphorylated 62 at threonine 181 (P-T181-tau) and astrocyte-derived exosomes (ADEs) levels for complement proteins were measured. Mediation analysis were performed to explore the mediation effects of AD biomarkers (Aβ42, T-tau, P-T181-tau) and complement proteins (C3b and C5b-9) on cognition. RESULTS The findings revealed that the association between sleep fragmentation and cognition was mediated by Aβ42 (the percentage varied from 18.25% to 30.6%), P-T181-tau (the percentage varied from 24.36% to 32.3%), and C5b-9 (the percentage varied from 30.88% to 60.7%). The influence of depressive symptoms on cognition was only mediated via C3b (the percentage varied from 24.1% to 36.6%). CONCLUSIONS In OSA patients without dementia, Aβ42 and P-T181-tau levels in NDEs, and C5b-9 levels in ADEs mediated the impact of sleep fragmentation on cognitive impairment, and C3b levels in ADEs mediated the impact of depressive symptoms on cognitive impairment.
Collapse
Affiliation(s)
- Yanyan Yang
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
- Department of Neurology, The 88th Hospital of People's Liberation Army, Tai'an, Shandong, China
| | - Mengfan Li
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Bing Leng
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Ran Yao
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Song Xue
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Ming Tan
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Hairong Sun
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Jinbiao Zhang
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| |
Collapse
|
17
|
Cavuoto MG, Robinson SR, O'Donoghue FJ, Barnes M, Howard ME, Tolson J, Stevens B, Schembri R, Rosenzweig I, Rowe CC, Jackson ML. Associations Between Amyloid Burden, Hypoxemia, Sleep Architecture, and Cognition in Obstructive Sleep Apnea. J Alzheimers Dis 2023; 96:149-159. [PMID: 37742634 DOI: 10.3233/jad-221049] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is associated with an increased risk of amyloid-β (Aβ) burden, the hallmark of Alzheimer's disease, and cognitive decline. OBJECTIVE To determine the differential impacts of hypoxemia and slow-wave sleep disruption on brain amyloid burden, and to explore the effects of hypoxemia, slow-wave sleep disruption, and amyloid burden on cognition in individuals with and without OSA. METHODS Thirty-four individuals with confirmed OSA (mean±SD age 57.5±4.1 years; 19 males) and 12 healthy controls (58.5±4.2 years; 6 males) underwent a clinical polysomnogram, a NAV4694 positron emission tomography (PET) scan for Aβ burden, assessment of APOEɛ status and cognitive assessments. Linear hierarchical regressions were conducted to determine the contributions of demographic and sleep variables on amyloid burden and cognition. RESULTS Aβ burden was associated with nocturnal hypoxemia, and impaired verbal episodic memory, autobiographical memory and set shifting. Hypoxemia was correlated with impaired autobiographical memory, and only set shifting performance remained significantly associated with Aβ burden when controlling for sleep variables. CONCLUSIONS Nocturnal hypoxemia was related to brain Aβ burden in this sample of OSA participants. Aβ burden and hypoxemia had differential impacts on cognition. This study reveals aspects of sleep disturbance in OSA that are most strongly associated with brain Aβ burden and poor cognition, which are markers of early Alzheimer's disease. These findings add weight to the possibility that hypoxemia may be causally related to the development of dementia; however, whether it may be a therapeutic target for dementia prevention in OSA is yet to be determined.
Collapse
Affiliation(s)
- Marina G Cavuoto
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Australia
| | - Stephen R Robinson
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | - Fergal J O'Donoghue
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Australia
- The University of Melbourne, Parkville, Australia
| | - Maree Barnes
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Australia
- The University of Melbourne, Parkville, Australia
| | - Mark E Howard
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Australia
- The University of Melbourne, Parkville, Australia
| | - Julie Tolson
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Australia
- The University of Melbourne, Parkville, Australia
| | - Bronwyn Stevens
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Australia
| | - Rachel Schembri
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children's Research Institute, Melbourne, Australia
| | - Ivana Rosenzweig
- Department of Neuroimaging, Sleep and Brain Plasticity Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), London, UK
| | - Christopher C Rowe
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Australia
| | - Melinda L Jackson
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Australia
| |
Collapse
|
18
|
Wan K, Yin W, Tang Y, Zhu W, Wang Z, Zhou X, Zhang W, Zhang C, Yu X, Zhao W, Li C, Zhu X, Sun Z. Brain Gray Matter Volume Mediated the Correlation Between Plasma P-Tau and Cognitive Function of Early Alzheimer's Disease in China: A Cross-Sectional Observational Study. J Alzheimers Dis 2023; 92:81-93. [PMID: 36710682 DOI: 10.3233/jad-221100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND The primary manifestations of Alzheimer's disease (AD) include cognitive decline and brain gray matter volume (GMV) atrophy. Recent studies have found that plasma phosphorylated-tau (p-tau) concentrations perform better in diagnosing, differentiating, and monitoring the progression of AD. However, the correlation between plasma p-tau, GMV, and cognition remains unclear. OBJECTIVE To investigate whether GMV plays a mediating role in the association between plasma p-tau concentrations and cognition. METHODS In total, 99 participants (47 patients with AD and 52 cognitively unimpaired [CU] individuals) were included. All participants underwent neuropsychological assessments, laboratory examinations, and magnetic resonance imaging scans. Plasma p-tau217 and p-tau181 concentrations were measured using an enzyme-linked immunosorbent assay kit. Voxel-based morphometry was performed to assess participants' brain GMV. Partial correlation and mediation analyses were conducted in AD group. RESULTS Plasma p-tau concentrations were significantly higher in the AD group than in the CU group. Patients with AD had significant brain GMV atrophy in the right hippocampus, bilateral middle temporal gyrus, and right inferior temporal gyrus. In the AD group, there were significant correlations between plasma p-tau217 concentrations, GMV, and Mini-Mental State Examination (MMSE) scores. Brain GMV of the right hippocampus mediated the association between plasma p-tau217 concentrations and MMSE scores. A significant correlation between plasma p-tau181 and MMSE scores was not identified. CONCLUSION The findings indicate that p-tau217 is a promising biomarker for central processes affecting brain GMV and cognitive function. This may provide potential targets for future intervention and treatment of tau-targeting therapies in the early stages of AD.
Collapse
Affiliation(s)
- Ke Wan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Wenwen Yin
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yating Tang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Wenhao Zhu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Zhiqiang Wang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Menzies Institute for Medical Research, University of Tasmania, Private Bag 23, Hobart, Tasmania, Australia
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Wei Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Cun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xianfeng Yu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chenchen Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xiaoqun Zhu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Zhongwu Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
19
|
Li M, Sun Z, Sun H, Zhao G, Leng B, Shen T, Xue S, Hou H, Li Z, Zhang J. Paroxysmal slow wave events are associated with cognitive impairment in patients with obstructive sleep apnea. Alzheimers Res Ther 2022; 14:200. [PMID: 36585689 PMCID: PMC9801625 DOI: 10.1186/s13195-022-01153-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Increasing evidence has supported a link between obstructive sleep apnea (OSA) and cognition, and blood-brain barrier (BBB) dysfunction which can be reflected by paroxysmal slow wave events (PSWEs) may be a potential mechanism. The purpose of our study was to investigate the correlation between the PSWEs and cognitive impairment in patients with OSA, with a focus on the possible mechanism. METHODS In total, 339 subjects with subjective snoring complaints from the Sleep Medicine Center underwent magnetic resonance imaging and whole-night polysomnography. OSA was defined as apnea-hypopnea index (AHI) ≥ 5 events/h. MCI was defined as the MoCA < 26 and met the criteria: (1) subjective cognitive impairment; (2) objective impairment in one or more cognitive domains; (3) slightly impaired complex instrumental daily abilities, but independent daily living abilities; and (4) no dementia. The PSWEs calculated by self-developed Python scripts were defined for EEG recordings as a median power frequency of < 6 Hz for more than five consecutive seconds. Serum cyclophilin A (CyPA) and matrix metalloproteinase-9 (MMP-9) levels and amyloid-β 42 levels in neuron-derived exosomes were determined. The participants who received continuous positive airway pressure (CPAP) were followed up and their PSWEs were recalculated after 1 year of treatment. RESULTS A total of 339 participants were divided into the OSA+MCI group (n = 157), OSA-MCI group (n = 118), and controls (normal cognitive state without OSA) (n = 64). The total PSWEs and the occurrence per minute of PSWEs at stage REM in the OSA+MCI group were higher than those in the OSA-MCI and control groups. The duration ratio of PSWEs at stage REM in the OSA+MCI group significantly increased. The total PSWEs and PSWEs at the F4-M1, O1-M2, and O2-M1 channels in stage REM were independently associated with cognitive impairment in OSA patients. There were positive correlations between the PSWEs and serum CyPA and MMP-9 levels in patients with OSA. The mediation analysis showed that the relationship between mean SaO2 and percentage of sleep time spent with oxygen saturation <90% with MoCA scores was mediated by the total PSWEs (proportion of mediation 77.89% and 82.89%). The PSWEs were negatively correlated with global cognitive performance and cognitive subdomains. After 1 year of CPAP treatment, the total PSWEs, PSWEs in stage REM, and serum CyPA and MMP-9 levels decreased significantly, and MoCA scores were improved compared with baseline. CONCLUSIONS The PSWEs were implicated in cognitive impairment in patients with OSA, and the mechanisms of cognitive impairment due to hypoxia in OSA patients could be BBB dysfunction. The PSWEs can be used as a marker of cognitive impairment in patients with OSA. TRIAL REGISTRATION This trial is registered on the Chinese Clinical Trial Registry, number ChiCTR1900021544. The trial was registered on February 27, 2019.
Collapse
Affiliation(s)
- Mengfan Li
- grid.27255.370000 0004 1761 1174Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200 Shandong China
| | - Zhuoran Sun
- grid.27255.370000 0004 1761 1174Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200 Shandong China
| | - Hairong Sun
- grid.27255.370000 0004 1761 1174Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200 Shandong China
| | - Guochen Zhao
- grid.19373.3f0000 0001 0193 3564School of Ocean Engineering, Harbin Institute of Technology at Weihai, Weihai, 264209 Shandong China
| | - Bing Leng
- grid.27255.370000 0004 1761 1174Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200 Shandong China
| | - Tengqun Shen
- grid.27255.370000 0004 1761 1174Department of Resident Standardized Training Management, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200 Shandong China
| | - Song Xue
- grid.268079.20000 0004 1790 6079Weifang Medical University, Weifang, 261053 Shandong China
| | - Huimin Hou
- grid.27255.370000 0004 1761 1174Department of Radiology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200 Shandong China
| | - Zhenguang Li
- grid.27255.370000 0004 1761 1174Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200 Shandong China
| | - Jinbiao Zhang
- grid.27255.370000 0004 1761 1174Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200 Shandong China
| |
Collapse
|
20
|
Lal C, Ayappa I, Ayas N, Beaudin AE, Hoyos C, Kushida CA, Kaminska M, Mullins A, Naismith SL, Osorio RS, Phillips CL, Parekh A, Stone KL, Turner AD, Varga AW. The Link between Obstructive Sleep Apnea and Neurocognitive Impairment: An Official American Thoracic Society Workshop Report. Ann Am Thorac Soc 2022; 19:1245-1256. [PMID: 35913462 PMCID: PMC9353960 DOI: 10.1513/annalsats.202205-380st] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is emerging evidence that obstructive sleep apnea (OSA) is a risk factor for preclinical Alzheimer's disease (AD). An American Thoracic Society workshop was convened that included clinicians, basic scientists, and epidemiologists with expertise in OSA, cognition, and dementia, with the overall objectives of summarizing the state of knowledge in the field, identifying important research gaps, and identifying potential directions for future research. Although currently available cognitive screening tests may allow for identification of cognitive impairment in patients with OSA, they should be interpreted with caution. Neuroimaging in OSA can provide surrogate measures of disease chronicity, but it has methodological limitations. Most data on the impact of OSA treatment on cognition are for continuous positive airway pressure (CPAP), with limited data for other treatments. The cognitive domains improving with CPAP show considerable heterogeneity across studies. OSA can negatively influence risk, manifestations, and possibly progression of AD and other forms of dementia. Sleep-dependent memory tasks need greater incorporation into OSA testing, with better delineation of sleep fragmentation versus intermittent hypoxia effects. Plasma biomarkers may prove to be sensitive, feasible, and scalable biomarkers for use in clinical trials. There is strong biological plausibility, but insufficient data, to prove bidirectional causality of the associations between OSA and aging pathology. Engaging, recruiting, and retaining diverse populations in health care and research may help to decrease racial and ethnic disparities in OSA and AD. Key recommendations from the workshop include research aimed at underlying mechanisms; longer-term longitudinal studies with objective assessment of OSA, sensitive cognitive markers, and sleep-dependent cognitive tasks; and pragmatic study designs for interventional studies that control for other factors that may impact cognitive outcomes and use novel biomarkers.
Collapse
|
21
|
Liu X, Chen L, Duan W, Li H, Kong L, Shu Y, Li P, Li K, Xie W, Zeng Y, Peng D. Abnormal Functional Connectivity of Hippocampal Subdivisions in Obstructive Sleep Apnea: A Resting-State Functional Magnetic Resonance Imaging Study. Front Neurosci 2022; 16:850940. [PMID: 35546892 PMCID: PMC9082679 DOI: 10.3389/fnins.2022.850940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/14/2022] [Indexed: 01/16/2023] Open
Abstract
The hippocampus is involved in various cognitive function, including memory. Hippocampal structural and functional abnormalities have been observed in patients with obstructive sleep apnoea (OSA), but the functional connectivity (FC) patterns among hippocampal subdivisions in OSA patients remain unclear. The purpose of this study was to investigate the changes in FC between hippocampal subdivisions and their relationship with neurocognitive function in male patients with OSA. Resting-state fMRI were obtained from 46 male patients with untreated severe OSA and 46 male good sleepers. The hippocampus was divided into anterior, middle, and posterior parts, and the differences in FC between hippocampal subdivisions and other brain regions were determined. Correlation analysis was used to explore the relationships between abnormal FC of hippocampal subdivisions and clinical characteristics in patients with OSA. Our results revealed increased FC in the OSA group between the left anterior hippocampus and left middle temporal gyrus; between the left middle hippocampus and the left inferior frontal gyrus, right anterior central gyrus, and left anterior central gyrus; between the left posterior hippocampus and right middle frontal gyrus; between the right middle hippocampus and left inferior frontal gyrus; and between the right posterior hippocampus and left middle frontal gyrus. These FC abnormalities predominantly manifested in the sensorimotor network, fronto-parietal network, and semantic/default mode network, which are closely related to the neurocognitive impairment observed in OSA patients. This study advances our understanding of the potential pathophysiological mechanism of neurocognitive dysfunction in OSA.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liting Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wenfeng Duan
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haijun Li
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Linghong Kong
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yongqiang Shu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Panmei Li
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kunyao Li
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Xie
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yaping Zeng
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dechang Peng
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
22
|
Jiahuan X, Ying Z, Hongyu J, Zhijing W, Shibo G, Chengyue D, Liangyu F, Fan L, Wei W. Serum sTREM2: A Potential Biomarker for Mild Cognitive Impairment in Patients With Obstructive Sleep Apnea. Front Aging Neurosci 2022; 14:843828. [PMID: 35615588 PMCID: PMC9125145 DOI: 10.3389/fnagi.2022.843828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
Objective Cognitive impairment is a common comorbidity in patients with obstructive sleep apnea (OSA) that leads to poor quality of life and a heavier medical burden. However, the assessment and longitudinal tracking of cognitive impairment in OSA is challenging. This study aimed to examine the alternation and related factors of serum soluble triggering receptor expressed on myeloid cells 2 (sTREM2) in patients with OSA, and to explore whether serum sTREM2 could be a biomarker for mild cognitive impairment in OSA patients. Methods A total of 94 OSA patients and 13 snoring subjects were enrolled in this cross-sectional study. Demographic information, questionnaires, and polysomnography results were collected. Serum sTREM2 levels were quantified using an enzyme-linked immunosorbent assay. Multivariate linear regression was used to analyze the factors influencing sTREM2, and the receiver operating characteristic curve was used to assess the predictive value of serum sTREM2 for mild cognitive impairment in patients with OSA. Results Patients with OSA had higher serum sTREM2 levels than the controls. Multivariate linear regression analysis showed that serum sTREM2 levels in patients with OSA were associated with the Montreal Cognitive Assessment score and oxygen depletion index levels. Additionally, serum sTREM2 levels were higher in OSA patients with mild cognitive impairment (MCI) than in those without. The receiver operating characteristic curve showed that at a cutoff value of >18,437 pg/ml, the sensitivity of serum sTREM2 to predict MCI in OSA was 64.62%, the specificity was 68.97%, and the area under the curve was 0.70 (95% CI: 0.58–0.81). Conclusion Serum sTREM2 levels were elevated in patients with OSA, particularly in those with MCI. It therefore has the potential to be a biomarker for MCI in OSA patients.
Collapse
Affiliation(s)
- Xu Jiahuan
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Zou Ying
- Department of Rehabilitation Medicine Center, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Jin Hongyu
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Wei Zhijing
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Guan Shibo
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Deng Chengyue
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Fu Liangyu
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Liu Fan
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Wang Wei
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Wang Wei,
| |
Collapse
|
23
|
West LC, Kushida CA. Important advances in sleep research in 2021. Lancet Neurol 2021; 21:15-17. [PMID: 34942125 DOI: 10.1016/s1474-4422(21)00426-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Leslie C West
- Division of Sleep Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Clete A Kushida
- Division of Sleep Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA.
| |
Collapse
|
24
|
Ulland TK, Ewald AC, Knutson AO, Marino KM, Smith SMC, Watters JJ. Alzheimer's Disease, Sleep Disordered Breathing, and Microglia: Puzzling out a Common Link. Cells 2021; 10:2907. [PMID: 34831129 PMCID: PMC8616348 DOI: 10.3390/cells10112907] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/14/2022] Open
Abstract
Sleep Disordered Breathing (SDB) and Alzheimer's Disease (AD) are strongly associated clinically, but it is unknown if they are mechanistically associated. Here, we review data covering both the cellular and molecular responses in SDB and AD with an emphasis on the overlapping neuroimmune responses in both diseases. We extensively discuss the use of animal models of both diseases and their relative utilities in modeling human disease. Data presented here from mice exposed to intermittent hypoxia indicate that microglia become more activated following exposure to hypoxia. This also supports the idea that intermittent hypoxia can activate the neuroimmune system in a manner like that seen in AD. Finally, we highlight similarities in the cellular and neuroimmune responses between SDB and AD and propose that these similarities may lead to a pathological synergy between SDB and AD.
Collapse
Affiliation(s)
- Tyler K. Ulland
- Department of Pathology and Laboratory Medicine, University of Wisconsin Madison, Madison, WI 53705, USA; (T.K.U.); (K.M.M.)
- Neuroscience Training Program, University of Wisconsin Madison, Madison, WI 53705, USA
| | - Andrea C. Ewald
- Department of Comparative Biosciences, University of Wisconsin Madison, Madison, WI 53706, USA; (A.C.E.); (A.O.K.); (S.M.C.S.)
| | - Andrew O. Knutson
- Department of Comparative Biosciences, University of Wisconsin Madison, Madison, WI 53706, USA; (A.C.E.); (A.O.K.); (S.M.C.S.)
| | - Kaitlyn M. Marino
- Department of Pathology and Laboratory Medicine, University of Wisconsin Madison, Madison, WI 53705, USA; (T.K.U.); (K.M.M.)
- Neuroscience Training Program, University of Wisconsin Madison, Madison, WI 53705, USA
| | - Stephanie M. C. Smith
- Department of Comparative Biosciences, University of Wisconsin Madison, Madison, WI 53706, USA; (A.C.E.); (A.O.K.); (S.M.C.S.)
| | - Jyoti J. Watters
- Neuroscience Training Program, University of Wisconsin Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, University of Wisconsin Madison, Madison, WI 53706, USA; (A.C.E.); (A.O.K.); (S.M.C.S.)
| |
Collapse
|
25
|
Xu C, Owen JE, Gislason T, Benediktsdottir B, Robinson SR. Quantitative analysis of size and regional distribution of corpora amylacea in the hippocampal formation of obstructive sleep apnoea patients. Sci Rep 2021; 11:20892. [PMID: 34686751 PMCID: PMC8536671 DOI: 10.1038/s41598-021-99795-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 07/29/2021] [Indexed: 12/17/2022] Open
Abstract
Corpora amylacea (CoA) are spherical aggregates of glucose polymers and proteins within the periventricular, perivascular and subpial regions of the cerebral cortex and the hippocampal cornu ammonis (CA) subfields. The present study quantified the distribution of CoA in autopsied hippocampi of patients with obstructive sleep apnoea (OSA) using ethanolamine-induced fluorescence. CoA were observed in 29 of 30 patients (96.7%). They were most abundant in periventricular regions (wall of lateral ventricle, alveus, fimbria and CA4), rarely found in the CA3 and CA1, and undetectable in the CA2 or subiculum. A spatiotemporal sequence of CoA deposition was postulated, beginning in the fimbria and progressively spreading around the subpial layer until they extended medially to the wall of the lateral ventricle and laterally to the collateral sulcus. This ranked CoA sequence was positively correlated with CoA packing density (count and area fraction) and negatively correlated with CoA minimum diameters (p < 0.05). Although this sequence was not correlated with age or body mass index (BMI), age was positively correlated with the mean and maximum diameters of CoA. These findings support the view that the spatiotemporal sequence of CoA deposition is independent of age, and that CoA become larger due to the accretion of new material over time.
Collapse
Affiliation(s)
- Cuicui Xu
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Jessica E Owen
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Thorarinn Gislason
- Department of Respiratory Medicine and Sleep, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland.,Department of Clinical Biochemistry, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Bryndis Benediktsdottir
- Department of Respiratory Medicine and Sleep, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland.,Department of Clinical Biochemistry, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Stephen R Robinson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia. .,Institute for Breathing and Sleep, Austin Health, Heidelberg, VIC, Australia. .,School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia.
| |
Collapse
|
26
|
Wafford KA. Aberrant waste disposal in neurodegeneration: why improved sleep could be the solution. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2021; 2:100025. [PMID: 36324713 PMCID: PMC9616228 DOI: 10.1016/j.cccb.2021.100025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 06/16/2023]
Abstract
Sleep takes up a large percentage of our lives and the full functions of this state are still not understood. However, over the last 10 years a new and important function has emerged as a mediator of brain clearance. Removal of toxic metabolites and proteins from the brain parenchyma generated during waking activity and high levels of synaptic processing is critical to normal brain function and only enabled during deep sleep. Understanding of this process is revealing how impaired sleep contributes an important and likely causative role in the accumulation and aggregation of aberrant proteins such as β-amyloid and phosphorylated tau, as well as inflammation and neuronal damage. We are also beginning to understand how brain slow-wave activity interacts with vascular function allowing the flow of CSF and interstitial fluid to drain into the body's lymphatic system. New methodology is enabling visualization of this process in both animals and humans and is revealing how these processes break down during ageing and disease. With this understanding we can begin to envisage novel therapeutic approaches to the treatment of neurodegeneration, and how reversing sleep impairment in the correct manner may provide a way to slow these processes and improve brain function.
Collapse
Key Words
- AQP4, aquaporin-4
- Alzheimer's disease
- Amyloid
- Aquaporin-4
- Astrocyte
- Aβ, beta amyloid
- BOLD, blood-oxygen level dependent imaging
- CAA, cerebral amyloid angiopathy
- CSF, Cerebrospinal fluid
- Clearance
- EEG, electroencephalography
- EMG, electromyography
- Glymphatic
- ISF, interstitial fluid
- MCI, mild cognitive impairment
- MRI, magnetic resonance imaging
- NOS, nitric oxide synthase
- NREM, non-rapid eye movement
- OSA, obstructive sleep apnea
- PET, positron emission tomography
- REM, rapid-eye movement
- SWA, slow wave activity
- SWS, slow-wave sleep
- Slow-wave sleep
- iNPH, idiopathic normal pressure hydrocephalus
Collapse
|
27
|
Ferini-Strambi L, Hensley M, Salsone M. Decoding Causal Links Between Sleep Apnea and Alzheimer’s Disease. J Alzheimers Dis 2021; 80:29-40. [DOI: 10.3233/jad-201066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Obstructive sleep apnea (OSA) and Alzheimer’s disease (AD) are two common chronic diseases with a well-documented association. Whether the association is causal has been highlighted by recent evidence reporting a neurobiological link between these disorders. This narrative review discusses the brain regions and networks involved in OSA as potential vulnerable areas for the development of AD neuropathology with a particular focus on gender-related implications. Using a neuroimaging perspective supported by neuropathological investigations, we provide a new model of neurodegeneration common to OSA and AD, that we have called OSA-AD neurodegeneration in order to decode the causal links between these two chronic conditions.
Collapse
Affiliation(s)
| | - Michael Hensley
- John Hunter Hospital and The University of Newcastle, Newcastle, Australia
| | - Maria Salsone
- IRCCS San Raffaele Scientific Institute, Department of Clinical Neurosciences, Neurology-Sleep Disorder Center, Milan, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council, Catanzaro, Italy
| |
Collapse
|
28
|
Kuo CY, Hsiao HT, Lo IH, Nikolai T. Association Between Obstructive Sleep Apnea, Its Treatment, and Alzheimer's Disease: Systematic Mini-Review. Front Aging Neurosci 2021; 12:591737. [PMID: 33488381 PMCID: PMC7815938 DOI: 10.3389/fnagi.2020.591737] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/04/2020] [Indexed: 12/20/2022] Open
Abstract
Obstructive sleep apnea (OSA) and Alzheimer's disease (AD) are common in the elderly population. Obstructive sleep apnea that may cause significant changes in the cerebrospinal fluid β-amyloid and T-tau and/or P-tau protein levels is often identified as a risk factor for development of AD. Although the underlying mechanisms of AD are still not fully understood, a hypothesis associating OSA with AD has been already proposed. In this systematic mini-review, we first discuss the recent findings supporting the association of OSA with an increased risk of AD and then provide evidence suggesting the positive effect of OSA treatment on a reduced risk of AD.
Collapse
Affiliation(s)
- Chih-Yun Kuo
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine and General University Hospital in Prague, Charles University, Prague, Czechia
| | | | - Ing-Hsien Lo
- Soteria Biotech Co, Ltd., New Taipei City, Taiwan
| | - Tomas Nikolai
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine and General University Hospital in Prague, Charles University, Prague, Czechia
| |
Collapse
|
29
|
Jackson ML, Cavuoto M, Schembri R, Doré V, Villemagne VL, Barnes M, O’Donoghue FJ, Rowe CC, Robinson SR. Severe Obstructive Sleep Apnea Is Associated with Higher Brain Amyloid Burden: A Preliminary PET Imaging Study. J Alzheimers Dis 2020; 78:611-617. [DOI: 10.3233/jad-200571] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background: Obstructive sleep apnea (OSA) has been linked to an increase risk of dementia. Few studies have cross-sectionally examined whether clinically-confirmed OSA is associated with a higher brain amyloid burden. Objective: The aim of this study was to compare brain amyloid burden in individuals with untreated OSA and healthy controls, and explore associations between amyloid burden and polysomnographic and subjective measures of sleep, demographics, and mood. Methods: Thirty-four individuals with OSA (mean age 57.5±4.1 y; 19 males) and 12 controls (mean age 58.5±4.2 y; 6 males) underwent a clinical polysomnogram and a 11C-PiB positron emission tomography (PET) scan to quantify amyloid burden. Results: Amyloid burden was elevated in the OSA group relative to controls, and was significantly higher in those with severe OSA relative to mild/moderate OSA. Correlation analyses indicated that higher amyloid burden was associated with a higher Non-REM apnea hypopnea index, poorer sleep efficiency, and less time spent in stage N3 sleep, when controlling for age. Conclusion: Severe OSA is associated with a modest elevation of brain amyloid, the significance of which should be further investigated to explore the implications for dementia risk.
Collapse
Affiliation(s)
- Melinda L. Jackson
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Australia
| | - Marina Cavuoto
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | - Rachel Schembri
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Vincent Doré
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Australia
- CSIRO Health and Biosecurity Flagship, Melbourne, Australia
| | - Victor L. Villemagne
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Australia
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Maree Barnes
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Australia
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Fergal J. O’Donoghue
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Australia
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Christopher C. Rowe
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Australia
| | - Stephen R. Robinson
- Institute for Breathing and Sleep, Austin Health, Heidelberg, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| |
Collapse
|