1
|
Biscarini F, Barateau L, Pizza F, Plazzi G, Dauvilliers Y. Narcolepsy and rapid eye movement sleep. J Sleep Res 2025; 34:e14277. [PMID: 38955433 PMCID: PMC11911061 DOI: 10.1111/jsr.14277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024]
Abstract
Since the first description of narcolepsy at the end of the 19th Century, great progress has been made. The disease is nowadays distinguished as narcolepsy type 1 and type 2. In the 1960s, the discovery of rapid eye movement sleep at sleep onset led to improved understanding of core sleep-related disease symptoms of the disease (excessive daytime sleepiness with early occurrence of rapid eye movement sleep, sleep-related hallucinations, sleep paralysis, rapid eye movement parasomnia), as possible dysregulation of rapid eye movement sleep, and cataplexy resembling an intrusion of rapid eye movement atonia during wake. The relevance of non-sleep-related symptoms, such as obesity, precocious puberty, psychiatric and cardiovascular morbidities, has subsequently been recognized. The diagnostic tools have been improved, but sleep-onset rapid eye movement periods on polysomnography and Multiple Sleep Latency Test remain key criteria. The pathogenic mechanisms of narcolepsy type 1 have been partly elucidated after the discovery of strong HLA class II association and orexin/hypocretin deficiency, a neurotransmitter that is involved in altered rapid eye movement sleep regulation. Conversely, the causes of narcolepsy type 2, where cataplexy and orexin deficiency are absent, remain unknown. Symptomatic medications to treat patients with narcolepsy have been developed, and management has been codified with guidelines, until the recent promising orexin-receptor agonists. The present review retraces the steps of the research on narcolepsy that linked the features of the disease with rapid eye movement sleep abnormality, and those that do not appear associated with rapid eye movement sleep.
Collapse
Affiliation(s)
- Francesco Biscarini
- Department of Biomedical and Neuromotor Sciences (DIBINEM)University of BolognaBolognaItaly
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Lucie Barateau
- Sleep‐Wake Disorders Unit, Department of NeurologyGui‐de‐Chauliac Hospital, CHU MontpellierMontpellierFrance
- National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine‐Levin SyndromeMontpellierFrance
- Institute for Neurosciences of MontpellierUniversity of Montpellier, INSERMMontpellierFrance
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences (DIBINEM)University of BolognaBolognaItaly
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio‐EmiliaModenaItaly
| | - Yves Dauvilliers
- Sleep‐Wake Disorders Unit, Department of NeurologyGui‐de‐Chauliac Hospital, CHU MontpellierMontpellierFrance
- National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine‐Levin SyndromeMontpellierFrance
- Institute for Neurosciences of MontpellierUniversity of Montpellier, INSERMMontpellierFrance
| |
Collapse
|
2
|
Lu R, Shah K, Toedebusch CD, Hess A, Richardson R, Mignot E, Schindler SE, Benzinger TLS, Flores S, Hassenstab J, Xiong C, Morris JC, Holtzman DM, Lucey BP. Associations of Cerebrospinal Fluid Orexin-A, Alzheimer Disease Biomarkers, and Cognitive Performance. Ann Clin Transl Neurol 2025. [PMID: 39957622 DOI: 10.1002/acn3.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/29/2024] [Accepted: 01/28/2025] [Indexed: 02/18/2025] Open
Abstract
OBJECTIVE Cerebrospinal fluid (CSF) orexin-A has been suggested to be a biomarker of Alzheimer disease (AD). In both cognitively unimpaired healthy older adults and individuals with symptomatic AD, CSF orexin-A is positively associated with CSF Aβ42, p-tau181, and total tau (t-tau) concentrations. However, a recent systematic review and meta-analysis did not support differences in orexin-A between AD and controls. In this study, we tested the association between CSF orexin-A concentrations, AD biomarkers, and cognitive performance in older adults with and without symptomatic AD. METHODS Two hundred and seventy community-dwelling older adults underwent standardized cognitive assessments, sleep monitoring with a single-channel electroencephalography test, one night of home sleep apnea testing, biofluid and imaging AD biomarker measurement within 1 year of sleep monitoring, and APOE genotyping. Plasma and CSF AD biomarkers were measured by immunoassay or mass spectrometry. CSF orexin-A was measured by radioimmunoassay. RESULTS CSF orexin-A levels did not differ by amyloid positivity, cognitive status, or AD stage. However, CSF AD biomarkers (Aβ40, Aβ42, and t-tau) were positively associated with CSF orexin-A levels even after correction for multiple comparisons. CSF orexin-A was not associated with any measure of cognitive performance. INTERPRETATION This study showed that CSF orexin-A is associated with multiple CSF AD biomarkers, but not with AD pathology or cognitive performance. We hypothesize that this is due to similar mechanisms of production/release of these proteins with sleep-wake activity. Future studies measuring other forms of orexin peptides, such as orexin-B, may provide evidence for orexin as a marker for AD.
Collapse
Affiliation(s)
- Ruijin Lu
- Division of Biostatistics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Krish Shah
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Cristina D Toedebusch
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Ashley Hess
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Rachel Richardson
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Emmanuel Mignot
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| | - Suzanne E Schindler
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri, USA
| | - Tammie L S Benzinger
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri, USA
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Shaney Flores
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Chengjie Xiong
- Division of Biostatistics, Washington University School of Medicine, St Louis, Missouri, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri, USA
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri, USA
| | - Brendan P Lucey
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
3
|
Bruni O. Is CSF hypocretin level useful for differentiating narcolepsy type 1 and 2? Eur J Paediatr Neurol 2024; 53:A3-A4. [PMID: 39557595 DOI: 10.1016/j.ejpn.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Affiliation(s)
- Oliviero Bruni
- Pediatric Sleep Center, Child Neuropsychiatry Unit, Sant'Andrea Hospital, Sapienza University, Rome, Italy.
| |
Collapse
|
4
|
Huth A, Ayoub I, Barateau L, Gerdes LA, Severac D, Krebs S, Blum H, Tumani H, Haas J, Wildemann B, Kümpfel T, Beltrán E, Liblau RS, Dauvilliers Y, Dornmair K. Single cell transcriptomics of cerebrospinal fluid cells from patients with recent-onset narcolepsy. J Autoimmun 2024; 146:103234. [PMID: 38663202 DOI: 10.1016/j.jaut.2024.103234] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/23/2024] [Accepted: 04/16/2024] [Indexed: 12/05/2024]
Abstract
Narcolepsy is a rare cause of hypersomnolence and may be associated or not with cataplexy, i.e. sudden muscle weakness. These forms are designated narcolepsy-type 1 (NT1) and -type 2 (NT2), respectively. Notable characteristics of narcolepsy are that most patients carry the HLA-DQB1*06:02 allele and NT1-patients have strongly decreased levels of hypocretin-1 (synonym orexin-A) in the cerebrospinal fluid (CSF). The pathogenesis of narcolepsy is still not completely understood but the strong HLA-bias and increased frequencies of CD4+ T cells reactive to hypocretin in the peripheral blood suggest autoimmune processes in the hypothalamus. Here we analyzed the transcriptomes of CSF-cells from twelve NT1 and two NT2 patients by single cell RNAseq (scRNAseq). As controls, we used CSF cells from patients with multiple sclerosis, radiologically isolated syndrome, and idiopathic intracranial hypertension. From 27,255 CSF cells, we identified 20 clusters of different cell types and found significant differences in three CD4+ T cell and one monocyte clusters between narcolepsy and multiple sclerosis patients. Over 1000 genes were differentially regulated between patients with NT1 and other diseases. Surprisingly, the most strongly upregulated genes in narcolepsy patients as compared to controls were coding for the genome-encoded MTRNR2L12 and MTRNR2L8 peptides, which are homologous to the mitochondria-encoded HUMANIN peptide that is known playing a role in other neurological diseases including Alzheimer's disease.
Collapse
Affiliation(s)
- Alina Huth
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Ikram Ayoub
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, Toulouse, France
| | - Lucie Barateau
- Sleep-Wake Disorders Center, Department of Neurology, Gui-de-Chauliac Hospital, Institute for Neurosciences of Montpellier INM, INSERM, University of Montpellier, Montpellier, France
| | - Lisa Ann Gerdes
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Dany Severac
- GenomiX, MGX, BioCampus Montpellier, CNRS, INSERM, Univ. Montpellier, F-34094, Montpellier, France
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the LMU, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the LMU, Munich, Germany
| | | | - Jürgen Haas
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Eduardo Beltrán
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Roland S Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, Toulouse, France
| | - Yves Dauvilliers
- Sleep-Wake Disorders Center, Department of Neurology, Gui-de-Chauliac Hospital, Institute for Neurosciences of Montpellier INM, INSERM, University of Montpellier, Montpellier, France
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
5
|
Barateau L, Chenini S, Denis C, Lorber Q, Béziat S, Jaussent I, Dauvilliers Y. Narcolepsy Severity Scale-2 and Idiopathic Hypersomnia Severity Scale to better quantify symptoms severity and consequences in Narcolepsy type 2. Sleep 2024; 47:zsad323. [PMID: 38197577 DOI: 10.1093/sleep/zsad323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
STUDY OBJECTIVES Narcolepsy type 2 (NT2) is an understudied central disorder of hypersomnolence sharing some similarities with narcolepsy type 1 and idiopathic hypersomnia (IH). We aimed: (1) to assess systematically the symptoms in patients with NT2, with self-reported questionnaires: Epworth Sleepiness Scale (ESS), Narcolepsy Severity Scale (NSS), IH Severity Scale (IHSS), and (2) to evaluate the responsiveness of these scales to treatment. METHODS One hundred and nine patients with NT2 (31.4 ± 12.2 years old, 47 untreated) diagnosed according to ICSD-3 were selected in a Reference Center for Narcolepsy. They all completed the ESS, subgroups completed the modified NSS (NSS-2, without cataplexy items) (n = 95) and IHSS (n = 76). Some patients completed the scales twice (before/during treatment): 42 ESS, 26 NSS-2, and 30 IHSS. RESULTS Based on NSS-2, all untreated patients had sleepiness, 58% disrupted nocturnal sleep, 40% hallucinations, and 28% sleep paralysis. On IHSS, 76% reported a prolonged nocturnal sleep, and 83% sleep inertia. In the independent sample, ESS and NSS-2 scores were lower in treated patients, with same trend for IHSS scores. After treatment, ESS, NSS-2, and IHSS total scores were lower, with a mean difference of 3.7 ± 4.1, 5.3 ± 6.7, and 4.1 ± 6.2, respectively. The minimum clinically important difference between untreated and treated patients were 2.1 for ESS, 3.3 for NSS-2, and 3.1 for IHSS. After treatment, 61.9% of patients decreased their ESS > 2 points, 61.5% their NSS-2 > 3 points, and 53.3% their IHSS > 3 points. CONCLUSIONS NSS-2 and IHSS correctly quantified symptoms' severity and consequences in NT2, with good performances to objectify response to medications. These tools are useful for monitoring and optimizing NT2 management, and for use in clinical trials.
Collapse
Affiliation(s)
- Lucie Barateau
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, France
- National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France
- Institut des Neurosciences de Montpellier, University of Montpellier, Inserm-UM 1298, Montpellier, France
| | - Sofiene Chenini
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, France
- National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France
| | - Claire Denis
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, France
| | - Quentin Lorber
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, France
| | - Séverine Béziat
- Institut des Neurosciences de Montpellier, University of Montpellier, Inserm-UM 1298, Montpellier, France
| | - Isabelle Jaussent
- Institut des Neurosciences de Montpellier, University of Montpellier, Inserm-UM 1298, Montpellier, France
| | - Yves Dauvilliers
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, France
- National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France
- Institut des Neurosciences de Montpellier, University of Montpellier, Inserm-UM 1298, Montpellier, France
| |
Collapse
|
6
|
Liblau RS, Latorre D, Kornum BR, Dauvilliers Y, Mignot EJ. The immunopathogenesis of narcolepsy type 1. Nat Rev Immunol 2024; 24:33-48. [PMID: 37400646 DOI: 10.1038/s41577-023-00902-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 07/05/2023]
Abstract
Narcolepsy type 1 (NT1) is a chronic sleep disorder resulting from the loss of a small population of hypothalamic neurons that produce wake-promoting hypocretin (HCRT; also known as orexin) peptides. An immune-mediated pathology for NT1 has long been suspected given its exceptionally tight association with the MHC class II allele HLA-DQB1*06:02, as well as recent genetic evidence showing associations with polymorphisms of T cell receptor genes and other immune-relevant loci and the increased incidence of NT1 that has been observed after vaccination with the influenza vaccine Pandemrix. The search for both self-antigens and foreign antigens recognized by the pathogenic T cell response in NT1 is ongoing. Increased T cell reactivity against HCRT has been consistently reported in patients with NT1, but data demonstrating a primary role for T cells in neuronal destruction are currently lacking. Animal models are providing clues regarding the roles of autoreactive CD4+ and CD8+ T cells in the disease. Elucidation of the pathogenesis of NT1 will allow for the development of targeted immunotherapies at disease onset and could serve as a model for other immune-mediated neurological diseases.
Collapse
Affiliation(s)
- Roland S Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, Toulouse, France.
- Department of Immunology, Toulouse University Hospitals, Toulouse, France.
| | | | - Birgitte R Kornum
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yves Dauvilliers
- National Reference Center for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Department of Neurology, Gui-de-Chauliac Hospital, CHU de Montpellier, Montpellier, France
- INSERM Institute for Neurosciences of Montpellier, Montpellier, France
| | - Emmanuel J Mignot
- Stanford University, Center for Narcolepsy, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, USA.
| |
Collapse
|
7
|
Yamada R, Narita N, Ishikawa T, Kakehi M, Kimura H. The orexin receptor 2 (OX2R)-selective agonist TAK-994 increases wakefulness without affecting cerebrospinal fluid orexin levels in cynomolgus monkeys. Pharmacol Biochem Behav 2024; 234:173690. [PMID: 38061670 DOI: 10.1016/j.pbb.2023.173690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 01/01/2024]
Abstract
Orexin A (OX-A) and orexin B are neuropeptides produced in orexin neurons located in the lateral hypothalamus that exert multiple biological functions through the activation of orexin receptor 1 (OX1R) and orexin receptor 2 (OX2R) throughout the central nervous system. OX1R and OX2R have distinct functions: OX1R is involved in reward seeking, whereas OX2R has a pivotal role in sleep/wake regulation. OX2R-selective agonists are in development as novel therapeutic agents for the treatment of hypersomnia. However, their potential to induce orexin release, which may indirectly stimulate both OX1R and OX2R in vivo, is unclear. Herein, we assessed the effects of the OX2R-selective agonist TAK-994 on wakefulness and orexin release in monkeys. Oral administration of TAK-994 at 10 mg/kg in the beginning of the sleep phase (zeitgeber time [ZT] 12) significantly increased wakefulness time in monkeys but did not increase OX-A levels in monkey cisternal cerebrospinal fluid (CSF). Moreover, oral administration of TAK-994 (10 mg/kg) during the active phase (ZT1) did not increase OX-A levels in monkey CSF. These findings indicate that the OX2R agonist TAK-994 selectively activates OX2R in vivo and would not robustly induce spontaneous orexin release during the daytime or nighttime in monkeys.
Collapse
Affiliation(s)
- Ryuji Yamada
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Naohiro Narita
- Drug Metabolism and Pharmacokinetics Laboratory, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takashi Ishikawa
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masaaki Kakehi
- Drug Metabolism and Pharmacokinetics Laboratory, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Haruhide Kimura
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
8
|
Dauvilliers Y, Roth T, Bogan R, Thorpy MJ, Morse AM, Roy A, Dubow J, Gudeman J. Efficacy of once-nightly sodium oxybate (FT218) in narcolepsy type 1 and type 2: post hoc analysis from the Phase 3 REST-ON Trial. Sleep 2023; 46:zsad152. [PMID: 37246913 PMCID: PMC10636255 DOI: 10.1093/sleep/zsad152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/11/2023] [Indexed: 05/30/2023] Open
Abstract
STUDY OBJECTIVES Post hoc analyses from the phase 3 REST-ON trial evaluated efficacy of extended-release once-nightly sodium oxybate (ON-SXB; FT218) vs placebo for daytime sleepiness and disrupted nighttime sleep in narcolepsy type 1 (NT1) and 2 (NT2). METHODS Participants were stratified by narcolepsy type and randomized 1:1 to ON-SXB (4.5 g, week 1; 6 g, weeks 2-3; 7.5 g, weeks 4-8; and 9 g, weeks 9-13) or placebo. Assessments included mean sleep latency on Maintenance of Wakefulness Test (MWT) and Clinical Global Impression-Improvement (CGI-I) rating (coprimary endpoints) and sleep stage shifts, nocturnal arousals, and patient-reported sleep quality, refreshing nature of sleep, and Epworth Sleepiness Scale (ESS) score (secondary endpoints) separately in NT1 and NT2 subgroups. RESULTS The modified intent-to-treat population comprised 190 participants (NT1, n = 145; NT2, n = 45). Significant improvements were demonstrated with ON-SXB vs placebo in sleep latency for NT1 (all doses, p < .001) and NT2 (6 and 9 g, p < .05) subgroups. Greater proportions of participants in both subgroups had CGI-I ratings of much/very much improved with ON-SXB vs placebo. Sleep stage shifts and sleep quality significantly improved in both subgroups (all doses vs placebo, p < .001). Significant improvements with all ON-SXB doses vs placebo in refreshing nature of sleep (p < .001), nocturnal arousals (p < .05), and ESS scores (p ≤ .001) were reported for NT1 with directional improvements for NT2. CONCLUSIONS Clinically meaningful improvements of a single ON-SXB bedtime dose were shown for daytime sleepiness and DNS in NT1 and NT2, with less power for the limited NT2 subgroup.
Collapse
Affiliation(s)
- Yves Dauvilliers
- Department of Neurology, Sleep-Wake Disorders Center, Gui-de-Chauliac Hospital, Institute for Neurosciences of Montpellier INM, INSERM, University of Montpellier, Montpellier, France
| | - Thomas Roth
- Sleep Disorders and Research Center, Henry Ford Health System, Detroit, MI, USA
| | - Richard Bogan
- University of South Carolina School of Medicine, Columbia, SC, USA
- Medical University of SC, Charleston, SC, USA
| | | | - Anne Marie Morse
- Geisinger Commonwealth School of Medicine, Geisinger Medical Center, Janet Weis Children’s Hospital, Danville, PA, USA
| | - Asim Roy
- Ohio Sleep Medicine Institute, Dublin, OH, USA
| | | | | |
Collapse
|
9
|
Barateau L, Pizza F, Chenini S, Peter-Derex L, Dauvilliers Y. Narcolepsies, update in 2023. Rev Neurol (Paris) 2023; 179:727-740. [PMID: 37634997 DOI: 10.1016/j.neurol.2023.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023]
Abstract
Narcolepsy type 1 (NT1) and type 2 (NT2), also known as narcolepsy with and without cataplexy, are sleep disorders that benefited from major scientific advances over the last two decades. NT1 is caused by the loss of hypothalamic neurons producing orexin/hypocretin, a neurotransmitter regulating sleep and wake, which can be measured in the cerebrospinal fluid (CSF). A low CSF level of hypocretin-1/orexin-A is a highly specific and sensitive biomarker, sufficient to diagnose NT1. Orexin-deficiency is responsible for the main NT1 symptoms: sleepiness, cataplexy, disrupted nocturnal sleep, sleep-related hallucinations, and sleep paralysis. In the absence of a lumbar puncture, the diagnosis is based on neurophysiological tests (nocturnal and diurnal) and the presence of the pathognomonic symptom cataplexy. In the revised version of the International Classification of sleep Disorders, 3rd edition (ICSD-3-TR), a sleep onset rapid eye movement sleep (REM) period (SOREMP) (i.e. rapid occurrence of REM sleep) during the previous polysomnography may replace the diurnal multiple sleep latency test, when clear-cut cataplexy is present. A nocturnal SOREMP is very specific but not sensitive enough, and the diagnosis of cataplexy is usually based on clinical interview. It is thus of crucial importance to define typical versus atypical cataplectic attacks, and a list of clinical features and related degrees of certainty is proposed in this paper (expert opinion). The time frame of at least three months of evolution of sleepiness to diagnose NT1 was removed in the ICSD-3-TR, when clear-cut cataplexy or orexin-deficiency are established. However, it was kept for NT2 diagnosis, a less well-characterized disorder with unknown clinical course and absence of biolo biomarkers; sleep deprivation, shift working and substances intake being major differential diagnoses. Treatment of narcolepsy is nowadays only symptomatic, but the upcoming arrival of non-peptide orexin receptor-2 agonists should be a revolution in the management of these rare sleep diseases.
Collapse
Affiliation(s)
- L Barateau
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU de Montpellier, Montpellier, France; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France; Institute of Neurosciences of Montpellier, University of Montpellier, Inserm, Montpellier, France.
| | - F Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| | - S Chenini
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU de Montpellier, Montpellier, France; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France; Institute of Neurosciences of Montpellier, University of Montpellier, Inserm, Montpellier, France
| | - L Peter-Derex
- Center for Sleep Medicine and Respiratory Diseases, Croix-Rousse Hospital, Hospices Civils de Lyon, Lyon 1 University, Lyon, France; Lyon Neuroscience Research Center, PAM Team, Inserm U1028, CNRS UMR 5292, Lyon, France
| | - Y Dauvilliers
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU de Montpellier, Montpellier, France; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France; Institute of Neurosciences of Montpellier, University of Montpellier, Inserm, Montpellier, France.
| |
Collapse
|
10
|
Ricordeau F, Bridoux A, Raverot V, Peter-Derex L. Progressive narcolepsy: how to deal with intermediate hypocretin-1 values? J Clin Sleep Med 2023; 19:1375-1378. [PMID: 37066739 PMCID: PMC10315607 DOI: 10.5664/jcsm.10576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 04/18/2023]
Abstract
According to the International Classification of Sleep Disorders, third edition guidelines, the diagnosis of narcolepsy type 1 is based on the association of excessive daytime sleepiness plus either cataplexy and electrophysiological criteria, or a cerebrospinal fluid hypocretin-1 concentration below 110 pg/mL. This threshold remains debated, and recent works have proposed alternative values in the intermediate (110 to 200 pg/mL) zone. We report the case of a patient who presented with typical clinical symptoms of narcolepsy type 1 developing over six years but in whom initial polysomnography and multiple sleep latency test were negative and cerebrospinal fluid hypocretin-1 was intermediate (132 pg/mL). Cerebrospinal fluid hypocretin-1 reassessment four years later found a dramatic decrease, < 50 pg/mL, and the multiple sleep latency test proved to be abnormal, eventually allowing to confirm the diagnosis. This case highlights the importance of reassessing patients with intermediate hypocretin-1 values and contributes to the debate on the determination of alternative cerebrospinal fluid hypocretin1 thresholds for narcolepsy type 1 diagnosis. CITATION Ricordeau F, Bridoux A, Raverot V, Peter-Derex L. Progressive narcolepsy: how to deal with intermediate hypocretin-1 values? J Clin Sleep Med. 2023;19(7):1375-1378.
Collapse
Affiliation(s)
- François Ricordeau
- Center for Sleep Medicine and Respiratory Diseases, Croix-Rousse Hospital, Lyon Academic Hospital, Lyon 1 University, Lyon, France
| | - Agathe Bridoux
- Center for Sleep Medicine and Respiratory Diseases, Croix-Rousse Hospital, Lyon Academic Hospital, Lyon 1 University, Lyon, France
| | - Véronique Raverot
- Service de Biochimie et biologie moléculaire, Hospices Civils de Lyon, LBMMS, F-69677 Hormonologie, Bron cedex, France
- Neuroscience Research Center (CRNL), Inserm UMRS 1028, Université de Lyon, Waking team, Bron, France
| | - Laure Peter-Derex
- Center for Sleep Medicine and Respiratory Diseases, Croix-Rousse Hospital, Lyon Academic Hospital, Lyon 1 University, Lyon, France
- Lyon Neuroscience Research Centre, CNRS UMR 5292-INSERM U1028, Bron, France
| |
Collapse
|
11
|
O'Driscoll DM, Young AC. Contemporary Concise Review 2022: Sleep. Respirology 2023; 28:518-524. [PMID: 36990762 DOI: 10.1111/resp.14500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
COVID-19 AND SLEEP: The COVID-19 pandemic is associated with an increase in insomnia and impaired sleep quality Health care workers are particularly susceptible and improved with cognitive behavioural therapy for insomnia (CBT-I) Long COVID has significant effects on sleep OSA impacts on the severity of acute COVID-19 illness OBSTRUCTIVE SLEEP APNOEA: Large trials of clinically representative patients confirm the cardiovascular benefits of CPAP treatment in OSA CPAP may improve long-term cognitive outcomes in OSA, but further research is needed Racial disparities in OSA prevalence and mortality risk are becoming evident Periodic evaluation of OSA risk in pregnancy is important as timing may be key for intervention to prevent or treat cardiovascular risk factors INSOMNIA: Comorbid insomnia and obstructive sleep apnoea (COMISA) can frequently co-exist and the combined negative effects of both may be deleterious, particularly to cardiovascular health There is evidence for effectiveness with novel orexin receptor antagonists.
Collapse
Affiliation(s)
- Denise M O'Driscoll
- Department of Respiratory and Sleep Medicine, Eastern Health, Box Hill, Victoria, Australia
- Eastern Health Clinical School, Monash University, Box Hill, Victoria, Australia
| | - Alan C Young
- Department of Respiratory and Sleep Medicine, Eastern Health, Box Hill, Victoria, Australia
- Eastern Health Clinical School, Monash University, Box Hill, Victoria, Australia
| |
Collapse
|
12
|
Liu Z, Guan R, Pan L. TCM syndrome differentiation and treatment of narcolepsy based on neurobiological mechanism: A review. Medicine (Baltimore) 2022; 101:e32025. [PMID: 36626491 PMCID: PMC9750696 DOI: 10.1097/md.0000000000032025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Narcolepsy is a relatively rare brain disorder caused by the selective loss of orexin neurons. Narcolepsy is divided into Narcolepsy Type 1 (NT1) and Narcolepsis Type 2 (NT2). The pathogenesis of NT1 has been well established due to the severe loss of orexin neurons, while NT2 is still poorly understood, and little is known about its underlying neurobiological mechanisms. human leukocyte antigen alleles have been found to strongly influence the development of narcolepsy, with more than 90% of NT1 patients carrying the human leukocyte antigen II allele DQB1*06:02. In addition to the genetic evidence for the DQBI*06:02 allele, some other evidence suggests that a T cell-mediated immune mechanism destroys the orexin neurons of NT1, with CD4 + T cells being key. For this disease, traditional Chinese medicine (TCM) therapy has its own characteristics and advantages, especially the combination of acupuncture and medicine in the treatment of this disease in TCM, which has made considerable and gratifying progress. The purpose of this review is to introduce the frontier progress of neurobiology of narcolepsy, and to explore the syndrome differentiation and treatment of narcolepsy with the combined use of TCM and Western medicine combined with TCM.
Collapse
Affiliation(s)
- Zhao Liu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province
- * Correspondence: Zhao Liu, Heilongjiang University of Traditional Chinese Medicine, 24 Heping Road, Harbin 150006, Heilongjiang Province (e-mail:)
| | - Ruiqian Guan
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province
- Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province
| | - Limin Pan
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province
| |
Collapse
|
13
|
Orexin 2 receptor-selective agonist danavorexton improves narcolepsy phenotype in a mouse model and in human patients. Proc Natl Acad Sci U S A 2022; 119:e2207531119. [PMID: 35994639 PMCID: PMC9436334 DOI: 10.1073/pnas.2207531119] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Narcolepsy type 1 (NT1) is a sleep disorder caused by a loss of orexinergic neurons. Narcolepsy type 2 (NT2) is heterogeneous; affected individuals typically have normal orexin levels. Following evaluation in mice, the effects of the orexin 2 receptor (OX2R)-selective agonist danavorexton were evaluated in single- and multiple-rising-dose studies in healthy adults, and in individuals with NT1 and NT2. In orexin/ataxin-3 narcolepsy mice, danavorexton reduced sleep/wakefulness fragmentation and cataplexy-like episodes during the active phase. In humans, danavorexton administered intravenously was well tolerated and was associated with marked improvements in sleep latency in both NT1 and NT2. In individuals with NT1, danavorexton dose-dependently increased sleep latency in the Maintenance of Wakefulness Test, up to the ceiling effect of 40 min, in both the single- and multiple-rising-dose studies. These findings indicate that OX2Rs remain functional despite long-term orexin loss in NT1. OX2R-selective agonists are a promising treatment for both NT1 and NT2.
Collapse
|
14
|
van der Hoeven AE, van Waaij K, Bijlenga D, Roelandse FWC, Overeem S, Bakker JA, Fronczek R, Lammers GJ. Hypocretin-1 measurements in cerebrospinal fluid using radioimmunoassay: within and between assay reliability and limit of quantification. Sleep 2022; 45:6581446. [PMID: 35512685 PMCID: PMC9272241 DOI: 10.1093/sleep/zsac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/30/2022] [Indexed: 11/23/2022] Open
Abstract
Study Objectives The most sensitive and specific investigative method for the diagnosis of narcolepsy type 1 (NT1) is the determination of hypocretin-1 (orexin-A) deficiency (≤110 pg/mL) in cerebrospinal fluid using a radioimmunoassay (RIA). We aimed to assess the reliability of the Phoenix Pharmaceuticals hypocretin-1 RIA, by determining the lower limit of quantification (LLOQ), the variability around the cutoff of 110 pg/mL, and the inter- and intra-assay variability. Methods Raw data of 80 consecutive hypocretin-1 RIAs were used to estimate the intra- and inter-assay coefficient of variation (CV). The LLOQ was established and defined as the lowest converted concentration with a CV <25%; the conversion is performed using a harmonization sample which is internationally used to minimize variation between RIAs. Results The mean intra-assay CV was 4.7%, while the unconverted inter-assay CV was 28.3% (18.5% excluding 2 outliers) and 7.5% when converted to international values. The LLOQ was determined as 27.9 pg/mL. The intra-assay CV of RIAs with lower specific radioactive activity showed a median of 5.6% (n = 41, range 1.6%–17.0%), which was significantly higher than in RIAs with higher specific activity (n = 36; median 3.2%, range 0.4%–11.6%, p = .013). The CV around the 110 pg/mL cutoff was <7%. Conclusions Hypocretin-1 RIAs should always be harmonized using standard reference material. The specific activity of an RIA has a significant impact on its reliability, because of the decay of 125I radioactivity. Values around the hypocretin-1 cut-off can reliably be measured. Hypocretin-1 concentrations below 28 pg/mL should be reported as “undetectable” when measured with the Phoenix Pharmaceuticals RIA. Clinical Trial Information This study is not registered in a clinical trial register, as it has a retrospective database design
Collapse
Affiliation(s)
- Adrienne Elisabeth van der Hoeven
- Department of Neurology, Leiden University Medical Center , Leiden , the Netherlands
- Sleep-Wake Center, Stichting Epilepsie Instellingen Nederland (SEIN) , Heemstede , the Netherlands
| | - Kevin van Waaij
- Department of Neurology, Leiden University Medical Center , Leiden , the Netherlands
| | - Denise Bijlenga
- Department of Neurology, Leiden University Medical Center , Leiden , the Netherlands
- Sleep-Wake Center, Stichting Epilepsie Instellingen Nederland (SEIN) , Heemstede , the Netherlands
| | | | | | - Jaap Adriaan Bakker
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center , Leiden , the Netherlands
| | - Rolf Fronczek
- Department of Neurology, Leiden University Medical Center , Leiden , the Netherlands
- Sleep-Wake Center, Stichting Epilepsie Instellingen Nederland (SEIN) , Heemstede , the Netherlands
| | - Gert Jan Lammers
- Department of Neurology, Leiden University Medical Center , Leiden , the Netherlands
- Sleep-Wake Center, Stichting Epilepsie Instellingen Nederland (SEIN) , Heemstede , the Netherlands
| |
Collapse
|
15
|
Pizza F, Barateau L, Dauvilliers Y, Plazzi G. The orexin story, sleep and sleep disturbances. J Sleep Res 2022; 31:e13665. [PMID: 35698789 DOI: 10.1111/jsr.13665] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 01/02/2023]
Abstract
The orexins, also known as hypocretins, are two neuropeptides (orexin A and B or hypocretin 1 and 2) produced by a few thousand neurons located in the lateral hypothalamus that were independently discovered by two research groups in 1998. Those two peptides bind two receptors (orexin/hypocretin receptor 1 and receptor 2) that are widely distributed in the brain and involved in the central physiological regulation of sleep and wakefulness, orexin receptor 2 having the major role in the maintenance of arousal. They are also implicated in a multiplicity of other functions, such as reward seeking, energy balance, autonomic regulation and emotional behaviours. The destruction of orexin neurons is responsible for the sleep disorder narcolepsy with cataplexy (type 1) in humans, and a defect of orexin signalling also causes a narcoleptic phenotype in several animal species. Orexin discovery is unprecedented in the history of sleep research, and pharmacological manipulations of orexin may have multiple therapeutic applications. Several orexin receptor antagonists were recently developed as new drugs for insomnia, and orexin agonists may be the next-generation drugs for narcolepsy. Given the broad range of functions of the orexin system, these drugs might also be beneficial for treating various conditions other than sleep disorders in the near future.
Collapse
Affiliation(s)
- Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lucie Barateau
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France.,Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Yves Dauvilliers
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France.,Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
16
|
Barateau L, Pizza F, Plazzi G, Dauvilliers Y. 50th anniversary of the ESRS in 2022-JSR special issue. J Sleep Res 2022; 31:e13631. [PMID: 35624073 DOI: 10.1111/jsr.13631] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 01/21/2023]
Abstract
This article addresses the clinical presentation, diagnosis, pathophysiology and management of narcolepsy type 1 and 2, with a focus on recent findings. A low level of hypocretin-1/orexin-A in the cerebrospinal fluid is sufficient to diagnose narcolepsy type 1, being a highly specific and sensitive biomarker, and the irreversible loss of hypocretin neurons is responsible for the main symptoms of the disease: sleepiness, cataplexy, sleep-related hallucinations and paralysis, and disrupted nocturnal sleep. The process responsible for the destruction of hypocretin neurons is highly suspected to be autoimmune, or dysimmune. Over the last two decades, remarkable progress has been made for the understanding of these mechanisms that were made possible with the development of new techniques. Conversely, narcolepsy type 2 is a less well-defined disorder, with a variable phenotype and evolution, and few reliable biomarkers discovered so far. There is a dearth of knowledge about this disorder, and its aetiology remains unclear and needs to be further explored. Treatment of narcolepsy is still nowadays only symptomatic, targeting sleepiness, cataplexy and disrupted nocturnal sleep. However, new psychostimulants have been recently developed, and the upcoming arrival of non-peptide hypocretin receptor-2 agonists should be a revolution in the management of this rare sleep disease, and maybe also for disorders beyond narcolepsy.
Collapse
Affiliation(s)
- Lucie Barateau
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France.,Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Yves Dauvilliers
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France.,Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| |
Collapse
|
17
|
Futenma K, Takaesu Y, Nakamura M, Hayashida K, Takeuchi N, Inoue Y. Metabolic-Syndrome-Related Comorbidities in Narcolepsy Spectrum Disorders: A Preliminary Cross-Sectional Study in Japan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106285. [PMID: 35627822 PMCID: PMC9141676 DOI: 10.3390/ijerph19106285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/17/2022]
Abstract
Narcolepsy types 1 (NT1) and 2 (NT2) and idiopathic hypersomnia (IH) are thought to be a disease continuum known as narcolepsy spectrum disorders (NSDs). This study aimed to assess the prevalence of and factors associated with metabolic-syndrome-related disorders (MRDs) among patients with NSD. Japanese patients with NSD (NT1, n = 94; NT2, n = 83; and IH, n = 57) aged ≥35 years were enrolled in this cross-sectional study. MRD was defined as having at least one of the following conditions: hypertension, diabetes, or dyslipidemia. Demographic variables and MRD incidence were compared among patients in the respective NSD categories. Multivariate logistic regression analysis was used to investigate the factors associated with MRDs. Patients with NT1 had a higher body mass index (BMI) and incidence of MRD than that had by those with NT2 or IH. Age, BMI, and the presence of OSA were significantly associated with the incidence of MRD in NSDs. Age and BMI in NT1, BMI and human leukocyte antigen (HLA)-DQB1*06:02 positivity in NT2, and only age in IH were factors associated with the incidence of MRD. Obesity should be carefully monitored in narcolepsy; however, NT2 with HLA-DQB1*06:02 positive should be followed up for the development of MRD even without obesity.
Collapse
Affiliation(s)
- Kunihiro Futenma
- Department of Neuropsychiatry, Graduate School of Medicine, University of the Ryukyus, 207, Uehara, Nishihara-cho, Nakagami-gun, Okinawa 903-0215, Japan;
- Japan Somnology Center, Neuropsychiatric Research Institute, 5-10-10, Yoyogi, Shinjuku-ku, Tokyo 151-0053, Japan; (M.N.); (N.T.)
- Correspondence: (K.F.); (Y.I.); Tel.: +81-98-895-1157 (K.F.); +81-3-6804-8995 (Y.I.)
| | - Yoshikazu Takaesu
- Department of Neuropsychiatry, Graduate School of Medicine, University of the Ryukyus, 207, Uehara, Nishihara-cho, Nakagami-gun, Okinawa 903-0215, Japan;
- Japan Somnology Center, Neuropsychiatric Research Institute, 5-10-10, Yoyogi, Shinjuku-ku, Tokyo 151-0053, Japan; (M.N.); (N.T.)
| | - Masaki Nakamura
- Japan Somnology Center, Neuropsychiatric Research Institute, 5-10-10, Yoyogi, Shinjuku-ku, Tokyo 151-0053, Japan; (M.N.); (N.T.)
- Department of Somnology, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
- Aoyama-Omotesando Sleep Stress Clinic, Aoyama Rise Square 3F, 5-1-22 Minamiaoyama, Minato-ku, Tokyo 107-0062, Japan
| | - Kenichi Hayashida
- Sleep Support Clinic, Miranbeena 1F, 1-18-8 Higashioi, Shinagawa-Ku, Tokyo 140-0011, Japan;
| | - Noboru Takeuchi
- Japan Somnology Center, Neuropsychiatric Research Institute, 5-10-10, Yoyogi, Shinjuku-ku, Tokyo 151-0053, Japan; (M.N.); (N.T.)
- Department of Somnology, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
- Department of Neuropsychiatry, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Yuichi Inoue
- Japan Somnology Center, Neuropsychiatric Research Institute, 5-10-10, Yoyogi, Shinjuku-ku, Tokyo 151-0053, Japan; (M.N.); (N.T.)
- Department of Somnology, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
- Correspondence: (K.F.); (Y.I.); Tel.: +81-98-895-1157 (K.F.); +81-3-6804-8995 (Y.I.)
| |
Collapse
|
18
|
The evolutionarily conserved miRNA-137 targets the neuropeptide hypocretin/orexin and modulates the wake to sleep ratio. Proc Natl Acad Sci U S A 2022; 119:e2112225119. [PMID: 35452310 PMCID: PMC9169915 DOI: 10.1073/pnas.2112225119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The hypocretin (Hcrt, also known as orexin) neuropeptides regulate sleep and wake stability, and disturbances of Hcrt can lead to sleep disorders. MicroRNAs (miRNAs) are short noncoding RNAs that fine-tune protein expression levels, and miRNA-based therapeutics are emerging. We report a functional interaction between miRNA (miR-137) and Hcrt. We demonstrate that intracellular miR-137 levels in Hcrt neurons regulate Hcrt expression with downstream effects on wakefulness. Specifically, lowering of miR-137 levels increased wakefulness in mice. We further show that the miR-137:Hcrt interaction is conserved across mice and humans, that miR-137 also regulates sleep–wake balance in zebrafish, and that the MIR137 locus is genetically associated with sleep duration in humans. Together, our findings reveal an evolutionarily conserved sleep–wake regulatory role of miR-137. Hypocretin (Hcrt), also known as orexin, neuropeptide signaling stabilizes sleep and wakefulness in all vertebrates. A lack of Hcrt causes the sleep disorder narcolepsy, and increased Hcrt signaling has been speculated to cause insomnia, but while the signaling pathways of Hcrt are relatively well-described, the intracellular mechanisms that regulate its expression remain unclear. Here, we tested the role of microRNAs (miRNAs) in regulating Hcrt expression. We found that miR-137, miR-637, and miR-654-5p target the human HCRT gene. miR-137 is evolutionarily conserved and also targets mouse Hcrt as does miR-665. Inhibition of miR-137 specifically in Hcrt neurons resulted in Hcrt upregulation, longer episodes of wakefulness, and significantly longer wake bouts in the first 4 h of the active phase. IL-13 stimulation upregulated endogenous miR-137, while Hcrt mRNA decreased both in vitro and in vivo. Furthermore, knockdown of miR-137 in zebrafish substantially increased wakefulness. Finally, we show that in humans, the MIR137 locus is genetically associated with sleep duration. In conclusion, these results show that an evolutionarily conserved miR-137:Hcrt interaction is involved in sleep–wake regulation.
Collapse
|