1
|
Yoon S, Lee S, Joo Y, Ha E, Hong H, Song Y, Lee H, Kim S, Suh C, Lee CJ, Lyoo IK. Variations in brain glutamate and glutamine levels throughout the sleep-wake cycle. Biol Psychiatry 2024:S0006-3223(24)01785-2. [PMID: 39643103 DOI: 10.1016/j.biopsych.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/25/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Glutamatergic signaling is essential for modulating synaptic plasticity and cognition. However, the dynamics of glutamatergic activity over the 24-hour sleep-wake cycle, particularly in relation to sleep, remain poorly understood. This study aims to investigate diurnal variations in brain Glx levels-representing the combined concentrations of glutamate and glutamine-in humans and to explore their implications for cognitive performance and sleep pressure. METHODS We conducted two independent experiments to measure Glx levels across the sleep-wake cycle using proton magnetic resonance spectroscopy. In Experiment 1, 14 participants underwent 13 hours of Glx measurements during a typical sleep-wake cycle. Experiment 2 extended these measurements to an around-the-clock observation over a 6-day period. This period included two days of normal sleep-wake cycles, 24 hours of enforced wakefulness, and a three-day recovery phase. Seven participants took part in Experiment 2. RESULTS The study observed that brain Glx levels increased during wakefulness and decreased during sleep. Notably, Glx levels were lower during enforced wakefulness compared to those during normal wakefulness. Reduced Glx levels were associated with diminished cognitive performance, while greater Glx exposure over the preceding 24 hours correlated with increased sleep pressure. CONCLUSIONS These findings suggest that Glx accumulation may contribute to increased sleep pressure, while its reduction appears to support wakefulness. These observations, together with the diurnal variations in Glx levels, underscore the dynamic nature of glutamatergic activity across the daily cycle. Further research is warranted to explore the potential role of sleep in regulating glutamatergic homeostasis.
Collapse
Affiliation(s)
- Sujung Yoon
- Ewha Brain Institute, Ewha W. University, Seoul 03760, South Korea; Department of Brain and Cognitive Sciences, Ewha W. University, Seoul 03760, South Korea
| | - Suji Lee
- College of Pharmacy, Dongduk W. University, Seoul 02748, South Korea
| | - Yoonji Joo
- Ewha Brain Institute, Ewha W. University, Seoul 03760, South Korea
| | - Eunji Ha
- Ewha Brain Institute, Ewha W. University, Seoul 03760, South Korea
| | - Haejin Hong
- Ewha Brain Institute, Ewha W. University, Seoul 03760, South Korea
| | - Yumi Song
- Ewha Brain Institute, Ewha W. University, Seoul 03760, South Korea; Department of Brain and Cognitive Sciences, Ewha W. University, Seoul 03760, South Korea
| | - Hyangwon Lee
- Ewha Brain Institute, Ewha W. University, Seoul 03760, South Korea; Department of Brain and Cognitive Sciences, Ewha W. University, Seoul 03760, South Korea
| | - Shinhye Kim
- Ewha Brain Institute, Ewha W. University, Seoul 03760, South Korea; Department of Brain and Cognitive Sciences, Ewha W. University, Seoul 03760, South Korea
| | - Chaewon Suh
- Ewha Brain Institute, Ewha W. University, Seoul 03760, South Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha W. University, Seoul 03760, South Korea; Department of Brain and Cognitive Sciences, Ewha W. University, Seoul 03760, South Korea; Graduate School of Pharmaceutical Sciences, Ewha W. University, Seoul 03760, South Korea.
| |
Collapse
|
2
|
Bovenzi R, Conti M, Pierantozzi M, Testone G, Fernandes M, Manfredi N, Schirinzi T, Cerroni R, Mercuri NB, Stefani A, Liguori C. Safinamide effect on sleep architecture of motor fluctuating Parkinson's disease patients: A polysomnographic rasagiline-controlled study. Parkinsonism Relat Disord 2024; 127:107103. [PMID: 39154406 DOI: 10.1016/j.parkreldis.2024.107103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/01/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
INTRODUCTION Sleep problems commonly occur in Parkinson's disease (PD) and significantly affect patients' quality of life. A possible effect on subjective sleep disturbances of monoamine oxidase-B inhibitors (MAOB-Is) has been described. METHODS This prospective, observational, single-centre study involved 45 fluctuating PD patients complaining sleep problems as documented by the PD Sleep Scale -2nd version (PDSS-2 ≥18) starting rasagiline 1 mg/daily or safinamide 100 mg/daily, according to common clinical practice, and maintaining antiparkinsonian therapy unchanged. Polysomnography (PSG), sleep questionnaires (PDSS-2, Epworth Sleepiness Scale - ESS), and motor function were evaluated at baseline (T0) and after 4 months of treatment (T1). RESULTS Safinamide was prescribed in thirty patients and rasagiline in fifteen patients. Both drugs induced a significant improvement in Movement Disorder Society Unified PD Rating Scale III scores. Patients treated with rasagiline showed a significant increase in stage 1 (N1) Non-REM sleep compared to T0, with no significant effects on sleep scales. Patients treated with safinamide showed a significant increase in stage 3 of Non-REM sleep and sleep efficiency and a reduction in the rate of periodic limb movements, matching a significant reduction in PDSS-2 and ESS scales compared to T0. CONCLUSION This study showed that safinamide, in addition to having a significant effect on PD motor symptoms, like the other MAOB-Is, may exert a specific beneficial effect on subjective and objective sleep, probably driven by its dual mechanism of action, which involves both dopaminergic and glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Roberta Bovenzi
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Matteo Conti
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Mariangela Pierantozzi
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy; Parkinson's Disease Unit, University Hospital of Rome "Tor Vergata", Viale Oxford 81, 00133, Rome, Italy.
| | - Greta Testone
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Mariana Fernandes
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Natalia Manfredi
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Tommaso Schirinzi
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy; Parkinson's Disease Unit, University Hospital of Rome "Tor Vergata", Viale Oxford 81, 00133, Rome, Italy
| | - Rocco Cerroni
- Parkinson's Disease Unit, University Hospital of Rome "Tor Vergata", Viale Oxford 81, 00133, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Alessandro Stefani
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy; Parkinson's Disease Unit, University Hospital of Rome "Tor Vergata", Viale Oxford 81, 00133, Rome, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy; Sleep Medicine Centre, Neurology Unit, University Hospital of Rome "Tor Vergata", Viale Oxford 81, 00133, Rome, Italy
| |
Collapse
|
3
|
Dunham KE, Khaled KH, Weizman L, Venton BJ. Microdosing ketamine in Drosophila does not block serotonin reuptake, but causes complex behavioral changes mediated by glutamate and serotonin receptors. J Neurochem 2024; 168:1097-1112. [PMID: 38323657 PMCID: PMC11136605 DOI: 10.1111/jnc.16070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
Microdosing ketamine is a novel antidepressant for treatment-resistant depression. Traditional antidepressants, like selective serotonin reuptake inhibitors (SSRIs), inhibit serotonin reuptake, but it is not clear if ketamine shows a similar mechanism. Here, we tested the effects of feeding ketamine and SSRIs to Drosophila melanogaster larvae, which has a similar serotonin system to mammals and is a good model to track depressive behaviors, such as locomotion and feeding. Fast-scan cyclic voltammetry (FSCV) was used to measure optogenetically stimulated serotonin changes, and locomotion tracking software and blue dye feeding to monitor behavior. We fed larvae various doses (1-100 mM) of antidepressants for 24 h and found that 1 mM ketamine did not affect serotonin, but increased locomotion and feeding. Low doses (≤10 mM) of escitalopram and fluoxetine inhibited dSERT and also increased feeding and locomotion behaviors. At 100 mM, ketamine inhibited dSERT and increased serotonin concentrations, but decreased locomotion and feeding because of its anesthetic properties. Since microdosing ketamine causes behavioral effects, we further investigated behavioral changes with a SERT16 mutant and low doses of other NMDA receptor antagonists and 5-HT1A and 2 agonists. Feeding and locomotion changes were similar to ketamine in the mutant, and we found NMDA receptor antagonism increased feeding, while serotonin receptor agonism increased locomotion, which could explain these effects with ketamine. Ultimately, this work shows that Drosophila is a good model to discern antidepressant mechanisms, and that ketamine does not work on dSERT like SSRIs, but effects behavior with other mechanisms that should be investigated further.
Collapse
Affiliation(s)
- Kelly E Dunham
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Kani H Khaled
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Leah Weizman
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
4
|
Dunham KE, Venton BJ. Electrochemical and biosensor techniques to monitor neurotransmitter changes with depression. Anal Bioanal Chem 2024; 416:2301-2318. [PMID: 38289354 PMCID: PMC10950978 DOI: 10.1007/s00216-024-05136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 03/21/2024]
Abstract
Depression is a common mental illness. However, its current treatments, like selective serotonin reuptake inhibitors (SSRIs) and micro-dosing ketamine, are extremely variable between patients and not well understood. Three neurotransmitters: serotonin, histamine, and glutamate, have been proposed to be key mediators of depression. This review focuses on analytical methods to quantify these neurotransmitters to better understand neurological mechanisms of depression and how they are altered during treatment. To quantitatively measure serotonin and histamine, electrochemical techniques such as chronoamperometry and fast-scan cyclic voltammetry (FSCV) have been improved to study how specific molecular targets, like transporters and receptors, change with antidepressants and inflammation. Specifically, these studies show that different SSRIs have unique effects on serotonin reuptake and release. Histamine is normally elevated during stress, and a new inflammation hypothesis of depression links histamine and cytokine release. Electrochemical measurements revealed that stress increases histamine, decreases serotonin, and leads to changes in cytokines, like interleukin-6. Biosensors can also measure non-electroactive neurotransmitters, including glutamate and cytokines. In particular, new genetic sensors have shown how glutamate changes with chronic stress, as well as with ketamine treatment. These techniques have been used to characterize how ketamine changes glutamate and serotonin, and to understand how it is different from SSRIs. This review briefly outlines how these electrochemical techniques work, but primarily highlights how they have been used to understand the mechanisms of depression. Future studies should explore multiplexing techniques and personalized medicine using biomarkers in order to investigate multi-analyte changes to antidepressants.
Collapse
Affiliation(s)
- Kelly E Dunham
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA.
| |
Collapse
|
5
|
Sears JC, Broadie K. Use-Dependent, Untapped Dual Kinase Signaling Localized in Brain Learning Circuitry. J Neurosci 2024; 44:e1126232024. [PMID: 38267256 PMCID: PMC10957217 DOI: 10.1523/jneurosci.1126-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024] Open
Abstract
Imaging brain learning and memory circuit kinase signaling is a monumental challenge. The separation of phases-based activity reporter of kinase (SPARK) biosensors allow circuit-localized studies of multiple interactive kinases in vivo, including protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) signaling. In the precisely-mapped Drosophila brain learning/memory circuit, we find PKA and ERK signaling differentially enriched in distinct Kenyon cell connectivity nodes. We discover that potentiating normal circuit activity induces circuit-localized PKA and ERK signaling, expanding kinase function within new presynaptic and postsynaptic domains. Activity-induced PKA signaling shows extensive overlap with previously selective ERK signaling nodes, while activity-induced ERK signaling arises in new connectivity nodes. We find targeted synaptic transmission blockade in Kenyon cells elevates circuit-localized ERK induction in Kenyon cells with normally high baseline ERK signaling, suggesting lateral and feedback inhibition. We discover overexpression of the pathway-linking Meng-Po (human SBK1) serine/threonine kinase to improve learning acquisition and memory consolidation results in dramatically heightened PKA and ERK signaling in separable Kenyon cell circuit connectivity nodes, revealing both synchronized and untapped signaling potential. Finally, we find that a mechanically-induced epileptic seizure model (easily shocked "bang-sensitive" mutants) has strongly elevated, circuit-localized PKA and ERK signaling. Both sexes were used in all experiments, except for the hemizygous male-only seizure model. Hyperexcitable, learning-enhanced, and epileptic seizure models have comparably elevated interactive kinase signaling, suggesting a common basis of use-dependent induction. We conclude that PKA and ERK signaling modulation is locally coordinated in use-dependent spatial circuit dynamics underlying seizure susceptibility linked to learning/memory potential.
Collapse
Affiliation(s)
- James C Sears
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Departments of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
| | - Kendal Broadie
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Departments of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Vanderbilt Kennedy Center, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
| |
Collapse
|
6
|
Dunham KE, Khaled KH, Weizman L, Venton BJ. Microdosing ketamine in Drosophila does not inhibit SERT like SSRIs, but causes behavioral changes mediated by glutamate and serotonin receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566121. [PMID: 37986873 PMCID: PMC10659355 DOI: 10.1101/2023.11.07.566121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Recently, the FDA approved microdosing ketamine for treatment resistant depression. Traditional antidepressants, like serotonin selective reuptake inhibitors (SSRIs), block serotonin reuptake, but it is not clear if ketamine blocks serotonin reuptake. Here, we tested the effects of feeding ketamine and SSRIs to Drosophila melanogaster larvae, which has a similar serotonin system to mammals, and is a good model to track depression behaviors, such as locomotion and feeding. Fast-scan cyclic voltammetry (FSCV) was used to measure optogenetically-stimulated serotonin changes, and locomotion tracking software and blue dye feeding to monitor behavior. We fed larvae various doses (1-100 mM) of antidepressants for 24 hours and found that 1 mM ketamine did not affect serotonin, but increased locomotion and feeding. Low doses (≤ 10 mM) of escitalopram and fluoxetine inhibited dSERT and also increased feeding and locomotion behaviors. At 100 mM, ketamine inhibited dSERT and increased serotonin concentrations, but decreased locomotion and feeding due to its anesthetic properties. Since microdosing ketamine causes behavioral effects, we also investigated behavior changes with low doses of other NMDA receptor antagonists and 5-HT1A and 2 agonists, which are other possible sites for ketamine action. NMDA receptor antagonism increased feeding, while serotonin receptor agonism increased locomotion, which could explain these effects with ketamine. Ultimately, this work shows that Drosophila is a good model to discern antidepressant mechanisms, and that ketamine does not work on dSERT like SSRIs at microdoses, but affects behavior with other mechanisms.
Collapse
Affiliation(s)
- Kelly E Dunham
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, USA
| | - Kani H Khaled
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, USA
| | - Leah Weizman
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, USA
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, USA
| |
Collapse
|
7
|
Le E, McCarthy T, Honer M, Curtin CE, Fingerut J, Nelson MD. The neuropeptide receptor npr-38 regulates avoidance and stress-induced sleep in Caenorhabditis elegans. Curr Biol 2023; 33:3155-3168.e9. [PMID: 37419114 DOI: 10.1016/j.cub.2023.06.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/19/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023]
Abstract
Although essential and conserved, sleep is not without its challenges that must be overcome; most notably, it renders animals vulnerable to threats in the environment. Infection and injury increase sleep demand, which dampens sensory responsiveness to stimuli, including those responsible for the initial insult. Stress-induced sleep in Caenorhabditis elegans occurs in response to cellular damage following noxious exposures the animals attempted to avoid. Here, we describe a G-protein-coupled receptor (GPCR) encoded by npr-38, which is required for stress-related responses including avoidance, sleep, and arousal. Overexpression of npr-38 shortens the avoidance phase and causes animals to initiate movement quiescence and arouse early. npr-38 functions in the ADL sensory neurons, which express neuropeptides encoded by nlp-50, also required for movement quiescence. npr-38 regulates arousal by acting on the DVA and RIS interneurons. Our work demonstrates that this single GPCR regulates multiple aspects of the stress response by functioning in sensory and sleep interneurons.
Collapse
Affiliation(s)
- Emily Le
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Teagan McCarthy
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Madison Honer
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Caroline E Curtin
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Jonathan Fingerut
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Matthew D Nelson
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA.
| |
Collapse
|
8
|
Lee H, Lim C. Circadian gating of light-induced arousal in Drosophila sleep. J Neurogenet 2022:1-11. [DOI: 10.1080/01677063.2022.2151596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Hoyeon Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Chunghun Lim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| |
Collapse
|
9
|
Clock gene-dependent glutamate dynamics in the bean bug brain regulate photoperiodic reproduction. PLoS Biol 2022; 20:e3001734. [PMID: 36067166 PMCID: PMC9447885 DOI: 10.1371/journal.pbio.3001734] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/30/2022] [Indexed: 11/19/2022] Open
Abstract
Animals adequately modulate their physiological status and behavior according to the season. Many animals sense photoperiod for seasonal adaptation, and the circadian clock is suggested to play an essential role in photoperiodic time measurement. However, circadian clock-driven neural signals in the brain that convey photoperiodic information remain unclear. Here, we focused on brain extracellular dynamics of a classical neurotransmitter glutamate, which is widely used for brain neurotransmission, and analyzed its involvement in photoperiodic responses using the bean bug Riptortus pedestris that shows clear photoperiodism in reproduction. Extracellular glutamate levels in the whole brain were significantly higher under short-day conditions, which cause a reproductive diapause, than those under long-day conditions. The photoperiodic change in glutamate levels was clearly abolished by knockdown of the clock gene period. We also demonstrated that genetic modulation of glutamate dynamics by knockdown of glutamate-metabolizing enzyme genes, glutamate oxaloacetate transaminase (got) and glutamine synthetase (gs), attenuated photoperiodic responses in reproduction. Further, we investigated glutamate-mediated photoperiodic modulations at a cellular level, focusing on the pars intercerebralis (PI) neurons that photoperiodically change their neural activity and promote oviposition. Electrophysiological analyses showed that L-Glutamate acts as an inhibitory signal to PI neurons via glutamate-gated chloride channel (GluCl). Additionally, combination of electrophysiology and genetics revealed that knockdown of got, gs, and glucl disrupted cellular photoperiodic responses of the PI neurons, in addition to reproductive phenotypes. Our results reveal that the extracellular glutamate dynamics are photoperiodically regulated depending on the clock gene and play an essential role in the photoperiodic control of reproduction via inhibitory pathways.
Collapse
|
10
|
Burdina EV, Gruntenko NE. Physiological Aspects of Wolbachia pipientis–Drosophila melanogaster Relationship. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022020016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Omond SET, Hale MW, Lesku JA. Neurotransmitters of sleep and wakefulness in flatworms. Sleep 2022; 45:zsac053. [PMID: 35554581 PMCID: PMC9216492 DOI: 10.1093/sleep/zsac053] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/27/2022] [Indexed: 12/02/2022] Open
Abstract
STUDY OBJECTIVES Sleep is a prominent behavioral and biochemical state observed in all animals studied, including platyhelminth flatworms. Investigations into the biochemical mechanisms associated with sleep-and wakefulness-are important for understanding how these states are regulated and how that regulation changed with the evolution of new types of animals. Unfortunately, beyond a handful of vertebrates, such studies on invertebrates are rare. METHODS We investigated the effect of seven neurotransmitters, and one pharmacological compound, that modulate either sleep or wakefulness in mammals, on flatworms (Girardia tigrina). Flatworms were exposed via ingestion and diffusion to four neurotransmitters that promote wakefulness in vertebrates (acetylcholine, dopamine, glutamate, histamine), and three that induce sleep (adenosine, GABA, serotonin) along with the H1 histamine receptor antagonist pyrilamine. Compounds were administered over concentrations spanning three to five orders of magnitude. Flatworms were then transferred to fresh water and video recorded for analysis. RESULTS Dopamine and histamine decreased the time spent inactive and increased distance traveled, consistent with their wake-promoting effect in vertebrates and fruit flies; pyrilamine increased restfulness and GABA showed a nonsignificant trend towards promoting restfulness in a dose-dependent manner, in agreement with their sleep-inducing effect in vertebrates, fruit flies, and Hydra. Similar to Hydra, acetylcholine, glutamate, and serotonin, but also adenosine, had no apparent effect on flatworm behavior. CONCLUSIONS These data demonstrate the potential of neurotransmitters to regulate sleep and wakefulness in flatworms and highlight the conserved action of some neurotransmitters across species.
Collapse
Affiliation(s)
- Shauni E T Omond
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia
| | - Matthew W Hale
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - John A Lesku
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia
| |
Collapse
|
12
|
Salim S, Banu A, Alwa A, Gowda SBM, Mohammad F. The gut-microbiota-brain axis in autism: what Drosophila models can offer? J Neurodev Disord 2021; 13:37. [PMID: 34525941 PMCID: PMC8442445 DOI: 10.1186/s11689-021-09378-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/06/2021] [Indexed: 12/28/2022] Open
Abstract
The idea that alterations in gut-microbiome-brain axis (GUMBA)-mediated communication play a crucial role in human brain disorders like autism remains a topic of intensive research in various labs. Gastrointestinal issues are a common comorbidity in patients with autism spectrum disorder (ASD). Although gut microbiome and microbial metabolites have been implicated in the etiology of ASD, the underlying molecular mechanism remains largely unknown. In this review, we have summarized recent findings in human and animal models highlighting the role of the gut-brain axis in ASD. We have discussed genetic and neurobehavioral characteristics of Drosophila as an animal model to study the role of GUMBA in ASD. The utility of Drosophila fruit flies as an amenable genetic tool, combined with axenic and gnotobiotic approaches, and availability of transgenic flies may reveal mechanistic insight into gut-microbiota-brain interactions and the impact of its alteration on behaviors relevant to neurological disorders like ASD.
Collapse
Affiliation(s)
- Safa Salim
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Ayesha Banu
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Amira Alwa
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Swetha B M Gowda
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Farhan Mohammad
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar.
| |
Collapse
|
13
|
Abstract
Circadian clocks are biochemical time-keeping machines that synchronize animal behavior and physiology with planetary rhythms. In Drosophila, the core components of the clock comprise a transcription/translation feedback loop and are expressed in seven neuronal clusters in the brain. Although it is increasingly evident that the clocks in each of the neuronal clusters are regulated differently, how these clocks communicate with each other across the circadian neuronal network is less clear. Here, we review the latest evidence that describes the physical connectivity of the circadian neuronal network . Using small ventral lateral neurons as a starting point, we summarize how one clock may communicate with another, highlighting the signaling pathways that are both upstream and downstream of these clocks. We propose that additional efforts are required to understand how temporal information generated in each circadian neuron is integrated across a neuronal circuit to regulate rhythmic behavior.
Collapse
Affiliation(s)
- Myra Ahmad
- Department of Pediatrics, Division of Medical Genetics, Dalhousie University, Halifax, NS, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Wanhe Li
- Laboratory of Genetics, The Rockefeller University, New York, NY, USA
| | - Deniz Top
- Department of Pediatrics, Division of Medical Genetics, Dalhousie University, Halifax, NS, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
14
|
Chvilicek MM, Titos I, Rothenfluh A. The Neurotransmitters Involved in Drosophila Alcohol-Induced Behaviors. Front Behav Neurosci 2020; 14:607700. [PMID: 33384590 PMCID: PMC7770116 DOI: 10.3389/fnbeh.2020.607700] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Alcohol is a widely used and abused substance with numerous negative consequences for human health and safety. Historically, alcohol's widespread, non-specific neurobiological effects have made it a challenge to study in humans. Therefore, model organisms are a critical tool for unraveling the mechanisms of alcohol action and subsequent effects on behavior. Drosophila melanogaster is genetically tractable and displays a vast behavioral repertoire, making it a particularly good candidate for examining the neurobiology of alcohol responses. In addition to being experimentally amenable, Drosophila have high face and mechanistic validity: their alcohol-related behaviors are remarkably consistent with humans and other mammalian species, and they share numerous conserved neurotransmitters and signaling pathways. Flies have a long history in alcohol research, which has been enhanced in recent years by the development of tools that allow for manipulating individual Drosophila neurotransmitters. Through advancements such as the GAL4/UAS system and CRISPR/Cas9 mutagenesis, investigation of specific neurotransmitters in small subsets of neurons has become ever more achievable. In this review, we describe recent progress in understanding the contribution of seven neurotransmitters to fly behavior, focusing on their roles in alcohol response: dopamine, octopamine, tyramine, serotonin, glutamate, GABA, and acetylcholine. We chose these small-molecule neurotransmitters due to their conservation in mammals and their importance for behavior. While neurotransmitters like dopamine and octopamine have received significant research emphasis regarding their contributions to behavior, others, like glutamate, GABA, and acetylcholine, remain relatively unexplored. Here, we summarize recent genetic and behavioral findings concerning these seven neurotransmitters and their roles in the behavioral response to alcohol, highlighting the fitness of the fly as a model for human alcohol use.
Collapse
Affiliation(s)
- Maggie M. Chvilicek
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, United States
| | - Iris Titos
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
| | - Adrian Rothenfluh
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, United States
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, United States
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
15
|
Mazzotta GM, Damulewicz M, Cusumano P. Better Sleep at Night: How Light Influences Sleep in Drosophila. Front Physiol 2020; 11:997. [PMID: 33013437 PMCID: PMC7498665 DOI: 10.3389/fphys.2020.00997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/22/2020] [Indexed: 01/25/2023] Open
Abstract
Sleep-like states have been described in Drosophila and the mechanisms and factors that generate and define sleep-wake profiles in this model organism are being thoroughly investigated. Sleep is controlled by both circadian and homeostatic mechanisms, and environmental factors such as light, temperature, and social stimuli are fundamental in shaping and confining sleep episodes into the correct time of the day. Among environmental cues, light seems to have a prominent function in modulating the timing of sleep during the 24 h and, in this review, we will discuss the role of light inputs in modulating the distribution of the fly sleep-wake cycles. This phenomenon is of growing interest in the modern society, where artificial light exposure during the night is a common trait, opening the possibility to study Drosophila as a model organism for investigating shift-work disorders.
Collapse
Affiliation(s)
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Jagiellonian University, Kraków, Poland
| | - Paola Cusumano
- Department of Biology, University of Padova, Padua, Italy
| |
Collapse
|
16
|
The Drosophila Post-mating Response: Gene Expression and Behavioral Changes Reveal Perdurance and Variation in Cross-Tissue Interactions. G3-GENES GENOMES GENETICS 2020; 10:967-983. [PMID: 31907222 PMCID: PMC7056969 DOI: 10.1534/g3.119.400963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Examining cross-tissue interactions is important for understanding physiology and homeostasis. In animals, the female gonad produces signaling molecules that act distally. We examine gene expression in Drosophila melanogaster female head tissues in 1) virgins without a germline compared to virgins with a germline, 2) post-mated females with and without a germline compared to virgins, and 3) post-mated females mated to males with and without a germline compared to virgins. In virgins, the absence of a female germline results in expression changes in genes with known roles in nutrient homeostasis. At one- and three-day(s) post-mating, genes that change expression are enriched with those that function in metabolic pathways, in all conditions. We systematically examine female post-mating impacts on sleep, food preference and re-mating, in the strains and time points used for gene expression analyses and compare to published studies. We show that post-mating, gene expression changes vary by strain, prompting us to examine variation in female re-mating. We perform a genome-wide association study that identifies several DNA polymorphisms, including four in/near Wnt signaling pathway genes. Together, these data reveal how gene expression and behavior in females are influenced by cross-tissue interactions, by examining the impact of mating, fertility, and genotype.
Collapse
|
17
|
Prabhu SV, Singh SK. Energetically optimized pharmacophore modeling to identify dual negative allosteric modulators against group I mGluRs in neurodegenerative diseases. J Biomol Struct Dyn 2019; 38:2326-2337. [DOI: 10.1080/07391102.2019.1640794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sitrarasu Vijaya Prabhu
- Computer Aided Drug Designing and Molecular Modeling Laboratory, Department of Bioinformatics, Alagappa University, Karaikudi, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Designing and Molecular Modeling Laboratory, Department of Bioinformatics, Alagappa University, Karaikudi, India
| |
Collapse
|
18
|
Ki Y, Lim C. Sleep-promoting effects of threonine link amino acid metabolism in Drosophila neuron to GABAergic control of sleep drive. eLife 2019; 8:40593. [PMID: 31313987 PMCID: PMC6636906 DOI: 10.7554/elife.40593] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 06/27/2019] [Indexed: 01/09/2023] Open
Abstract
Emerging evidence indicates the role of amino acid metabolism in sleep regulation. Here we demonstrate sleep-promoting effects of dietary threonine (SPET) in Drosophila. Dietary threonine markedly increased daily sleep amount and decreased the latency to sleep onset in a dose-dependent manner. High levels of synaptic GABA or pharmacological activation of metabotropic GABA receptors (GABAB-R) suppressed SPET. By contrast, synaptic blockade of GABAergic neurons or transgenic depletion of GABAB-R in the ellipsoid body R2 neurons enhanced sleep drive non-additively with SPET. Dietary threonine reduced GABA levels, weakened metabotropic GABA responses in R2 neurons, and ameliorated memory deficits in plasticity mutants. Moreover, genetic elevation of neuronal threonine levels was sufficient for facilitating sleep onset. Taken together, these data define threonine as a physiologically relevant, sleep-promoting molecule that may intimately link neuronal metabolism of amino acids to GABAergic control of sleep drive via the neuronal substrate of sleep homeostasis. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Yoonhee Ki
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Chunghun Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
19
|
Song Q, Feng G, Zhang J, Xia X, Ji M, Lv L, Ping Y. NMDA Receptor-mediated Ca2+ Influx in the Absence of Mg2+ Block Disrupts Rest: Activity Rhythms in Drosophila. Sleep 2018; 40:4330652. [PMID: 29029290 DOI: 10.1093/sleep/zsx166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Study Objectives The correlated activation of pre- and postsynaptic neurons is essential for the NMDA receptor-mediated Ca2+ influx by removing Mg2+ from block site and NMDA receptors have been implicated in phase resetting of circadian clocks. So we assessed rest:activity rhythms in Mg2+ block defective animals. Methods Using Drosophila locomotor monitoring system, we checked circadian rest:activity rhythms of different mutants under constant darkness (DD) and light:dark (LD) conditions. We recorded NMDA receptor-mediated currents or Ca2+ increase in neurons using patch-clamp and Ca2+ imaging techniques. Results We found that Mg2+ block defective mutant flies were completely arrhythmic under DD. To further understand the role of Mg2+ block in daily circadian rest:activity, we observed the mutant files under LD cycles, and we found severely reduced morning anticipation and advanced evening peak compared to control flies. We also used tissue-specific expression of Mg2+ block defective NMDA receptors and demonstrated pigment-dispersing factor receptor (PDFR)-expressing circadian neurons were implicated in mediating the circadian rest:activity deficits. Endogenous functional NMDA receptors are expressed in most Drosophila neurons, including in a subgroup of dorsal neurons (DN1s). Subsequently, we determined that the uncorrelated extra Ca2+ influx may act in part through Ca2+/Calmodulin (CaM)-stimulated PDE1c pathway leading to morning behavior phenotypes. Conclusions These results demonstrate that Mg2+ block of NMDA receptors at resting potential is essential for the daily circadian rest:activity rhythms and we propose that Mg2+ block functions to suppress CaM-stimulated PDE1c activation at resting potential, thus regulating Ca2+ and cyclic AMP oscillations in circadian and sleep circuits.
Collapse
Affiliation(s)
- Qian Song
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Ge Feng
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaxing Zhang
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Xuechun Xia
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Min Ji
- Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Lei Lv
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Yong Ping
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500), Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The goal of the present paper is to review current literature supporting the occurrence of fundamental changes in brain energy metabolism during the transition from wakefulness to sleep. RECENT FINDINGS Latest research in the field indicates that glucose utilization and the concentrations of several brain metabolites consistently change across the sleep-wake cycle. Lactate, a product of glycolysis that is involved in synaptic plasticity, has emerged as a good biomarker of brain state. Sleep-induced changes in cerebral metabolite levels result from a shift in oxidative metabolism, which alters the reliance of brain metabolism upon carbohydrates. We found wide support for the notion that brain energetics is state dependent. In particular, fatty acids and ketone bodies partly replace glucose as cerebral energy source during sleep. This mechanism plausibly accounts for increases in biosynthetic pathways and functional alterations in neuronal activity associated with sleep. A better account of brain energy metabolism during sleep might help elucidate the long mysterious restorative effects of sleep for the whole organism.
Collapse
Affiliation(s)
- Nadia Nielsen Aalling
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen N, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen N, Denmark.,Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY, 14640, USA
| | - Mauro DiNuzzo
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen N, Denmark.
| |
Collapse
|
21
|
Bi J, Sehgal A, Williams JA, Wang YF. Wolbachia affects sleep behavior in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:81-88. [PMID: 29499213 DOI: 10.1016/j.jinsphys.2018.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
Wolbachia are endosymbiotic bacteria present in a wide range of insects. Although their dramatic effects on host reproductive biology have been well studied, the effects of Wolbachia on sleep behavior of insect hosts are not well documented. In this study, we report that Wolbachia infection caused an increase of total sleep time in both male and female Drosophila melanogaster. The increase in sleep was associated with an increase in the number of nighttime sleep bouts or episodes, but not in sleep bout duration. Correspondingly, Wolbachia infection also reduced the arousal threshold of their fly hosts. However, neither circadian rhythm nor sleep rebound following deprivation was influenced by Wolbachia infection. Transcriptional analysis of the dopamine biosynthesis pathway revealed that two essential genes, Pale and Ddc, were significantly upregulated in Wolbachia-infected flies. Together, these results indicate that Wolbachia mediates the expression of dopamine related genes, and decreases the sleep quality of their insect hosts. Our findings help better understand the host-endosymbiont interactions and in particular the Wolbachia's impact on behaviors, and thus on ecology and evolution in insect hosts.
Collapse
Affiliation(s)
- Jie Bi
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amita Sehgal
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julie A Williams
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
22
|
Ly S, Pack AI, Naidoo N. The neurobiological basis of sleep: Insights from Drosophila. Neurosci Biobehav Rev 2018; 87:67-86. [PMID: 29391183 PMCID: PMC5845852 DOI: 10.1016/j.neubiorev.2018.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/12/2022]
Abstract
Sleep is a biological enigma that has raised numerous questions about the inner workings of the brain. The fundamental question of why our nervous systems have evolved to require sleep remains a topic of ongoing scientific deliberation. This question is largely being addressed by research using animal models of sleep. Drosophila melanogaster, also known as the common fruit fly, exhibits a sleep state that shares common features with many other species. Drosophila sleep studies have unearthed an immense wealth of knowledge about the neuroscience of sleep. Given the breadth of findings published on Drosophila sleep, it is important to consider how all of this information might come together to generate a more holistic understanding of sleep. This review provides a comprehensive summary of the neurobiology of Drosophila sleep and explores the broader insights and implications of how sleep is regulated across species and why it is necessary for the brain.
Collapse
Affiliation(s)
- Sarah Ly
- Center for Sleep and Circadian Neurobiology, 125 South 31st St., Philadelphia, PA, 19104-3403, United States.
| | - Allan I Pack
- Center for Sleep and Circadian Neurobiology, 125 South 31st St., Philadelphia, PA, 19104-3403, United States; Division of Sleep Medicine/Department of Medicine, University of Pennsylvania Perelman School of Medicine, 125 South 31st St., Philadelphia, PA, 19104-3403, United States
| | - Nirinjini Naidoo
- Center for Sleep and Circadian Neurobiology, 125 South 31st St., Philadelphia, PA, 19104-3403, United States; Division of Sleep Medicine/Department of Medicine, University of Pennsylvania Perelman School of Medicine, 125 South 31st St., Philadelphia, PA, 19104-3403, United States.
| |
Collapse
|
23
|
Abstract
Stroke that is caused by poor blood flow into the brain results in cell death, including ischemia stroke due to lack of blood into brain tissue, and hemorrhage due to bleeding. Both of them will give rise to the dysfunction of brain. In general, the signs and symptoms of stroke are the inability of feeling or moving on one side of body, sometimes loss of vision to one side. Above symptoms will appear soon after the stroke has happened. If the symptoms and signs happen in 1 or 2 hours, we often call them as transient ischemic attack. Moreover, hemorrhagic stroke often leads to severe headache. It is known that neuronal death can happen after stroke, and it depends upon the activation of N-methyl-D-aspartate (NMDA) excitatory glutamate receptor which is the goal for a lot of neuroprotective agents. Nitrous oxide was discovered by Joseph Priestley in 1772, and then he and his friends, including the poet Coleridge and Robert Sauce, experimented with the gas. They found this gas could make patients loss the sense of pain and still maintain consciousness after inhalation. Shortly the gas was used as an anesthetic, especially in the field of dentists. Now, accroding to theme of Helene N. David and other scientists, both of nitrous oxide at 75 vol% and xenon at 50 vol% could reduce ischemic neuronal death in the cortex by 70% and decrease NMDA-induced Ca2+ influx by 30%. Therefore, more clinical and experimental studies are important to illuminate the mechanisms of how nitrous oxide protects brain tissue and to explore the best protocol of this gas in stroke treatment.
Collapse
Affiliation(s)
- Zhu-Wei Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Dong-Ping Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Hai-Ying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
24
|
Allada R, Cirelli C, Sehgal A. Molecular Mechanisms of Sleep Homeostasis in Flies and Mammals. Cold Spring Harb Perspect Biol 2017; 9:a027730. [PMID: 28432135 PMCID: PMC5538413 DOI: 10.1101/cshperspect.a027730] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sleep is homeostatically regulated with sleep pressure accumulating with the increasing duration of prior wakefulness. Yet, a clear understanding of the molecular components of the homeostat, as well as the molecular and cellular processes they sense and control to regulate sleep intensity and duration, remain a mystery. Here, we will discuss the cellular and molecular basis of sleep homeostasis, first focusing on the best homeostatic sleep marker in vertebrates, slow wave activity; second, moving to the molecular genetic analysis of sleep homeostasis in the fruit fly Drosophila; and, finally, discussing more systemic aspects of sleep homeostasis.
Collapse
Affiliation(s)
- Ravi Allada
- Department of Neurobiology, Northwestern University, Evanston, Ilinois 60208
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin 53719
| | - Amita Sehgal
- Department of Neuroscience, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|