1
|
Li J, Kong Y, Shi G, Dong S, Wang X, Feng L, Guo Q, Lu C. Assessing the causal association of sleep abnormalities with preeclampsia and eclampsia: a Mendelian randomization analysis. Hypertens Pregnancy 2024; 43:2405857. [PMID: 39316794 DOI: 10.1080/10641955.2024.2405857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Preeclampsia and eclampsia are severe pregnancy disorders marked by hypertension and potential organ damage. The etiological basis of preeclampsia and eclampsia is not fully understood. Previous studies have revealed a link between sleep abnormality and preeclampsia/eclampsia, but the causal relationship remains unclear. In this study, we explored the genetic links between sleep and preeclampsia/eclampsia using genome-wide association study (GWAS) summary data and Mendelian randomization (MR) analysis. METHODS RNA sequence dataset GSE114691 was downloaded from the Gene Expression Omnibus database, comprising placental tissues from patients with preeclampsia and controls. Differential expression analysis was conducted with R (v4.2.3) and DESeq2 (v1.38.3). Gene set enrichment analysis (GSEA) was carried out using HTSanalyzeR2. GWAS summary data on preeclampsia/eclampsia and genetic markers for sleep abnormality were sourced from the FinnGen Consortium and IEU genetic databases. The Mendelian randomization analysis was conducted with TwoSampleMR (v0.6.2), and the inverse variance weighted (IVW) approach was employed as the principal method. RESULTS GSEA analysis revealed that the orexin receptor pathway showed heightened expression in the preeclampsia group versus controls. The random-effects IVW results showed that sleeplessness/insomnia has a genetic causal relationship with preeclampsia (OR = 2.08, 95% CI: 1.07-4.06, p = 0.0318), while sleep duration has evidence of regulating eclampsia (OR = 0.09, 95% CI: 0.01-0.67, p = 0.0187). CONCLUSION This study provides significant evidence for a genetic causal association between sleep abnormalities and preeclampsia/eclampsia. [Figure: see text].
Collapse
Affiliation(s)
- Juan Li
- Obstetrics Ward 1, Xingtai Central Hospital, Xingtai, China
| | - Yuling Kong
- Obstetrics Ward 1, Xingtai Central Hospital, Xingtai, China
| | - Guosu Shi
- Obstetrics Ward 1, Xingtai Central Hospital, Xingtai, China
| | - Shuxiao Dong
- Obstetrics Ward 1, Xingtai Central Hospital, Xingtai, China
| | - Xueying Wang
- Department of Medical Administration, Xingtai Central Hospital, Xingtai, China
| | - Li Feng
- Department of Science and Education, Xingtai Central Hospital, Xingtai, China
| | - Quanzhou Guo
- Department of Operation and Anaesthesia, Xingtai Central Hospital, Xingtai, China
| | - Caihong Lu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Army Military Medical University Officer School, Shijiazhuang, China
| |
Collapse
|
2
|
Lin J, Luo Z, Fan M, Liu Y, Shi X, Cai Y, Yang Z, Chen L, Pan J. Abnormal hypothalamic functional connectivity and serum arousal-promoting neurotransmitters in insomnia disorder patients: a pilot study. PeerJ 2024; 12:e18540. [PMID: 39583108 PMCID: PMC11586044 DOI: 10.7717/peerj.18540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/27/2024] [Indexed: 11/26/2024] Open
Abstract
Objective The present study aimed to investigate the functional connectivity (FC) of the anterior and posterior hypothalamus with the whole brain in insomnia disorder (ID) patients. Additionally, we explored the relationship between FC values and serum levels of arousal-promoting neurotransmitters (orexin-A and histamine) in ID patients. Methods This study enrolled 30 ID patients and 30 age- and gender-matched healthy controls. Resting-state functional magnetic resonance imaging (RS-fMRI) was employed to assess the FC of the anterior and posterior hypothalamus with the whole brain. Serum concentrations of orexin-A and histamine were measured using enzyme-linked immunosorbent assay (ELISA). Moreover, Spearman correlation analysis was conducted to investigate the relationship between FC values and serum levels of arousal-promoting neurotransmitters in ID patients. Results Our findings showed decreased FC between the posterior hypothalamus and several brain regions including the bilateral orbital superior frontal gyrus, the bilateral angular gyrus, the right anterior cingulate cortex, the left precuneus, and the right medial superior frontal gyrus in ID patients. Additionally, decreased FC was observed between the anterior hypothalamus and the right anterior cingulate cortex among ID patients. Compared to the healthy controls, ID patients showed significantly elevated serum concentrations of orexin-A and histamine. Furthermore, we identified a positive correlation between the FC of the right medial superior frontal gyrus with posterior hypothalamus and histamine levels in ID patients. Conclusion ID patients exhibited aberrant FC in brain regions related to sleep-wake regulation, particularly involving the default mode network and anterior cingulate cortex, which may correlate with the peripheral levels of histamine. These findings contribute to our understanding of the potential neuroimaging and neurohumoral mechanism underlying ID patients.
Collapse
Affiliation(s)
- Jingjing Lin
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Zhenye Luo
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Mei Fan
- Department of Psychiatry, The First Affiliated Hospital of USTC, Hefei, Anhui Province, China
| | - Yaxi Liu
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Xian Shi
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Yixian Cai
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Zhiyun Yang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Liting Chen
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Jiyang Pan
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
3
|
Peng W, Xu H, Zhang C, Hu Y, Yu S. The altered hypothalamic network functional connectivity in chronic insomnia disorder and regulation effect of acupuncture: a randomized controlled neuroimaging study. BMC Complement Med Ther 2024; 24:396. [PMID: 39543627 PMCID: PMC11566913 DOI: 10.1186/s12906-024-04703-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND The hypothalamus has been recognized as a core structure in the sleep-wake cycle. However, whether the neuroplasticity of the hypothalamus is involved in the acupuncture treatment of insomnia remains elusive. METHODS We recruited 42 patients with chronic insomnia disorder (CID) and 23 matched healthy controls (HCs), with CID patients randomly assigned to receive real acupuncture (RA) or sham acupuncture (SA) for four weeks. Insomnia severity was evaluated using the Pittsburgh Sleep Quality Index (PSQI) score, and the resting-state functional connectivity (rsFC) of the hypothalamus was assessed via functional magnetic resonance imaging (fMRI). RESULTS In the cross-sectional investigation, CID patients showed increased rsFC between the medial hypothalamus (MH) and left lateral orbital frontal cortex (LOFC), and bilateral medial orbital frontal cortex (MOFC) compared to HCs. In the longitudinal experiment, PSQI scores significantly decreased in the RA group (p = 0.03) but not in the SA group. Interestingly, the increased MH-LOFC connectivity was found to be reduced following RA treatment. In addition, the altered rsFC of MH-LOFC significantly correlated with clinical improvement in the RA group (r = -0.692, p = 0.006). CONCLUSION This randomized neuroimaging study provides preliminary evidence that acupuncture may improve insomnia symptoms by restoring circuits associated with hypothalamic subregions. TRIAL REGISTRATION This trial has been registered on the Chinese Clinical Trial Registry ( www.chictr.org.cn ) with the identifier (ChiCTR1800017092). Registered date: 11/07/2018.
Collapse
Affiliation(s)
- Wei Peng
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, No.37 Shierqiao Road, Chengdu, 610075, Sichuan, China
- Department of Orthopedic & Rehabilitation, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Hao Xu
- Center of Interventional Medicine, Department of Interventional Radiology, School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, China
| | - Chuanzhi Zhang
- Department of Orthopedic & Rehabilitation, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Youping Hu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, No.37 Shierqiao Road, Chengdu, 610075, Sichuan, China
| | - Siyi Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, No.37 Shierqiao Road, Chengdu, 610075, Sichuan, China.
| |
Collapse
|
4
|
Chen S, Lv T, Li Z, Pan G, Chen Y, Zhao X, Zhang L. Associations between T-cell traits and narcolepsy type 1: new insights from a Mendelian randomization study. Front Neurol 2024; 15:1444753. [PMID: 39544989 PMCID: PMC11560883 DOI: 10.3389/fneur.2024.1444753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
Background Narcolepsy type 1 (NT1) is primarily caused by a malfunctioning immune system in which T-cells damage the hypothalamus. To elucidate the causal relationships between biomarkers in T-cells and NT1, we employed Mendelian randomization (MR) analysis. Methods We conducted a two-sample MR analysis utilizing genetically predicted T-cell traits to examine their effects on NT1. Genome-wide association study summary data were extracted from studies by Valeria (3,757 participants) for 211 T-cell traits, Ollila (6,073 cases and 84,856 controls) for NT1. The MR analysis was executed at two threshold levels. Inverse variance weighted, Wald ratio, weighted median, and MR-Egger regression methods were used for the MR analysis. Odds ratios (ORs) were calculated, and heterogeneity tests, as well as pleiotropy tests, were conducted. Results After Bonferroni correction at the significant level (p < 1.18 × 10-4), a higher ratio of naive CD4- CD8- T-cells was identified as a risk factor for NT1 (OR = 10.50; 95% CI: 6.98, 15.90, p = 3.89 ×10-29). Conversely, CD4 on HLA DR+ CD4+ T cells (mean fluorescence intensity, MFI) exhibited a negative correlation with NT1. At nominally significant levels (p < 0.05) for both threshold levels, HVEM (herpesvirus entry mediator) on naive CD8+ T cells (MFI) was suggested as a protective factor for NT1. Additionally, a higher ratio of CD25++ CD45RA- CD4 not regulatory T cells, CD127 on CD45RA- CD4 not regulatory T cells (MFI), CD127 on CD28+ CD4+ T cells (MFI), CD3 on HLA DR+ T cells (MFI), and CD3 on HLA DR+ CD4+ T cells (MFI) were suggested as risk factors for NT1. Conclusion This study confirmed the causal effects of CD4+ and CD8+ T-cells on NT1 and found several novel T-cell-related characteristics.
Collapse
Affiliation(s)
- Shiqin Chen
- Department of Neurology, Yuhuan Second People’s Hospital, Yuhuan, China
| | - Tian Lv
- Department of Neurology, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuji, China
| | - Zongshan Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Gonghua Pan
- Department of Neurology, Yuhuan Second People’s Hospital, Yuhuan, China
| | - Yiqiao Chen
- Department of Neurology, Qingtian People’s Hospital, Lishui, China
| | - Xingwang Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Lisan Zhang
- Center for Sleep Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Byrne H, Knight SJ, Josev EK, Scheinberg A, Beare R, Yang JYM, Oldham S, Rowe K, Seal ML. Hypothalamus Connectivity in Adolescent Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. J Neurosci Res 2024; 102:e25392. [PMID: 39431934 DOI: 10.1002/jnr.25392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/18/2024] [Accepted: 09/29/2024] [Indexed: 10/22/2024]
Abstract
Adolescent Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a disabling illness of unknown etiology. Increasing evidence suggests hypothalamic involvement in ME/CFS pathophysiology, which has rarely been explored using magnetic resonance imaging (MRI) in the condition. This work aimed to use MRI to examine hypothalamus connectivity in adolescents with ME/CFS and explore how this relates to fatigue severity and illness duration. 25 adolescents with ME/CFS and 23 healthy controls completed a neuroimaging protocol consisting of structural and multishell diffusion-weighted imaging sequences, in addition to the PedsQL Multidimensional Fatigue Scale to assess fatigue severity. Information about illness duration was acquired at diagnosis. Preprocessing and streamlines tractography was performed using QSIPrep combined with a custom parcellation scheme to create structural networks. The number (degree) and weight (strength) of connections between lateralized hypothalamus regions and cortical and subcortical nodes were extracted, and relationships between connectivity measures, fatigue severity, and illness duration were performed using Bayesian regression models. We observed weak-to-moderate evidence of increased degree, but not strength, of connections from the bilateral anterior-inferior (left: pd [%] = 99.18, median [95% CI] = -22.68[-40.96 to 4.45]; right: pd [%] = 99.86, median [95% CI] = -23.35[-38.47 to 8.20]), left anterior-superior (pd [%] = 99.33, median [95% CI] = -18.83[-33.45 to 4.07]) and total left hypothalamus (pd [%] = 99.44, median [95% CI] = -47.18[-83.74 to 11.03]) in the ME/CFS group compared with controls. Conversely, bilateral posterior hypothalamus degree decreased with increasing ME/CFS illness duration (left: pd [%] = 98.13, median [95% CI]: -0.47[-0.89 to 0.03]; right: pd [%] = 98.50, median [95% CI]:-0.43[-0.82 to 0.05]). Finally, a weak relationship between right intermediate hypothalamus connectivity strength and fatigue severity was identified in the ME/CFS group (pd [%] = 99.35, median [95% CI] = -0.28[-0.51 to 0.06]), which was absent in controls. These findings suggest changes in hypothalamus connectivity may occur in adolescents with ME/CFS, warranting further investigation.
Collapse
Affiliation(s)
- Hollie Byrne
- Developmental Imaging, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Sarah J Knight
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
- School of Psychological Sciences, The University of Melbourne, Melbourne, Australia
| | - Elisha K Josev
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Adam Scheinberg
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Richard Beare
- Developmental Imaging, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- National Centre for Healthy Ageing and Peninsula Clinical School, Monash University, Melbourne, Australia
| | - Joseph Y M Yang
- Developmental Imaging, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
- Department of Neurosurgery, Neuroscience Advanced Clinical Imaging Service (NACIS), The Royal Children's Hospital, Melbourne, Australia
- Neuroscience Research, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Stuart Oldham
- Developmental Imaging, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Katherine Rowe
- Department of General Medicine, Royal Children's Hospital, Melbourne, Australia
| | - Marc L Seal
- Developmental Imaging, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
6
|
Salsone M, Agosta F, Filippi M, Ferini-Strambi L. Sleep disorders and Parkinson's disease: is there a right direction? J Neurol 2024; 271:6439-6451. [PMID: 39133321 DOI: 10.1007/s00415-024-12609-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/13/2024]
Abstract
In the last years, the hypothesis of a close relationship between sleep disorders (SDs) and Parkinson's disease (PD) has significantly strengthened. Whether this association is causal has been also highlighted by recent evidence demonstrating a neurobiological link between SDs and PD. Thus, the question is not whether these two chronic conditions are mutually connected, but rather how and when this relationship is expressed. Supporting this, not all SDs manifest with the same temporal sequence in PD patients. Indeed, SDs can precede or occur concomitantly with the onset of the clinical manifestation of PD. This review discusses the existing literature, putting under a magnifying glass the timing of occurrence of SDs in PD-neurodegeneration. Based on this, here, we propose two possible directions for studying the SDs-PD relationship: the first direction, from SDs to PD, considers SDs as potential biomarker/precursor of future PD-neurodegeneration; the second direction, from PD to SDs, considers SDs as concomitant symptoms in manifest PD, mainly related to primary PD-neuropathology and/or parkinsonian drugs. Furthermore, for each direction, we questioned SDs-PD relationship in terms of risk factors, neuronal circuits/mechanisms, and impact on the clinical phenotype and disease progression. Future research is needed to investigate whether targeting sleep may be the winning strategy to treat PD, in the context of a personalized precision medicine.
Collapse
Affiliation(s)
- Maria Salsone
- Vita-Salute San Raffaele University, Milan, Italy.
- IRCCS Istituto Policlinico San Donato, Milan, Italy.
| | - Federica Agosta
- Vita-Salute San Raffaele University, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Vita-Salute San Raffaele University, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Ferini-Strambi
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, Sleep Disorders Center, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
7
|
Mao T, Guo B, Quan P, Deng Y, Chai Y, Xu J, Jiang C, Zhang Q, Lu Y, Goel N, Basner M, Dinges DF, Rao H. Morning resting hypothalamus-dorsal striatum connectivity predicts individual differences in diurnal sleepiness accumulation. Neuroimage 2024; 299:120833. [PMID: 39233125 DOI: 10.1016/j.neuroimage.2024.120833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024] Open
Abstract
While the significance of obtaining restful sleep at night and maintaining daytime alertness is well recognized for human performance and overall well-being, substantial variations exist in the development of sleepiness during diurnal waking periods. Despite the established roles of the hypothalamus and striatum in sleep-wake regulation, the specific contributions of this neural circuit in regulating individual sleep homeostasis remain elusive. This study utilized resting-state functional magnetic resonance imaging (fMRI) and mathematical modeling to investigate the role of hypothalamus-striatum connectivity in subjective sleepiness variation in a cohort of 71 healthy adults under strictly controlled in-laboratory conditions. Mathematical modeling results revealed remarkable individual differences in subjective sleepiness accumulation patterns measured by the Karolinska Sleepiness Scale (KSS). Brain imaging data demonstrated that morning hypothalamic connectivity to the dorsal striatum significantly predicts the individual accumulation of subjective sleepiness from morning to evening, while no such correlation was observed for the hypothalamus-ventral striatum connectivity. These findings underscore the distinct roles of hypothalamic connectivity to the dorsal and ventral striatum in individual sleep homeostasis, suggesting that hypothalamus-dorsal striatum circuit may be a promising target for interventions mitigating excessive sleepiness and promoting alertness.
Collapse
Affiliation(s)
- Tianxin Mao
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Bowen Guo
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Peng Quan
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA; Research Center for Quality of Life and Applied Psychology, Guangdong Medical University, Dongguan, China
| | - Yao Deng
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China; Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ya Chai
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China; Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jing Xu
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China; Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Caihong Jiang
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Qingyun Zhang
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Yingjie Lu
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Namni Goel
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Mathias Basner
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - David F Dinges
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Hengyi Rao
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China; Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA; Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Chen Y, Chaudhary S, Li G, Fucito LM, Bi J, Li CSR. Deficient sleep, altered hypothalamic functional connectivity, depression and anxiety in cigarette smokers. NEUROIMAGE. REPORTS 2024; 4:100200. [PMID: 38605733 PMCID: PMC11008573 DOI: 10.1016/j.ynirp.2024.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Background Deficient sleep is implicated in nicotine dependence as well as depressive and anxiety disorders. The hypothalamus regulates the sleep-wake cycle and supports motivated behavior, and hypothalamic dysfunction may underpin comorbid nicotine dependence, depression and anxiety. We aimed to investigate whether and how the resting state functional connectivities (rsFCs) of the hypothalamus relate to cigarette smoking, deficient sleep, depression and anxiety. Methods We used the data of 64 smokers and 198 age- and sex-matched adults who never smoked, curated from the Human Connectome Project. Deficient sleep and psychiatric problems were each assessed with Pittsburgh Sleep Quality Index (PSQI) and Achenbach Adult Self-Report. We processed the imaging data with published routines and evaluated the results at a corrected threshold, all with age, sex, and the severity of alcohol use as covariates. Results Smokers vs. never smokers showed poorer sleep quality and greater severity of depression and anxiety. In smokers only, the total PSQI score, indicating more sleep deficits, was positively associated with hypothalamic rsFCs with the right inferior frontal/insula/superior temporal and postcentral (rPoCG) gyri. Stronger hypothalamus-rPoCG rsFCs were also associated with greater severity of depression and anxiety in smokers but not never smokers. Additionally, in smokers, the PSQI score completely mediated the relationships of hypothalamus-rPoCG rsFCs with depression and anxiety severity. Conclusions These findings associate hypothalamic circuit dysfunction to sleep deficiency and severity of depression and anxiety symptoms in adults who smoke. Future studies may investigate the roles of the hypothalamic circuit in motivated behaviors to better characterize the inter-related neural markers of smoking, deficient sleep, depression and anxiety.
Collapse
Affiliation(s)
- Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Guangfei Li
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Lisa M. Fucito
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jinbo Bi
- Department of Computer Science and Engineering, School of Engineering, University of Connecticut, Storrs, CT, USA
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
9
|
Haaf R, Brandi ML, Albantakis L, Lahnakoski JM, Henco L, Schilbach L. Peripheral oxytocin levels are linked to hypothalamic gray matter volume in autistic adults: a cross-sectional secondary data analysis. Sci Rep 2024; 14:1380. [PMID: 38228703 PMCID: PMC10791615 DOI: 10.1038/s41598-023-50770-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 12/25/2023] [Indexed: 01/18/2024] Open
Abstract
Oxytocin (OXT) is known to modulate social behavior and cognition and has been discussed as pathophysiological and therapeutic factor for autism spectrum disorder (ASD). An accumulating body of evidence indicates the hypothalamus to be of particular importance with regard to the underlying neurobiology. Here we used a region of interest voxel-based morphometry (VBM) approach to investigate hypothalamic gray matter volume (GMV) in autistic (n = 29, age 36.03 ± 11.0) and non-autistic adults (n = 27, age 30.96 ± 11.2). Peripheral plasma OXT levels and the autism spectrum quotient (AQ) were used for correlation analyses. Results showed no differences in hypothalamic GMV in autistic compared to non-autistic adults but suggested a differential association between hypothalamic GMV and OXT levels, such that a positive association was found for the ASD group. In addition, hypothalamic GMV showed a positive association with autistic traits in the ASD group. Bearing in mind the limitations such as a relatively small sample size, a wide age range and a high rate of psychopharmacological treatment in the ASD sample, these results provide new preliminary evidence for a potentially important role of the HTH in ASD and its relationship to the OXT system, but also point towards the importance of interindividual differences.
Collapse
Affiliation(s)
- Raoul Haaf
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany.
- Graduate School, Technical University of Munich, Munich, Germany.
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany.
| | - Marie-Luise Brandi
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Laura Albantakis
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
- Outpatient and Day Clinic for Disorders of Social Interaction, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Juha M Lahnakoski
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
- Institute of Neurosciences and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lara Henco
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
- Graduate School of Systemic Neurosciences, Munich, Germany
| | - Leonhard Schilbach
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
- Outpatient and Day Clinic for Disorders of Social Interaction, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
- Graduate School of Systemic Neurosciences, Munich, Germany
- Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
10
|
Li G, Chen Y, Chaudhary S, Li CS, Hao D, Yang L, Li CSR. Sleep dysfunction mediates the relationship between hypothalamic-insula connectivity and anxiety-depression symptom severity bidirectionally in young adults. Neuroimage 2023; 279:120340. [PMID: 37611815 DOI: 10.1016/j.neuroimage.2023.120340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/03/2023] [Accepted: 08/21/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND The hypothalamus plays a crucial role in regulating sleep-wake cycle and motivated behavior. Sleep disturbance is associated with impairment in cognitive and affective functions. However, how hypothalamic dysfunction may contribute to inter-related sleep, cognitive, and emotional deficits remain unclear. METHODS We curated the Human Connectome Project dataset and investigated how hypothalamic resting state functional connectivities (rsFC) were associated with sleep dysfunction, as evaluated by the Pittsburgh Sleep Quality Index (PSQI), cognitive performance, and subjective mood states in 687 young adults (342 women). Imaging data were processed with published routines and evaluated with a corrected threshold. We examined the inter-relationship amongst hypothalamic rsFC, PSQI score, and clinical measures with mediation analyses. RESULTS In whole-brain regressions with age and drinking severity as covariates, men showed higher hypothalamic rsFC with the right insula in correlation with PSQI score. No clusters were identified in women at the same threshold. Both hypothalamic-insula rsFC and PSQI score were significantly correlated with anxiety and depression scores in men. Further, mediation analyses showed that PSQI score mediated the relationship between hypothalamic-insula rsFC and anxiety/depression symptom severity bidirectionally in men. CONCLUSIONS Sleep dysfunction is associated with negative emotions and hypothalamic rsFC with the right insula, a core structure of the interoceptive circuits. Notably, anxiety-depression symptom severity and altered hypothalamic-insula rsFC are related bidirectionally by poor sleep quality. These findings are specific to men, suggesting potential sex differences in the neural circuits regulating sleep and emotional states that need to be further investigated.
Collapse
Affiliation(s)
- Guangfei Li
- Department of Biomedical engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China; Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China.
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven CT, USA
| | - Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, New Haven CT, USA
| | - Clara S Li
- Department of Psychiatry, Yale University School of Medicine, New Haven CT, USA; Smith College, Northampton MA, USA
| | - Dongmei Hao
- Department of Biomedical engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China; Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Lin Yang
- Department of Biomedical engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China; Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven CT, USA; Department of Neuroscience, Yale University School of Medicine, New Haven CT, USA; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven CT, USA; Wu Tsai Institute, Yale University, New Haven CT, USA
| |
Collapse
|
11
|
Jiang JW, Narasimhan S, Johnson GW, González HFJ, Doss DJ, Shless JS, Paulo DL, Terry DP, Chang C, Morgan VL, Englot DJ. Abnormal functional connectivity of the posterior hypothalamus and other arousal regions in surgical temporal lobe epilepsy. J Neurosurg 2023; 139:640-650. [PMID: 36807210 PMCID: PMC10432570 DOI: 10.3171/2023.1.jns221452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/05/2023] [Indexed: 02/23/2023]
Abstract
OBJECTIVE This study sought to characterize resting-state functional MRI (fMRI) connectivity patterns of the posterior hypothalamus (pHTH) and the nucleus basalis of Meynert (NBM) in surgical patients with mesial temporal lobe epilepsy (mTLE), and to investigate potential correlations between functional connectivity of these arousal regions and neurocognitive performance. METHODS The study evaluated resting-state fMRI in 60 patients with preoperative mTLE and in 95 healthy controls. The authors first conducted voxel-wise connectivity analyses seeded from the pHTH, combined anterior and tuberal hypothalamus (atHTH; i.e., the rest of the hypothalamus), and the NBM ipsilateral (ipsiNBM) and contralateral (contraNBM) to the epileptogenic zone. Based on these results, the authors included the pHTH, ipsiNBM, and frontoparietal neocortex in a network-based statistic (NBS) analysis to elucidate a network that best distinguishes patients from controls. The connections involving the pHTH and ipsiNBM from this network were included in age-corrected pairwise region of interest (ROI) analysis, along with connections between arousal structures, including the pHTH, ipsiNBM, and brainstem arousal regions. Finally, patient functional connectivity was correlated with clinical neurocognitive testing scores for IQ as well as attention and concentration tests. RESULTS The voxel-wise analysis demonstrated that the pHTH, when compared with the atHTH, showed more widespread functional connectivity decreases in surgical mTLE patients when compared with controls. It was also observed that the ipsiNBM, but not the contraNBM, showed decreased functional connectivity in mTLE. The NBS analysis uncovered a perturbed network of frontoparietal regions, the pHTH, and ipsiNBM that distinguishes patients from controls. Age-corrected ROI analysis revealed functional connectivity decreases between the pHTH and bilateral superior frontal gyri, medial orbitofrontal cortices, rostral anterior cingulate cortices, and inferior parietal cortices in mTLE when compared with controls. For the ipsiNBM, there was reduced connectivity with bilateral medial orbitofrontal and rostral anterior cingulate cortices. Age-corrected ROI analysis also demonstrated upstream connectivity decreases from controls between the pHTH and the brainstem arousal regions, cuneiform/subcuneiform (CSC) nuclei, and ventral tegmental area, as well as the ipsiNBM and CSC nuclei. Reduced functional connectivity was also detected between the pHTH and ipsiNBM. Lastly, neurocognitive test scores for attention and concentration were found to be positively correlated with the functional connectivity between the pHTH and ipsiNBM, suggesting worse performance associated with connectivity perturbations. CONCLUSIONS This study demonstrated perturbed resting-state functional connectivity of arousal regions in surgical mTLE and is one of the first investigations to demonstrate decreased functional connectivity of the pHTH with frontoparietal regions and other arousal regions. Connectivity disturbances in arousal regions may contribute to neurocognitive deficits in surgical mTLE patients.
Collapse
Affiliation(s)
- Jasmine W. Jiang
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville
| | - Saramati Narasimhan
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville
| | - Graham W. Johnson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Hernán F. J. González
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Derek J. Doss
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Jared S. Shless
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville
| | - Danika L. Paulo
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville
| | - Douglas P. Terry
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville
| | - Catie Chang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee
| | - Victoria L. Morgan
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Neurology, Vanderbilt University Medical Center, Nashville
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville
| | - Dario J. Englot
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
12
|
Skye J, Bruss J, Herbet G, Tranel D, Boes AD. Localization of a Medial Temporal Lobe-Precuneus Network for Time Orientation. Ann Neurol 2023; 94:421-433. [PMID: 37183996 PMCID: PMC10524450 DOI: 10.1002/ana.26681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/16/2023]
Abstract
OBJECTIVE Time orientation is a fundamental cognitive process in which one's personal sense of time is matched with a universal reference. Time orientation is commonly assessed through mental status examination, yet its neural correlates remain unclear. Large lesions have been associated with deficits in time orientation, but the regional anatomy implicated in time disorientation is not well established. The current study investigates the anatomy of time disorientation and its network correlates in patients with focal brain lesions. METHODS Time orientation was assessed 3 months or more after lesion onset using the Benton Temporal Orientation Test (BTOT) in 550 patients with acquired, focal brain lesions, 39 of whom were impaired. Multivariate lesion-symptom mapping and lesion network mapping were used to evaluate the anatomy and networks associated with time disorientation. Performance on a variety of neuropsychological tests was compared between the time oriented and time disoriented group. RESULTS Lesion-symptom mapping showed that lesions of the precuneus, medial temporal lobes (MTL), and occipito-temporal cortex were associated with time disorientation (r = 0.264, p < 0.001). Lesion network mapping using normative connectome data demonstrated that these regional findings occurred along a network that includes white and gray matter connecting the precuneus and MTL. There was a strong behavioral and anatomical association of time disorientation with memory impairment, such that the 2 processes could not be fully disentangled. INTERPRETATION We interpret these findings as novel evidence for a network involving the precuneus and the medial temporal lobe in supporting time orientation. ANN NEUROL 2023;94:421-433.
Collapse
Affiliation(s)
- Jax Skye
- Department of Neurology, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Pediatrics, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Psychiatry, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Joel Bruss
- Department of Neurology, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Guillaume Herbet
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
- Department of Neurosurgery, Montpellier University Medical Center, Gui de Chauliac Hospital, Montpellier, France
| | - Daniel Tranel
- Department of Neurology, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Aaron D. Boes
- Department of Neurology, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Pediatrics, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Psychiatry, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
13
|
Byrne H, Josev EK, Knight SJ, Scheinberg A, Rowe K, Lubitz L, Seal ML. Hypothalamus volumes in adolescent Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): impact of self-reported fatigue and illness duration. Brain Struct Funct 2023; 228:1741-1754. [PMID: 37537279 PMCID: PMC10471696 DOI: 10.1007/s00429-023-02682-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023]
Abstract
Adolescent Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex illness of unknown aetiology. Emerging theories suggest ME/CFS may reflect a progressive, aberrant state of homeostasis caused by disturbances within the hypothalamus, yet few studies have investigated this using magnetic resonance imaging in adolescents with ME/CFS. We conducted a volumetric analysis to investigate whether whole and regional hypothalamus volumes in adolescents with ME/CFS differed compared to healthy controls, and whether these volumes were associated with fatigue severity and illness duration. 48 adolescents (25 ME/CFS, 23 controls) were recruited. Lateralised whole and regional hypothalamus volumes, including the anterior-superior, superior tubular, posterior, anterior-inferior and inferior tubular subregions, were calculated from T1-weighted images. When controlling for age, sex and intracranial volume, Bayesian linear regression models revealed no evidence for differences in hypothalamus volumes between groups. However, in the ME/CFS group, a weak linear relationship between increased right anterior-superior volumes and fatigue severity was identified, which was absent in controls. In addition, Bayesian quantile regression revealed a likely-positive association between illness duration and right superior tubular volumes in the ME/CFS group. While these findings suggest overall comparability in regional and whole hypothalamus volumes between adolescents with ME/CFS and controls, preliminary evidence was identified to suggest greater fatigue severity and longer illness duration were associated with greater right anterior-superior and superior-tubular volumes, respectively. These regions contain the anterior and superior divisions of the paraventricular nucleus, involved in the neuroendocrine response to stress, suggesting involvement in ME/CFS pathophysiology. However, replication in a larger, longitudinal cohort is required.
Collapse
Affiliation(s)
- Hollie Byrne
- Developmental Imaging, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia.
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia.
- Department of Paediatrics, The University of Melbourne, Melbourne, 3052, Australia.
| | - Elisha K Josev
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, 3052, Australia
| | - Sarah J Knight
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, 3052, Australia
| | - Adam Scheinberg
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, 3052, Australia
| | - Katherine Rowe
- Department of General Medicine, Royal Children's Hospital, Melbourne, 3052, Australia
| | - Lionel Lubitz
- Department of General Medicine, Royal Children's Hospital, Melbourne, 3052, Australia
| | - Marc L Seal
- Developmental Imaging, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, 3052, Australia
| |
Collapse
|
14
|
Trapp NT, Bruss JE, Manzel K, Grafman J, Tranel D, Boes AD. Large-scale lesion symptom mapping of depression identifies brain regions for risk and resilience. Brain 2023; 146:1672-1685. [PMID: 36181425 PMCID: PMC10319784 DOI: 10.1093/brain/awac361] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/15/2022] [Accepted: 09/02/2022] [Indexed: 11/14/2022] Open
Abstract
Understanding neural circuits that support mood is a central goal of affective neuroscience, and improved understanding of the anatomy could inform more targeted interventions in mood disorders. Lesion studies provide a method of inferring the anatomical sites causally related to specific functions, including mood. Here, we performed a large-scale study evaluating the location of acquired, focal brain lesions in relation to symptoms of depression. Five hundred and twenty-six individuals participated in the study across two sites (356 male, average age 52.4 ± 14.5 years). Each subject had a focal brain lesion identified on structural imaging and an assessment of depression using the Beck Depression Inventory-II, both obtained in the chronic period post-lesion (>3 months). Multivariate lesion-symptom mapping was performed to identify lesion sites associated with higher or lower depression symptom burden, which we refer to as 'risk' versus 'resilience' regions. The brain networks and white matter tracts associated with peak regional findings were identified using functional and structural lesion network mapping, respectively. Lesion-symptom mapping identified brain regions significantly associated with both higher and lower depression severity (r = 0.11; P = 0.01). Peak 'risk' regions include the bilateral anterior insula, bilateral dorsolateral prefrontal cortex and left dorsomedial prefrontal cortex. Functional lesion network mapping demonstrated that these 'risk' regions localized to nodes of the salience network. Peak 'resilience' regions include the right orbitofrontal cortex, right medial prefrontal cortex and right inferolateral temporal cortex, nodes of the default mode network. Structural lesion network mapping implicated dorsal prefrontal white matter tracts as 'risk' tracts and ventral prefrontal white matter tracts as 'resilience' tracts, although the structural lesion network mapping findings did not survive correction for multiple comparisons. Taken together, these results demonstrate that lesions to specific nodes of the salience network and default mode network are associated with greater risk versus resiliency for depression symptoms in the setting of focal brain lesions.
Collapse
Affiliation(s)
- Nicholas T Trapp
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Joel E Bruss
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Kenneth Manzel
- Department of Neurology, University of Iowa, Iowa City, IA, USA
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| | - Jordan Grafman
- Shirley Ryan AbilityLab, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Daniel Tranel
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Neurology, University of Iowa, Iowa City, IA, USA
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| | - Aaron D Boes
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Neurology, University of Iowa, Iowa City, IA, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
15
|
Jiang J, Bruss J, Lee WT, Tranel D, Boes AD. White matter disconnection of left multiple demand network is associated with post-lesion deficits in cognitive control. Nat Commun 2023; 14:1740. [PMID: 36990985 PMCID: PMC10060223 DOI: 10.1038/s41467-023-37330-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Cognitive control modulates other cognitive functions to achieve internal goals and is important for adaptive behavior. Cognitive control is enabled by the neural computations distributed over cortical and subcortical areas. However, due to technical challenges in recording neural activity from the white matter, little is known about the anatomy of white matter tracts that coordinate the distributed neural computations that support cognitive control. Here, we leverage a large sample of human patients with focal brain lesions (n = 643) and investigate how lesion location and connectivity profiles account for variance in cognitive control performance. We find that lesions in white matter connecting left frontoparietal regions of the multiple demand network reliably predict deficits in cognitive control performance. These findings advance our understanding of the white matter correlates of cognitive control and provide an approach for incorporating network disconnection to predict deficits following lesions.
Collapse
Affiliation(s)
- Jiefeng Jiang
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA.
- Cognitive Control Collaborative, University of Iowa, Iowa City, IA, 52242, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA.
| | - Joel Bruss
- Department of Neurology (Division of Neuropsychology and Cognitive Neuroscience), Carver College of Medicine, Iowa City, IA, 52242, USA
- Department of Psychiatry, Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Woo-Tek Lee
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA
- Cognitive Control Collaborative, University of Iowa, Iowa City, IA, 52242, USA
- Behavioral-biomedical Interface Training Program, University of Iowa, Iowa City, IA, 52242, USA
| | - Daniel Tranel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA
- Department of Neurology (Division of Neuropsychology and Cognitive Neuroscience), Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Aaron D Boes
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Neurology (Division of Neuropsychology and Cognitive Neuroscience), Carver College of Medicine, Iowa City, IA, 52242, USA.
- Department of Psychiatry, Carver College of Medicine, Iowa City, IA, 52242, USA.
- Department of Pediatrics, Carver College of Medicine, Iowa City, IA, 52242, USA.
| |
Collapse
|
16
|
Wang J, Ji G, Li G, Hu Y, Zhang W, Ji W, Tan Z, Li H, Jiang F, Zhang Y, Wu F, von Deneen KM, Yu J, Han Y, Cui G, Manza P, Tomasi D, Volkow ND, Nie Y, Zhang Y, Wang GJ. Habenular connectivity predict weight loss and negative emotional-related eating behavior after laparoscopic sleeve gastrectomy. Cereb Cortex 2023; 33:2037-2047. [PMID: 35580853 PMCID: PMC10365841 DOI: 10.1093/cercor/bhac191] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/14/2022] Open
Abstract
Habenular (Hb) processes negative emotions that may drive compulsive food-intake. Its functional changes were reported following laparoscopic-sleeve-gastrectomy (LSG). However, structural connectivity (SC) of Hb-homeostatic/hedonic circuits after LSG remains unclear. We selected regions implicated in homeostatic/hedonic regulation that have anatomical connections with Hb as regions-of-interest (ROIs), and used diffusion-tensor-imaging with probabilistic tractography to calculate SC between Hb and these ROIs in 30 obese participants before LSG (PreLSG) and at 12-month post-LSG (PostLSG12) and 30 normal-weight controls. Three-factor-eating-questionnaire (TFEQ) and Dutch-eating-behavior-questionnaire (DEBQ) were used to assess eating behaviors. LSG significantly decreased weight, negative emotion, and improved self-reported eating behavior. LSG increased SC between the Hb and homeostatic/hedonic regions including hypothalamus (Hy), bilateral superior frontal gyri (SFG), left amygdala (AMY), and orbitofrontal cortex (OFC). TFEQ-hunger negatively correlated with SC of Hb-Hy at PostLSG12; and increased SC of Hb-Hy correlated with reduced depression and DEBQ-external eating. TFEQ-disinhibition negatively correlated with SC of Hb-bilateral SFG at PreLSG. Increased SC of Hb-left AMY correlated with reduced DEBQ-emotional eating. Higher percentage of total weight-loss negatively correlated with SC of Hb-left OFC at PreLSG. Enhanced SC of Hb-homeostatic/hedonic regulatory regions post-LSG may contribute to its beneficial effects in improving eating behaviors including negative emotional eating, and long-term weight-loss.
Collapse
Affiliation(s)
- Jia Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Gang Ji
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Weibin Ji
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Zongxin Tan
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Hao Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Fukun Jiang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yaqi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Feifei Wu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Karen M von Deneen
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Juan Yu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Yu Han
- Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, China
| | - Guangbin Cui
- Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Dardo Tomasi
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China.,International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Yeager BE, Bruss J, Duffau H, Herbet G, Hwang K, Tranel D, Boes AD. Central precuneus lesions are associated with impaired executive function. Brain Struct Funct 2022; 227:3099-3108. [PMID: 36087124 PMCID: PMC9743014 DOI: 10.1007/s00429-022-02556-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/17/2022] [Indexed: 12/14/2022]
Abstract
The functional roles of the precuneus are unclear. Focal precuneus lesions are rare, making it difficult to identify robust brain-behavior relationships. Distinct functional subdivisions of the precuneus have been proposed based on unique connectivity profiles. This includes an association of the anterior division with bodily awareness, the central region with complex cognition, and the posterior division with visual processing. Our goal was to test the hypothesis that the central precuneus is preferentially involved (compared to the other sectors of the precuneus) in executive function, as estimated from performance on the trail-making test (TMT). 35 patients with focal brain lesions involving the precuneus were included from the University of Iowa and Montpellier University. Multivariate lesion symptom mapping of TMT performance was performed to evaluate whether lesion location was associated with impaired task performance. Lesion symptom mapping revealed a statistically significant association of central precuneus lesions with impaired TMT performance (r = 0.43, p < 0.01). Further, a functional network derived from this precuneus region showed connectivity to other cortical areas implicated in executive function, including the dorsolateral prefrontal cortex and inferior parietal lobe. This analysis provides support for the role of the central precuneus in executive function, consistent with the unique connectivity pattern of the central precuneus with a broader network implicated in cognitive control and executive function.
Collapse
Affiliation(s)
- Brooke E Yeager
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa Graduate College, Iowa City, IA, 52242, USA
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Joel Bruss
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Hugues Duffau
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, 34094, Montpellier, France
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 34295, Montpellier, France
| | - Guillaume Herbet
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, 34094, Montpellier, France
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 34295, Montpellier, France
| | - Kai Hwang
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52241, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA
| | - Daniel Tranel
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52241, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA
| | - Aaron D Boes
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
- University of Iowa Hospitals and Clinics, W278 GH, 200 Hawkins Drive, Iowa City, IA, 52242, USA.
| |
Collapse
|
18
|
Porcaro C, Di Renzo A, Tinelli E, Parisi V, Di Lorenzo C, Caramia F, Fiorelli M, Giuliani G, Cioffi E, Seri S, Di Piero V, Pierelli F, Di Lorenzo G, Coppola G. A Hypothalamic Mechanism Regulates the Duration of a Migraine Attack: Insights from Microstructural and Temporal Complexity of Cortical Functional Networks Analysis. Int J Mol Sci 2022; 23:13238. [PMID: 36362026 PMCID: PMC9658908 DOI: 10.3390/ijms232113238] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 07/23/2023] Open
Abstract
The role of the hypothalamus and the limbic system at the onset of a migraine attack has recently received significant interest. We analyzed diffusion tensor imaging (DTI) parameters of the entire hypothalamus and its subregions in 15 patients during a spontaneous migraine attack and in 20 control subjects. We also estimated the non-linear measure resting-state functional MRI BOLD signal's complexity using Higuchi fractal dimension (FD) and correlated DTI/fMRI findings with patients' clinical characteristics. In comparison with healthy controls, patients had significantly altered diffusivity metrics within the hypothalamus, mainly in posterior ROIs, and higher FD values in the salience network (SN). We observed a positive correlation of the hypothalamic axial diffusivity with migraine severity and FD of SN. DTI metrics of bilateral anterior hypothalamus positively correlated with the mean attack duration. Our results show plastic structural changes in the hypothalamus related to the attacks severity and the functional connectivity of the SN involved in the multidimensional neurocognitive processing of pain. Plastic changes to the hypothalamus may play a role in modulating the duration of the attack.
Collapse
Affiliation(s)
- Camillo Porcaro
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, 35128 Padova, Italy
- Institute of Cognitive Sciences and Technologies (ISTC)—National Research Council (CNR), 00185 Rome, Italy
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Emanuele Tinelli
- Unit of Neuroradiology, Department of Medical and Surgical Sciences, Magna Græcia University, 88100 Catanzaro, Italy
| | | | - Cherubino Di Lorenzo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino—I.C.O.T., 04100 Latina, Italy
| | - Francesca Caramia
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Fiorelli
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Giada Giuliani
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Ettore Cioffi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino—I.C.O.T., 04100 Latina, Italy
| | - Stefano Seri
- Aston Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- Department of Clinical Neurophysiology, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham B4 6NH, UK
| | - Vittorio Di Piero
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Pierelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino—I.C.O.T., 04100 Latina, Italy
| | - Giorgio Di Lorenzo
- Laboratory of Psychophysiology and Cognitive Neuroscience, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- IRCCS—Fondazione Santa Lucia, 00179 Rome, Italy
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino—I.C.O.T., 04100 Latina, Italy
| |
Collapse
|
19
|
Li X, Zhao G, Huang H, Ye J, Xu J, Zhou Y, Zhu X, Wang L, Wang F. Lifespan changes in cannabinoid 1 receptor mRNA expression in the female C57BL/6J mouse brain. J Comp Neurol 2022; 531:294-313. [PMID: 36240125 DOI: 10.1002/cne.25427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/25/2022] [Accepted: 09/23/2022] [Indexed: 11/12/2022]
Abstract
Many brain functions that underlie behavior, cognition, and emotions vary with age, as does susceptibility to neuropsychological disorders. The expression of specific genes that are involved in these functions, such as the genes encoding for oxytocin, its receptors, and apolipoprotein D, varies with age across different brain regions. The cannabinoid 1 receptor (CB1 R) is one of the most widely spread G-protein coupled receptors in the central nervous system and is increasingly recognized for its important contribution to various brain functions. Although changes in CB1 R expression with age have been reported in the male mouse brain, they have not been well investigated in the female brain. Here, we used fluorescence in situ hybridization to target CB1 R mRNA in the whole brains of female C57BL/6J mice aged 4, 6, 12, 52 (12 months) and 86 weeks (20 months), and quantified CB1 R-positive cells in 36 brain regions across the whole brain. The results showed that CB1 R-positive cells number changed with age. Specifically, CB1 R expression increased with age in some subregions of the cortex, decreased with age in the lateral septal area, and reached its lowest level at 52 weeks in the thalamus, hypothalamus, and hindbrain subregions. Cluster analysis revealed that some brain regions shared similar temporal characteristics in CB1 R-positive cell number across the lifespan. Our results provide evidence that investigation of the neural basis of age-related characteristics of female brain functions is not only warranted but required.
Collapse
Affiliation(s)
- Xulin Li
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Gaoyang Zhao
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongren Huang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jialin Ye
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Junfeng Xu
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Zhou
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojuan Zhu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Liping Wang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Feng Wang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| |
Collapse
|
20
|
Brown SSG, Manning KE, Fletcher P, Holland A. In vivo neuroimaging evidence of hypothalamic alteration in Prader–Willi syndrome. Brain Commun 2022; 4:fcac229. [PMID: 36147452 PMCID: PMC9487704 DOI: 10.1093/braincomms/fcac229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/27/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022] Open
Abstract
Prader–Willi syndrome is a genetic neurodevelopmental disorder with an early phenotype characterized by neonatal hypotonia, failure to thrive, and immature genitalia. The onset of hyperphagia in childhood and developmental, physical and neuropsychiatric characteristics indicate atypical brain development and specifically hypothalamic dysfunction. Whether the latter is a consequence of disruption of hypothalamic pathways for genetic reasons or due to a failure of hypothalamic development remains uncertain. Twenty participants with Prader–Willi syndrome, 40 age-matched controls and 42 obese participants underwent structural MRI scanning. The whole hypothalamus and its subnuclei were segmented from structural acquisitions. The Food-Related Problem Questionnaire was used to provide information relating to eating behaviour. All hypothalamic nuclei were significantly smaller in the Prader–Willi group, compared with age and gender matched controls (P < 0.01) with the exception of the right anterior–inferior nucleus (P = 0.07). Lower whole hypothalamus volume was significantly associated with higher body mass index in Prader–Willi syndrome (P < 0.05). Increased preoccupation with food was associated with lower volumes of the bilateral posterior nuclei and left tubular superior nucleus. The whole hypothalamus and all constituent nuclei were also smaller in Prader–Willi syndrome compared with obese participants (P < 0.001). Connectivity profiles of the hypothalamus revealed that fractional anisotropy was associated with impaired satiety in Prader–Willi syndrome (P < 0.05). We establish that hypothalamic structure is significantly altered in Prader–Willi syndrome, demonstrating that hypothalamic dysfunction linked to eating behaviour is likely neurodevelopmental in nature and furthermore, distinctive compared with obesity in the general population.
Collapse
Affiliation(s)
- Stephanie S G Brown
- Department of Psychiatry, University of Cambridge , Addenbrookes Hospital, Cambridge CB2 0QQ , UK
| | - Katherine E Manning
- Department of Psychiatry, University of Cambridge , Addenbrookes Hospital, Cambridge CB2 0QQ , UK
| | - Paul Fletcher
- Department of Psychiatry, University of Cambridge , Addenbrookes Hospital, Cambridge CB2 0QQ , UK
| | - Anthony Holland
- Department of Psychiatry, University of Cambridge , Addenbrookes Hospital, Cambridge CB2 0QQ , UK
| |
Collapse
|
21
|
Pandi-Perumal SR, Cardinali DP, Zaki NFW, Karthikeyan R, Spence DW, Reiter RJ, Brown GM. Timing is everything: Circadian rhythms and their role in the control of sleep. Front Neuroendocrinol 2022; 66:100978. [PMID: 35033557 DOI: 10.1016/j.yfrne.2022.100978] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/12/2021] [Accepted: 01/08/2022] [Indexed: 01/16/2023]
Abstract
Sleep and the circadian clock are intertwined and have persisted throughout history. The suprachiasmatic nucleus (SCN) orchestrates sleep by controlling circadian (Process C) and homeostatic (Process S) activities. As a "hand" on the endogenous circadian clock, melatonin is critical for sleep regulation. Light serves as a cue for sleep/wake control by activating retino-recipient cells in the SCN and subsequently suppressing melatonin. Clock genes are the molecular timekeepers that keep the 24 h cycle in place. Two main sleep and behavioural disorder diagnostic manuals have now officially recognised the importance of these processes for human health and well-being. The body's ability to respond to daily demands with the least amount of effort is maximised by carefully timing and integrating all components of sleep and waking. In the brain, the organization of timing is essential for optimal brain physiology.
Collapse
Affiliation(s)
- Seithikurippu R Pandi-Perumal
- Somnogen Canada Inc, College Street, Toronto, ON, Canada; Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, 1107 Buenos Aires, Argentina
| | - Nevin F W Zaki
- Department of Psychiatry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | | | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Gregory M Brown
- Centre for Addiction and Mental Health, Molecular Brain Sciences, University of Toronto, 250 College St. Toronto, ON, Canada
| |
Collapse
|
22
|
Doldur-Balli F, Imamura T, Veatch OJ, Gong NN, Lim DC, Hart MP, Abel T, Kayser MS, Brodkin ES, Pack AI. Synaptic dysfunction connects autism spectrum disorder and sleep disturbances: A perspective from studies in model organisms. Sleep Med Rev 2022; 62:101595. [PMID: 35158305 PMCID: PMC9064929 DOI: 10.1016/j.smrv.2022.101595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/24/2021] [Accepted: 01/19/2022] [Indexed: 01/03/2023]
Abstract
Sleep disturbances (SD) accompany many neurodevelopmental disorders, suggesting SD is a transdiagnostic process that can account for behavioral deficits and influence underlying neuropathogenesis. Autism Spectrum Disorder (ASD) comprises a complex set of neurodevelopmental conditions characterized by challenges in social interaction, communication, and restricted, repetitive behaviors. Diagnosis of ASD is based primarily on behavioral criteria, and there are no drugs that target core symptoms. Among the co-occurring conditions associated with ASD, SD are one of the most prevalent. SD often arises before the onset of other ASD symptoms. Sleep interventions improve not only sleep but also daytime behaviors in children with ASD. Here, we examine sleep phenotypes in multiple model systems relevant to ASD, e.g., mice, zebrafish, fruit flies and worms. Given the functions of sleep in promoting brain connectivity, neural plasticity, emotional regulation and social behavior, all of which are of critical importance in ASD pathogenesis, we propose that synaptic dysfunction is a major mechanism that connects ASD and SD. Common molecular targets in this interplay that are involved in synaptic function might be a novel avenue for therapy of individuals with ASD experiencing SD. Such therapy would be expected to improve not only sleep but also other ASD symptoms.
Collapse
Affiliation(s)
- Fusun Doldur-Balli
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Toshihiro Imamura
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Olivia J Veatch
- Department of Psychiatry and Behavioral Sciences, School of Medicine, The University of Kansas Medical Center, Kansas City, USA
| | - Naihua N Gong
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Diane C Lim
- Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Department of Medicine, Miller School of Medicine, University of Miami, Miami, USA
| | - Michael P Hart
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Ted Abel
- Iowa Neuroscience Institute and Department of Neuroscience & Pharmacology, University of Iowa, Iowa City, USA
| | - Matthew S Kayser
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Edward S Brodkin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Allan I Pack
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
23
|
Porcaro C, Di Renzo A, Tinelli E, Di Lorenzo G, Seri S, Di Lorenzo C, Parisi V, Caramia F, Fiorelli M, Di Piero V, Pierelli F, Coppola G. Hypothalamic structural integrity and temporal complexity of cortical information processing at rest in migraine without aura patients between attacks. Sci Rep 2021; 11:18701. [PMID: 34548562 PMCID: PMC8455544 DOI: 10.1038/s41598-021-98213-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
The hypothalamus has been attributed an important role during the premonitory phase of a migraine attack. Less is known about the role played by the hypothalamus in the interictal period and its relationship with the putative neurocognitive networks previously identified in the pathophysiology of migraine. Our aim was to test whether the hypothalamic microstructure would be altered during the interictal period and whether this co-existed with aberrant connectivity at cortical level. We collected multimodal MRI data from 20 untreated patients with migraine without aura between attacks (MO) and 20 healthy controls (HC) and studied fractional anisotropy, mean (MD), radial (RD), and axial diffusivity of the hypothalamus ROI as a whole from diffusion tensor imaging (DTI). Moreover, we performed an exploratory analysis of the same DTI metrics separately for the anterior and posterior hypothalamic ROIs bilaterally. From resting-state functional MRI, we estimated the Higuchi's fractal dimension (FD), an index of temporal complexity sensible to describe non-periodic patterns characterizing BOLD signature. Finally, we correlated neuroimaging findings with migraine clinical features. In comparison to HC, MO had significantly higher MD, AD, and RD values within the hypothalamus. These findings were confirmed also in the exploratory analysis on the sub-regions of the hypothalamus bilaterally, with the addition of lower FA values on the posterior ROIs. Patients showed higher FD values within the salience network (SN) and the cerebellum, and lower FD values within the primary visual (PV) network compared to HC. We found a positive correlation between cerebellar and SN FD values and severity of migraine. Our findings of hypothalamic abnormalities between migraine attacks may form part of the neuroanatomical substrate that predisposes the onset of the prodromal phase and, therefore, the initiation of an attack. The peculiar fractal dimensionality we found in PV, SN, and cerebellum may be interpreted as an expression of abnormal efficiency demand of brain networks devoted to the integration of sensory, emotional, and cognitive information related to the severity of migraine.
Collapse
Affiliation(s)
- Camillo Porcaro
- grid.428479.40000 0001 2297 9633Institute of Cognitive Sciences and Technologies (ISTC) - National Research Council (CNR), Rome, Italy ,grid.6572.60000 0004 1936 7486Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK ,S. Anna Institute and Research in Advanced Neurorehabilitation (RAN), Crotone, Italy ,grid.7010.60000 0001 1017 3210Department of Information Engineering - Università Politecnica delle Marche, Ancona, Italy
| | | | - Emanuele Tinelli
- grid.7841.aDepartment of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giorgio Di Lorenzo
- grid.6530.00000 0001 2300 0941Laboratory of Psychophysiology and Cognitive Neuroscience, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy ,grid.417778.a0000 0001 0692 3437IRCCS - Fondazione Santa Lucia, Rome, Italy
| | - Stefano Seri
- grid.7273.10000 0004 0376 4727College of Health and Life Sciences, Aston Institute of Health and Neurodevelopment, Aston University, Birmingham, UK ,grid.498025.2Department of Clinical Neurophysiology, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| | - Cherubino Di Lorenzo
- grid.7841.aDepartment of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica 79, 04100 Latina, Italy
| | | | - Francesca Caramia
- grid.7841.aDepartment of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Marco Fiorelli
- grid.7841.aDepartment of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Vittorio Di Piero
- grid.7841.aDepartment of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Pierelli
- grid.7841.aDepartment of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica 79, 04100 Latina, Italy ,grid.419543.e0000 0004 1760 3561IRCCS - Neuromed, Pozzilli, IS Italy
| | - Gianluca Coppola
- grid.7841.aDepartment of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica 79, 04100 Latina, Italy
| |
Collapse
|
24
|
Jiang J, Zou G, Liu J, Zhou S, Xu J, Sun H, Zou Q, Gao JH. Functional connectivity of the human hypothalamus during wakefulness and nonrapid eye movement sleep. Hum Brain Mapp 2021; 42:3667-3679. [PMID: 33960583 PMCID: PMC8249893 DOI: 10.1002/hbm.25461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/20/2021] [Indexed: 01/22/2023] Open
Abstract
Animal experiments indicate that the hypothalamus plays an essential role in regulating the sleep–wake cycle. A recent neuroimaging study conducted under resting wakefulness conditions suggested the presence of a wake‐promoting region and a sleep‐promoting region in the human posterior hypothalamus and anterior hypothalamus, respectively, and interpreted their anticorrelated organization in resting‐state functional networks as evidence for their opposing roles in sleep–wake regulation. However, whether and how the functional networks of the two hypothalamic regions reorganize according to their wake‐ or sleep‐promoting roles during sleep are unclear. Here, we constructed functional networks of the posterior and anterior hypothalamus during wakefulness and nonrapid eye movement (NREM) sleep using simultaneous electroencephalography and functional magnetic resonance imaging data collected from 62 healthy participants. The functional networks of the posterior and anterior hypothalamus exhibited inversely correlated organizations during both wakefulness and NREM sleep. The connectivity strength of the posterior hypothalamic functional network was stronger during wakefulness than during stable sleep. From wakefulness to sleep, the anterior cingulate gyrus, paracingulate gyrus, insular cortex, and fontal operculum cortex showed decreased positive connectivity, while the precentral gyrus and postcentral gyrus showed decreased negative connectivity with the posterior hypothalamus. Additionally, the insular cortex and frontal operculum cortex showed negative connectivity during wakefulness and positive connectivity during sleep with the anterior hypothalamus, exhibiting an increasing trend. These findings provide insights into the correspondence between the functional network organizations and hypothalamic sleep–wake regulation in humans.
Collapse
Affiliation(s)
- Jun Jiang
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Guangyuan Zou
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jiayi Liu
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Shuqin Zhou
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jing Xu
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Hongqiang Sun
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Qihong Zou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jia-Hong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
25
|
Ding S, Gao L, Kukun H, Ai K, Zhao W, Xie C, Wang Y. Novel Neuroimaging Biomarker for Sleep Quality in Insomnia Disorder: A Hypothalamus Resting State Study. Front Neurosci 2021; 15:634984. [PMID: 33716655 PMCID: PMC7953135 DOI: 10.3389/fnins.2021.634984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/21/2021] [Indexed: 11/15/2022] Open
Abstract
Despite striking progress in the understanding of the neurobiology of insomnia disorder (ID), about 40% of ID patients do not reach sustained remission with the primary treatments. It is necessary to reveal novel neuroimaging biomarkers for sleep quality in ID. The hypothalamus has a central role in sleep-wake regulation by communicating with different brain regions. However, the functional implications of hypothalamus circuitry with other brain areas remains largely unknown in ID. It may be speculated that dysfunctional circuitry in the hypothalamus is involved in the pathogenesis of ID. Thus, we investigated the different network organizations of the bilateral hypothalamus during the resting-state between 26 ID patients and 28 healthy controls (HC). Correlation analysis has been carried out to link the neuroimaging findings and Pittsburgh sleep quality index (PSQI) scores. Group comparisons reveal that the resting-state functional connectivity (RSFC) between the left hypothalamic region and a few other brain regions, including the medial prefrontal cortex (mPFC) and pallidum, are significantly higher in ID compared with HC. The right inferior temporal cortex showed reduced RSFC with the left hypothalamus. No significantly different RSFC between ID and HC was detected for the right hypothalamus. Positive correlations with PSQI scores were observed for RSFC strength between the left hypothalamus and bilateral mPFC (left: r = 0.2985, p = 0.0393; right: r = 0.3723, p = 0.0056). Similarly, the RSFC strength between the right hypothalamus and bilateral mPFC (left: r = 0.3980, p = 0.0029; right: r = 0.2972, p = 0.0291) also showed significant positive correlations with PSQI scores. In conclusion, we reveal a novel neuroimaging biomarker for sleep quality, i.e., the RSFC strength of the hypothalamus-mPFC pathway. Consistent with the hyperarousal model of ID, our results shed new insights into the implications of the hyper-connection within hypothalamus circuits in the pathology of the ID.
Collapse
Affiliation(s)
- Shuang Ding
- Department of Radiology, The First Affiliated Hospital, Xinjiang Medical University, Ürümqi, China
| | - Lijuan Gao
- Department of Radiology, The First Affiliated Hospital, Xinjiang Medical University, Ürümqi, China
| | - Hanjiaerbieke Kukun
- Department of Radiology, The First Affiliated Hospital, Xinjiang Medical University, Ürümqi, China
| | - Kai Ai
- Philips Healthcare, Xi'an, China
| | - Wei Zhao
- Department of Radiology, The First Affiliated Hospital, Xinjiang Medical University, Ürümqi, China
| | - Chao Xie
- Department of Radiology, The Seventh Affiliated Hospital, Xinjiang Medical University, Ürümqi, China
| | - Yunling Wang
- Department of Radiology, The First Affiliated Hospital, Xinjiang Medical University, Ürümqi, China
| |
Collapse
|
26
|
Abstract
Communication pathways of the hypothalamus with other brain regions and the periphery are critical to successfully control key physiological and psychological processes. With advanced functional magnetic resonance imaging (fMRI) techniques, it is possible to target hypothalamic function and infer discrete hypothalamus networks. Resting-state functional connectivity (RSFC) is a promising tool to study the functional organization of the brain and may act as a marker of individual differences and dysfunctions. Based on recent fMRI findings, the hypothalamus is mostly connected to parts of the striatum, midbrain, thalamus, insula, frontal, cingulate, and temporal cortices and the cerebellum. There is a strong interplay of the hypothalamus with these regions in response to different metabolic, hormonal, and nutritional states. In a state of hunger, hypothalamus RSFC increases with a strong shift to reward-related brain regions, especially in person with excessive weight. Nutrient signals and hormones, as insulin, act on these same connections conveying reward and internal signals to regulate homeostatic control. Moreover, dysfunctional hypothalamus communication has been documented in persons with neurological and psychiatric diseases. The results implicate that patients with depression, epilepsy, and neurodegenerative diseases show mostly a reduction in hypothalamus RSFC, whereas patients with migraine and headache display predominantly increased hypothalamus RSFC. The extent of these changes and regions affected depend on the disorder and symptom severity. Whether hypothalamus RSFC can serve as a marker for disease states or is a prodromal neurobiological feature still needs to be investigated.
Collapse
|
27
|
Tish MM, Geerling JC. The Brain and the Bladder: Forebrain Control of Urinary (In)Continence. Front Physiol 2020; 11:658. [PMID: 32719609 PMCID: PMC7349519 DOI: 10.3389/fphys.2020.00658] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
Neural circuits extending from the cerebral cortex to the bladder maintain urinary continence and allow voiding when it is socially appropriate. Injuries to certain brain regions produce a specific disruption known as urge incontinence. This neurologic symptom is distinguished by bladder spasticity, with sudden urges to void and frequent inability to maintain continence. The precise localization of neural circuit disruptions responsible for urge incontinence remains poorly defined, partly because the brain regions, cell types, and circuit connections that normally maintain continence are unknown. Here, we review what is known about the micturition reflex circuit and about forebrain control of continence from experimental animal studies and human lesion data. Based on this information, we hypothesize that urge incontinence results from damage to a descending pathway that normally maintains urinary continence. This pathway begins with excitatory neurons in the prefrontal cortex and relays subcortically, through inhibitory neurons that may help suppress reflex micturition during sleep and until it is safe and socially appropriate to void. Identifying the specific cell types and circuit connections that constitute the continence-promoting pathway, from the forebrain to the brainstem, will help us better understand why some brain lesions and neurodegenerative diseases disrupt continence. This information is needed to pave the way toward better treatments for neurologic patients suffering from urge incontinence.
Collapse
Affiliation(s)
- Margaret M Tish
- Department of Neurology, University of Iowa, Iowa City, IA, United States
| | - Joel C Geerling
- Department of Neurology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
28
|
Uitermarkt BD, Bruss J, Hwang K, Boes AD. Rapid eye movement sleep patterns of brain activation and deactivation occur within unique functional networks. Hum Brain Mapp 2020; 41:3984-3992. [PMID: 32573885 PMCID: PMC7469766 DOI: 10.1002/hbm.25102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/07/2020] [Indexed: 12/19/2022] Open
Abstract
Rapid eye movement (REM) sleep is a paradoxical state where the individual appears asleep while the electroencephalogram pattern resembles that of wakefulness. Regional differences in brain metabolism have been observed during REM sleep compared to wakefulness, but it is not known whether the spatial distribution of metabolic differences corresponds to known functional networks in the brain. Here, we use a combination of techniques to evaluate the networks associated with sites of REM sleep activation and deactivation from previously published positron emission tomography studies. We use seed‐based functional connectivity from healthy adults acquired during quiet rest to show that REM‐activation regions are functionally connected in a network that includes retrosplenial cingulate cortex, parahippocampal gyrus, and extrastriate visual cortices, corresponding to components of the default mode network and visual networks. Regions deactivated during REM sleep localize to right‐lateralized fronto‐parietal and salience networks. A negatively correlated relationship was observed between REM‐activation and deactivation networks. Together, these findings show that regional activation and deactivation patterns of REM sleep tend to occur in distinct functional connectivity networks that are present during wakefulness, providing insights regarding the differential contributions of brain regions to the distinct subjective experiences that occur during REM sleep (dreaming) relative to wakefulness.
Collapse
Affiliation(s)
- Brandt D Uitermarkt
- Neuroimaging and Noninvasive Brain Stimulation Laboratory, Departments of Pediatrics, Neurology & Psychiatry, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Joel Bruss
- Neuroimaging and Noninvasive Brain Stimulation Laboratory, Departments of Pediatrics, Neurology & Psychiatry, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Kai Hwang
- Hwang Laboratory for Neurocognitive Dynamics, Department of Psychological & Brain Sciences, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Aaron D Boes
- Neuroimaging and Noninvasive Brain Stimulation Laboratory, Departments of Pediatrics, Neurology & Psychiatry, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| |
Collapse
|
29
|
Macías-Triana L, Romero-Cordero K, Tatum-Kuri A, Vera-Barrón A, Millán-Aldaco D, Arankowsky-Sandoval G, Piomelli D, Murillo-Rodríguez E. Exposure to the cannabinoid agonist WIN 55, 212–2 in adolescent rats causes sleep alterations that persist until adulthood. Eur J Pharmacol 2020; 874:172911. [DOI: 10.1016/j.ejphar.2020.172911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/10/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022]
|