1
|
Boparai J, Broad GR. The genome sequence of an ichneumonid wasp, Cylloceria caligata (Gravenhorst, 1829). Wellcome Open Res 2024; 9:478. [PMID: 39429634 PMCID: PMC11489849 DOI: 10.12688/wellcomeopenres.22776.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 10/22/2024] Open
Abstract
We present a genome assembly from an individual male Cylloceria caligata (an ichneumonid wasp; Arthropoda; Insecta; Hymenoptera; Ichneumonidae). The genome sequence spans 596.20 megabases. Most of the assembly is scaffolded into 9 chromosomal pseudomolecules. The mitochondrial genome has also been assembled and is 33.21 kilobases in length.
Collapse
|
2
|
Folk RA, Charboneau JLM, Belitz M, Singh T, Kates HR, Soltis DE, Soltis PS, Guralnick RP, Siniscalchi CM. Anatomy of a mega-radiation: Biogeography and niche evolution in Astragalus. AMERICAN JOURNAL OF BOTANY 2024; 111:e16299. [PMID: 38419145 DOI: 10.1002/ajb2.16299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
PREMISE Astragalus (Fabaceae), with more than 3000 species, represents a globally successful radiation of morphologically highly similar species predominant across the northern hemisphere. It has attracted attention from systematists and biogeographers, who have asked what factors might be behind the extraordinary diversity of this important arid-adapted clade and what sets it apart from close relatives with far less species richness. METHODS Here, for the first time using extensive phylogenetic sampling, we asked whether (1) Astragalus is uniquely characterized by bursts of radiation or whether diversification instead is uniform and no different from closely related taxa. Then we tested whether the species diversity of Astragalus is attributable specifically to its predilection for (2) cold and arid habitats, (3) particular soils, or to (4) chromosome evolution. Finally, we tested (5) whether Astragalus originated in central Asia as proposed and (6) whether niche evolutionary shifts were subsequently associated with the colonization of other continents. RESULTS Our results point to the importance of heterogeneity in the diversification of Astragalus, with upshifts associated with the earliest divergences but not strongly tied to any abiotic factor or biogeographic regionalization tested here. The only potential correlate with diversification we identified was chromosome number. Biogeographic shifts have a strong association with the abiotic environment and highlight the importance of central Asia as a biogeographic gateway. CONCLUSIONS Our investigation shows the importance of phylogenetic and evolutionary studies of logistically challenging "mega-radiations." Our findings reject any simple key innovation behind high diversity and underline the often nuanced, multifactorial processes leading to species-rich clades.
Collapse
Affiliation(s)
- Ryan A Folk
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Joseph L M Charboneau
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Michael Belitz
- Florida Museum, University of Florida, Gainesville, FL, USA
| | - Tajinder Singh
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | | | - Douglas E Soltis
- Florida Museum, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Pamela S Soltis
- Florida Museum, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, USA
| | - Robert P Guralnick
- Florida Museum, University of Florida, Gainesville, FL, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, USA
| | - Carolina M Siniscalchi
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
- General Libraries, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
3
|
Zadra N, Tatti A, Silverj A, Piccinno R, Devilliers J, Lewis C, Arnoldi D, Montarsi F, Escuer P, Fusco G, De Sanctis V, Feuda R, Sánchez-Gracia A, Rizzoli A, Rota-Stabelli O. Shallow Whole-Genome Sequencing of Aedes japonicus and Aedes koreicus from Italy and an Updated Picture of Their Evolution Based on Mitogenomics and Barcoding. INSECTS 2023; 14:904. [PMID: 38132578 PMCID: PMC10743467 DOI: 10.3390/insects14120904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Aedes japonicus and Aedes koreicus are two invasive mosquitoes native to East Asia that are quickly establishing in temperate regions of Europe. Both species are vectors of arboviruses, but we currently lack a clear understanding of their evolution. Here, we present new short-read, shallow genome sequencing of A. japonicus and A. koreicus individuals from northern Italy, which we used for downstream phylogenetic and barcode analyses. We explored associated microbial DNA and found high occurrences of Delftia bacteria in both samples, but neither Asaia nor Wolbachia. We then assembled complete mitogenomes and used these data to infer divergence times estimating the split of A. japonicus from A. koreicus in the Oligocene, which was more recent than that previously reported using mitochondrial markers. We recover a younger age for most other nodes within Aedini and other Culicidae. COI barcoding and phylogenetic analyses indicate that A. japonicus yaeyamensis, A. japonicus amamiensis, and the two A. koreicus sampled from Europe should be considered as separate species within a monophyletic species complex. Our studies further clarify the evolution of A. japonicus and A. koreicus, and indicate the need to obtain whole-genome data from putative species in order to disentangle their complex patterns of evolution.
Collapse
Affiliation(s)
- Nicola Zadra
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige, Italy; (N.Z.); (A.T.); (A.S.); (R.P.)
- CIBIO Department, University of Trento, 38123 Trento, Italy;
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
| | - Alessia Tatti
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige, Italy; (N.Z.); (A.T.); (A.S.); (R.P.)
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
- Department of Biology, University of Padova, 35121 Padova, Italy;
- University School for Advanced Studies IUSS Pavia, 27100 Pavia, Italy
| | - Andrea Silverj
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige, Italy; (N.Z.); (A.T.); (A.S.); (R.P.)
- CIBIO Department, University of Trento, 38123 Trento, Italy;
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
| | - Riccardo Piccinno
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige, Italy; (N.Z.); (A.T.); (A.S.); (R.P.)
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Julien Devilliers
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK; (J.D.); (C.L.); (R.F.)
| | - Clifton Lewis
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK; (J.D.); (C.L.); (R.F.)
| | - Daniele Arnoldi
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy;
| | - Paula Escuer
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, 08028 Barcelona, Spain; (P.E.); (A.S.-G.)
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08007 Barcelona, Spain
| | - Giuseppe Fusco
- Department of Biology, University of Padova, 35121 Padova, Italy;
| | | | - Roberto Feuda
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK; (J.D.); (C.L.); (R.F.)
| | - Alejandro Sánchez-Gracia
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, 08028 Barcelona, Spain; (P.E.); (A.S.-G.)
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08007 Barcelona, Spain
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
| | - Omar Rota-Stabelli
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige, Italy; (N.Z.); (A.T.); (A.S.); (R.P.)
- CIBIO Department, University of Trento, 38123 Trento, Italy;
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
| |
Collapse
|
4
|
Viertler A, Urfer K, Schulz G, Klopfstein S, Spasojevic T. Impact of increasing morphological information by micro-CT scanning on the phylogenetic placement of Darwin wasps (Hymenoptera, Ichneumonidae) in amber. SWISS JOURNAL OF PALAEONTOLOGY 2023; 142:30. [PMID: 37927422 PMCID: PMC10624732 DOI: 10.1186/s13358-023-00294-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/27/2023] [Indexed: 11/07/2023]
Abstract
The correct interpretation of fossils and their reliable taxonomic placements are fundamental for understanding the evolutionary history of biodiversity. Amber inclusions often preserve more morphological information than compression fossils, but are often partially hidden or distorted, which can impede taxonomic identification. Here, we studied four new fossil species of Darwin wasps from Baltic and Dominican amber, using micro computed tomography (micro-CT) scans and 3D reconstructions to accurately interpret and increase the availability of morphological information. We then infer their taxonomic placement in a Bayesian phylogenetic analysis by combining morphological and molecular data of extant and fossil Darwin wasps and evaluate the impact and usefulness of the additional information from micro-CT scanning. The results show that although we gained significant morphological information from micro-CT scanning, especially concerning measurements and hidden dorsal and ventral structures, this did not impact subfamily-level placement for any of the four fossils. However, micro-CT scanning improved the precision of fossil placements at the genus level, which might be key in future dating and diversification analyses. Finally, we describe the four new fossil species as Rhyssa gulliveri sp. nov. in Rhyssinae, Triclistus levii sp. nov. in Metopiinae, Firkantus freddykruegeri gen. et. sp. nov. in Pimplinae and Magnocula sarcophaga gen. et sp. nov. in Phygadeuontinae. The first two species are the first known representatives of the subfamilies Rhyssinae and Metopiinae in amber. Supplementary Information The online version contains supplementary material available at 10.1186/s13358-023-00294-2.
Collapse
Affiliation(s)
- Alexandra Viertler
- Natural History Museum Basel, Augustinergasse 2, 4051 Basel, Switzerland
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - Karin Urfer
- Natural History Museum St. Gallen, Rorschacher Strasse 263, 9016 St. Gallen, Switzerland
| | - Georg Schulz
- Core Facility Micro- and Nanotomography, Department of Biomedical Engineering, University of Basel, Hegenheimermattweg 167 B/C, 4123 Allschwil, Switzerland
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Hegenheimermattweg 167 B/C, 4123 Allschwil, Switzerland
| | - Seraina Klopfstein
- Natural History Museum Basel, Augustinergasse 2, 4051 Basel, Switzerland
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - Tamara Spasojevic
- Natural History Museum Basel, Augustinergasse 2, 4051 Basel, Switzerland
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| |
Collapse
|
5
|
Almeida EAB, Bossert S, Danforth BN, Porto DS, Freitas FV, Davis CC, Murray EA, Blaimer BB, Spasojevic T, Ströher PR, Orr MC, Packer L, Brady SG, Kuhlmann M, Branstetter MG, Pie MR. The evolutionary history of bees in time and space. Curr Biol 2023; 33:3409-3422.e6. [PMID: 37506702 DOI: 10.1016/j.cub.2023.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
Bees are the most significant pollinators of flowering plants. This partnership began ca. 120 million years ago, but the uncertainty of how and when bees spread across the planet has greatly obscured investigations of this key mutualism. We present a novel analysis of bee biogeography using extensive new genomic and fossil data to demonstrate that bees originated in Western Gondwana (Africa and South America). Bees likely originated in the Early Cretaceous, shortly before the breakup of Western Gondwana, and the early evolution of any major bee lineage is associated with either the South American or African land masses. Subsequently, bees colonized northern continents via a complex history of vicariance and dispersal. The notable early absences from large landmasses, particularly in Australia and India, have important implications for understanding the assembly of local floras and diverse modes of pollination. How bees spread around the world from their hypothesized Southern Hemisphere origin parallels the histories of numerous flowering plant clades, providing an essential step to studying the evolution of angiosperm pollination syndromes in space and time.
Collapse
Affiliation(s)
- Eduardo A B Almeida
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil.
| | - Silas Bossert
- Department of Entomology, Washington State University, Pullman, WA 99164, USA; Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA.
| | - Bryan N Danforth
- Department of Entomology, Cornell University, Comstock Hall, Ithaca, NY 14853, USA
| | - Diego S Porto
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil; Finnish Museum of Natural History - LUOMUS, University of Helsinki, Helsinki 00014, Finland
| | - Felipe V Freitas
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil; Department of Entomology, Washington State University, Pullman, WA 99164, USA
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, MA 02138, USA
| | - Elizabeth A Murray
- Department of Entomology, Washington State University, Pullman, WA 99164, USA; Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Bonnie B Blaimer
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA; Center for Integrative Biodiversity Discovery, Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, 10115 Berlin, Germany
| | - Tamara Spasojevic
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA; Life Sciences, Natural History Museum Basel, 4051 Basel, Switzerland; Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Patrícia R Ströher
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná 81531-990, Brazil; Department of Anthropology and Archaeology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Michael C Orr
- Entomologie, Staatliches Museum für Naturkunde Stuttgart, 70191 Stuttgart, Germany; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Laurence Packer
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Seán G Brady
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Michael Kuhlmann
- Zoological Museum, University of Kiel, Hegewischstr. 3, 24105 Kiel, Germany
| | - Michael G Branstetter
- U.S. Department of Agriculture, Agricultural Research Service, Pollinating Insects Research Unit, Utah State University, Logan, UT 84322, USA
| | - Marcio R Pie
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná 81531-990, Brazil; Department of Biology, Edge Hill University, St Helens Rd, Ormskirk, Lancashire L39 4QP, UK
| |
Collapse
|
6
|
Price BW, Broad GR. The genome sequence of an ichneumonid wasp, Tromatobia lineatoria (Villers, 1789). Wellcome Open Res 2023; 8:339. [PMID: 39071794 PMCID: PMC11282395 DOI: 10.12688/wellcomeopenres.19830.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 07/30/2024] Open
Abstract
We present a genome assembly from an individual female Tromatobia lineatoria (an ichneumonid wasp; Arthropoda; Insecta; Hymenoptera; Ichneumonidae). The genome sequence is 383.6 megabases in span. Most of the assembly is scaffolded into 21 chromosomal pseudomolecules. The mitochondrial genome has also been assembled and is 23.25 kilobases in length.
Collapse
|
7
|
Luo A, Zhang C, Zhou QS, Ho SYW, Zhu CD. Impacts of Taxon-Sampling Schemes on Bayesian Tip Dating Under the Fossilized Birth-Death Process. Syst Biol 2023; 72:781-801. [PMID: 36919368 PMCID: PMC10405359 DOI: 10.1093/sysbio/syad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/18/2023] [Accepted: 03/14/2023] [Indexed: 03/16/2023] Open
Abstract
Evolutionary timescales can be inferred by molecular-clock analyses of genetic data and fossil evidence. Bayesian phylogenetic methods such as tip dating provide a powerful framework for inferring evolutionary timescales, but the most widely used priors for tree topologies and node times often assume that present-day taxa have been sampled randomly or exhaustively. In practice, taxon sampling is often carried out so as to include representatives of major lineages, such as orders or families. We examined the impacts of different densities of diversified sampling on Bayesian tip dating on unresolved fossilized birth-death (FBD) trees, in which fossil taxa are topologically constrained but their exact placements are averaged out. We used synthetic data generated by simulations of nucleotide sequence evolution, fossil occurrences, and diversified taxon sampling. Our analyses under the diversified-sampling FBD process show that increasing taxon-sampling density does not necessarily improve divergence-time estimates. However, when informative priors were specified for the root age or when tree topologies were fixed to those used for simulation, the performance of tip dating on unresolved FBD trees maintains its accuracy and precision or improves with taxon-sampling density. By exploring three situations in which models are mismatched, we find that including all relevant fossils, without pruning off those that are incompatible with the diversified-sampling FBD process, can lead to underestimation of divergence times. Our reanalysis of a eutherian mammal data set confirms some of the findings from our simulation study, and reveals the complexity of diversified taxon sampling in phylogenomic data sets. In highlighting the interplay of taxon-sampling density and other factors, the results of our study have practical implications for using Bayesian tip dating to infer evolutionary timescales across the Tree of Life. [Bayesian tip dating; eutherian mammals; fossilized birth-death process; phylogenomics; taxon sampling.].
Collapse
Affiliation(s)
- Arong Luo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chi Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Qing-Song Zhou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Chao-Dong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- International College, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Broad L, Broad GR. The genome sequence of an ichneumon wasp, Clistopyga incitator (Fabricius, 1793). Wellcome Open Res 2023; 8:215. [PMID: 38911280 PMCID: PMC11191966 DOI: 10.12688/wellcomeopenres.19302.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 06/25/2024] Open
Abstract
We present a genome assembly from an individual female Clistopyga incitator (an ichneumon wasp; Arthropoda; Insecta; Hymenoptera; Ichneumonidae). The genome sequence is 260.7 megabases in span. Most of the assembly is scaffolded into 21 chromosomal pseudomolecules. The mitochondrial genome has also been assembled and is 25.0 kilobases in length.
Collapse
Affiliation(s)
- Lucy Broad
- Independent researcher, Tonbridge, England, UK
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Tsz Long Wong D, Norman H, Creedy TJ, Jordaens K, Moran KM, Young A, Mengual X, Skevington JH, Vogler AP. The phylogeny and evolutionary ecology of hoverflies (Diptera: Syrphidae) inferred from mitochondrial genomes. Mol Phylogenet Evol 2023; 184:107759. [PMID: 36921697 DOI: 10.1016/j.ympev.2023.107759] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
Hoverflies (Diptera: Syrphidae) are a diverse group of pollinators and a major research focus in ecology, but their phylogenetic relationships remain incompletely known. Using a genome skimming approach we generated mitochondrial genomes for 91 species, capturing a wide taxonomic diversity of the family. To reduce the required amount of input DNA and overall cost of the library construction, sequencing and assembly was conducted on mixtures of specimens, which raises the problem of chimera formation of mitogenomes. We present a novel chimera detection test based on gene tree incongruence, but identified only a single mitogenome of chimeric origin. Together with existing data for a final set of 127 taxa, phylogenetic analysis on nucleotide and amino acid sequences using Maximum Likelihood and Bayesian Inference revealed a basal split of Microdontinae from all other syrphids. The remainder consists of several deep clades assigned to the subfamily Eristalinae in the current classification, including a clade comprising the subfamily Syrphinae (plus Pipizinae). These findings call for a re-definition of subfamilies, but basal nodes had insufficient support to allow such action. Molecular-clock dating placed the origin of the Syrphidae crown group in the mid-Cretaceous while the Eristalinae-Syrphinae clade likely originated near the K/Pg boundary. Transformation of larval life history characters on the tree suggests that Syrphidae initially had sap feeding larvae, which diversified greatly in diet and habitat association during the Eocene and Oligocene, coinciding with the diversification of angiosperms and the evolution of various insect groups used as larval host, prey, or mimicry models. Mitogenomes proved to be a powerful phylogenetic marker for studies of Syrphidae at subfamily and tribe levels, allowing dense taxon sampling that provided insight into the great ecological diversity and rapid evolution of larval life history traits of the hoverflies.
Collapse
Affiliation(s)
- Daniel Tsz Long Wong
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2BX, U.K; Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, U.K.
| | - Hannah Norman
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2BX, U.K; Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, U.K.
| | - Thomas J Creedy
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2BX, U.K; Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, U.K.
| | - Kurt Jordaens
- Department of Biology-Invertebrates Unit, Royal Museum for Central Africa, Joint Experimental Molecular Unit Leuvensesteenweg 13, B-3080 Tervuren, Belgium.
| | - Kevin M Moran
- Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri-Food Canada, K.W. Neatby Building, 960 Carling Avenue, Ottawa, Ontario, ON K1A 0C6, Canada; Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, ON K1S 5B6, Canada.
| | - Andrew Young
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, ON N1G 2W1, Canada.
| | - Ximo Mengual
- Zoologisches Forschungsmuseum Alexander Koenig, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, 53113 Bonn, Germany.
| | - Jeffrey H Skevington
- Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri-Food Canada, K.W. Neatby Building, 960 Carling Avenue, Ottawa, Ontario, ON K1A 0C6, Canada; Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, ON K1S 5B6, Canada.
| | - Alfried P Vogler
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2BX, U.K; Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, U.K.
| |
Collapse
|
10
|
Classifying fossil Darwin wasps (Hymenoptera: Ichneumonidae) with geometric morphometrics of fore wings. PLoS One 2022; 17:e0275570. [DOI: 10.1371/journal.pone.0275570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Linking fossil species to the extant diversity is often a difficult task, and the correct interpretation of character evidence is crucial for assessing their taxonomic placement. Here, we make use of geometric morphometrics of fore wings to help classify five fossil Darwin wasps from the Early Eocene Fur Formation in Denmark into subfamilies and often tribes. We compile a reference dataset with 342 fore wings of nine extant subfamilies and nine relevant fossil species. Since geometric morphometrics was mostly ignored in the past in Darwin wasp classification, the dataset is first used to examine differences and similarities in wing venation among subfamilies. In a next step, we used the reference dataset to inform the classification of the fossil species, which resulted in the description of one new genus and five new species, Crusopimpla weltii sp. nov., Ebriosa flava gen. et sp. nov., Entypoma? duergari sp. nov., Lathrolestes? zlatorog sp. nov., and Triclistus bibori sp. nov., in four different subfamilies. Carefully assessing data quality, we show that the fore wing venation of fossil Darwin wasps is surprisingly suitable to assign them to a subfamily or even lower taxonomic level, especially when used in conjunction with characters from other parts of the body to narrow down a candidate set of potential subfamilies and tribes. Our results not only demonstrate a fast and useful approach to inform fossil classification but provide a basis for future investigations into evolutionary changes in fore wings of ichneumonids. The high informativeness of wing venation for classification furthermore could be harvested for phylogenetic analyses, which are otherwise often hampered by homoplasy in this parasitoid wasp family.
Collapse
|
11
|
Bippus AC, Flores JR, Hyvönen J, Tomescu AMF. The role of paleontological data in bryophyte systematics. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4273-4290. [PMID: 35394022 DOI: 10.1093/jxb/erac137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Systematics reconstructs tempo and mode in biological evolution by resolving the phylogenetic fabric of biodiversity. The staggering duration and complexity of evolution, coupled with loss of information (extinction), render exhaustive reconstruction of the evolutionary history of life unattainable. Instead, we sample its products-phenotypes and genotypes-to generate phylogenetic hypotheses, which we sequentially reassess and update against new data. Current consensus in evolutionary biology emphasizes fossil integration in total-evidence analyses, requiring in-depth understanding of fossils-age, phenotypes, and systematic affinities-and a detailed morphological framework uniting fossil and extant taxa. Bryophytes present a special case: deep evolutionary history but sparse fossil record and phenotypic diversity encompassing small dimensional scales. We review how these peculiarities shape fossil inclusion in bryophyte systematics. Paucity of the bryophyte fossil record, driven primarily by phenotypic (small plant size) and ecological constraints (patchy substrate-hugging populations), and incomplete exploration, results in many morphologically isolated, taxonomically ambiguous fossil taxa. Nevertheless, instances of exquisite preservation and pioneering studies demonstrate the feasibility of including bryophyte fossils in evolutionary inference. Further progress will arise from developing extensive morphological matrices for bryophytes, continued exploration of the fossil record, re-evaluation of previously described fossils, and training specialists in identification and characterization of bryophyte fossils, and in bryophyte morphology.
Collapse
Affiliation(s)
- Alexander C Bippus
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
- Department of Biological Sciences, California State Polytechnic University-Humboldt, Arcata, CA, USA
| | - Jorge R Flores
- Finnish Museum of Natural History (Botany), University of Helsinki, Helsinki, Finland
| | - Jaakko Hyvönen
- Finnish Museum of Natural History (Botany), University of Helsinki, Helsinki, Finland
- Viikki Plant Science Center & Organismal & Evolutionary Biology, University of Helsinki, Helsinki, Finland
| | - Alexandru M F Tomescu
- Department of Biological Sciences, California State Polytechnic University-Humboldt, Arcata, CA, USA
| |
Collapse
|
12
|
Álvarez-Parra S, Peñalver E, Delclòs X, Engel MS. A braconid wasp (Hymenoptera, Braconidae) from the Lower Cretaceous amber of San Just, eastern Iberian Peninsula. Zookeys 2022; 1103:65-78. [PMID: 36761791 PMCID: PMC9848867 DOI: 10.3897/zookeys.1103.83650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/22/2022] [Indexed: 11/12/2022] Open
Abstract
Braconid parasitoid wasps are a widely diversified group today, while their fossil record from the Mesozoic is currently poorly known. Here, we describe Utrillabraconelectropteron Álvarez-Parra & Engel, gen. et sp. nov., from the upper Albian (Lower Cretaceous) amber of San Just in the eastern Iberian Peninsula. The holotype specimen is incomplete, although the forewing and hind wing venation are well preserved. The new taxon is assigned to the subfamily †Protorhyssalinae (Braconidae) and, based on characteristics of the wing venation, seems to be closely related to Protorhyssalusgoldmani Basibuyuk & Quicke, 1999 and Diorhyssalusallani (Brues, 1937), both from Upper Cretaceous ambers of North America. We discuss the taxonomy of the Cretaceous braconids, considering †Seneciobraconinae as a valid subfamily. We also comment on possible relationships within †Protorhyssalinae, although a phylogenetic analysis is necessary. Additionally, a checklist is included of braconids known from Cretaceous ambers.
Collapse
Affiliation(s)
- Sergio Álvarez-Parra
- Departament de Dinàmica de la Terra i de l’Oceà and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Ciències de la Terra, Universitat de Barcelona, c/ Martí i Franquès s/n, 08028, Barcelona, Spain
| | - Enrique Peñalver
- Instituto Geológico y Minero de España-CSIC, c/ Cirilo Amorós 42, 46004, Valencia, Spain
| | - Xavier Delclòs
- Departament de Dinàmica de la Terra i de l’Oceà and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Ciències de la Terra, Universitat de Barcelona, c/ Martí i Franquès s/n, 08028, Barcelona, Spain
| | - Michael S. Engel
- Division of Entomology, Natural History Museum, University of Kansas, 1501 Crestline Drive – Suite 140, Lawrence, Kansas 66045-4415, USA,Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
13
|
Santos BF, Klopfstein S, Whitfield JB, Sharanowski BJ. Many evolutionary roads led to virus domestication in ichneumonoid parasitoid wasps. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100861. [PMID: 34896617 DOI: 10.1016/j.cois.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/13/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
The investigation of endogenous viral elements (EVEs) has historically focused on only a few lineages of parasitoid wasps, with negative results consistently underreported. Recent studies show that multiple viral lineages were integrated in at least seven instances in Ichneumonoidea and may be much more widespread than previously thought. Increasingly affordable genomic and bioinformatic approaches have made it feasible to search for viral sequences within wasp genomes, opening an extremely promising research avenue. Advances in wasp phylogenetics have shed light on the evolutionary history of EVE integration, although many questions remain. Phylogenetic proximity can be used as a guide to facilitate targeted screening, to estimate the number and age of integration events and to identify taxa involved in major host switches.
Collapse
Affiliation(s)
- Bernardo F Santos
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, SU, EPHE, UA, 57 rue Cuvier CP50, Paris Cedex 05, 75231, France
| | - Seraina Klopfstein
- Naturhistorisches Museum Basel, Augustinergasse 2, Basel, 4501, Switzerland
| | - James B Whitfield
- Department of Entomology, 505 S. Goodwin Ave., University of Illinois, Urbana, IL 61801, USA
| | - Barbara J Sharanowski
- University of Central Florida, Department of Biology, 4110 Libra Drive, Biological Sciences Bldg Rm 301, Orlando, FL 32816, USA.
| |
Collapse
|
14
|
Jasso-Martínez JM, Santos BF, Zaldívar-Riverón A, Fernandez-Triana J, Sharanowski BJ, Richter R, Dettman JR, Blaimer BB, Brady SG, Kula RR. Phylogenomics of braconid wasps (Hymenoptera, Braconidae) sheds light on classification and the evolution of parasitoid life history traits. Mol Phylogenet Evol 2022; 173:107452. [DOI: 10.1016/j.ympev.2022.107452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 01/05/2023]
|
15
|
Jouault C, Maréchal A, Condamine FL, Wang B, Nel A, Legendre F, Perrichot V. Including fossils in phylogeny: a glimpse into the evolution of the superfamily Evanioidea (Hymenoptera: Apocrita) under tip-dating and the fossilized birth–death process. Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Using a fossilized birth–death model, a new phylogeny of the superfamily Evanioidea (including ensign wasps, nightshade wasps and hatchet wasps) is proposed, with estimates of divergence times for its constitutive families and for corroborating the monophyly of Evanioidea. Additionally, our Bayesian analyses demonstrate the monophyly of †Anomopterellidae, †Othniodellithidae, †Andreneliidae, Aulacidae, Gasteruptiida and Evaniidae, whereas †Praeaulacidae and †Baissidae appear to be paraphyletic. Vectevania vetula and Hyptiogastrites electrinus are transferred to Aulacidae. We estimate the divergence time of Evanioidea to be in the Late Triassic (~203 Mya). Additionally, three new othniodellithid wasps are described and figured from mid-Cretaceous Burmese amber as the new genus Keratodellitha, with three new species: Keratodellitha anubis sp. nov., Keratodellitha basilisci sp. nov. and Keratodellitha kirin sp. nov. We also document a temporal shift in relative species richness between Ichneumonoidea and Evanioidea.
Collapse
Affiliation(s)
| | | | - Fabien L Condamine
- CNRS, UMR 5554 Institut des Sciences de l’Évolution de Montpellier, Place Eugène Bataillon, Montpellier, France
| | - Bo Wang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
| | - André Nel
- Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR 7205, Muséum national d’Histoire naturelle, CNRS, SU, EPHE, Université des Antilles, Paris, France
| | - Frédéric Legendre
- Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR 7205, Muséum national d’Histoire naturelle, CNRS, SU, EPHE, Université des Antilles, Paris, France
| | | |
Collapse
|