1
|
Quirk ZJ, Smith SY, Paul Acosta R, Poulsen CJ. Where did they come from, where did they go? Niche conservatism in woody and herbaceous plants and implications for plant-based paleoclimatic reconstructions. AMERICAN JOURNAL OF BOTANY 2024; 111:e16426. [PMID: 39449637 PMCID: PMC11584045 DOI: 10.1002/ajb2.16426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 10/26/2024]
Abstract
PREMISE The ecological conditions that constrain plants to an environmental niche are assumed to be constant through time. While the fossil record has been used previously to test for niche conservatism of woody flowering plants, additional studies are needed in other plant groups especially since they can provide insight with paleoclimatic reconstructions, high biodiversity in modern terrestrial ecosystems, and significant contributions to agriculture. METHODS We tested climatic niche conservatism across time by characterizing the climatic niches of living herbaceous ginger plants (Zingiberaceae) and woody dawn redwood (Metasequoia) against paleoniches reconstructed based on fossil distribution data and paleoclimatic models. RESULTS Despite few fossil Zingiberaceae occurrences in the latitudinal tropics, unlike living Zingiberaceae, extinct Zingiberaceae likely experienced paratropical conditions in the higher latitudes, especially in the Cretaceous and Paleogene. The living and fossil distributions of Metasequoia largely remain in the upper latitudes of the northern hemisphere. The Zingiberaceae shifted from an initial subtropical climatic paleoniche in the Cretaceous, toward a temperate regime in the late Cenozoic; Metasequoia occupied a more consistent climatic niche over the same time intervals. CONCLUSIONS Because of the inconsistent climatic niches of Zingiberaceae over geologic time, we are less confident of using them for taxonomic-based paleoclimatic reconstruction methods like nearest living relative, which assume a consistent climatic niche between extant and extinct relatives; we argue that the consistent climatic niche of Metasequoia is more appropriate for these reconstructions. Niche conservatism cannot be assumed between extant and extinct plants and should be tested further in groups used for paleoclimatic reconstructions.
Collapse
Affiliation(s)
- Zack J Quirk
- Department of Earth and Environmental Sciences and Museum of Paleontology, University of Michigan, North University Building, 1100 North University Ave., Ann Arbor, 48109-1005, MI, USA
- U.S. Department of Energy, Forrestal Building, Washington, 20585, D.C, USA
| | - Selena Y Smith
- Department of Earth and Environmental Sciences and Museum of Paleontology, University of Michigan, North University Building, 1100 North University Ave., Ann Arbor, 48109-1005, MI, USA
| | - R Paul Acosta
- Department of Earth and Environmental Sciences and Museum of Paleontology, University of Michigan, North University Building, 1100 North University Ave., Ann Arbor, 48109-1005, MI, USA
- Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, 4400 University Dr., Fairfax, 22030, VA, USA
| | - Christopher J Poulsen
- Department of Earth and Environmental Sciences and Museum of Paleontology, University of Michigan, North University Building, 1100 North University Ave., Ann Arbor, 48109-1005, MI, USA
- Department of Earth Sciences, University of Oregon, Eugene, 97403, OR, USA
| |
Collapse
|
2
|
Capobianco A, Friedman M. Fossils indicate marine dispersal in osteoglossid fishes, a classic example of continental vicariance. Proc Biol Sci 2024; 291:20241293. [PMID: 39137888 PMCID: PMC11321865 DOI: 10.1098/rspb.2024.1293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024] Open
Abstract
The separation of closely related terrestrial or freshwater species by vast marine barriers represents a biogeographical riddle. Such cases can provide evidence for vicariance, a process whereby ancient geological events like continental rifting divided ancestral geographical ranges. With an evolutionary history extending tens of millions of years, freshwater ecology, and distribution encompassing widely separated southern landmasses, osteoglossid bonytongue fishes are a textbook case of vicariance attributed to Mesozoic fragmentation of the Gondwanan supercontinent. Largely overlooked fossils complicate the clean narrative invoked for extant species by recording occurrences on additional continents and in marine settings. Here, we present a new total-evidence phylogenetic hypothesis for bonytongue fishes combined with quantitative models of range evolution and show that the last common ancestor of extant osteoglossids was likely marine, and that the group colonized freshwater settings at least four times when both extant and extinct lineages are considered. The correspondence between extant osteoglossid relationships and patterns of continental fragmentation therefore represents a striking example of biogeographical pseudocongruence. Contrary to arguments against vicariance hypotheses that rely only on temporal or phylogenetic evidence, these results provide direct palaeontological support for enhanced dispersal ability early in the history of a group with widely separated distributions in the modern day.
Collapse
Affiliation(s)
- Alessio Capobianco
- GeoBio-Center LMU, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
- Museum of Paleontology, University of Michigan, Ann Arbor, MI, USA
| | - Matt Friedman
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
- Museum of Paleontology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Lian L, Peng HW, Erst AS, Ortiz RDC, Jabbour F, Chen ZD, Wang W. Bayesian tip-dated phylogeny and biogeography of Cissampelideae (Menispermaceae): Mitigating the effects of homoplastic morphological characters. Cladistics 2024; 40:391-410. [PMID: 38469932 DOI: 10.1111/cla.12573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
The integration of morphological and molecular data is essential to understand the affinities of fossil taxa and spatio-temporal evolutionary processes of organisms. However, homoplastic morphological characters can mislead the placement of fossil taxa and impact downstream analyses. Here, we provide an example of how to mitigate effectively the effect of morphological homoplasy on the placement of fossil taxa and biogeographic inferences of Cissampelideae. We assembled three data types, morphological data only, morphological data with a molecular scaffold and combined morphological and molecular data. By removing high-level homoplastic morphological data or reweighting the morphological characters, we conducted 15 parsimony, 12 undated Bayesian and four dated Bayesian analyses. Our results show that the 14 selected Cissampelideae fossil taxa are placed poorly when based only on morphological data, but the addition of molecular scaffold and combination of morphological and molecular data greatly improve the resolution of fossil nodes. We raise the monotypic Stephania subg. Botryodiscia to generic status and discover that three fossils previously assigned to Stephania should be members of Diploclisia. The Bayesian tip-dated tree recovered by removing homoplastic morphological characters with a Rescaled Consistency Index <0.25 has the highest stratigraphic fit and consequently generates more reasonable biogeographic reconstruction for Cissampelideae. Cissampelideae began to diversify in Asia in the latest Cretaceous and subsequently dispersed to South America around the Cretaceous-Palaeogene boundary. Two dispersal events from Asia to Africa occurred in the Early Eocene and the Late Eocene-Late Oligocene, respectively. These findings provide guidelines and practical methods for mitigating the effects of homoplastic morphological characters on fossil placements and Bayesian tip-dating, as well as insights into the past tropical floristic exchanges among different continents.
Collapse
Affiliation(s)
- Lian Lian
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Huan-Wen Peng
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Andrey S Erst
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences, Zolotodolinskaya str. 101, Novosibirsk, 630090, Russia
| | - Rosa Del C Ortiz
- Missouri Botanical Garden, 4344 Shaw Blvd, St Louis, Missouri, 63110, USA
| | - Florian Jabbour
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, Université des Antilles, EPHE, 57 rue Cuvier, CP39, Paris, 75005, France
| | - Zhi-Duan Chen
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Wang
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Huang Y, Jin XJ, Zhang CY, Li P, Meng HH, Zhang YH. Plastome evolution of Engelhardia facilitates phylogeny of Juglandaceae. BMC PLANT BIOLOGY 2024; 24:634. [PMID: 38971744 PMCID: PMC11227234 DOI: 10.1186/s12870-024-05293-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Engelhardia (Juglandaceae) is a genus of significant ecological and economic importance, prevalent in the tropics and subtropics of East Asia. Although previous efforts based on multiple molecular markers providing profound insights into species delimitation and phylogeography of Engelhardia, the maternal genome evolution and phylogeny of Engelhardia in Juglandaceae still need to be comprehensively evaluated. In this study, we sequenced plastomes from 14 samples of eight Engelhardia species and the outgroup Rhoiptelea chiliantha, and incorporated published data from 36 Juglandaceae and six outgroup species to test phylogenetic resolution. Moreover, comparative analyses of the plastomes were conducted to investigate the plastomes evolution of Engelhardia and the whole Juglandaceae family. RESULTS The 13 Engelhardia plastomes were highly similar in genome size, gene content, and order. They exhibited a typical quadripartite structure, with lengths from 161,069 bp to 162,336 bp. Three mutation hotspot regions (TrnK-rps16, ndhF-rpl32, and ycf1) could be used as effective molecular markers for further phylogenetic analyses and species identification. Insertion and deletion (InDels) may be an important driving factor for the evolution of plastomes in Juglandoideae and Engelhardioideae. A total of ten codons were identified as the optimal codons in Juglandaceae. The mutation pressure mostly contributed to shaping codon usage. Seventy-eight protein-coding genes in Juglandaceae experienced relaxed purifying selection, only rpl22 and psaI genes showed positive selection (Ka/Ks > 1). Phylogenetic results fully supported Engelhardia as a monophyletic group including two sects and the division of Juglandaceae into three subfamilies. The Engelhardia originated in the Late Cretaceous and diversified in the Late Eocene, and Juglandaceae originated in the Early Cretaceous and differentiated in Middle Cretaceous. The phylogeny and divergence times didn't support rapid radiation occurred in the evolution history of Engelhardia. CONCLUSION Our study fully supported the taxonomic treatment of at the section for Engelhardia species and three subfamilies for Juglandaceae and confirmed the power of phylogenetic resolution using plastome sequences. Moreover, our results also laid the foundation for further studying the course, tempo and mode of plastome evolution of Engelhardia and the whole Juglandaceae family.
Collapse
Affiliation(s)
- Yue Huang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Xin-Jie Jin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Can-Yu Zhang
- Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Pan Li
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hong-Hu Meng
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation & Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China.
| | - Yong-Hua Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
5
|
Ramírez-Barahona S. Incorporating fossils into the joint inference of phylogeny and biogeography of the tree fern order Cyatheales. Evolution 2024; 78:919-933. [PMID: 38437579 DOI: 10.1093/evolut/qpae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Present-day geographic and phylogenetic patterns often reflect the geological and climatic history of the planet. Neontological distribution data are often sufficient to unravel a lineage's biogeographic history, yet ancestral range inferences can be at odds with fossil evidence. Here, I use the fossilized birth-death process and the dispersal-extinction cladogenesis model to jointly infer the dated phylogeny and range evolution of the tree fern order Cyatheales. I use data for 101 fossil and 442 extant tree ferns to reconstruct the biogeographic history of the group over the last 220 million years. Fossil-aware reconstructions evince a prolonged occupancy of Laurasia over the Triassic-Cretaceous by Cyathealean tree ferns, which is evident in the fossil record but hidden from analyses relying on neontological data alone. Nonetheless, fossil-aware reconstructions are affected by uncertainty in fossils' phylogenetic placement, taphonomic biases, and specimen sampling and are sensitive to interpretation of paleodistributions and how these are scored. The present results highlight the need and challenges of incorporating fossils into joint inferences of phylogeny and biogeography to improve the reliability of ancestral geographic range estimation.
Collapse
Affiliation(s)
- Santiago Ramírez-Barahona
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
6
|
Ma J, Zuo D, Zhang X, Li H, Ye H, Zhang N, Li M, Dang M, Geng F, Zhou H, Zhao P. Genome-wide identification analysis of the 4-Coumarate: CoA ligase (4CL) gene family expression profiles in Juglans regia and its wild relatives J. Mandshurica resistance and salt stress. BMC PLANT BIOLOGY 2024; 24:211. [PMID: 38519917 PMCID: PMC10960452 DOI: 10.1186/s12870-024-04899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Persian walnut (Juglans regia) and Manchurian walnut (Juglans mandshurica) belong to Juglandaceae, which are vulnerable, temperate deciduous perennial trees with high economical, ecological, and industrial values. 4-Coumarate: CoA ligase (4CL) plays an essential function in plant development, growth, and stress. Walnut production is challenged by diverse stresses, such as salinity, drought, and diseases. However, the characteristics and expression levels of 4CL gene family in Juglans species resistance and under salt stress are unknown. Here, we identified 36 Jr4CL genes and 31 Jm4CL genes, respectively. Based on phylogenetic relationship analysis, all 4CL genes were divided into three branches. WGD was the major duplication mode for 4CLs in two Juglans species. The phylogenic and collinearity analyses showed that the 4CLs were relatively conserved during evolution, but the gene structures varied widely. 4CLs promoter region contained multiply cis-acting elements related to phytohormones and stress responses. We found that Jr4CLs may be participated in the regulation of resistance to anthracnose. The expression level and some physiological of 4CLs were changed significantly after salt treatment. According to qRT-PCR results, positive regulation was found to be the main mode of regulation of 4CL genes after salt stress. Overall, J. mandshurica outperformed J. regia. Therefore, J. mandshurica can be used as a walnut rootstock to improve salt tolerance. Our results provide new understanding the potential functions of 4CL genes in stress tolerance, offer the theoretical genetic basis of walnut varieties adapted to salt stress, and provide an important reference for breeding cultivated walnuts for stress tolerance.
Collapse
Affiliation(s)
- Jiayu Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Dongjun Zuo
- College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Xuedong Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Haochen Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Nijing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Mengdi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Meng Dang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Fangdong Geng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Huijuan Zhou
- Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Shaanxi Academy of Science, Xi'an, Shaanxi, China.
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
7
|
Lu ZJ, Wang TR, Zheng SS, Meng HH, Cao JG, Song YG, Kozlowski G. Phylogeography of Pterocarya hupehensis reveals the evolutionary patterns of a Cenozoic relict tree around the Sichuan Basin. FORESTRY RESEARCH 2024; 4:e008. [PMID: 39524416 PMCID: PMC11524273 DOI: 10.48130/forres-0024-0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/07/2024] [Accepted: 02/17/2024] [Indexed: 11/16/2024]
Abstract
Environmental factors such as mountain tectonic movements and monsoons can enhance genetic differentiation by hindering inter- and intra-specific gene flow. However, the phylogeographic breaks detected within species may differ depending on the different molecular markers used, and biological traits may be a major confounding factor. Pterocarya hupehensis is a vulnerable relict species distributed throughout the Sichuan Basin. Here, we investigated the phylogeographic patterns and evolutionary history of P. hupehensis using chloroplast DNA and restriction site-associated DNA sequencing data from 18 populations around the Sichuan Basin. The 24 chloroplast haplotypes separated into western and eastern lineages at approximately 16.7 Mya, largely coincident with a strengthening of the East Asian monsoon system during the early to middle Miocene. Both cpDNA and nuclear DNA datasets consistently identified distinct western and eastern lineages whose phylogeographic break conformed to the boundary of the Sino-Himalayan and Sino-Japanese forest sub-kingdoms. However, in contrast to the nuclear gene data, the cpDNA data revealed further divergence of the eastern lineage into northern and southern groups along the Yangtze River, a result that likely reflects differences in the extent of pollen vs seed dispersal. During the temperature decline in the penultimate (Riss) glacial period of the Pleistocene epoch, P. hupehensis experienced a genetic bottleneck event, and ecological niche modeling suggests that a subsequent population expansion occurred during the last interglacial period. Our findings not only establish a basis for conservation of this species, but also serve as a case study for the effects of geography and climate change on the evolutionary history of wind-pollinated relict plants.
Collapse
Affiliation(s)
- Zi-Jia Lu
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Tian-Rui Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Si-Si Zheng
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Hong-Hu Meng
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Naypyidaw 05282, Myanmar
| | - Jian-Guo Cao
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yi-Gang Song
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
- Department of Biology and Botanic Garden, University of Fribourg, Fribourg 1700, Switzerland
| | - Gregor Kozlowski
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- Department of Biology and Botanic Garden, University of Fribourg, Fribourg 1700, Switzerland
- Natural History Museum Fribourg, Fribourg 1700, Switzerland
| |
Collapse
|
8
|
Zhou H, Zhang X, Liu H, Ma J, Hao F, Ye H, Wang Y, Zhang S, Yue M, Zhao P. Chromosome-level genome assembly of Platycarya strobilacea. Sci Data 2024; 11:269. [PMID: 38443357 PMCID: PMC10914804 DOI: 10.1038/s41597-024-03107-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/29/2024] [Indexed: 03/07/2024] Open
Abstract
Platycarya strobilacea belongs to the walnut family (Juglandaceae), is commonly known as species endemic to East Asia, and is an ecologically important, wind pollinated, woody deciduous tree. To facilitate this ancient tree for the ecological value and conservation of this ancient tree, we report a new high-quality genome assembly of P. strobilacea. The genome size was 677.30 Mb, with a scaffold N50 size of 45,791,698 bp, and 98.43% of the assembly was anchored to 15 chromosomes. We annotated 32,246 protein-coding genes in the genome, of which 96.30% were functionally annotated in six databases. This new high-quality assembly of P. strobilacea provide valuable resource for the phylogenetic and evolutionary analysis of the walnut family and angiosperm.
Collapse
Affiliation(s)
- Huijuan Zhou
- Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Shaanxi Academy of Science, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Xuedong Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Hengzhao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Jiayu Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Fan Hao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yaling Wang
- Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Shaanxi Academy of Science, Xi'an, Shaanxi, 710061, China
| | - Shuoxin Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ming Yue
- Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Shaanxi Academy of Science, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
9
|
Coiro M. Embracing uncertainty: The way forward in plant fossil phylogenetics. AMERICAN JOURNAL OF BOTANY 2024; 111:e16282. [PMID: 38334302 DOI: 10.1002/ajb2.16282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 02/10/2024]
Abstract
Although molecular phylogenetics remains the most widely used method of inferring the evolutionary history of living groups, the last decade has seen a renewed interest in morphological phylogenetics, mostly driven by the promises that integrating the fossil record in phylogenetic trees offers to our understanding of macroevolutionary processes and dynamics and the possibility that the inclusion of fossil taxa could lead to more accurate phylogenetic hypotheses. The plant fossil record presents some challenges to its integration in a phylogenetic framework. Phylogenies including plant fossils often retrieve uncertain relationships with low support, or lack of resolution. This low support is due to the pervasiveness of morphological convergence among plant organs and the fragmentary nature of many plant fossils, and it is often perceived as a fundamental weakness reducing the utility of plant fossils in phylogenetics. Here I discuss the importance of uncertainty in morphological phylogenetics and how we can identify important information from different patterns and types of uncertainty. I also review a set of methodologies that can allow us to understand the causes underpinning uncertainty and how these practices can help us to further our knowledge of plant fossils. I also propose that a new visual language, including the use of networks instead of trees, represents an improvement on the old visualization based on consensus trees and more adequately serves phylogeneticists working with plant fossils. This set of methods and visualization tools represents an important way forward in a fundamental field for our understanding of the evolutionary history of plants.
Collapse
Affiliation(s)
- Mario Coiro
- Department of Palaeontology, University of Vienna, Vienna, Austria
- Ronin Institute for Independent Scholarship, Montclair, NJ, USA
| |
Collapse
|
10
|
Coiro M, Allio R, Mazet N, Seyfullah LJ, Condamine FL. Reconciling fossils with phylogenies reveals the origin and macroevolutionary processes explaining the global cycad biodiversity. THE NEW PHYTOLOGIST 2023; 240:1616-1635. [PMID: 37302411 PMCID: PMC10953041 DOI: 10.1111/nph.19010] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/01/2023] [Indexed: 06/13/2023]
Abstract
The determinants of biodiversity patterns can be understood using macroevolutionary analyses. The integration of fossils into phylogenies offers a deeper understanding of processes underlying biodiversity patterns in deep time. Cycadales are considered a relict of a once more diverse and globally distributed group but are restricted to low latitudes today. We still know little about their origin and geographic range evolution. Combining molecular data for extant species and leaf morphological data for extant and fossil species, we study the origin of cycad global biodiversity patterns through Bayesian total-evidence dating analyses. We assess the ancestral geographic origin and trace the historical biogeography of cycads with a time-stratified process-based model. Cycads originated in the Carboniferous on the Laurasian landmass and expanded in Gondwana in the Jurassic. Through now-vanished continental connections, Antarctica and Greenland were crucial biogeographic crossroads for cycad biogeography. Vicariance is an essential speciation mode in the deep and recent past. Their latitudinal span increased in the Jurassic and restrained toward subtropical latitudes in the Neogene in line with biogeographic inferences of high-latitude extirpations. We show the benefits of integrating fossils into phylogenies to estimate ancestral areas of origin and to study evolutionary processes explaining the global distribution of present-day relict groups.
Collapse
Affiliation(s)
- Mario Coiro
- Department of PalaeontologyUniversity of Vienna1090ViennaAustria
- Ronin Institute for Independent ScholarshipMontclairNJ07043USA
| | - Rémi Allio
- Centre de Biologie pour la Gestion des Populations, INRAE, CIRAD, IRD, Montpellier SupAgroUniversité de Montpellier34988MontpellierFrance
| | - Nathan Mazet
- CNRS, Institut des Sciences de l'Evolution de Montpellier, Université de MontpellierPlace Eugène Bataillon34095MontpellierFrance
| | | | - Fabien L. Condamine
- CNRS, Institut des Sciences de l'Evolution de Montpellier, Université de MontpellierPlace Eugène Bataillon34095MontpellierFrance
| |
Collapse
|
11
|
Li M, Ou M, He X, Ye H, Ma J, Liu H, Yang H, Zhao P. DNA methylation role in subgenome expression dominance of Juglans regia and its wild relative J. mandshurica. PLANT PHYSIOLOGY 2023; 193:1313-1329. [PMID: 37403190 DOI: 10.1093/plphys/kiad394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023]
Abstract
Subgenome expression dominance plays a crucial role in the environmental adaptation of polyploids. However, the epigenetic molecular mechanism underlying this process has not been thoroughly investigated, particularly in perennial woody plants. Persian walnut (Juglans regia) and its wild relative, Manchurian walnut (Juglans mandshurica), are woody plants of great economic importance and are both paleopolyploids that have undergone whole-genome duplication events. In this study, we explored the characteristics of subgenome expression dominance in these 2 Juglans species and examined its epigenetic basis. We divided their genomes into dominant subgenome (DS) and submissive subgenome (SS) and found that the DS-specific genes might play critical roles in biotic stress response or pathogen defense. We comprehensively elucidated the characteristics of biased gene expression, asymmetric DNA methylation, transposable elements (TEs), and alternative splicing (AS) events of homoeologous gene pairs between subgenomes. The results showed that biased expression genes (BEGs) in 2 Juglans species were mainly related to external stimuli response, while non-BEGs were related to complexes that might be involved in signal transduction. DS genes had higher expression and more AS events while having less DNA methylation and TEs than homoeologous genes from the SS in the 2 Juglans species. Further studies showed that DNA methylation might contribute to the biased expression of gene pairs by modifying LTR/TIR/nonTIR TEs and improving the AS efficiency of corresponding precursor mRNAs in a particular context. Our study contributes to understanding the epigenetic basis of subgenome expression dominance and the environmental adaptation of perennial woody plants.
Collapse
Affiliation(s)
- Mengdi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Mengwei Ou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xiaozhou He
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jiayu Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Hengzhao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Huijuan Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| |
Collapse
|
12
|
Yang Y, Forsythe ES, Ding YM, Zhang DY, Bai WN. Genomic Analysis of Plastid-Nuclear Interactions and Differential Evolution Rates in Coevolved Genes across Juglandaceae Species. Genome Biol Evol 2023; 15:evad145. [PMID: 37515592 PMCID: PMC10410296 DOI: 10.1093/gbe/evad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/07/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023] Open
Abstract
The interaction between the nuclear and chloroplast genomes in plants is crucial for preserving essential cellular functions in the face of varying rates of mutation, levels of selection, and modes of transmission. Despite this, identifying nuclear genes that coevolve with chloroplast genomes at a genome-wide level has remained a challenge. In this study, we conducted an evolutionary rate covariation analysis to identify candidate nuclear genes coevolving with chloroplast genomes in Juglandaceae. Our analysis was based on 4,894 orthologous nuclear genes and 76 genes across seven chloroplast partitions in nine Juglandaceae species. Our results indicated that 1,369 (27.97%) of the nuclear genes demonstrated signatures of coevolution, with the Ycf1/2 partition yielding the largest number of hits (765) and the ClpP1 partition yielding the fewest (13). These hits were found to be significantly enriched in biological processes related to leaf development, photoperiodism, and response to abiotic stress. Among the seven partitions, AccD, ClpP1, MatK, and RNA polymerase partitions and their respective hits exhibited a narrow range, characterized by dN/dS values below 1. In contrast, the Ribosomal, Photosynthesis, Ycf1/2 partitions and their corresponding hits, displayed a broader range of dN/dS values, with certain values exceeding 1. Our findings highlight the differences in the number of candidate nuclear genes coevolving with the seven chloroplast partitions in Juglandaceae species and the correlation between the evolution rates of these genes and their corresponding chloroplast partitions.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Evan S Forsythe
- Department of Biology, Oregon State University-Cascades, Bend, Oregon, USA
- Integrative Biology Department, Oregon State University, Corvallis, Oregon, USA
| | - Ya-Mei Ding
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
- South China Botanical Garden, The Chinese Academy of Sciences, Guangdong, China
| | - Da-Yong Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Wei-Ning Bai
- State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
13
|
Song H, Huang L, Xiang H, Quan C, Jin J. First reliable Miocene fossil winged fruits record of Engelhardia in Asia through anatomical investigation. iScience 2023; 26:106867. [PMID: 37260748 PMCID: PMC10227380 DOI: 10.1016/j.isci.2023.106867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/01/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023] Open
Abstract
Fossil genera with similar features to the winged fruits of the living Engelhardia Lesch. ex Blume (e.g., Palaeocarya G. Saporta) have been widely reported in Cenozoic fossil floras of the Northern Hemisphere. However, fossil winged fruits of Engelhardia with detailed anatomical structures have only been found in the upper Eocene of North America. This study reports the first Engelhardia fossil winged fruits with detailed anatomical structures in East Asia from the Miocene Erzitang Formation of Guangxi, South China. The anatomical and morphological features of the new fossils, including the unique structure of secondary septa, clearly distinguish them from other fossil genera and show unambiguously their attribution to the genus Engelhardia. This discovery suggests that Engelhardia had reached its modern distribution during the Miocene and the climate of the Guiping Basin in Guangxi during the Miocene was similar to that of present-day tropical and subtropical regions in Asia.
Collapse
Affiliation(s)
- Hanzhang Song
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Luliang Huang
- School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Helanlin Xiang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Cheng Quan
- School of Earth Science & Resources, Chang'an University, Xi'an 710061, China
| | - Jianhua Jin
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
14
|
Wan X, Zhang L, Lehtonen S, Tuomisto H, Zhang DW, Gao XF, Zhang LB. Five long-distance dispersals shaped the major intercontinental disjunctions in Tectariaceae s.l. (Polypodiales, Polypodiopsida). Mol Phylogenet Evol 2023:107845. [PMID: 37301485 DOI: 10.1016/j.ympev.2023.107845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Intercontinental disjunct distributions can arise either from vicariance, from long-distance dispersal, or through extinction of an ancestral population with a broader distribution. Tectariaceae s.l., a clade of ferns in Polypodiales with ca. 300 species mainly distributed in the tropics and subtropics, provide an excellent opportunity to investigate global distribution patterns. Here, we assembled a dataset of eight plastid markers and one nuclear marker of 636 (92% increase of the earlier largest sampling) accessions representing ca. 210 species of all eight genera in Tectariaceae s.l. (Arthropteridaceae, Pteridryaceae, and Tectariaceae s.s.) and 35 species of other families of eupolypods Ⅰ. A new phylogeny is reconstructed to study the biogeography and trait-associated diversification. Our major results include: (1) a distinct lineage of Tectaria sister to the rest of the American Tectaria is identified; (2) Tectariaceae s.l., and the three families: Arthropteridaceae (Arthropteris), Pteridryaceae (Draconopteris, Malaifilix, Polydictyum, Pteridrys), and Tectariaceae s.s. (Hypoderris, Tectaria, and Triplophyllum), might have all originated in late Cretaceous; (3) only five intercontinental dispersals occurred in Pteridryaceae and Tectariaceae s.s. giving rise to their current intercontinental disjunction; (4) we provide the second evidence in ferns that a long-distance dispersal between Malesia and Americas during the Paleocene to Eocene led to the establishment/origin of a new genus (Draconopteris); and (5) diversification rate of each state of leaf dissection is different, and the lowest is in the simple-leaved taxa.
Collapse
Affiliation(s)
- Xia Wan
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China; University of Chinese Academy of Sciences, Beijing 100049, China; Missouri Botanical Garden, St. Louis, Missouri 63110, USA
| | - Liang Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Missouri Botanical Garden, St. Louis, Missouri 63110, USA
| | - Samuli Lehtonen
- Biodiversity Unit, University of Turku, FI-20014 Turku, Finland
| | - Hanna Tuomisto
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Da-Wei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Xin-Fen Gao
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Li-Bing Zhang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Missouri Botanical Garden, St. Louis, Missouri 63110, USA.
| |
Collapse
|
15
|
Sun QH, Morales-Briones DF, Wang HX, Landis JB, Wen J, Wang HF. Target sequence capture data shed light on the deeper evolutionary relationships of subgenus Chamaecerasus in Lonicera (Caprifoliaceae). Mol Phylogenet Evol 2023; 184:107808. [PMID: 37156329 DOI: 10.1016/j.ympev.2023.107808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
The genus Lonicera L. is widely distributed in the north temperate zone and is well-known for its high species richness and morphological diversity. Previous studies have suggested that many sections of Lonicera are not monophyletic and phylogenetic relationships within the genus are still poorly resolved. In this study, we sampled 37 accessions of Lonicera, covering four sections of subgenus Chamaecerasus plus six outgroup taxa, to recover the main clades of Lonicera based on sequences of nuclear loci generated by target enrichment and cpDNA from genome skimming. We found extensive cytonuclear discordance across the subgenus. Both nuclear and plastid phylogenetic analyses supported subgenus Chamaecerasus sister to subgenus Lonicera. Within subgenus Chamaecerasus, sections Isika and Nintooa were each polyphyletic. Based on the nuclear and chloroplast phylogenies, we propose to merge Lonicera korolkowii into section Coeloxylosteum and Lonicera caerulea into section Nintooa. In addition, Lonicera is estimated to have originated in the mid Oligocene (26.45 Ma). The stem age of section Nintooa was estimated to be 17.09 Ma (95% HPD: 13.30-24.45). The stem age of subgenus Lonicera was estimated to be 16.35 Ma (95% HPD: 14.12-23.66). Ancestral area reconstruction analyses indicate that subgenus Chamaecerasus originated in East Asia and Central Asia. In addition, sections Coeloxylosteum and Nintooa originated in East Asia, with subsequent dispersals into other areas. The aridification of the Asian interior likely promoted the rapid radiation of sections Coeloxylosteum and Nintooa within this region. Moreover, our biogeographic analysis fully supports the Bering and the North Atlantic Land Bridge hypotheses for the intercontinental migrations in the Northern Hemisphere. Overall, this study provides new insights into the taxonomically complex lineages of subgenus Chamaecerasus and the process of speciation.
Collapse
Affiliation(s)
- Qing-Hui Sun
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Diego F Morales-Briones
- Department of Plant and Microbial Biology, College of Biological Sciences, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, Saint Paul, MN 55108, USA; Systematics, Biodiversity and Evolution of Plants, Department of Biology I, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638, Munich, Germany
| | - Hong-Xin Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; Zhai Mingguo Academician Work Station, Sanya University, Sanya 572022, China
| | - Jacob B Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY 14850, USA; BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC-166, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, USA
| | - Hua-Feng Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
16
|
Itoo H, Shah RA, Qurat S, Jeelani A, Khursheed S, Bhat ZA, Mir MA, Rather GH, Zargar SM, Shah MD, Padder BA. Genome-wide characterization and development of SSR markers for genetic diversity analysis in northwestern Himalayas Walnut ( Juglans regia L.). 3 Biotech 2023; 13:136. [PMID: 37124992 PMCID: PMC10130282 DOI: 10.1007/s13205-023-03563-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/15/2023] [Indexed: 05/02/2023] Open
Abstract
In the present study, we designed and validated genome-wide polymorphic SSR markers (110 SSRs) by mining the walnut genome. A total of 198,924 SSR loci were identified. Among these, successful primers were designed for 162,594 (81.73%) SSR loci. Dinucleotides were the most predominant accounting for 88.40% (175,075) of total SSRs. The SSR frequency was 377.312 SSR/Mb and it showed a decreasing trend from dinucleotide to octanucleotide motifs. We identified 20 highly polymorphic SSR markers and used them to genotype 72 walnut accessions. Over all, we obtained 118 alleles that ranged from 2 to 12 with an average value of 5.9. The higher SSR PIC values indicate their robustness in discriminating walnut genotypes. Heat map, PCA, and population structure categorized 72 walnut genotypes into 2 distinct clusters. The genetic variation within population was higher than among population as inferred by analysis of molecular variance (AMOVA). For walnut improvement, it is necessary to have a large repository of SSRs with high discriminative power. The present study reports 150,000 SSRs, which is the largest SSR repository for this important nut crop. Scientific communities may use this repository for walnut improvement such as QTL mapping, genetic studies, linkage map construction, and marker-assisted selection. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03563-6.
Collapse
Affiliation(s)
- H. Itoo
- Ambri Apple Research Centre, Pahnoo Shopian, Sheri-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192303 India
| | - Rafiq Ahmad Shah
- Ambri Apple Research Centre, Pahnoo Shopian, Sheri-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192303 India
| | - S. Qurat
- Division of Fruit Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Faculty of Horticulture, Shalimar, Kashmir, Srinagar, J&K 190 025 India
| | - Afnan Jeelani
- Division of Fruit Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Faculty of Horticulture, Shalimar, Kashmir, Srinagar, J&K 190 025 India
| | - Sheikh Khursheed
- Ambri Apple Research Centre, Pahnoo Shopian, Sheri-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192303 India
| | - Zahoor A. Bhat
- Ambri Apple Research Centre, Pahnoo Shopian, Sheri-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192303 India
| | - M. A. Mir
- Ambri Apple Research Centre, Pahnoo Shopian, Sheri-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192303 India
| | - G. H. Rather
- Ambri Apple Research Centre, Pahnoo Shopian, Sheri-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192303 India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Faculty of Horticulture, Shalimar, Kashmir, Srinagar, J&K 190 025 India
| | - M. D. Shah
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Kashmir, 190 025 Srinagar, J&K India
| | - Bilal A. Padder
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Kashmir, 190 025 Srinagar, J&K India
| |
Collapse
|
17
|
Qin SY, Zuo ZY, Guo C, Du XY, Liu SY, Yu XQ, Xiang XG, Rong J, Liu B, Liu ZF, Ma PF, Li DZ. Phylogenomic insights into the origin and evolutionary history of evergreen broadleaved forests in East Asia under Cenozoic climate change. Mol Ecol 2023; 32:2850-2868. [PMID: 36847615 DOI: 10.1111/mec.16904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/09/2023] [Accepted: 02/23/2023] [Indexed: 03/01/2023]
Abstract
The evergreen versus deciduous leaf habit is an important functional trait for adaptation of forest trees and has been hypothesized to be related to the evolutionary processes of the component species under paleoclimatic change, and potentially reflected in the dynamic history of evergreen broadleaved forests (EBLFs) in East Asia. However, knowledge about the shift of evergreen versus deciduous leaf with the impact of paleoclimatic change using genomic data remains rare. Here, we focus on the Litsea complex (Lauraceae), a key lineage with dominant species of EBLFs, to gain insights into how evergreen versus deciduous trait shifted, providing insights into the origin and historical dynamics of EBLFs in East Asia under Cenozoic climate change. We reconstructed a robust phylogeny of the Litsea complex using genome-wide single-nucleotide variants (SNVs) with eight clades resolved. Fossil-calibrated analyses, diversification rate shifts, ancestral habit, ecological niche modelling and climate niche reconstruction were employed to estimate its origin and diversification pattern. Taking into account studies on other plant lineages dominating EBLFs of East Asia, it was revealed that the prototype of EBLFs in East Asia probably emerged in the Early Eocene (55-50 million years ago [Ma]), facilitated by the greenhouse warming. As a response to the cooling and drying climate in the Middle to Late Eocene (48-38 Ma), deciduous habits were evolved in the dominant lineages of the EBLFs in East Asia. Up to the Early Miocene (23 Ma), the prevailing of East Asian monsoon increased the extreme seasonal precipitation and accelerated the emergence of evergreen habits of the dominant lineages, and ultimately shaped the vegetation resembling that of today.
Collapse
Affiliation(s)
- Sheng-Yuan Qin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zheng-Yu Zuo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Cen Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xin-Yu Du
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shui-Yin Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiang-Qin Yu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiao-Guo Xiang
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Centre for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
| | - Jun Rong
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Centre for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
| | - Bing Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Zhi-Fang Liu
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peng-Fei Ma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
18
|
Hofmann CC, Zhao WY. Unravelling the palaeobiogeographical history of the living fossil genus Rehderodendron (Styracaceae) with fossil and extant pollen and fruit data. BMC Ecol Evol 2022; 22:145. [PMID: 36522642 PMCID: PMC9756486 DOI: 10.1186/s12862-022-02097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The relict genus Rehderodendron (Styracaceae), the species of which are restricted to mostly warm temperate to tropical climate in East Asia today, is known from fossil fruits and pollen in Europe during warmer periods from the lower Eocene to Pliocene. To infer which extant species are most closely related to the fossils, new data of pollen and fruit morphologiesy of six extant species, and additional new data of fossil pollen and previously described fossil fruits of Rehderodendron, are compared. RESULTS Both fossil pollen and fruits resemble a morphological mixture of the extant species R. indochinense, R. kwantungense, R. macrocarpum, and R. microcarpum, thus implying that these extant taxa and the fossil European taxa represent an old Eurasian lineage, whereas the pollen and fruit morphology of the extant R. kweichowense and R. truongsonense differ considerably from the fossils and other extant species investigated, and are considered to have evolved independently. CONCLUSIONS The palaeobiogeographical history of Rehderodendron reveals that its fossil members of the European lineage were most prominent during climatic optima such as the Palaeocene-Eocene Thermal Maximum (PETM), Early Eocene Climate Optimum (EECO) and Middle Miocene Thermal Maximum (MMTM). However, when during the Pliocene the climate changed to colder and less humid conditions, the genus went extinct in Europe but migrated eastwards, most likely in two dispersal events along the Tethys Sea prior to extinction. One of the former most westerly stepping stones is suggested by the refugial occurrence of R. microcarpum in the southeastern Himalaya, whereas R. macrocarpum and R. kwangtungense, the taxa distributed more to the east, might have migrated eastwards already before the Miocene.
Collapse
Affiliation(s)
- Christa-Charlotte Hofmann
- grid.10420.370000 0001 2286 1424Department of Palaeontology, University Vienna, Josef Holaubek-Platz 2, 1090 Vienna, Austria
| | - Wan-Yi Zhao
- grid.12981.330000 0001 2360 039XState Key Laboratory and Guangdong Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou, 510275 China
| |
Collapse
|
19
|
Song H, Cong Z, Wang C, He M, Liu C, Gao P. Research progress on Walnut oil: Bioactive compounds, health benefits, extraction methods, and medicinal uses. J Food Biochem 2022; 46:e14504. [PMID: 36369998 DOI: 10.1111/jfbc.14504] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022]
Abstract
Walnut oil is extracted from walnut kernels (Juglans regia Linne) or iron walnut kernels (Juhlans sigillata Dode). The percentage of oil in walnuts is 52%-70%. The main constituents in oil are fatty acids, phenols, sterols, squalene, melatonin, vitamins, and minerals. Many extraction methods such as supercritical carbon dioxide extraction, maceration, modified "bligh and dyer extraction," aqueous enzymatic extraction, ultrasonic extraction, soxhlet extraction, and cold-press extraction methods are reported in the literature. Walnut oil showed anti-inflammatory, antitumor, antioxidant, immunomodulatory, neuroprotective, cardioprotective, antidiabetic, and antihyperlipidemic activities. The reported data in the literature suggest that walnut oil has many health benefits. This review summarizes the extraction methods, bioactive constituents, health benefits, and pharmacological actions of walnut oil. PRACTICAL APPLICATIONS: Walnut oil is a natural vegetable oil of significant importance due to their nutritional, and intelligence-boosting benefits. Several factors, including the processing parameters and the phytochemical profile, affect walnut oil products' flavor and color. In addition, storage environment of walnut oil can also affect walnut oil quality. Apart from the predominant ingredient fatty acids, the chemical composition of walnut oil comprises phenols, sterols, squalene, melatonin, vitamins, and minerals. These bioactive compounds are of potential value owing to their health-promoting benefits, including antioxidant, antitumor, and cholesterol-lowering effects. Many chemical constituents were isolated from walnut oil; however, all the compounds are not explored for their possible medicinal value. Thus, clinical studies, exploration of the therapeutic potential and the molecular mechanisms of all the compounds, and development of convenient dosage forms either for therapeutic or functional food purposes are warranted.
Collapse
Affiliation(s)
- Huaying Song
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhufeng Cong
- Shandong Institute of Cancer Prevention and Treatment, Jinan, China
| | - Changlin Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengyuan He
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Congying Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peng Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
20
|
Xu XL, Wang FH, Liu C, Yang HB, Zeng Z, Wang BX, Liu YG, Yang CL. Morphology and phylogeny of ascomycetes associated with walnut trees ( Juglans regia) in Sichuan province, China. Front Microbiol 2022; 13:1016548. [PMID: 36338097 PMCID: PMC9632355 DOI: 10.3389/fmicb.2022.1016548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/20/2022] [Indexed: 01/28/2023] Open
Abstract
In Sichuan province, walnuts, consisting of Juglans regia, Juglans sigillata, and the hybrid J. regia × J. sigillata, are commercially important edible nuts, and J. regia is the most widespread plant. To date, the diversity and distribution of fungi inhabiting on Juglans have not received enough attention, although there have been studies focusing on pathogens from fruit and stem. In order to update the checklist of fungi associated with Sichuan walnuts, a survey on fungi associated with the three Juglans species from 15 representative regions in Sichuan was conducted. In this article, ten fungi distributed in two classes of Ascomycota (Dothideomycetes and Sordariomycetes) were described based on morpho-molecular analyses, and two novel species, Neofusicoccum sichuanense and Sphaerulina juglandina, a known species of Ophiognomonia leptostyla, and seven new hosts or geographical records of Cladosporium tenuissimum, Diatrypella vulgaris, Helminthosporium juglandinum, Helminthosporium velutinum, Loculosulcatispora hongheensis, Periconia byssoides, and Rhytidhysteron subrufulum were included. Morphological descriptions and illustrations of these fungi are provided.
Collapse
Affiliation(s)
- Xiu-Lan Xu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China,Forestry Research Institute, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, Sichuan, China
| | - Fei-Hu Wang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Chao Liu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Han-Bo Yang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhen Zeng
- Forestry Research Institute, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, Sichuan, China,*Correspondence: Zhen Zeng,
| | - Bao-Xin Wang
- Forestry Research Institute, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, Sichuan, China
| | - Ying-Gao Liu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Chun-Lin Yang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, China,Chun-Lin Yang,
| |
Collapse
|
21
|
Hackel J, Henkel TW, Moreau P, De Crop E, Verbeken A, Sà M, Buyck B, Neves M, Vasco‐Palacios A, Wartchow F, Schimann H, Carriconde F, Garnica S, Courtecuisse R, Gardes M, Manzi S, Louisanna E, Roy M. Biogeographic history of a large clade of ectomycorrhizal fungi, the Russulaceae, in the Neotropics and adjacent regions. THE NEW PHYTOLOGIST 2022; 236:698-713. [PMID: 35811430 PMCID: PMC9795906 DOI: 10.1111/nph.18365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The biogeography of neotropical fungi remains poorly understood. Here, we reconstruct the origins and diversification of neotropical lineages in one of the largest clades of ectomycorrhizal fungi in the globally widespread family Russulaceae. We inferred a supertree of 3285 operational taxonomic units, representing worldwide internal transcribed spacer sequences. We reconstructed biogeographic history and diversification and identified lineages in the Neotropics and adjacent Patagonia. The ectomycorrhizal Russulaceae have a tropical African origin. The oldest lineages in tropical South America, most with African sister groups, date to the mid-Eocene, possibly coinciding with a boreotropical migration corridor. There were several transatlantic dispersal events from Africa more recently. Andean and Central American lineages mostly have north-temperate origins and are associated with North Andean uplift and the general north-south biotic interchange across the Panama isthmus, respectively. Patagonian lineages have Australasian affinities. Diversification rates in tropical South America and other tropical areas are lower than in temperate areas. Neotropical Russulaceae have multiple biogeographic origins since the mid-Eocene involving dispersal and co-migration. Discontinuous distributions of host plants may explain low diversification rates of tropical lowland ectomycorrhizal fungi. Deeply diverging neotropical fungal lineages need to be better documented.
Collapse
Affiliation(s)
- Jan Hackel
- Royal Botanic Gardens, KewRichmond‐upon‐ThamesTW9 3AEUK
- Laboratoire Evolution et Diversité Biologique (UMR 5174)Université Toulouse III – Paul Sabatier/CNRS/IRD31062Toulouse cedex 9France
| | - Terry W. Henkel
- Department of Biological SciencesCalifornia State Polytechnic University, HumboldtArcataCA95521USA
| | - Pierre‐Arthur Moreau
- Faculté de Pharmacie, Laboratoire des Sciences Végétales et Fongiques (LGCgE, ER4)Université de Lille59006LilleFrance
| | - Eske De Crop
- Department of BiologyGhent University9000GentBelgium
| | | | - Mariana Sà
- Centro Universitário de João PessoaPB 58053‐000João PessoaBrazil
| | - Bart Buyck
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRSSorbonne Université, EPHE, Université des Antilles75231Paris cedex 05France
| | - Maria‐Alice Neves
- Departamento de BotânicaUniversidade Federal de Santa CatarinaSC 88040‐900FlorianópolisBrazil
| | - Aída Vasco‐Palacios
- Microbiología Ambiental–School of Microbiology, Laboratory of Taxonomy and Ecology of Fungi–Institute of BiologyUniversity of Antioquia050010MedellínColombia
| | - Felipe Wartchow
- Departamento de Sistemática e EcologiaUniversidade Federal da ParaíbaPB 58051‐970João PessoaBrazil
| | - Heidy Schimann
- UMR Ecologie des Forêts de GuyaneAgroParisTech/CIRAD/CNRS/Université des Antilles/Université de la Guyane/INRA97379Kourou cedexFrench Guiana
| | - Fabian Carriconde
- Institut Agronomique néo‐Calédonien (IAC), Equipe Sol & Végétations (SolVeg)BP1823998848NouméaNew Caledonia
| | - Sigisfredo Garnica
- Instituto de Bioquímica y MicrobiologíaUniversidad Austral de Chile5049000ValdiviaChile
| | - Régis Courtecuisse
- Faculté de Pharmacie, Laboratoire des Sciences Végétales et Fongiques (LGCgE, ER4)Université de Lille59006LilleFrance
| | - Monique Gardes
- Laboratoire Evolution et Diversité Biologique (UMR 5174)Université Toulouse III – Paul Sabatier/CNRS/IRD31062Toulouse cedex 9France
| | - Sophie Manzi
- Laboratoire Evolution et Diversité Biologique (UMR 5174)Université Toulouse III – Paul Sabatier/CNRS/IRD31062Toulouse cedex 9France
| | - Eliane Louisanna
- UMR Ecologie des Forêts de GuyaneAgroParisTech/CIRAD/CNRS/Université des Antilles/Université de la Guyane/INRA97379Kourou cedexFrench Guiana
| | - Mélanie Roy
- Laboratoire Evolution et Diversité Biologique (UMR 5174)Université Toulouse III – Paul Sabatier/CNRS/IRD31062Toulouse cedex 9France
- Instituto Franco‐Argentino para el Estudio del Clima y sus Impactos (UMI IFAECI/CNRS‐CONICET‐UBA‐IRD)Universidad de Buenos AiresC1428EGACiudad Autonoma de Buenos AiresArgentina
| |
Collapse
|
22
|
Lyu L, Leugger F, Hagen O, Fopp F, Boschman LM, Strijk JS, Albouy C, Karger DN, Brun P, Wang Z, Zimmermann NE, Pellissier L. An integrated high-resolution mapping shows congruent biodiversity patterns of Fagales and Pinales. THE NEW PHYTOLOGIST 2022; 235:759-772. [PMID: 35429166 PMCID: PMC9323436 DOI: 10.1111/nph.18158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
The documentation of biodiversity distribution through species range identification is crucial for macroecology, biogeography, conservation, and restoration. However, for plants, species range maps remain scarce and often inaccurate. We present a novel approach to map species ranges at a global scale, integrating polygon mapping and species distribution modelling (SDM). We develop a polygon mapping algorithm by considering distances and nestedness of occurrences. We further apply an SDM approach considering multiple modelling algorithms, complexity levels, and pseudo-absence selections to map the species at a high spatial resolution and intersect it with the generated polygons. We use this approach to construct range maps for all 1957 species of Fagales and Pinales with data compilated from multiple sources. We construct high-resolution global species richness maps of these important plant clades, and document diversity hotspots for both clades in southern and south-western China, Central America, and Borneo. We validate the approach with two representative genera, Quercus and Pinus, using previously published coarser range maps, and find good agreement. By efficiently producing high-resolution range maps, our mapping approach offers a new tool in the field of macroecology for studying global species distribution patterns and supporting ongoing conservation efforts.
Collapse
Affiliation(s)
- Lisha Lyu
- Department of Environmental System ScienceETH ZürichUniversitätstrasse 168092ZürichSwitzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLZürcherstrasse 1118903BirmensdorfSwitzerland
| | - Flurin Leugger
- Department of Environmental System ScienceETH ZürichUniversitätstrasse 168092ZürichSwitzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLZürcherstrasse 1118903BirmensdorfSwitzerland
| | - Oskar Hagen
- Department of Environmental System ScienceETH ZürichUniversitätstrasse 168092ZürichSwitzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLZürcherstrasse 1118903BirmensdorfSwitzerland
| | - Fabian Fopp
- Department of Environmental System ScienceETH ZürichUniversitätstrasse 168092ZürichSwitzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLZürcherstrasse 1118903BirmensdorfSwitzerland
| | - Lydian M. Boschman
- Department of Environmental System ScienceETH ZürichUniversitätstrasse 168092ZürichSwitzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLZürcherstrasse 1118903BirmensdorfSwitzerland
| | - Joeri Sergej Strijk
- Institute for Biodiversity and Environmental ResearchUniversiti Brunei DarussalamJalan Tungku LinkGadongBE1410Brunei Darussalam
- Alliance for Conservation Tree GenomicsPha Tad Ke Botanical Garden, PO Box 95906000Luang PrabangLao PDR
| | - Camille Albouy
- IFREMERUnité Écologie et Modèles pour l’Hallieutiquerue I’lle d’YeauBP21105, 44311Nantes Cedex 3France
| | - Dirk N. Karger
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLZürcherstrasse 1118903BirmensdorfSwitzerland
| | - Philipp Brun
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLZürcherstrasse 1118903BirmensdorfSwitzerland
| | - Zhiheng Wang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of EducationCollege of Urban and Environmental SciencesPeking University100871BeijingChina
| | - Niklaus E. Zimmermann
- Department of Environmental System ScienceETH ZürichUniversitätstrasse 168092ZürichSwitzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLZürcherstrasse 1118903BirmensdorfSwitzerland
| | - Loïc Pellissier
- Department of Environmental System ScienceETH ZürichUniversitätstrasse 168092ZürichSwitzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLZürcherstrasse 1118903BirmensdorfSwitzerland
| |
Collapse
|
23
|
Schoonderwoerd KM, Friedman WE. Interspecific morphological variation in Juglandoideae resting bud organization: a winter's tale? ANNALS OF BOTANY 2022; 129:679-696. [PMID: 35390122 PMCID: PMC9113150 DOI: 10.1093/aob/mcac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS Dormant resting buds are frequently regarded as static units, with protective cataphylls on the outside and embryonic foliage leaves on the inside. How the presence of cataphylls influences the dynamic, cyclical, annually repeating sequence of leaf forms that a resting bud gives rise to has rarely been interrogated. To examine the connection between dormant structure and growing-season development, we compare the complete seasonal heteroblastic sequence of leaf forms of six species of temperate Juglandaceae with distinctly different vegetative resting bud structures. These include buds with cataphylls; buds without cataphylls; and buds with caducous cataphylls that are lost before the onset of winter. METHODS In a common garden setting over a 7-month growing season, the dimensions of 2249 individual vegetative metamers were tracked from first exposure to abscission along the shoots of saplings and mature trees. The timing of metamer initiation within terminal buds was investigated using micro-CT scanning. Character state transitions of resting bud types were estimated using a phylogenetic tree of Juglandaceae. KEY RESULTS The presence of cataphylls within a heteroblastic sequence is associated with a single cohort of foliage leaves that flush and abscise synchronously. This growing pattern is highly determinate, with next year's terminal-bud cataphylls already initiated before spring leaf out. In contrast, in sequences without cataphylls, shorter-lived foliage leaves appear and abscise in a staggered fashion. Despite these differences in leaf demography, all examined heteroblastic sequences produce a series of small, caducous leaf forms that precede terminal bud set. CONCLUSIONS The ubiquity of caducous leaf forms in Juglandoideae may point to the importance of shoot tip protection far beyond the dormant season. In addition, the presence or absence of cataphylls in resting buds is indicative of distinct shoot ontogenetic patterns, and functional strategies, in summer.
Collapse
Affiliation(s)
- Kristel M Schoonderwoerd
- Harvard University, Organismic and Evolutionary Biology, 26 Oxford Street, Cambridge, MA 02138, USA
- The Arnold Arboretum of Harvard University, 1300 Centre Street, Boston, MA 02131, USA
| | - William E Friedman
- Harvard University, Organismic and Evolutionary Biology, 26 Oxford Street, Cambridge, MA 02138, USA
- The Arnold Arboretum of Harvard University, 1300 Centre Street, Boston, MA 02131, USA
| |
Collapse
|
24
|
Hauffe T, Pires MM, Quental TB, Wilke T, Silvestro D. A quantitative framework to infer the effect of traits, diversity and environment on dispersal and extinction rates from fossils. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Torsten Hauffe
- Department of Biology University of Fribourg and Swiss Institute of Bioinformatics Fribourg Switzerland
| | - Mathias M. Pires
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas Campinas Brazil
| | - Tiago B. Quental
- Departamento de Ecologia, Universidade de São Paulo São Paulo Brazil
| | - Thomas Wilke
- Department of Animal Ecology and Systematics, Justus Liebig University Germany
| | - Daniele Silvestro
- Department of Biology University of Fribourg and Swiss Institute of Bioinformatics Fribourg Switzerland
- Department of Biological and Environmental Sciences University of Gothenburg and Gothenburg Global Biodiversity Centre Gothenburg Sweden
| |
Collapse
|
25
|
Opening a door to the spatiotemporal history of plants from the tropical Indochina Peninsula to subtropical China. Mol Phylogenet Evol 2022; 171:107458. [DOI: 10.1016/j.ympev.2022.107458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022]
|
26
|
Hsieh CL, Yu CC, Huang YL, Chung KF. Mahonia vs. Berberis Unloaded: Generic Delimitation and Infrafamilial Classification of Berberidaceae Based on Plastid Phylogenomics. FRONTIERS IN PLANT SCIENCE 2022; 12:720171. [PMID: 35069611 PMCID: PMC8770955 DOI: 10.3389/fpls.2021.720171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/15/2021] [Indexed: 05/12/2023]
Abstract
The early-diverging eudicot family Berberidaceae is composed of a morphologically diverse assemblage of disjunctly distributed genera long praised for their great horticultural and medicinal values. However, despite century-long studies, generic delimitation of Berberidaceae remains controversial and its tribal classification has never been formally proposed under a rigorous phylogenetic context. Currently, the number of accepted genera in Berberidaceae ranges consecutively from 13 to 19, depending on whether to define Berberis, Jeffersonia, and Podophyllum broadly, or to segregate these three genera further and recognize Alloberberis, Mahonia, and Moranothamnus, Plagiorhegma, and Dysosma, Diphylleia, and Sinopodophyllum, respectively. To resolve Berberidaceae's taxonomic disputes, we newly assembled 23 plastomes and, together with 85 plastomes from the GenBank, completed the generic sampling of the family. With 4 problematic and 14 redundant plastome sequences excluded, robust phylogenomic relationships were reconstructed based on 93 plastomes representing all 19 genera of Berberidaceae and three outgroups. Maximum likelihood phylogenomic relationships corroborated with divergence time estimation support the recognition of three subfamilies Berberidoideae, Nandinoideae, and Podophylloideae, with tribes Berberideae and Ranzanieae, Leonticeae and Nandineae, and Podophylleae, Achlydeae, Bongardieae tr. nov., Epimedieae, and Jeffersonieae tr. nov. in the former three subfamilies, respectively. By applying specifically stated criteria, our phylogenomic data also support the classification of 19 genera, recognizing Alloberberis, Mahonia, and Moranothamnus, Plagiorhegma, and Diphylleia, Dysosma, and Sinopodophyllum that are morphologically and evolutionarily distinct from Berberis, Jeffersonia, and Podophyllum, respectively. Comparison of plastome structures across Berberidaceae confirms inverted repeat expansion in the tribe Berberideae and reveals substantial length variation in accD gene caused by repeated sequences in Berberidoideae. Comparison of plastome tree with previous studies and nuclear ribosomal DNA (nrDNA) phylogeny also reveals considerable conflicts at different phylogenetic levels, suggesting that incomplete lineage sorting and/or hybridization had occurred throughout the evolutionary history of Berberidaceae and that Alloberberis and Moranothamnus could have resulted from reciprocal hybridization between Berberis and Mahonia in ancient times prior to the radiations of the latter two genera.
Collapse
Affiliation(s)
- Chia-Lun Hsieh
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Chieh Yu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan
| | - Yu-Lan Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Kuo-Fang Chung
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
27
|
Xi J, Lv S, Zhang W, Zhang J, Wang K, Guo H, Hu J, Yang Y, Wang J, Xia G, Fan G, Wang X, Xiao L. Comparative plastomes of Carya species provide new insights into the plastomes evolution and maternal phylogeny of the genus. FRONTIERS IN PLANT SCIENCE 2022; 13:990064. [PMID: 36407576 PMCID: PMC9667483 DOI: 10.3389/fpls.2022.990064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/21/2022] [Indexed: 05/03/2023]
Abstract
Carya, in the Juglandiodeae subfamily, is to a typical temperate-subtropical forest-tree genus for studying the phylogenetic evolution and intercontinental disjunction between eastern Asia (EA) and North America (NA). Species of the genus have high economic values worldwide for their high-quality wood and the rich healthy factors of their nuts. Although previous efforts based on multiple molecular markers or genome-wide SNPs supported the monophyly of Carya and its two EA and NA major subclades, the maternal phylogeny of Carya still need to be comprehensively evaluated. The variation of Carya plastome has never been thoroughly characterized. Here, we novelly present 19 newly generated plastomes of congeneric Carya species, including the recently rediscovered critically endangered C. poilanei. The overall assessment of plastomes revealed highly conservative in the general structures. Our results indicated that remarkable differences in several plastome features are highly consistent with the EA-NA disjunction and showed the relatively diverse matrilineal sources among EA Carya compared to NA Carya. The maternal phylogenies were conducted with different plastome regions and full-length plastome datasets from 30 plastomes, representing 26 species in six genera of Juglandoideae and Myrica rubra (as root). Six out of seven phylogenetic topologies strongly supported the previously reported relationships among genera of Juglandoideae and the two subclades of EA and NA Carya, but displayed significant incongruencies between species within the EA and NA subclades. The phylogenetic tree generated from full-length plastomes demonstrated the optimal topology and revealed significant geographical maternal relationships among Carya species, especially for EA Carya within overlapping distribution areas. The full-length plastome-based phylogenetic topology also strongly supported the taxonomic status of five controversial species as separate species of Carya. Historical and recent introgressive hybridization and plastid captures might contribute to plastome geographic patterns and inconsistencies between topologies built from different datasets, while incomplete lineage sorting could account for the discordance between maternal topology and the previous nuclear genome data-based phylogeny. Our findings highlight full-length plastomes as an ideal tool for exploring maternal relationships among the subclades of Carya, and potentially in other outcrossing perennial woody plants, for resolving plastome phylogenetic relationships.
Collapse
Affiliation(s)
- Jianwei Xi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Saibin Lv
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Weiping Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jingbo Zhang
- Department of Biological Sciences, St. John’s University - Queens, NY, United States
- *Correspondence: Lihong Xiao, ; Jingbo Zhang,
| | - Ketao Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Haobing Guo
- The Beijing Genomics Institute (BGI) -Qingdao, The Beijing Genomics Institute (BGI)-Shenzhen, Qingdao, China
| | - Jie Hu
- The Beijing Genomics Institute (BGI) -Qingdao, The Beijing Genomics Institute (BGI)-Shenzhen, Qingdao, China
| | - Yang Yang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jianhua Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Guohua Xia
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Guangyi Fan
- The Beijing Genomics Institute (BGI) -Qingdao, The Beijing Genomics Institute (BGI)-Shenzhen, Qingdao, China
| | - Xinwang Wang
- Pecan Breeding and Genetics, Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, United States
| | - Lihong Xiao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- *Correspondence: Lihong Xiao, ; Jingbo Zhang,
| |
Collapse
|
28
|
Zhou H, Hu Y, Ebrahimi A, Liu P, Woeste K, Zhao P, Zhang S. Whole genome based insights into the phylogeny and evolution of the Juglandaceae. BMC Ecol Evol 2021; 21:191. [PMID: 34674641 PMCID: PMC8529855 DOI: 10.1186/s12862-021-01917-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The walnut family (Juglandaceae) contains commercially important woody trees commonly called walnut, wingnut, pecan and hickory. Phylogenetic relationships and diversification within the Juglandaceae are classic and hot scientific topics that have been elucidated by recent fossil, morphological, molecular, and (paleo) environmental data. Further resolution of relationships among and within genera is still needed and can be achieved by analysis of the variation of chloroplast, mtDNA, and nuclear genomes. RESULTS We reconstructed the backbone phylogenetic relationships of Juglandaceae using organelle and nuclear genome data from 27 species. The divergence time of Juglandaceae was estimated to be 78.7 Mya. The major lineages diversified in warm and dry habitats during the mid-Paleocene and early Eocene. The plastid, mitochondrial, and nuclear phylogenetic analyses all revealed three subfamilies, i.e., Juglandoideae, Engelhardioideae, Rhoipteleoideae. Five genera of Juglandoideae were strongly supported. Juglandaceae were estimated to have originated during the late Cretaceous, while Juglandoideae were estimated to have originated during the Paleocene, with evidence for rapid diversification events during several glacial and geological periods. The phylogenetic analyses of organelle sequences and nuclear genome yielded highly supported incongruence positions for J. cinerea, J. hopeiensis, and Platycarya strobilacea. Winged fruit were the ancestral condition in the Juglandoideae, but adaptation to novel dispersal and regeneration regimes after the Cretaceous-Paleogene boundary led to the independent evolution of zoochory among several genera of the Juglandaceae. CONCLUSIONS A fully resolved, strongly supported, time-calibrated phylogenetic tree of Juglandaceae can provide an important framework for studying classification, diversification, biogeography, and comparative genomics of plant lineages. Our addition of new, annotated whole chloroplast genomic sequences and identification of their variability informs the study of their evolution in walnuts (Juglandaceae).
Collapse
Affiliation(s)
- Huijuan Zhou
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yiheng Hu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Aziz Ebrahimi
- USDA Forest Service Hardwood Tree Improvement and Regeneration Center (HTIRC), Department of Forestry and Natural Resources, Purdue University, 715 West State Street, West Lafayette, 47907, Indiana, USA
| | - Peiliang Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Keith Woeste
- USDA Forest Service Hardwood Tree Improvement and Regeneration Center (HTIRC), Department of Forestry and Natural Resources, Purdue University, 715 West State Street, West Lafayette, 47907, Indiana, USA
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China.
| | - Shuoxin Zhang
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
29
|
Zhou H, Hu Y, Ebrahimi A, Liu P, Woeste K, Zhao P, Zhang S. Whole genome based insights into the phylogeny and evolution of the Juglandaceae. BMC Ecol Evol 2021. [PMID: 34674641 DOI: 10.21203/rs.3.rs-495294/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND The walnut family (Juglandaceae) contains commercially important woody trees commonly called walnut, wingnut, pecan and hickory. Phylogenetic relationships and diversification within the Juglandaceae are classic and hot scientific topics that have been elucidated by recent fossil, morphological, molecular, and (paleo) environmental data. Further resolution of relationships among and within genera is still needed and can be achieved by analysis of the variation of chloroplast, mtDNA, and nuclear genomes. RESULTS We reconstructed the backbone phylogenetic relationships of Juglandaceae using organelle and nuclear genome data from 27 species. The divergence time of Juglandaceae was estimated to be 78.7 Mya. The major lineages diversified in warm and dry habitats during the mid-Paleocene and early Eocene. The plastid, mitochondrial, and nuclear phylogenetic analyses all revealed three subfamilies, i.e., Juglandoideae, Engelhardioideae, Rhoipteleoideae. Five genera of Juglandoideae were strongly supported. Juglandaceae were estimated to have originated during the late Cretaceous, while Juglandoideae were estimated to have originated during the Paleocene, with evidence for rapid diversification events during several glacial and geological periods. The phylogenetic analyses of organelle sequences and nuclear genome yielded highly supported incongruence positions for J. cinerea, J. hopeiensis, and Platycarya strobilacea. Winged fruit were the ancestral condition in the Juglandoideae, but adaptation to novel dispersal and regeneration regimes after the Cretaceous-Paleogene boundary led to the independent evolution of zoochory among several genera of the Juglandaceae. CONCLUSIONS A fully resolved, strongly supported, time-calibrated phylogenetic tree of Juglandaceae can provide an important framework for studying classification, diversification, biogeography, and comparative genomics of plant lineages. Our addition of new, annotated whole chloroplast genomic sequences and identification of their variability informs the study of their evolution in walnuts (Juglandaceae).
Collapse
Affiliation(s)
- Huijuan Zhou
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yiheng Hu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Aziz Ebrahimi
- USDA Forest Service Hardwood Tree Improvement and Regeneration Center (HTIRC), Department of Forestry and Natural Resources, Purdue University, 715 West State Street, West Lafayette, 47907, Indiana, USA
| | - Peiliang Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Keith Woeste
- USDA Forest Service Hardwood Tree Improvement and Regeneration Center (HTIRC), Department of Forestry and Natural Resources, Purdue University, 715 West State Street, West Lafayette, 47907, Indiana, USA
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China.
| | - Shuoxin Zhang
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
30
|
Li J, Zhang Y, Ruhsam M, Milne RI, Wang Y, Wu D, Jia S, Tao T, Mao K. Seeing through the hedge: Phylogenomics of Thuja (Cupressaceae) reveals prominent incomplete lineage sorting and ancient introgression for Tertiary relict flora. Cladistics 2021; 38:187-203. [PMID: 34551153 DOI: 10.1111/cla.12491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/15/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022] Open
Abstract
The Eastern Asia (EA) - North America (NA) disjunction is a well-known biogeographic pattern of the Tertiary relict flora; however, few studies have investigated the evolutionary history of this disjunction using a phylogenomic approach. Here, we used 2369 single copy nuclear genes and nearly full plastomes to reconstruct the evolutionary history of the small Tertiary relict genus Thuja, which consists of five disjunctly distributed species. The nuclear species tree strongly supported an EA clade Thuja standishii-Thuja sutchuenensis and a "disjunct clade", where western NA species T. plicata is sister to an EA-eastern NA disjunct Thuja occidentalis-Thuja koraiensis group. Our results suggested that the observed topological discordance among the gene trees as well as the cytonuclear discordance is mainly due to incomplete lineage sorting, probably facilitated by the fast diversification of Thuja around the Early Miocene and the large effective population sizes of ancestral lineages. Furthermore, approximately 20% of the T. sutchuenensis nuclear genome is derived from an unknown ancestral lineage of Thuja, which might explain the close resemblance of its cone morphology to that of an ancient fossil species. Overall, our study demonstrates that single genes may not resolve interspecific relationships for disjunct taxa, and that more reliable results will come from hundreds or thousands of loci, revealing a more complex evolutionary history. This will steadily improve our understanding of their origin and evolution.
Collapse
Affiliation(s)
- Jialiang Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yujiao Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Markus Ruhsam
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK
| | - Richard Ian Milne
- Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, EH9 3JH, UK
| | - Yi Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Dayu Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Shiyu Jia
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Tongzhou Tao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Kangshan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.,College of Science, Tibet University, Lhasa, Xizang Autonomous Region, 850012, China
| |
Collapse
|