1
|
Mendes FK, Landis MJ. PhyloJunction: A Computational Framework for Simulating, Developing, and Teaching Evolutionary Models. Syst Biol 2024; 73:1051-1060. [PMID: 39115380 DOI: 10.1093/sysbio/syae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/20/2024] [Accepted: 08/05/2024] [Indexed: 12/14/2024] Open
Abstract
We introduce PhyloJunction, a computational framework designed to facilitate the prototyping, testing, and characterization of evolutionary models. PhyloJunction is distributed as an open-source Python library that can be used to implement a variety of models, thanks to its flexible graphical modeling architecture and dedicated model specification language. Model design and use are exposed to users via command-line and graphical interfaces, which integrate the steps of simulating, summarizing, and visualizing data. This article describes the features of PhyloJunction-which include, but are not limited to, a general implementation of a popular family of phylogenetic diversification models-and, moving forward, how it may be expanded to not only include new models, but to also become a platform for conducting and teaching statistical learning.
Collapse
Affiliation(s)
- Fábio K Mendes
- Department of Biology, Louisiana State University, Baton Rouge, LA, USA
| | - Michael J Landis
- Department of Biology, Washington University in St. Louis, Rebstock Hall, St. Louis, MO 63130, USA
| |
Collapse
|
2
|
Hauffe T, Cantalapiedra JL, Silvestro D. Trait-mediated speciation and human-driven extinctions in proboscideans revealed by unsupervised Bayesian neural networks. SCIENCE ADVANCES 2024; 10:eadl2643. [PMID: 39047110 PMCID: PMC11268411 DOI: 10.1126/sciadv.adl2643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
Species life-history traits, paleoenvironment, and biotic interactions likely influence speciation and extinction rates, affecting species richness over time. Birth-death models inferring the impact of these factors typically assume monotonic relationships between single predictors and rates, limiting our ability to assess more complex effects and their relative importance and interaction. We introduce a Bayesian birth-death model using unsupervised neural networks to explore multifactorial and nonlinear effects on speciation and extinction rates using fossil data. It infers lineage- and time-specific rates and disentangles predictor effects and importance through explainable artificial intelligence techniques. Analysis of the proboscidean fossil record revealed speciation rates shaped by dietary flexibility and biogeographic events. The emergence of modern humans escalated extinction rates, causing recent diversity decline, while regional climate had a lesser impact. Our model paves the way for an improved understanding of the intricate dynamics shaping clade diversification.
Collapse
Affiliation(s)
- Torsten Hauffe
- Department of Biology, University of Fribourg and Swiss Institute of Bioinformatics, 1700 Fribourg, Switzerland
| | - Juan L. Cantalapiedra
- Departamento de Paleobiología, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
- GloCEE Global Change Ecology and Evolution Research Group, Departamento de Ciencias de la Vida, Universidad de Alcalá, 28801 Alcalá de Henares, Spain
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
| | - Daniele Silvestro
- Department of Biology, University of Fribourg and Swiss Institute of Bioinformatics, 1700 Fribourg, Switzerland
- Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Centre, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
3
|
Flannery-Sutherland JT, Crossan CD, Myers CE, Hendy AJW, Landman NH, Witts JD. Late Cretaceous ammonoids show that drivers of diversification are regionally heterogeneous. Nat Commun 2024; 15:5382. [PMID: 38937471 PMCID: PMC11211348 DOI: 10.1038/s41467-024-49462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
Palaeontologists have long sought to explain the diversification of individual clades to whole biotas at global scales. Advances in our understanding of the spatial distribution of the fossil record through geological time, however, has demonstrated that global trends in biodiversity were a mosaic of regionally heterogeneous diversification processes. Drivers of diversification must presumably have also displayed regional variation to produce the spatial disparities observed in past taxonomic richness. Here, we analyse the fossil record of ammonoids, pelagic shelled cephalopods, through the Late Cretaceous, characterised by some palaeontologists as an interval of biotic decline prior to their total extinction at the Cretaceous-Paleogene boundary. We regionally subdivide this record to eliminate the impacts of spatial sampling biases and infer regional origination and extinction rates corrected for temporal sampling biases using Bayesian methods. We then model these rates using biotic and abiotic drivers commonly inferred to influence diversification. Ammonoid diversification dynamics and responses to this common set of diversity drivers were regionally heterogeneous, do not support ecological decline, and demonstrate that their global diversification signal is influenced by spatial disparities in sampling effort. These results call into question the feasibility of seeking drivers of diversity at global scales in the fossil record.
Collapse
Affiliation(s)
- Joseph T Flannery-Sutherland
- School of Geography, Earth and Environmental Science, University of Birmingham, Birmingham, UK.
- Palaeobiology Research Group, School of Earth Sciences, University of Bristol, Bristol, UK.
| | - Cameron D Crossan
- Palaeobiology Research Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Corinne E Myers
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Austin J W Hendy
- Natural History Museum of Los Angeles County, Los Angeles, CA, USA
| | - Neil H Landman
- Division of Paleontology (Invertebrates), American Museum of Natural History, New York, NY, USA
| | - James D Witts
- Palaeobiology Research Group, School of Earth Sciences, University of Bristol, Bristol, UK
- Department of Earth Sciences, Natural History Museum, London, UK
| |
Collapse
|
4
|
Rule JP, Burin G, Park T. A quantitative test of the "Ecomorphotype Hypothesis" for fossil true seals (Family Phocidae). PeerJ 2024; 12:e17592. [PMID: 38912040 PMCID: PMC11193399 DOI: 10.7717/peerj.17592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
The fossil record of true seals (Family Phocidae) is mostly made up of isolated bones, some of which are type specimens. Previous studies have sought to increase referral of non-overlapping and unrelated fossils to these taxa using the 'Ecomorphotype Hypothesis', which stipulates that certain differences in morphology between taxa represent adaptations to differing ecology. On this basis, bulk fossil material could be lumped to a specific ecomorphotype, and then referred to species in that ecomorphotype, even if they are different bones. This qualitative and subjective method has been used often to expand the taxonomy of fossil phocids, but has never been quantitatively tested. We test the proposed ecomorphotypes using morphometric analysis of fossil and extant northern true seal limb bones, specifically principal components analysis and discriminant function analysis. A large amount of morphological overlap between ecomorphotypes, and poor discrimination between them, suggests that the 'Ecomorphotype Hypothesis' is not a valid approach. Further, the analysis failed to assign fossils to ecomorphotypes designated in previous studies, with some fossils from the same taxa being designated as different ecomorphotypes. The failure of this approach suggests that all fossils referred using this method should be considered to have unknown taxonomic status. In light of this, and previous findings that phocid limb bones have limited utility as type specimens, we revise the status of named fossil phocid species. We conclude that the majority of named fossil phocid taxa should be considered nomina dubia.
Collapse
Affiliation(s)
- James Patrick Rule
- Sciences Group, Natural History Museum, London, United Kingdom
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Gustavo Burin
- Sciences Group, Natural History Museum, London, United Kingdom
| | - Travis Park
- Sciences Group, Natural History Museum, London, United Kingdom
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- Sciences, Museums Victoria Research Institute, Museums Victoria, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Didier G, Laurin M. Testing extinction events and temporal shifts in diversification and fossilization rates through the skyline Fossilized Birth-Death (FBD) model: The example of some mid-Permian synapsid extinctions. Cladistics 2024; 40:282-306. [PMID: 38651531 DOI: 10.1111/cla.12577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 04/25/2024] Open
Abstract
In the last decade, the Fossilized Birth-Death (FBD) process has yielded interesting clues about the evolution of biodiversity through time. To facilitate such studies, we extend our method to compute the probability density of phylogenetic trees of extant and extinct taxa in which the only temporal information is provided by the fossil ages (i.e. without the divergence times) in order to deal with the piecewise constant FBD process, known as the "skyline FBD", which allows rates to change between pre-defined time intervals, as well as modelling extinction events at the bounds of these intervals. We develop approaches based on this method to assess hypotheses about the diversification process and to answer questions such as "Does a mass extinction occur at this time?" or "Is there a change in the fossilization rate between two given periods?". Our software can also yield Bayesian and maximum-likelihood estimates of the parameters of the skyline FBD model under various constraints. These approaches are applied to a simulated dataset in order to test their ability to answer the questions above. Finally, we study an updated dataset of Permo-Carboniferous synapsids to get additional insights into the dynamics of biodiversity change in three clades (Ophiacodontidae, Edaphosauridae and Sphenacodontidae) in the Pennsylvanian (Late Carboniferous) and Cisuralian (Early Permian), and to assess support for end-Sakmarian (or Artinskian) and end-Cisuralian mass extinction events discussed in previous studies.
Collapse
Affiliation(s)
| | - Michel Laurin
- CR2P ("Centre de Recherches sur la Paléobiodiversité et les Paléoenvironnements"; UMR 7207), CNRS/MNHN/UPMC, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
6
|
Quintero I, Lartillot N, Morlon H. Imbalanced speciation pulses sustain the radiation of mammals. Science 2024; 384:1007-1012. [PMID: 38815022 DOI: 10.1126/science.adj2793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 04/23/2024] [Indexed: 06/01/2024]
Abstract
The evolutionary histories of major clades, including mammals, often comprise changes in their diversification dynamics, but how these changes occur remains debated. We combined comprehensive phylogenetic and fossil information in a new "birth-death diffusion" model that provides a detailed characterization of variation in diversification rates in mammals. We found an early rising and sustained diversification scenario, wherein speciation rates increased before and during the Cretaceous-Paleogene (K-Pg) boundary. The K-Pg mass extinction event filtered out more slowly speciating lineages and was followed by a subsequent slowing in speciation rates rather than rebounds. These dynamics arose from an imbalanced speciation process, with separate lineages giving rise to many, less speciation-prone descendants. Diversity seems to have been brought about by these isolated, fast-speciating lineages, rather than by a few punctuated innovations.
Collapse
Affiliation(s)
- Ignacio Quintero
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Nicolas Lartillot
- Université Claude Bernard Lyon 1, CNRS, VetAgroSup, LBBE, UMR 5558, F-69100 Villeurbanne, France
| | - Hélène Morlon
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| |
Collapse
|
7
|
Jouault C, Condamine FL, Legendre F, Perrichot V. The Angiosperm Terrestrial Revolution buffered ants against extinction. Proc Natl Acad Sci U S A 2024; 121:e2317795121. [PMID: 38466878 PMCID: PMC10990090 DOI: 10.1073/pnas.2317795121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
With ~14,000 extant species, ants are ubiquitous and of tremendous ecological importance. They have undergone remarkable diversification throughout their evolutionary history. However, the drivers of their diversity dynamics are not well quantified or understood. Previous phylogenetic analyses have suggested patterns of diversity dynamics associated with the Angiosperm Terrestrial Revolution (ATR), but these studies have overlooked valuable information from the fossil record. To address this gap, we conducted a comprehensive analysis using a large dataset that includes both the ant fossil record (~24,000 individual occurrences) and neontological data (~14,000 occurrences), and tested four hypotheses proposed for ant diversification: co-diversification, competitive extinction, hyper-specialization, and buffered extinction. Taking into account biases in the fossil record, we found three distinct diversification periods (the latest Cretaceous, Eocene, and Oligo-Miocene) and one extinction period (Late Cretaceous). The competitive extinction hypothesis between stem and crown ants is not supported. Instead, we found support for the co-diversification, buffered extinction, and hyper-specialization hypotheses. The environmental changes of the ATR, mediated by the angiosperm radiation, likely played a critical role in buffering ants against extinction and favoring their diversification by providing new ecological niches, such as forest litter and arboreal nesting sites, and additional resources. We also hypothesize that the decline and extinction of stem ants during the Late Cretaceous was due to their hyper-specialized morphology, which limited their ability to expand their dietary niche in changing environments. This study highlights the importance of a holistic approach when studying the interplay between past environments and the evolutionary trajectories of organisms.
Collapse
Affiliation(s)
- Corentin Jouault
- Institut de Systématique Évolution, Biodiversité, UMR 7205, Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE-PSL, Université des Antilles, Paris75005, France
- Institut des Sciences de l’Évolution de Montpellier, Université de Montpellier, CNRS, Montpellier34095, France
- Géosciences Rennes, UMR 6118, Univ. Rennes, CNRS, Rennes35000, France
| | - Fabien L. Condamine
- Institut des Sciences de l’Évolution de Montpellier, Université de Montpellier, CNRS, Montpellier34095, France
| | - Frédéric Legendre
- Institut de Systématique Évolution, Biodiversité, UMR 7205, Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE-PSL, Université des Antilles, Paris75005, France
| | - Vincent Perrichot
- Géosciences Rennes, UMR 6118, Univ. Rennes, CNRS, Rennes35000, France
| |
Collapse
|
8
|
Peris D, Condamine FL. The angiosperm radiation played a dual role in the diversification of insects and insect pollinators. Nat Commun 2024; 15:552. [PMID: 38253644 PMCID: PMC10803743 DOI: 10.1038/s41467-024-44784-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Interactions with angiosperms have been hypothesised to play a crucial role in driving diversification among insects, with a particular emphasis on pollinator insects. However, support for coevolutionary diversification in insect-plant interactions is weak. Macroevolutionary studies of insect and plant diversities support the hypothesis that angiosperms diversified after a peak in insect diversity in the Early Cretaceous. Here, we used the family-level fossil record of insects as a whole, and insect pollinator families in particular, to estimate diversification rates and the role of angiosperms on insect macroevolutionary history using a Bayesian process-based approach. We found that angiosperms played a dual role that changed through time, mitigating insect extinction in the Cretaceous and promoting insect origination in the Cenozoic, which is also recovered for insect pollinator families only. Although insects pollinated gymnosperms before the angiosperm radiation, a radiation of new pollinator lineages began as angiosperm lineages increased, particularly significant after 50 Ma. We also found that global temperature, increases in insect diversity, and spore plants were strongly correlated with origination and extinction rates, suggesting that multiple drivers influenced insect diversification and arguing for the investigation of different explanatory variables in further studies.
Collapse
Affiliation(s)
- David Peris
- Institut Botànic de Barcelona (CSIC-CMCNB), 08038, Barcelona, Spain.
| | - Fabien L Condamine
- CNRS, Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France
| |
Collapse
|
9
|
Weppe R, Condamine FL, Guinot G, Maugoust J, Orliac MJ. Drivers of the artiodactyl turnover in insular western Europe at the Eocene-Oligocene Transition. Proc Natl Acad Sci U S A 2023; 120:e2309945120. [PMID: 38109543 PMCID: PMC10756263 DOI: 10.1073/pnas.2309945120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/10/2023] [Indexed: 12/20/2023] Open
Abstract
Simultaneously investigating the effects of abiotic and biotic factors on diversity dynamics is essential to understand the evolutionary history of clades. The Grande Coupure corresponds to a major faunal turnover at the Eocene-Oligocene transition (EOT) (~34.1 to 33.55 Mya) and is defined in western Europe as an extinction of insular European mammals coupled with the arrival of crown clades from Asia. Here, we focused on the species-rich group of endemic European artiodactyls to determine the drivers of the Grande Coupure during the major environmental disruptions at the EOT. Using Bayesian birth-death models, we analyzed an original high-resolution fossil dataset (90 species, >2,100 occurrences) from southwestern France (Quercy area) and estimated the regional diversification and diversity dynamics of endemic and immigrant artiodactyls. We show that the endemic artiodactyl radiation was mainly related to the Eocene tropical conditions, combined with biotic controls on speciation and clade-related diversity dependence. We further highlight that the major environmental changes at the transition (77% of species became extinct) and the concurrent increase in seasonality in Europe during the Oligocene were likely the main drivers of their decline. Surprisingly, our results do not support the widely-held hypothesis of active competition between endemic and immigrant artiodactyls but rather suggest a passive or opportunistic replacement by immigrants, which is further supported by morphological clustering of specific ecological traits across the Eocene-Oligocene transition. Our analyses provide insights into the evolutionary and ecological processes driving the diversification and decline of mammalian clades during a major biological and climatic crisis.
Collapse
Affiliation(s)
- Romain Weppe
- Institut des Sciences de l’Evolution de Montpellier, Univ Montpellier, CNRS, IRD, Montpellier Cedex 534095, France
| | - Fabien L. Condamine
- Institut des Sciences de l’Evolution de Montpellier, Univ Montpellier, CNRS, IRD, Montpellier Cedex 534095, France
| | - Guillaume Guinot
- Institut des Sciences de l’Evolution de Montpellier, Univ Montpellier, CNRS, IRD, Montpellier Cedex 534095, France
| | - Jacob Maugoust
- Institut des Sciences de l’Evolution de Montpellier, Univ Montpellier, CNRS, IRD, Montpellier Cedex 534095, France
| | - Maëva J. Orliac
- Institut des Sciences de l’Evolution de Montpellier, Univ Montpellier, CNRS, IRD, Montpellier Cedex 534095, France
| |
Collapse
|
10
|
Mendes FK, Landis MJ. PhyloJunction: a computational framework for simulating, developing, and teaching evolutionary models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571907. [PMID: 38168278 PMCID: PMC10760140 DOI: 10.1101/2023.12.15.571907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
We introduce PhyloJunction, a computational framework designed to facilitate the prototyping, testing, and characterization of evolutionary models. PhyloJunction is distributed as an open-source Python library that can be used to implement a variety of models, through its flexible graphical modeling architecture and dedicated model specification language. Model design and use are exposed to users via command-line and graphical interfaces, which integrate the steps of simulating, summarizing, and visualizing data. This paper describes the features of PhyloJunction - which include, but are not limited to, a general implementation of a popular family of phylogenetic diversification models - and, moving forward, how it may be expanded to not only include new models, but to also become a platform for conducting and teaching statistical learning.
Collapse
Affiliation(s)
- Fábio K. Mendes
- Department of Biology, Washington University in St. Louis, St. Louis, MO
| | - Michael J. Landis
- Department of Biology, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
11
|
Coiro M, Allio R, Mazet N, Seyfullah LJ, Condamine FL. Reconciling fossils with phylogenies reveals the origin and macroevolutionary processes explaining the global cycad biodiversity. THE NEW PHYTOLOGIST 2023; 240:1616-1635. [PMID: 37302411 PMCID: PMC10953041 DOI: 10.1111/nph.19010] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/01/2023] [Indexed: 06/13/2023]
Abstract
The determinants of biodiversity patterns can be understood using macroevolutionary analyses. The integration of fossils into phylogenies offers a deeper understanding of processes underlying biodiversity patterns in deep time. Cycadales are considered a relict of a once more diverse and globally distributed group but are restricted to low latitudes today. We still know little about their origin and geographic range evolution. Combining molecular data for extant species and leaf morphological data for extant and fossil species, we study the origin of cycad global biodiversity patterns through Bayesian total-evidence dating analyses. We assess the ancestral geographic origin and trace the historical biogeography of cycads with a time-stratified process-based model. Cycads originated in the Carboniferous on the Laurasian landmass and expanded in Gondwana in the Jurassic. Through now-vanished continental connections, Antarctica and Greenland were crucial biogeographic crossroads for cycad biogeography. Vicariance is an essential speciation mode in the deep and recent past. Their latitudinal span increased in the Jurassic and restrained toward subtropical latitudes in the Neogene in line with biogeographic inferences of high-latitude extirpations. We show the benefits of integrating fossils into phylogenies to estimate ancestral areas of origin and to study evolutionary processes explaining the global distribution of present-day relict groups.
Collapse
Affiliation(s)
- Mario Coiro
- Department of PalaeontologyUniversity of Vienna1090ViennaAustria
- Ronin Institute for Independent ScholarshipMontclairNJ07043USA
| | - Rémi Allio
- Centre de Biologie pour la Gestion des Populations, INRAE, CIRAD, IRD, Montpellier SupAgroUniversité de Montpellier34988MontpellierFrance
| | - Nathan Mazet
- CNRS, Institut des Sciences de l'Evolution de Montpellier, Université de MontpellierPlace Eugène Bataillon34095MontpellierFrance
| | | | - Fabien L. Condamine
- CNRS, Institut des Sciences de l'Evolution de Montpellier, Université de MontpellierPlace Eugène Bataillon34095MontpellierFrance
| |
Collapse
|
12
|
Sroka P, Godunko RJ, Prokop J. Fluctuation in the diversity of mayflies (Insecta, Ephemerida) as documented in the fossil record. Sci Rep 2023; 13:16052. [PMID: 37749134 PMCID: PMC10519997 DOI: 10.1038/s41598-023-42571-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023] Open
Abstract
Due to their aquatic larvae, the evolution of mayflies is intricately tied to environmental changes affecting lakes and rivers. Despite a rich fossil record, little is known about the factors shaping the pattern of diversification of mayflies in deep time. We assemble an unprecedented dataset encompassing all fossil occurrences of mayflies and perform a Bayesian analysis to identify periods of increased origination or extinction. We provide strong evidence for a major extinction of mayflies in the mid-Cretaceous. This extinction and subsequent faunal turnover were probably connected with the rise of angiosperms. Their dominance caused increased nutrient input and changed the chemistry of the freshwater environments, a trend detrimental mainly to lacustrine insects. Mayflies underwent a habitat shift from hypotrophic lakes to running waters, where most of their diversity has been concentrated from the Late Cretaceous to the present.
Collapse
Affiliation(s)
- Pavel Sroka
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| | - Roman J Godunko
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Department of Invertebrate Zoology and Hydrobiology, University of Łodź, Banacha 12/16, 90237, Łodź, Poland
| | - Jakub Prokop
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| |
Collapse
|
13
|
Guo Z, Flannery-Sutherland JT, Benton MJ, Chen ZQ. Bayesian analyses indicate bivalves did not drive the downfall of brachiopods following the Permian-Triassic mass extinction. Nat Commun 2023; 14:5566. [PMID: 37689772 PMCID: PMC10492784 DOI: 10.1038/s41467-023-41358-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023] Open
Abstract
Certain times of major biotic replacement have often been interpreted as broadly competitive, mediated by innovation in the succeeding clades. A classic example was the switch from brachiopods to bivalves as major seabed organisms following the Permian-Triassic mass extinction (PTME), ~252 million years ago. This was attributed to competitive exclusion of brachiopods by the better adapted bivalves or simply to the fact that brachiopods had been hit especially hard by the PTME. The brachiopod-bivalve switch is emblematic of the global turnover of marine faunas from Palaeozoic-type to Modern-type triggered by the PTME. Here, using Bayesian analyses, we find that unexpectedly the two clades displayed similar large-scale trends of diversification before the Jurassic. Insight from a multivariate birth-death model shows that the extinction of major brachiopod clades during the PTME set the stage for the brachiopod-bivalve switch, with differential responses to high ocean temperatures post-extinction further facilitating their displacement by bivalves. Our study strengthens evidence that brachiopods and bivalves were not competitors over macroevolutionary time scales, with extinction events and environmental stresses shaping their divergent fates.
Collapse
Affiliation(s)
- Zhen Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, 430074, China
| | | | - Michael J Benton
- School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK.
| | - Zhong-Qiang Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, 430074, China.
| |
Collapse
|
14
|
May MR, Rothfels CJ. Diversification Models Conflate Likelihood and Prior, and Cannot be Compared Using Conventional Model-Comparison Tools. Syst Biol 2023; 72:713-722. [PMID: 36897743 DOI: 10.1093/sysbio/syad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Time-calibrated phylogenetic trees are a tremendously powerful tool for studying evolutionary, ecological, and epidemiological phenomena. Such trees are predominantly inferred in a Bayesian framework, with the phylogeny itself treated as a parameter with a prior distribution (a "tree prior"). However, we show that the tree "parameter" consists, in part, of data, in the form of taxon samples. Treating the tree as a parameter fails to account for these data and compromises our ability to compare among models using standard techniques (e.g., marginal likelihoods estimated using path-sampling and stepping-stone sampling algorithms). Since accuracy of the inferred phylogeny strongly depends on how well the tree prior approximates the true diversification process that gave rise to the tree, the inability to accurately compare competing tree priors has broad implications for applications based on time-calibrated trees. We outline potential remedies to this problem, and provide guidance for researchers interested in assessing the fit of tree models. [Bayes factors; Bayesian model comparison; birth-death models; divergence-time estimation; lineage diversification].
Collapse
Affiliation(s)
- Michael R May
- Department of Integrative Biology, University of California, Berkeley, CA, USA
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Carl J Rothfels
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, CA, USA
- Intermountain Herbarium, Ecology Center, and Biology Department, Utah State University, Logan, UT, USA
| |
Collapse
|
15
|
Guinot G, Condamine FL. Global impact and selectivity of the Cretaceous-Paleogene mass extinction among sharks, skates, and rays. Science 2023; 379:802-806. [PMID: 36821692 DOI: 10.1126/science.abn2080] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The Cretaceous-Paleogene event was the last mass extinction event, yet its impact and long-term effects on species-level marine vertebrate diversity remain largely uncharacterized. We quantified elasmobranch (sharks, skates, and rays) speciation, extinction, and ecological change resulting from the end-Cretaceous event using >3200 fossil occurrences and 675 species spanning the Late Cretaceous-Paleocene interval at global scale. Elasmobranchs declined by >62% at the Cretaceous-Paleogene boundary and did not fully recover in the Paleocene. The end-Cretaceous event triggered a heterogeneous pattern of extinction, with rays and durophagous species reaching the highest levels of extinction (>72%) and sharks and nondurophagous species being less affected. Taxa with large geographic ranges and/or those restricted to high-latitude settings show higher survival. The Cretaceous-Paleogene event drastically altered the evolutionary history of marine ecosystems.
Collapse
Affiliation(s)
- Guillaume Guinot
- Institut des Sciences de l'Évolution de Montpellier, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095 Montpellier, France
| | - Fabien L Condamine
- Institut des Sciences de l'Évolution de Montpellier, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095 Montpellier, France
| |
Collapse
|
16
|
Brée B, Condamine FL, Guinot G. Combining palaeontological and neontological data shows a delayed diversification burst of carcharhiniform sharks likely mediated by environmental change. Sci Rep 2022; 12:21906. [PMID: 36535995 PMCID: PMC9763247 DOI: 10.1038/s41598-022-26010-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Estimating deep-time species-level diversification processes remains challenging. Both the fossil record and molecular phylogenies allow the estimation of speciation and extinction rates, but each type of data may still provide an incomplete picture of diversification dynamics. Here, we combine species-level palaeontological (fossil occurrences) and neontological (molecular phylogenies) data to estimate deep-time diversity dynamics through process-based birth-death models for Carcharhiniformes, the most speciose shark order today. Despite their abundant fossil record dating back to the Middle Jurassic, only a small fraction of extant carcharhiniform species is recorded as fossils, which impedes relying only on the fossil record to study their recent diversification. Combining fossil and phylogenetic data, we recover a complex evolutionary history for carcharhiniforms, exemplified by several variations in diversification rates with an early low diversity period followed by a Cenozoic radiation. We further reveal a burst of diversification in the last 30 million years, which is partially recorded with fossil data only. We also find that reef expansion and temperature change can explain variations in speciation and extinction through time. These results pinpoint the primordial importance of these environmental variables in the evolution of marine clades. Our study also highlights the benefit of combining the fossil record with phylogenetic data to address macroevolutionary questions.
Collapse
Affiliation(s)
- Baptiste Brée
- grid.462058.d0000 0001 2188 7059Institut des Sciences de l’Evolution de Montpellier, CNRS, IRD, EPHE, Université de Montpellier, 34095 Montpellier, France
| | - Fabien L. Condamine
- grid.462058.d0000 0001 2188 7059Institut des Sciences de l’Evolution de Montpellier, CNRS, IRD, EPHE, Université de Montpellier, 34095 Montpellier, France
| | - Guillaume Guinot
- grid.462058.d0000 0001 2188 7059Institut des Sciences de l’Evolution de Montpellier, CNRS, IRD, EPHE, Université de Montpellier, 34095 Montpellier, France
| |
Collapse
|
17
|
Jouault C, Nel A, Perrichot V, Legendre F, Condamine FL. Multiple drivers and lineage-specific insect extinctions during the Permo-Triassic. Nat Commun 2022; 13:7512. [PMID: 36473862 PMCID: PMC9726944 DOI: 10.1038/s41467-022-35284-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
The Permo-Triassic interval encompasses three extinction events including the most dramatic biological crisis of the Phanerozoic, the latest Permian mass extinction. However, their drivers and outcomes are poorly quantified and understood for terrestrial invertebrates, which we assess here for insects. We find a pattern with three extinctions: the Roadian/Wordian (≈266.9 Ma; extinction of 64.5% insect genera), the Permian/Triassic (≈252 Ma; extinction of 82.6% insect genera), and the Ladinian/Carnian boundaries (≈237 Ma; extinction of 74.8% insect genera). We also unveil a heterogeneous effect of these extinction events across the major insect clades. Because extinction events have impacted Permo-Triassic ecosystems, we investigate the influence of abiotic and biotic factors on insect diversification dynamics and find that changes in floral assemblages are likely the strongest drivers of insects' responses throughout the Permo-Triassic. We also assess the effect of diversity dependence between three insect guilds; an effect ubiquitously found in current ecosystems. We find that herbivores held a central position in the Permo-Triassic interaction network. Our study reveals high levels of insect extinction that profoundly shaped the evolutionary history of the most diverse non-microbial lineage.
Collapse
Affiliation(s)
- Corentin Jouault
- grid.462844.80000 0001 2308 1657Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 57 rue Cuvier, 75005 Paris, France ,grid.462934.e0000 0001 1482 4447Univ. Rennes, CNRS, Géosciences Rennes, UMR 6118, F-35000 Rennes, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 5554 Institut des Sciences de l’Évolution de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - André Nel
- grid.462844.80000 0001 2308 1657Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 57 rue Cuvier, 75005 Paris, France
| | - Vincent Perrichot
- grid.462934.e0000 0001 1482 4447Univ. Rennes, CNRS, Géosciences Rennes, UMR 6118, F-35000 Rennes, France
| | - Frédéric Legendre
- grid.462844.80000 0001 2308 1657Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 57 rue Cuvier, 75005 Paris, France
| | - Fabien L. Condamine
- grid.4444.00000 0001 2112 9282CNRS, UMR 5554 Institut des Sciences de l’Évolution de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| |
Collapse
|
18
|
do Rosario Petrucci B, Januario M, Quental T. paleobuddy: An R package for flexible simulations of diversification and fossil sampling. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Matheus Januario
- Departamento de Ecologia Universidade de São Paulo São Paulo Brazil
- Department of Ecology and Evolutionary Biology University of Michigan Ann‐Arbor Michigan USA
| | - Tiago Quental
- Departamento de Ecologia Universidade de São Paulo São Paulo Brazil
| |
Collapse
|
19
|
Velasco JA, Pinto-Ledezma JN. Mapping species diversification metrics in macroecology: Prospects and challenges. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.951271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The intersection of macroecology and macroevolution is one of today’s most active research in biology. In the last decade, we have witnessed a steady increment of macroecological studies that use metrics attempting to capture macroevolutionary processes to explain present-day biodiversity patterns. Evolutionary explanations of current species richness gradients are fundamental for understanding how diversity accumulates in a region. Although multiple hypotheses have been proposed to explain the patterns we observe in nature, it is well-known that the present-day diversity patterns result from speciation, extinction, colonization from nearby areas, or a combination of these macroevolutionary processes. Whether these metrics capture macroevolutionary processes across space is unknown. Some tip-rate metrics calculated directly from a phylogenetic tree (e.g., mean root distance -MRD-; mean diversification rate -mDR-) seem to return very similar geographical patterns regardless of how they are estimated (e.g., using branch lengths explicitly or not). Model-based tip-rate metrics —those estimated using macroevolutionary mixtures, e.g., the BAMM approach— seem to provide better net diversification estimates than only speciation rates. We argue that the lack of appropriate estimates of extinction and dispersal rates in phylogenetic trees may strongly limit our inferences about how species richness gradients have emerged at spatial and temporal scales. Here, we present a literature review about this topic and empirical comparisons between select taxa with several of these metrics. We implemented a simple null model approach to evaluate whether mapping of these metrics deviates from a random sampling process. We show that phylogenetic metrics by themselves are relatively poor at capturing speciation, extinction, and dispersal processes across geographical gradients. Furthermore, we provide evidence of how parametric biogeographic methods can improve our inference of past events and, therefore, our conclusions about the evolutionary processes driving biodiversity patterns. We recommend that further studies include several approaches simultaneously (e.g., spatial diversification modeling, parametric biogeographic methods, simulations) to disentangle the relative role of speciation, extinction, and dispersal in the generation and maintenance of species richness gradients at regional and global scales.
Collapse
|
20
|
Bippus AC, Flores JR, Hyvönen J, Tomescu AMF. The role of paleontological data in bryophyte systematics. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4273-4290. [PMID: 35394022 DOI: 10.1093/jxb/erac137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Systematics reconstructs tempo and mode in biological evolution by resolving the phylogenetic fabric of biodiversity. The staggering duration and complexity of evolution, coupled with loss of information (extinction), render exhaustive reconstruction of the evolutionary history of life unattainable. Instead, we sample its products-phenotypes and genotypes-to generate phylogenetic hypotheses, which we sequentially reassess and update against new data. Current consensus in evolutionary biology emphasizes fossil integration in total-evidence analyses, requiring in-depth understanding of fossils-age, phenotypes, and systematic affinities-and a detailed morphological framework uniting fossil and extant taxa. Bryophytes present a special case: deep evolutionary history but sparse fossil record and phenotypic diversity encompassing small dimensional scales. We review how these peculiarities shape fossil inclusion in bryophyte systematics. Paucity of the bryophyte fossil record, driven primarily by phenotypic (small plant size) and ecological constraints (patchy substrate-hugging populations), and incomplete exploration, results in many morphologically isolated, taxonomically ambiguous fossil taxa. Nevertheless, instances of exquisite preservation and pioneering studies demonstrate the feasibility of including bryophyte fossils in evolutionary inference. Further progress will arise from developing extensive morphological matrices for bryophytes, continued exploration of the fossil record, re-evaluation of previously described fossils, and training specialists in identification and characterization of bryophyte fossils, and in bryophyte morphology.
Collapse
Affiliation(s)
- Alexander C Bippus
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
- Department of Biological Sciences, California State Polytechnic University-Humboldt, Arcata, CA, USA
| | - Jorge R Flores
- Finnish Museum of Natural History (Botany), University of Helsinki, Helsinki, Finland
| | - Jaakko Hyvönen
- Finnish Museum of Natural History (Botany), University of Helsinki, Helsinki, Finland
- Viikki Plant Science Center & Organismal & Evolutionary Biology, University of Helsinki, Helsinki, Finland
| | - Alexandru M F Tomescu
- Department of Biological Sciences, California State Polytechnic University-Humboldt, Arcata, CA, USA
| |
Collapse
|
21
|
Jamson KM, Moon BC, Fraass AJ. Diversity dynamics of microfossils from the Cretaceous to the Neogene show mixed responses to events. PALAEONTOLOGY 2022; 65:e12615. [PMID: 36248238 PMCID: PMC9540813 DOI: 10.1111/pala.12615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/29/2021] [Accepted: 03/14/2022] [Indexed: 06/16/2023]
Abstract
Microfossils have a ubiquitous and well-studied fossil record with temporally and spatially fluctuating diversity, but how this arises and how major events affect speciation and extinction is uncertain. We present one of the first applications of PyRate to a micropalaeontological global occurrence dataset, reconstructing diversification rates within a Bayesian framework from the Mesozoic to the Neogene in four microfossil groups: planktic foraminiferans, calcareous nannofossils, radiolarians and diatoms. Calcareous and siliceous groups demonstrate opposed but inconsistent responses in diversification. Radiolarian origination increases from c. 104 Ma, maintaining high rates into the Cenozoic. Calcareous microfossil diversification rates significantly declines across the Cretaceous-Palaeogene boundary, while rates in siliceous microfossil groups remain stable until the Paleocene-Eocene transition. Diversification rates in the Cenozoic are largely stable in calcareous groups, whereas the Palaeogene is a turbulent time for diatoms. Diversification fluctuations are driven by climate change and fluctuations in sea surface temperatures, leading to different responses in the groups generating calcareous or siliceous microfossils. Extinctions are apparently induced by changes in anoxia, acidification and stratification; speciation tends to be associated with upwelling, productivity and ocean circulation. These results invite further micropalaeontological quantitative analysis and study of the effects of major transitions in the fossil record. Despite extensive occurrence data, regional diversification events were not recovered; neither were some global events. These unexpected results show the need to consider multiple spatiotemporal levels of diversity and diversification analyses and imply that occurrence datasets of different clades may be more appropriate for testing some hypotheses than others.
Collapse
Affiliation(s)
- Katie M. Jamson
- Palaeobiology Research GroupSchool of Earth SciencesUniversity of BristolWills Memorial Building, Queens RoadBristolBS8 1RJUK
- Present address:
School of Earth & Ocean SciencesUniversity of VictoriaBob Wright Centre A405VictoriaBCV8W 2Y2Canada
| | - Benjamin C. Moon
- Palaeobiology Research GroupSchool of Earth SciencesUniversity of BristolWills Memorial Building, Queens RoadBristolBS8 1RJUK
| | - Andrew J. Fraass
- Palaeobiology Research GroupSchool of Earth SciencesUniversity of BristolWills Memorial Building, Queens RoadBristolBS8 1RJUK
- The Academy of Natural Sciences of Drexel University1900 Benjamin Franklin ParkwayPhiladelphiaPA19103USA
- Present address:
School of Earth & Ocean SciencesUniversity of VictoriaBob Wright Centre A405VictoriaBCV8W 2Y2Canada
| |
Collapse
|
22
|
Sauquet H, Ramírez-Barahona S, Magallón S. What is the age of flowering plants? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3840-3853. [PMID: 35438718 DOI: 10.1093/jxb/erac130] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
The origin of flowering plants (angiosperms) was one of the most transformative events in the history of our planet. Despite considerable interest from multiple research fields, numerous questions remain, including the age of the group as a whole. Recent studies have reported a perplexing range of estimates for the crown-group age of angiosperms, from ~140 million years (Ma; Early Cretaceous) to 270 Ma (Permian). Both ends of the spectrum are now supported by both macroevolutionary analyses of the fossil record and fossil-calibrated molecular dating analyses. Here, we first clarify and distinguish among the three ages of angiosperms: the age of their divergence with acrogymnosperms (stem age); the age(s) of emergence of their unique, distinctive features including flowers (morphological age); and the age of the most recent common ancestor of all their living species (crown age). We then demonstrate, based on recent studies, that fossil-calibrated molecular dating estimates of the crown-group age of angiosperms have little to do with either the amount of molecular data or the number of internal fossil calibrations included. Instead, we argue that this age is almost entirely conditioned by its own prior distribution (typically a calibration density set by the user in Bayesian analyses). Lastly, we discuss which future discoveries or novel types of analyses are most likely to bring more definitive answers. In the meantime, we propose that the age of angiosperms is best described as largely unknown (140-270 Ma) and that contrasting age estimates in the literature mostly reflect conflicting prior distributions. We also suggest that future work that depends on the time scale of flowering plant diversification be designed to integrate over this vexing uncertainty.
Collapse
Affiliation(s)
- Hervé Sauquet
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | | | - Susana Magallón
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
23
|
Morlon H, Robin S, Hartig F. Studying speciation and extinction dynamics from phylogenies: addressing identifiability issues. Trends Ecol Evol 2022; 37:497-506. [PMID: 35246322 DOI: 10.1016/j.tree.2022.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 11/18/2022]
Abstract
A lot of what we know about past speciation and extinction dynamics is based on statistically fitting birth-death processes to phylogenies of extant species. Despite their wide use, the reliability of these tools is regularly questioned. It was recently demonstrated that vast 'congruent' sets of alternative diversification histories cannot be distinguished (i.e., are not identifiable) using extant phylogenies alone, reanimating the debate about the limits of phylogenetic diversification analysis. Here, we summarize what we know about the identifiability of the birth-death process and how identifiability issues can be addressed. We conclude that extant phylogenies, when combined with appropriate prior hypotheses and regularization techniques, can still tell us a lot about past diversification dynamics.
Collapse
Affiliation(s)
- Hélène Morlon
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France.
| | - Stéphane Robin
- UMR MIA-Paris, AgroParisTech, INRA, Paris-Saclay University, 75005 Paris, France; Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum National d'Histoire Naturelle, CNRS, Sorbonne University, Paris, France
| | - Florian Hartig
- Theoretical Ecology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
24
|
Flannery-Sutherland JT, Silvestro D, Benton MJ. Global diversity dynamics in the fossil record are regionally heterogeneous. Nat Commun 2022; 13:2751. [PMID: 35585069 PMCID: PMC9117201 DOI: 10.1038/s41467-022-30507-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 05/05/2022] [Indexed: 01/18/2023] Open
Abstract
Global diversity patterns in the fossil record comprise a mosaic of regional trends, underpinned by spatially non-random drivers and distorted by variation in sampling intensity through time and across space. Sampling-corrected diversity estimates from spatially-standardised fossil datasets retain their regional biogeographic nuances and avoid these biases, yet diversity-through-time arises from the interplay of origination and extinction, the processes that shape macroevolutionary history. Here we present a subsampling algorithm to eliminate spatial sampling bias, coupled with advanced probabilistic methods for estimating origination and extinction rates and a Bayesian method for estimating sampling-corrected diversity. We then re-examine the Late Permian to Early Jurassic marine fossil record, an interval spanning several global biotic upheavals that shaped the origins of the modern marine biosphere. We find that origination and extinction rates are regionally heterogenous even during events that manifested globally, highlighting the need for spatially explicit views of macroevolutionary processes through geological time. Global diversity trends in the fossil record vary regionally through time and space, affecting our ability to interpret macroevolutionary history. Here, the authors propose a method to eliminate spatial sampling bias, estimate origination and extinction rates, and generate diversity estimates, applying this method to the Late Permian to Early Jurassic marine fossil record.
Collapse
Affiliation(s)
| | - Daniele Silvestro
- Department of Biology, University of Fribourg, Fribourg, Switzerland.,Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.,Global Gothenburg Biodiversity Centre, Gothenburg, Sweden
| | | |
Collapse
|
25
|
Siqueira AC, Kiessling W, Bellwood DR. Fast-growing species shape the evolution of reef corals. Nat Commun 2022; 13:2426. [PMID: 35504876 PMCID: PMC9065008 DOI: 10.1038/s41467-022-30234-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/21/2022] [Indexed: 11/21/2022] Open
Abstract
Ecological interactions are ubiquitous on tropical coral reefs, where sessile organisms coexist in limited space. Within these high-diversity systems, reef-building scleractinian corals form an intricate interaction network. The role of biotic interactions among reef corals is well established on ecological timescales. However, its potential effect on macroevolutionary patterns remains unclear. By analysing the rich fossil record of Scleractinia, we show that reef coral biodiversity experienced marked evolutionary rate shifts in the last 3 million years, possibly driven by biotic interactions. Our models suggest that there was an overwhelming effect of staghorn corals (family Acroporidae) on the fossil diversity trajectories of other coral groups. Staghorn corals showed an unparalleled spike in diversification during the Pleistocene. But surprisingly, their expansion was linked with increases in both extinction and speciation rates in other coral families, driving a nine-fold increase in lineage turnover. These results reveal a double-edged effect of diversity dependency on reef evolution. Given their fast growth, staghorn corals may have increased extinction rates via competitive interactions, while promoting speciation through their role as ecosystem engineers. This suggests that recent widespread human-mediated reductions in staghorn coral cover, may be disrupting the key macroevolutionary processes that established modern coral reef ecosystems. The effect of biotic interactions among reef corals on macroevolutionary patterns is unclear. Here, the authors study the rich coral fossil record, finding that reef coral diversity experienced potentially biotic interaction-driven evolutionary rate changes, and that Staghorn corals affected fossil diversity trajectories of other coral groups.
Collapse
Affiliation(s)
- Alexandre C Siqueira
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia. .,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia.
| | - Wolfgang Kiessling
- GeoZentrum Nordbayern, Friedrich-Alexander University Erlangen - Nürnberg (FAU), Erlangen, 91054, Germany
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
26
|
Kejzlar V, Bhattacharya S, Son M, Maiti T. Black Box Variational Bayesian Model Averaging. AM STAT 2022. [DOI: 10.1080/00031305.2022.2058611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
| | | | - Mookyong Son
- Department of Statistics and Probability, Michigan State University
| | - Tapabrata Maiti
- Department of Statistics and Probability, Michigan State University
| |
Collapse
|
27
|
Hauffe T, Pires MM, Quental TB, Wilke T, Silvestro D. A quantitative framework to infer the effect of traits, diversity and environment on dispersal and extinction rates from fossils. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Torsten Hauffe
- Department of Biology University of Fribourg and Swiss Institute of Bioinformatics Fribourg Switzerland
| | - Mathias M. Pires
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas Campinas Brazil
| | - Tiago B. Quental
- Departamento de Ecologia, Universidade de São Paulo São Paulo Brazil
| | - Thomas Wilke
- Department of Animal Ecology and Systematics, Justus Liebig University Germany
| | - Daniele Silvestro
- Department of Biology University of Fribourg and Swiss Institute of Bioinformatics Fribourg Switzerland
- Department of Biological and Environmental Sciences University of Gothenburg and Gothenburg Global Biodiversity Centre Gothenburg Sweden
| |
Collapse
|
28
|
The multicausal twilight of South American native mammalian predators (Metatheria, Sparassodonta). Sci Rep 2022; 12:1224. [PMID: 35075186 PMCID: PMC8786871 DOI: 10.1038/s41598-022-05266-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/23/2021] [Indexed: 11/08/2022] Open
Abstract
Sparassodonts were the apex mammalian predators of South America throughout most of the Cenozoic, diversifying into a wide array of niches including fox-like and even saber-toothed forms. Their extinction is still controversial, with different authors suggesting competition with other predators (placental carnivorans, terror birds, and carnivorous opossums), extinction of prey, and climate change as causal explanations. Here, we analyse these hypotheses using a novel approach implicating Bayesian analyses. We find that speciation and extinction rates of sparassodonts can be correlated with (i) intrinsic biotic factors such as changes in body mass and diversity of sparassodonts, (ii) extrinsic biotic factors such as potential prey diversity, and iii) extrinsic abiotic factors like the atmospheric CO2, sea level, temperature, and uplift of the Andes. Thus, sparassodonts are a good example of a multilevel mixed model of evolution, where various factors drove the evolutionary history of this clade in a pluralistic way. There is no evidence for competition between Sparassodonta and others predators, and the effect of competition in the face of extinctions of fossil species should be tested and not assumed. Furthermore, we propose a novel approach for evaluating the fossil record when performing macroevolutionary analyses.
Collapse
|
29
|
Didier G, Laurin M. Distributions of extinction times from fossil ages and tree topologies: the example of mid-Permian synapsid extinctions. PeerJ 2021; 9:e12577. [PMID: 34966586 PMCID: PMC8667717 DOI: 10.7717/peerj.12577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
Given a phylogenetic tree that includes only extinct, or a mix of extinct and extant taxa, where at least some fossil data are available, we present a method to compute the distribution of the extinction time of a given set of taxa under the Fossilized-Birth-Death model. Our approach differs from the previous ones in that it takes into account (i) the possibility that the taxa or the clade considered may diversify before going extinct and (ii) the whole phylogenetic tree to estimate extinction times, whilst previous methods do not consider the diversification process and deal with each branch independently. Because of this, our method can estimate extinction times of lineages represented by a single fossil, provided that they belong to a clade that includes other fossil occurrences. We assess and compare our new approach with a standard previous one using simulated data. Results show that our method provides more accurate confidence intervals. This new approach is applied to the study of the extinction time of three Permo-Carboniferous synapsid taxa (Ophiacodontidae, Edaphosauridae, and Sphenacodontidae) that are thought to have disappeared toward the end of the Cisuralian (early Permian), or possibly shortly thereafter. The timing of extinctions of these three taxa and of their component lineages supports the idea that the biological crisis in the late Kungurian/early Roadian consisted of a progressive decline in biodiversity throughout the Kungurian.
Collapse
Affiliation(s)
| | - Michel Laurin
- CNRS/MNHN/UPMC, Sorbonne Université, Muséum National d’Histoire Naturelle, CR2P (“Centre de Recherches sur la Paléobiodiversité et les Paléoenvironnements” UMR 7207), Paris, France
| |
Collapse
|
30
|
Barrett PZ. The largest hoplophonine and a complex new hypothesis of nimravid evolution. Sci Rep 2021; 11:21078. [PMID: 34702935 PMCID: PMC8548586 DOI: 10.1038/s41598-021-00521-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
Nimravids were the first carnivorans to evolve saberteeth, but previously portrayed as having a narrow evolutionary trajectory of increasing degrees of sabertooth specialization. Here I present a novel hypothesis about the evolution of this group, including a description of Eusmilus adelos, the largest known hoplophonine, which forces a re-evaluation of not only their relationships, but perceived paleoecology. Using a tip-dated Bayesian analysis with sophisticated evolutionary models, nimravids can now be viewed as following two paths of evolution: one led to numerous early dirk-tooth forms, including E. adelos, while the other converged on living feline morphology, tens of millions of years before its appearance in felids.
Collapse
|
31
|
Condamine FL, Guinot G, Benton MJ, Currie PJ. Dinosaur biodiversity declined well before the asteroid impact, influenced by ecological and environmental pressures. Nat Commun 2021; 12:3833. [PMID: 34188028 PMCID: PMC8242047 DOI: 10.1038/s41467-021-23754-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 05/10/2021] [Indexed: 02/05/2023] Open
Abstract
The question why non-avian dinosaurs went extinct 66 million years ago (Ma) remains unresolved because of the coarseness of the fossil record. A sudden extinction caused by an asteroid is the most accepted hypothesis but it is debated whether dinosaurs were in decline or not before the impact. We analyse the speciation-extinction dynamics for six key dinosaur families, and find a decline across dinosaurs, where diversification shifted to a declining-diversity pattern ~76 Ma. We investigate the influence of ecological and physical factors, and find that the decline of dinosaurs was likely driven by global climate cooling and herbivorous diversity drop. The latter is likely due to hadrosaurs outcompeting other herbivores. We also estimate that extinction risk is related to species age during the decline, suggesting a lack of evolutionary novelty or adaptation to changing environments. These results support an environmentally driven decline of non-avian dinosaurs well before the asteroid impact.
Collapse
Affiliation(s)
- Fabien L Condamine
- Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier | CNRS|IRD|EPHE), Montpellier, France.
| | - Guillaume Guinot
- Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier | CNRS|IRD|EPHE), Montpellier, France
| | - Michael J Benton
- Department of Earth Sciences, University of Bristol, Bristol, UK
| | - Philip J Currie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
32
|
MacPherson A, Louca S, McLaughlin A, Joy JB, Pennell MW. Unifying Phylogenetic Birth-Death Models in Epidemiology and Macroevolution. Syst Biol 2021; 71:172-189. [PMID: 34165577 PMCID: PMC8972974 DOI: 10.1093/sysbio/syab049] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/09/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Birth–death stochastic processes are the foundations of many phylogenetic models and are
widely used to make inferences about epidemiological and macroevolutionary dynamics. There
are a large number of birth–death model variants that have been developed; these impose
different assumptions about the temporal dynamics of the parameters and about the sampling
process. As each of these variants was individually derived, it has been difficult to
understand the relationships between them as well as their precise biological and
mathematical assumptions. Without a common mathematical foundation, deriving new models is
nontrivial. Here, we unify these models into a single framework, prove that many
previously developed epidemiological and macroevolutionary models are all special cases of
a more general model, and illustrate the connections between these variants. This
unification includes both models where the process is the same for all lineages and those
in which it varies across types. We also outline a straightforward procedure for deriving
likelihood functions for arbitrarily complex birth–death(-sampling) models that will
hopefully allow researchers to explore a wider array of scenarios than was previously
possible. By rederiving existing single-type birth–death sampling models, we clarify and
synthesize the range of explicit and implicit assumptions made by these models.
[Birth–death processes; epidemiology; macroevolution; phylogenetics; statistical
inference.]
Collapse
Affiliation(s)
- Ailene MacPherson
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Stilianos Louca
- Department of Biology, University of Oregon, USA.,Institute of Ecology and Evolution, University of Oregon, USA
| | - Angela McLaughlin
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada.,Bioinformatics, University of British Columbia, Vancouver, Canada
| | - Jeffrey B Joy
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada.,Bioinformatics, University of British Columbia, Vancouver, Canada.,Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Matthew W Pennell
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| |
Collapse
|
33
|
Černý D, Madzia D, Slater GJ. Empirical and Methodological Challenges to the Model-Based Inference of Diversification Rates in Extinct Clades. Syst Biol 2021; 71:153-171. [PMID: 34110409 DOI: 10.1093/sysbio/syab045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 02/01/2023] Open
Abstract
Changes in speciation and extinction rates are key to the dynamics of clade diversification, but attempts to infer them from phylogenies of extant species face challenges. Methods capable of synthesizing information from extant and fossil species have yielded novel insights into diversification rate variation through time, but little is known about their behavior when analyzing entirely extinct clades. Here, we use empirical and simulated data to assess how two popular methods, PyRate and Fossil BAMM, perform in this setting. We inferred the first tip-dated trees for ornithischian dinosaurs, and combined them with fossil occurrence data to test whether the clade underwent an end-Cretaceous decline. We then simulated phylogenies and fossil records under empirical constraints to determine whether macroevolutionary and preservation rates can be teased apart under paleobiologically realistic conditions. We obtained discordant inferences about ornithischian macroevolution including a long-term speciation rate decline (BAMM), mostly flat rates with a steep diversification drop (PyRate) or without one (BAMM), and episodes of implausibly accelerated speciation and extinction (PyRate). Simulations revealed little to no conflation between speciation and preservation, but yielded spuriously correlated speciation and extinction estimates while time-smearing tree-wide shifts (BAMM) or overestimating their number (PyRate). Our results indicate that the small phylogenetic datasets available to vertebrate paleontologists and the assumptions made by current model-based methods combine to yield potentially unreliable inferences about the diversification of extinct clades. We provide guidelines for interpreting the results of the existing approaches in light of their limitations, and suggest how the latter may be mitigated.
Collapse
Affiliation(s)
- David Černý
- Department of the Geophysical Sciences, University of Chicago, Chicago 60637, USA
| | - Daniel Madzia
- Institute of Paleobiology, Polish Academy of Sciences, Warsaw 00-818, Poland
| | - Graham J Slater
- Department of the Geophysical Sciences, University of Chicago, Chicago 60637, USA
| |
Collapse
|
34
|
Weppe R, Orliac MJ, Guinot G, Condamine FL. Evolutionary drivers, morphological evolution and diversity dynamics of a surviving mammal clade: cainotherioids at the Eocene-Oligocene transition. Proc Biol Sci 2021; 288:20210173. [PMID: 34074121 PMCID: PMC8170207 DOI: 10.1098/rspb.2021.0173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/10/2021] [Indexed: 11/12/2022] Open
Abstract
The Eocene-Oligocene transition (EOT) represents a period of global environmental changes particularly marked in Europe and coincides with a dramatic biotic turnover. Here, using an exceptional fossil preservation, we document and analyse the diversity dynamics of a mammal clade, Cainotherioidea (Artiodactyla), that survived the EOT and radiated rapidly immediately after. We infer their diversification history from Quercy Konzentrat-Lagerstätte (south-west France) at the species level using Bayesian birth-death models. We show that cainotherioid diversity fluctuated through time, with extinction events at the EOT and in the late Oligocene, and a major speciation burst in the early Oligocene. The latter is in line with our finding that cainotherioids had a high morphological adaptability following environmental changes throughout the EOT, which probably played a key role in the survival and evolutionary success of this clade in the aftermath. Speciation is positively associated with temperature and continental fragmentation in a time-continuous way, while extinction seems to synchronize with environmental change in a punctuated way. Within-clade interactions negatively affected the cainotherioid diversification, while inter-clade competition might explain their final decline during the late Oligocene. Our results provide a detailed dynamic picture of the evolutionary history of a mammal clade in a context of global change.
Collapse
Affiliation(s)
- R. Weppe
- Institut des Sciences de l’évolution de Montpellier, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - M. J. Orliac
- Institut des Sciences de l’évolution de Montpellier, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - G. Guinot
- Institut des Sciences de l’évolution de Montpellier, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - F. L. Condamine
- Institut des Sciences de l’évolution de Montpellier, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| |
Collapse
|
35
|
Ecological and biogeographic drivers of biodiversity cannot be resolved using clade age-richness data. Nat Commun 2021; 12:2945. [PMID: 34011982 PMCID: PMC8134473 DOI: 10.1038/s41467-021-23307-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/22/2021] [Indexed: 02/03/2023] Open
Abstract
Estimates of evolutionary diversification rates - speciation and extinction - have been used extensively to explain global biodiversity patterns. Many studies have analyzed diversification rates derived from just two pieces of information: a clade's age and its extant species richness. This "age-richness rate" (ARR) estimator provides a convenient shortcut for comparative studies, but makes strong assumptions about the dynamics of species richness through time. Here we demonstrate that use of the ARR estimator in comparative studies is problematic on both theoretical and empirical grounds. We prove mathematically that ARR estimates are non-identifiable: there is no information in the data for a single clade that can distinguish a process with positive net diversification from one where net diversification is zero. Using paleontological time series, we demonstrate that the ARR estimator has no predictive ability for real datasets. These pathologies arise because the ARR inference procedure yields "point estimates" that have been computed under a saturated statistical model with zero degrees of freedom. Although ARR estimates remain useful in some contexts, they should be avoided for comparative studies of diversification and species richness.
Collapse
|
36
|
Januario M, Quental TB. Re-evaluation of the "law of constant extinction" for ruminants at different taxonomical scales. Evolution 2021; 75:656-671. [PMID: 33486771 DOI: 10.1111/evo.14177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 12/15/2020] [Accepted: 12/27/2020] [Indexed: 11/27/2022]
Abstract
The "law of constant extinction," proposed by Van Valen, states that long and short-lived taxa have equal chances of going extinct. This pattern of age-independent extinction was originally inferred using the fossil record of several different taxa and relied on survivorship curves built from the literal reading of the fossil record. Van Valen's seminal work was mostly done at higher taxonomic levels, hence its prevalence at the species level could not be directly inferred. The surprisingly few subsequent studies done at the species level have challenged the prevalence of age-independent extinction, but those have, for the most part, failed to explicitly incorporate inherent biases of the fossil record. Using a recent Bayesian framework that accounts for several of those biases, including the fact that very short-living lineages might never make to the record itself, we showed that Ruminantia species present age-dependent extinction, where extinction probability decreases with species age. An analysis at the genus level suggested age-independent extinction but further examination suggested that the pattern might be more complex than previously reported by Van Valen. Our results indicate that different taxonomic levels may present different extinction regimes, which could justify the development of new macroevolutionary theory and methods.
Collapse
Affiliation(s)
- Matheus Januario
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Tiago B Quental
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
37
|
Paillard A, Shimada K, Pimiento C. The fossil record of extant elasmobranchs. JOURNAL OF FISH BIOLOGY 2021; 98:445-455. [PMID: 33058250 DOI: 10.1111/jfb.14588] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Sharks and their relatives (Elasmobranchii) are highly threatened with extinction due to various anthropogenic pressures. The abundant fossil record of fossil taxa has allowed the tracing of the evolutionary history of modern elasmobranchs to at least 250 MYA; nonetheless, exactly how far back the fossil record of living taxa goes has never been collectively surveyed. In this study, the authors assess the representation and extent of the fossil record of elasmobranchs currently living in our oceans by collecting their oldest records and quantifying first appearance dates at different taxonomic levels (i.e., orders, families, genera and species), ecological traits (e.g., body size, habitat and feeding mechanism) and extinction risks (i.e., threatened, not threatened and data deficient). The results of this study confirm the robust representation of higher taxonomic ranks, with all orders, most of the families and over half of the extant genera having a fossil record. Further, they reveal that 10% of the current global species diversity is represented in the geological past. Sharks are better represented and extend deeper in time than rays and skates. While the fossil record of extant genera (e.g., the six gill sharks, Hexanchus) goes as far back as c. 190 MYA, the fossil record of extant species (e.g., the sand shark, Carcharias taurus Rafinesque 1810) extends c. 66 MYA. Although no significant differences were found in the extent of the fossil record between ecological traits, it was found that the currently threatened species have a significantly older fossil record than the not threatened species. This study demonstrate that the fossil record of extant elasmobranchs extends deep into the geologic time, especially in the case of threatened sharks. As such, the elasmobranch geological history has great potential to advance the understanding of how species currently facing extinction have responded to different stressors in the past, thereby providing a deep-time perspective to conservation.
Collapse
Affiliation(s)
- Adele Paillard
- Department of Biosciences, Swansea University, Swansea, UK
| | - Kenshu Shimada
- Department of Environmental Science and Studies and Department of Biological Sciences, DePaul University, Chicago, Illinois, USA
- Sternberg Museum of Natural History, Fort Hays State University, Hays, Kansas, USA
| | - Catalina Pimiento
- Department of Biosciences, Swansea University, Swansea, UK
- Paleontological Institute and Museum, University of Zurich, Zurich, Switzerland
- Smithsonian Tropical Research Institute, Balboa, Panama
| |
Collapse
|
38
|
Zamaloa MC, Gandolfo MA, Nixon KC. 52 million years old Eucalyptus flower sheds more than pollen grains. AMERICAN JOURNAL OF BOTANY 2020; 107:1763-1771. [PMID: 33274448 PMCID: PMC7839439 DOI: 10.1002/ajb2.1569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/25/2020] [Indexed: 06/12/2023]
Abstract
PREMISE Fossils provide fundamental evidence of the evolutionary processes that crafted today's biodiversity and consequently for understanding life on Earth. We report the finding of Myrtaceidites eucalyptoides pollen grains preserved within the anthers of a 52-million-year-old Eucalyptus flower collected at Laguna del Hunco locality of Argentinean Patagonia and discuss its implications in understanding the evolutionary history of the iconic Australian genus Eucalyptus. METHODS Pollen grains were extracted from the flower's anthers and were then observed under light microscopy and scanning electron microscopy. The phylogenetic position of the fossil was investigated by adding pollen data to a previously published total-evidence matrix and analyzing it using parsimony. RESULTS We erect the species Eucalyptus xoshemium for the fossil flower. Pollen extracted from E. xoshemium belongs to the species Myrtaceidites eucalyptoides, which, until now, was only known as dispersed pollen. The numerous pollen grains recovered from the single flower allowed estimation of M. eucalyptoides' variability. Results of the phylogenetic analysis reinforce the position of this fossil within crown group Eucalyptus. CONCLUSIONS The discovery of these pollen grains within a Patagonian Eucalyptus fossil flower confirms the hypothesis that Myrtaceidites eucalyptoides represents fossil pollen in the Eucalyptus lineage, extends the geographic and stratigraphic fossil pollen record, and supports an earlier age for crown-group eucalypts.
Collapse
Affiliation(s)
- Maria C. Zamaloa
- Museo Paleontológico Egidio FeruglioAvda. Fontana 140Trelew, Chubut9100Argentina
| | - Maria A. Gandolfo
- LH Bailey HortoriumPlant Biology SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| | - Kevin C. Nixon
- LH Bailey HortoriumPlant Biology SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| |
Collapse
|
39
|
Fraser D, Soul LC, Tóth AB, Balk MA, Eronen JT, Pineda-Munoz S, Shupinski AB, Villaseñor A, Barr WA, Behrensmeyer AK, Du A, Faith JT, Gotelli NJ, Graves GR, Jukar AM, Looy CV, Miller JH, Potts R, Lyons SK. Investigating Biotic Interactions in Deep Time. Trends Ecol Evol 2020; 36:61-75. [PMID: 33067015 DOI: 10.1016/j.tree.2020.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022]
Abstract
Recent renewed interest in using fossil data to understand how biotic interactions have shaped the evolution of life is challenging the widely held assumption that long-term climate changes are the primary drivers of biodiversity change. New approaches go beyond traditional richness and co-occurrence studies to explicitly model biotic interactions using data on fossil and modern biodiversity. Important developments in three primary areas of research include analysis of (i) macroevolutionary rates, (ii) the impacts of and recovery from extinction events, and (iii) how humans (Homo sapiens) affected interactions among non-human species. We present multiple lines of evidence for an important and measurable role of biotic interactions in shaping the evolution of communities and lineages on long timescales.
Collapse
Affiliation(s)
- Danielle Fraser
- Palaeobiology, Canadian Museum of Nature, Ottawa, ON, Canada; Biology and Earth Sciences, Carleton University, Ottawa, ON, Canada; Department of Paleobiology and Evolution of Terrestrial Ecosystems Program, Smithsonian Institution, National Museum of Natural History, Washington, DC , USA.
| | - Laura C Soul
- Department of Paleobiology and Evolution of Terrestrial Ecosystems Program, Smithsonian Institution, National Museum of Natural History, Washington, DC , USA
| | - Anikó B Tóth
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW, Australia
| | - Meghan A Balk
- Department of Paleobiology and Evolution of Terrestrial Ecosystems Program, Smithsonian Institution, National Museum of Natural History, Washington, DC , USA; BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Jussi T Eronen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland; Helsinki Institute of Sustainability Science, Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Helsinki, Finland; BIOS research Unit, Helsinki, Finland
| | - Silvia Pineda-Munoz
- Department of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Amelia Villaseñor
- Department of Anthropology, University of Arkansas, Fayetteville, AR, USA
| | - W Andrew Barr
- Department of Paleobiology and Evolution of Terrestrial Ecosystems Program, Smithsonian Institution, National Museum of Natural History, Washington, DC , USA; Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC, USA
| | - Anna K Behrensmeyer
- Department of Paleobiology and Evolution of Terrestrial Ecosystems Program, Smithsonian Institution, National Museum of Natural History, Washington, DC , USA
| | - Andrew Du
- Department of Anthropology and Geography, Colorado State University, Fort Collins, CO, USA
| | - J Tyler Faith
- Natural History Museum of Utah, University of Utah, Salt Lake City, UT,USA; Department of Anthropology, University of Utah, Salt Lake City, UT, USA
| | | | - Gary R Graves
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA; Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Advait M Jukar
- Department of Paleobiology and Evolution of Terrestrial Ecosystems Program, Smithsonian Institution, National Museum of Natural History, Washington, DC , USA
| | - Cindy V Looy
- Department of Integrative Biology, Museum of Paleontology, University and Jepson Herbaria, University of California-Berkeley, Berkeley, CA , USA
| | - Joshua H Miller
- Department of Geology, University of Cincinnati, Cincinnati, OH, USA
| | - Richard Potts
- Human Origins Program, National Museum of Natural History, Smithsonian Institution, Washington, DC , USA
| | - S Kathleen Lyons
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
40
|
Andermann T, Faurby S, Turvey ST, Antonelli A, Silvestro D. The past and future human impact on mammalian diversity. SCIENCE ADVANCES 2020; 6:6/36/eabb2313. [PMID: 32917612 PMCID: PMC7473673 DOI: 10.1126/sciadv.abb2313] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/16/2020] [Indexed: 05/18/2023]
Abstract
To understand the current biodiversity crisis, it is crucial to determine how humans have affected biodiversity in the past. However, the extent of human involvement in species extinctions from the Late Pleistocene onward remains contentious. Here, we apply Bayesian models to the fossil record to estimate how mammalian extinction rates have changed over the past 126,000 years, inferring specific times of rate increases. We specifically test the hypothesis of human-caused extinctions by using posterior predictive methods. We find that human population size is able to predict past extinctions with 96% accuracy. Predictors based on past climate, in contrast, perform no better than expected by chance, suggesting that climate had a negligible impact on global mammal extinctions. Based on current trends, we predict for the near future a rate escalation of unprecedented magnitude. Our results provide a comprehensive assessment of the human impact on past and predicted future extinctions of mammals.
Collapse
Affiliation(s)
- Tobias Andermann
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden.
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
| | - Søren Faurby
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
| | - Samuel T Turvey
- Institute of Zoology, Zoological Society of London, London, UK
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
- Royal Botanic Gardens, Kew, Richmond, UK
| | - Daniele Silvestro
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
41
|
S Meseguer A, Condamine FL. Ancient tropical extinctions at high latitudes contributed to the latitudinal diversity gradient. Evolution 2020; 74:1966-1987. [PMID: 32246727 DOI: 10.1111/evo.13967] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 03/04/2020] [Accepted: 03/21/2020] [Indexed: 01/15/2023]
Abstract
Global biodiversity currently peaks at the equator and decreases toward the poles. Growing fossil evidence suggest this hump-shaped latitudinal diversity gradient (LDG) has not been persistent through time, with similar diversity across latitudes flattening out the LDG during past greenhouse periods. However, when and how diversity declined at high latitudes to generate the modern LDG remains an open question. Although diversity-loss scenarios have been proposed, they remain mostly undemonstrated. We outline the "asymmetric gradient of extinction and dispersal" framework that contextualizes previous ideas behind the LDG under a time-variable scenario. Using phylogenies and fossils of Testudines, Crocodilia, and Lepidosauria, we find that the hump-shaped LDG could be explained by (1) disproportionate extinctions of high-latitude tropical-adapted clades when climate transitioned from greenhouse to icehouse, and (2) equator-ward biotic dispersals tracking their climatic preferences when tropical biomes became restricted to the equator. Conversely, equivalent diversification rates across latitudes can account for the formation of an ancient flat LDG. The inclusion of fossils in macroevolutionary studies allows revealing time-dependent extinction rates hardly detectable from phylogenies only. This study underscores that the prevailing evolutionary processes generating the LDG during greenhouses differed from those operating during icehouses.
Collapse
Affiliation(s)
- Andrea S Meseguer
- INRA, UMR 1062 Centre de Biologie pour la Gestion des Populations (INRA | IRD | CIRAD | Montpellier SupAgro), Montferrier-sur-Lez, France
- CNRS, UMR 5554 Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier | CNRS | IRD | EPHE), Montpellier, France
- Real Jardín Botánico de Madrid (RJB-CSIC), Madrid, Spain
| | - Fabien L Condamine
- CNRS, UMR 5554 Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier | CNRS | IRD | EPHE), Montpellier, France
| |
Collapse
|
42
|
Condamine FL, Nel A, Grandcolas P, Legendre F. Fossil and phylogenetic analyses reveal recurrent periods of diversification and extinction in dictyopteran insects. Cladistics 2020; 36:394-412. [PMID: 34619806 DOI: 10.1111/cla.12412] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2020] [Indexed: 01/22/2023] Open
Abstract
Variations of speciation and extinction rates determine the fate of clades through time. Periods of high diversification and extinction (possibly mass-extinction events) can punctuate the evolutionary history of various clades, but they remain loosely defined for many biological groups, especially nonmarine invertebrates like insects. Here, we examine whether the cockroaches, mantises and termites (altogether included in Dictyoptera) have experienced episodic pulses of speciation or extinction and how these pulses may be associated with environmental fluctuations or mass extinctions. We relied on molecular phylogeny and fossil data to shed light on the times and rates at which dictyopterans diversified. The diversification of Dictyoptera has alternated between (i) periods of high diversification in the late Carboniferous, Early-Middle Triassic, Early Cretaceous and middle Palaeogene, and (ii) periods of high extinction rates particularly at the Permian-Triassic boundary, but not necessarily correlated with the major global biodiversity crises as in the mid-Cretaceous. This study advocates the importance of analyzing, when possible, both molecular phylogeny and fossil data to unveil diversification and extinction periods for a given group. The causes and consequences of extinction must be studied beyond mass-extinction events alone to gain a broader understanding of how clades wax and wane.
Collapse
Affiliation(s)
- Fabien L Condamine
- CNRS, UMR 5554 Institut des Sciences de l'Évolution de Montpellier (Université de Montpellier
- CNRS
- IRD
- EPHE), Place Eugène Bataillon, 34095, Montpellier, France
| | - André Nel
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, SU, EPHE, UA, 57 rue Cuvier, 75231, Paris Cedex 05, France
| | - Philippe Grandcolas
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, SU, EPHE, UA, 57 rue Cuvier, 75231, Paris Cedex 05, France
| | - Frédéric Legendre
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, SU, EPHE, UA, 57 rue Cuvier, 75231, Paris Cedex 05, France
| |
Collapse
|
43
|
Pimiento C, Bacon CD, Silvestro D, Hendy A, Jaramillo C, Zizka A, Meyer X, Antonelli A. Selective extinction against redundant species buffers functional diversity. Proc Biol Sci 2020; 287:20201162. [PMID: 32693723 PMCID: PMC7423665 DOI: 10.1098/rspb.2020.1162] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The extinction of species can destabilize ecological processes. A way to assess the ecological consequences of species loss is by examining changes in functional diversity. The preservation of functional diversity depends on the range of ecological roles performed by species, or functional richness, and the number of species per role, or functional redundancy. However, current knowledge is based on short timescales and an understanding of how functional diversity responds to long-term biodiversity dynamics has been limited by the availability of deep-time, trait-based data. Here, we compile an exceptional trait dataset of fossil molluscs from a 23-million-year interval in the Caribbean Sea (34 011 records, 4422 species) and develop a novel Bayesian model of multi-trait-dependent diversification to reconstruct mollusc (i) diversity dynamics, (ii) changes in functional diversity, and (iii) extinction selectivity over the last 23 Myr. Our results identify high diversification between 23–5 Mya, leading to increases in both functional richness and redundancy. Conversely, over the last three million years, a period of high extinction rates resulted in the loss of 49% of species but only 3% of functional richness. Extinction rates were significantly higher in small, functionally redundant species suggesting that competition mediated the response of species to environmental change. Taken together, our results identify long-term diversification and selective extinction against redundant species that allowed functional diversity to grow over time, ultimately buffering the ecological functions of biological communities against extinction.
Collapse
Affiliation(s)
- Catalina Pimiento
- Department of Biosciences, Swansea University, Swansea SA2 8PP, UK.,Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Ancon, Republic of Panama
| | - Christine D Bacon
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden
| | - Daniele Silvestro
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden.,Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Austin Hendy
- Natural History Museum of Los Angeles County, Los Angeles, CA 90007, USA
| | - Carlos Jaramillo
- Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Ancon, Republic of Panama.,Equipe de Paléontologie, Institut des Sciences de l'Évolution de Montpellier, University of Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France.,Institut des Sciences de l'Évolution de Montpellier, University of Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - Alexander Zizka
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden.,German Center for Integrative Biodiversity Research (iDiv) Halle Jena Leipzig, 04103 Leipzig, Germany
| | - Xavier Meyer
- Department of Biology, University of Fribourg, Fribourg, Switzerland.,Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden.,Royal Botanical Gardens Kew, Richmond TW9 3AE, UK
| |
Collapse
|
44
|
Gjesfjeld E, Silvestro D, Chang J, Koch B, Foster JG, Alfaro ME. A quantitative workflow for modeling diversification in material culture. PLoS One 2020; 15:e0227579. [PMID: 32027685 PMCID: PMC7004301 DOI: 10.1371/journal.pone.0227579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/20/2019] [Indexed: 11/18/2022] Open
Abstract
Questions about the evolution of material culture are widespread in the humanities and social sciences. Statistical modeling of long-term changes in material culture is less common due to a lack of appropriate frameworks. Our goal is to close this gap and provide robust statistical methods for examining changes in the diversity of material culture. We provide an open-source and quantitative workflow for estimating rates of origination, extinction, and preservation, as well as identifying key shift points in the diversification histories of material culture. We demonstrate our approach using two distinct kinds of data: age ranges for the production of American car models, and radiocarbon dates associated with archaeological cultures of the European Neolithic. Our approach improves on existing frameworks by disentangling the relative contributions of origination and extinction to diversification. Our method also permits rigorous statistical testing of competing hypotheses to explain changes in diversity. Finally, we stress the value of a flexible approach that can be applied to data in various forms; this flexibility allows scholars to explore commonalities between forms of material culture and ask questions about the general properties of cultural change.
Collapse
Affiliation(s)
- Erik Gjesfjeld
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, England, United Kingdom
| | - Daniele Silvestro
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jonathan Chang
- School of Biological Sciences, Monash University, Melbourne, Australia.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, United States of America
| | - Bernard Koch
- Department of Sociology, University of California, Los Angeles, CA, United States of America
| | - Jacob G Foster
- Department of Sociology, University of California, Los Angeles, CA, United States of America
| | - Michael E Alfaro
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, United States of America.,Institute for Society and Genetics, University of California, Los Angeles, CA, United States of America
| |
Collapse
|
45
|
Budd GE, Mann RP. The dynamics of stem and crown groups. SCIENCE ADVANCES 2020; 6:eaaz1626. [PMID: 32128421 PMCID: PMC7030935 DOI: 10.1126/sciadv.aaz1626] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/03/2019] [Indexed: 05/22/2023]
Abstract
The fossil record of the origins of major groups such as animals and birds has generated considerable controversy, especially when it conflicts with timings based on molecular clock estimates. Here, we model the diversity of "stem" (basal) and "crown" (modern) members of groups using a "birth-death model," the results of which qualitatively match many large-scale patterns seen in the fossil record. Typically, the stem group diversifies rapidly until the crown group emerges, at which point its diversity collapses, followed shortly by its extinction. Mass extinctions can disturb this pattern and create long stem groups such as the dinosaurs. Crown groups are unlikely to emerge either cryptically or just before mass extinctions, in contradiction to popular hypotheses such as the "phylogenetic fuse". The patterns revealed provide an essential context for framing ecological and evolutionary explanations for how major groups originate, and strengthen our confidence in the reliability of the fossil record.
Collapse
Affiliation(s)
- Graham E. Budd
- Department of Earth Sciences, Palaeobiology Programme, Uppsala University, Uppsala, Sweden
- Corresponding author.
| | - Richard P. Mann
- Department of Statistics, School of Mathematics, University of Leeds, Leeds, UK
- The Alan Turing Institute, London, UK
| |
Collapse
|
46
|
Guinot G, Cavin L. Distinct Responses of Elasmobranchs and Ray-Finned Fishes to Long-Term Global Change. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2019.00513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
47
|
Schachat SR, Labandeira CC, Clapham ME, Payne JL. A Cretaceous peak in family-level insect diversity estimated with mark-recapture methodology. Proc Biol Sci 2019; 286:20192054. [PMID: 31847775 PMCID: PMC6939917 DOI: 10.1098/rspb.2019.2054] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/22/2019] [Indexed: 12/20/2022] Open
Abstract
The history of insects' taxonomic diversity is poorly understood. The two most common methods for estimating taxonomic diversity in deep time yield conflicting results: the 'range through' method suggests a steady, nearly monotonic increase in family-level diversity, whereas 'shareholder quorum subsampling' suggests a highly volatile taxonomic history with family-level mass extinctions occurring repeatedly, even at the midpoints of geological periods. The only feature shared by these two diversity curves is a steep increase in standing diversity during the Early Cretaceous. This apparent diversification event occurs primarily during the Aptian, the pre-Cenozoic interval with the most described insect occurrences, raising the possibility that this feature of the diversity curves reflects preservation and sampling biases rather than insect evolution and extinction. Here, the capture-mark-recapture (CMR) approach is used to estimate insects' family-level diversity. This method accounts for the incompleteness of the insect fossil record as well as uneven sampling among time intervals. The CMR diversity curve shows extinctions at the Permian/Triassic and Cretaceous/Palaeogene boundaries but does not contain any mass extinctions within geological periods. This curve also includes a steep increase in diversity during the Aptian, which appears not to be an artefact of sampling or preservation bias because this increase still appears when time bins are standardized by the number of occurrences they contain rather than by the amount of time that they span. The Early Cretaceous increase in family-level diversity predates the rise of angiosperms by many millions of years and can be better attributed to the diversification of parasitic and especially parasitoid insect lineages.
Collapse
Affiliation(s)
- Sandra R. Schachat
- Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Conrad C. Labandeira
- Department of Paleobiology, Smithsonian Institution, Washington, DC 20013, USA
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
- College of Life Sciences, Capital Normal University, Beijing 100048, People’s Republic of China
| | - Matthew E. Clapham
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064, USA
| | - Jonathan L. Payne
- Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
48
|
Hohmann N, Jarochowska E. Enforced symmetry: the necessity of symmetric waxing and waning. PeerJ 2019; 7:e8011. [PMID: 31720120 PMCID: PMC6842294 DOI: 10.7717/peerj.8011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/08/2019] [Indexed: 12/02/2022] Open
Abstract
A fundamental question in ecology is how the success of a taxon changes through time and what drives this change. This question is commonly approached using trajectories averaged over a group of taxa. Using results from probability theory, we show analytically and using examples that averaged trajectories will be more symmetric as the number of averaged trajectories increases, even if none of the original trajectories they were derived from is symmetric. This effect is not only based on averaging, but also on the introduction of noise and the incorporation of a priori known origination and extinction times. This implies that averaged trajectories are not suitable for deriving information about the processes driving the success of taxa. In particular, symmetric waxing and waning, which is commonly observed and interpreted to be linked to a number of different paleobiological processes, does not allow drawing any conclusions about the nature of the underlying process.
Collapse
Affiliation(s)
- Niklas Hohmann
- Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
49
|
Climate cooling and clade competition likely drove the decline of lamniform sharks. Proc Natl Acad Sci U S A 2019; 116:20584-20590. [PMID: 31548392 DOI: 10.1073/pnas.1902693116] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding heterogeneity in species richness between closely related clades is a key research question in ecology and evolutionary biology. Multiple hypotheses have been proposed to interpret such diversity contrasts across the tree of life, with most studies focusing on speciation rates to explain clades' evolutionary radiations, while often neglecting extinction rates. Here we study a notorious biological model as exemplified by the sister relationships between mackerel sharks (Lamniformes, 15 extant species) and ground sharks (Carcharhiniformes, ∼290 extant species). Using a comprehensive fossil dataset, we found that the diversity dynamics of lamniforms waxed and waned following repeated cycles of radiation phases and declining phases. Radiation phases peaked up to 3 times the current diversity in the early Late Cretaceous. In the last 20 million years, the group declined to its present-day diversity. Along with a higher extinction risk for young species, we further show that this declining pattern is likely attributed to a combination of abiotic and biotic factors, with a cooling-driven extinction (negative correlation between temperature and extinction) and clade competition with some ground sharks. Competition from multiple clades successively drove the demise and replacement of mackerel sharks due to a failure to originate facing the rise of ground sharks, particularly since the Eocene. These effects came from ecologically similar carcharhiniform species inhibiting diversification of medium- and large-sized lamniforms. These results imply that the interplay between abiotic and biotic drivers had a substantial role in extinction and speciation, respectively, which determines the sequential rise and decline of marine apex predators.
Collapse
|
50
|
Stevens RD, Rowe RJ, Badgley C. Gradients of mammalian biodiversity through space and time. J Mammal 2019. [DOI: 10.1093/jmammal/gyz024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Richard D Stevens
- Department of Natural Resources Management and Museum of Texas Tech University, Lubbock, TX, USA
| | - Rebecca J Rowe
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
| | - Catherine Badgley
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|