1
|
Jiang C, Kan J, Gao G, Dockter C, Li C, Wu W, Yang P, Stein N. Barley2035: A decadal vision for barley research and breeding. MOLECULAR PLANT 2024:S1674-2052(24)00393-9. [PMID: 39690737 DOI: 10.1016/j.molp.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
Barley (Hordeum vulgare ssp. vulgare) is one of the oldest founder crops in human civilization and has been widely dispersed across the globe to support human society as a livestock feed and a raw material for the brewing industries. Since the early half of the 20th century, it has been used for innovative research on cytogenetics, biochemistry, and genetics, facilitated by its mode of reproduction through self-pollination and its true diploid status, which have contributed to the accumulation of numerous germplasm and mutant resources. In the era of molecular genomics and biology, a multitude of barley genes and their related regulatory mechanisms have been identified and functionally validated, providing a paradigm for equivalent studies in other Triticeae crops. This review highlights important advances on barley research over the past decade, focusing mainly on genomics and genomics-assisted germplasm exploration, genetic dissection of developmental and adaptation-related traits, and the complex dynamics of yield and quality formation. In the coming decade, the prospect of integrating these innovations in barley research and breeding shows great promise. Barley is proposed as a reference Triticeae crop for the discovery and functional validation of new genes and the dissection of their molecular mechanisms. The application of precise genome editing as well as genomic prediction and selection, further enhanced by artificial intelligence-based tools and applications, is expected to promote barley improvement to efficiently meet the evolving global demands for this important crop.
Collapse
Affiliation(s)
- Congcong Jiang
- State Key Laboratory of Crop Gene Resources and Breeding/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinhong Kan
- State Key Laboratory of Crop Gene Resources and Breeding/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guangqi Gao
- State Key Laboratory of Crop Gene Resources and Breeding/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Christoph Dockter
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen, Denmark
| | - Chengdao Li
- Western Crop Genetic Alliance, Murdoch University, Perth, WA 6150, Australia
| | - Wenxue Wu
- State Key Laboratory of Crop Gene Resources and Breeding/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ping Yang
- State Key Laboratory of Crop Gene Resources and Breeding/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany; Crop Plant Genetics, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
2
|
Jayakodi M, Lu Q, Pidon H, Rabanus-Wallace MT, Bayer M, Lux T, Guo Y, Jaegle B, Badea A, Bekele W, Brar GS, Braune K, Bunk B, Chalmers KJ, Chapman B, Jørgensen ME, Feng JW, Feser M, Fiebig A, Gundlach H, Guo W, Haberer G, Hansson M, Himmelbach A, Hoffie I, Hoffie RE, Hu H, Isobe S, König P, Kale SM, Kamal N, Keeble-Gagnère G, Keller B, Knauft M, Koppolu R, Krattinger SG, Kumlehn J, Langridge P, Li C, Marone MP, Maurer A, Mayer KFX, Melzer M, Muehlbauer GJ, Murozuka E, Padmarasu S, Perovic D, Pillen K, Pin PA, Pozniak CJ, Ramsay L, Pedas PR, Rutten T, Sakuma S, Sato K, Schüler D, Schmutzer T, Scholz U, Schreiber M, Shirasawa K, Simpson C, Skadhauge B, Spannagl M, Steffenson BJ, Thomsen HC, Tibbits JF, Nielsen MTS, Trautewig C, Vequaud D, Voss C, Wang P, Waugh R, Westcott S, Rasmussen MW, Zhang R, Zhang XQ, Wicker T, Dockter C, Mascher M, Stein N. Structural variation in the pangenome of wild and domesticated barley. Nature 2024; 636:654-662. [PMID: 39537924 PMCID: PMC11655362 DOI: 10.1038/s41586-024-08187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Pangenomes are collections of annotated genome sequences of multiple individuals of a species1. The structural variants uncovered by these datasets are a major asset to genetic analysis in crop plants2. Here we report a pangenome of barley comprising long-read sequence assemblies of 76 wild and domesticated genomes and short-read sequence data of 1,315 genotypes. An expanded catalogue of sequence variation in the crop includes structurally complex loci that are rich in gene copy number variation. To demonstrate the utility of the pangenome, we focus on four loci involved in disease resistance, plant architecture, nutrient release and trichome development. Novel allelic variation at a powdery mildew resistance locus and population-specific copy number gains in a regulator of vegetative branching were found. Expansion of a family of starch-cleaving enzymes in elite malting barleys was linked to shifts in enzymatic activity in micro-malting trials. Deletion of an enhancer motif is likely to change the developmental trajectory of the hairy appendages on barley grains. Our findings indicate that allelic diversity at structurally complex loci may have helped crop plants to adapt to new selective regimes in agricultural ecosystems.
Collapse
Affiliation(s)
- Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- Department of Soil and Crop Sciences, Texas A&M AgriLife Research-Dallas, Dallas, TX, USA
| | - Qiongxian Lu
- Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Hélène Pidon
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- IPSiM, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | | | | | - Thomas Lux
- PGSB-Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
| | - Yu Guo
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Benjamin Jaegle
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Ana Badea
- Brandon Research and Development Centre, Agriculture et Agri-Food Canada, Brandon, Manitoba, Canada
| | - Wubishet Bekele
- Ottawa Research and Development Centre, Agriculture et Agri-Food Canada, Ottawa, Ontario, Canada
| | - Gurcharn S Brar
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Agricultural, Life and Environmental Sciences (ALES), University of Alberta, Edmonton, Alberta, Canada
| | | | - Boyke Bunk
- DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Kenneth J Chalmers
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia, Australia
| | - Brett Chapman
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
| | | | - Jia-Wu Feng
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Manuel Feser
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Anne Fiebig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Heidrun Gundlach
- PGSB-Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Georg Haberer
- PGSB-Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
| | - Mats Hansson
- Department of Biology, Lund University, Lund, Sweden
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Iris Hoffie
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Robert E Hoffie
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Haifei Hu
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | | | - Patrick König
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Sandip M Kale
- Carlsberg Research Laboratory, Copenhagen, Denmark
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Nadia Kamal
- PGSB-Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
| | - Gabriel Keeble-Gagnère
- Agriculture Victoria, Department of Jobs, Precincts and Regions, Agribio, La Trobe University, Bundoora, Victoria, Australia
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Manuela Knauft
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Ravi Koppolu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Peter Langridge
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia, Australia
| | - Chengdao Li
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
- Department of Primary Industry and Regional Development, Government of Western Australia, Perth, Western Australia, Australia
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Marina P Marone
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Andreas Maurer
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Klaus F X Mayer
- PGSB-Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
- School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | | | - Sudharsan Padmarasu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Dragan Perovic
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI), Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | - Curtis J Pozniak
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Shun Sakuma
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Kazuhiro Sato
- Kazusa DNA Research Institute, Kisarazu, Japan
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Danuta Schüler
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Thomas Schmutzer
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | | | | | | | | | - Manuel Spannagl
- PGSB-Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health, Neuherberg, Germany
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | | | - Josquin F Tibbits
- Agriculture Victoria, Department of Jobs, Precincts and Regions, Agribio, La Trobe University, Bundoora, Victoria, Australia
| | | | - Corinna Trautewig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | | | - Cynthia Voss
- Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Penghao Wang
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
| | - Robbie Waugh
- The James Hutton Institute, Dundee, UK
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Sharon Westcott
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
| | | | | | - Xiao-Qi Zhang
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| | | | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
3
|
Gnutikov AA, Nosov NN, Muravenko OV, Amosova AV, Shneyer VS, Loskutov IG, Punina EO, Rodionov AV. Genetic Diversity of the Species of the Genus Deschampsia P.Beauv. (Poaceae) Based on the Analysis of the ITS Region: Polymorphism Proves Distant Hybridization. Int J Mol Sci 2024; 25:11348. [PMID: 39518900 PMCID: PMC11545786 DOI: 10.3390/ijms252111348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
The species of the genus Deschampsia are difficult for identification, and the genus is difficult for taxonomic treatment. The regions of 35S rRNA genes were studied for the species of the genus Deschampsia of different geographical origin with a method of sequencing by Sanger (ITS1-5.8S rRNA gene-ITS2, 14 species) and with a method of a locus-specific next-generation sequencing (NGS) on the Illumina platform (ITS1-5.8S rRNA, 7 species). All species of Deschampsia formed one clade; the species, referred by some authors on the basis of morphological characters to the species D. cespitosa s.l., entered one subclade. Subantarctic species formed a separate subclade and their ribotypes formed their own subnetwork. Avenella flexuosa, earlier referred to Deschampsia, entered the other clade, though this species contains some ribotypes common with some Deschampsia species. Deschampsia pamirica and related mountain species have their own specific ribotype groups. On the network of the ribotypes, one can see that D. cespitosa from Great Britain forms a network with some species, but D. cespitosa from the USA forms its own network. Ribotype analysis of each sample revealed traces of introgression with Deyeuxia/Calamagrostis in D. cespitosa and with A. flexuosa and probable introgression of Northern and subantarctic species.
Collapse
Affiliation(s)
- Alexander A. Gnutikov
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia (I.G.L.)
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Nikolai N. Nosov
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Olga V. Muravenko
- Engelhardt Institute of Molecular Biology of RAS, 119991 Moscow, Russia
| | | | - Victoria S. Shneyer
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Igor G. Loskutov
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia (I.G.L.)
| | - Elizaveta O. Punina
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Alexander V. Rodionov
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
| |
Collapse
|
4
|
Jin Y, Du X, Jiang C, Ji W, Yang P. Disentangling sources of gene tree discordance for Hordeum species via target-enriched sequencing assays. Mol Phylogenet Evol 2024; 199:108160. [PMID: 39019201 DOI: 10.1016/j.ympev.2024.108160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/04/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Hordeum is an economically and evolutionarily important genus within the Triticeae tribe of the family Poaceae, and contains 33 widely distributed and diverse species which cytologically represent four subgenomes (H, Xa, Xu and I). These wild species (except Hordeum spontaneum, which is the primary gene pool of barley) are secondary or tertiary gene-pool germplasms for barley and wheat improvement, and uncovering their complicated evolutionary relationships would benefit for future breeding programs. Here, we developed a complexity-reduced pipeline via capturing genome-wide distributed fragments via two novel target-enriched assays (HorCap v1.0 and BarPlex v1.0) in conjugation with high-throughput sequencing of the enrichments. Both assays were tested for genotyping 40 species from three genera (Hordeum, Triticum, and Aegilops) containing 82 samples 67 accessions. Either of both assays worked efficiently in genotyping, while integration of both assays can significantly improve the robustness and resolution of the Hordeum phylogenetic trees. Interestingly, the incomplete lineage sorting (ILS) was inferred for the first time as the major factor causing phylogenetic discordance among the four subgenomes, whereas in New World species (carrying I genome) post-speciation introgression events were revealed. Through revising the evolutionary relationships of the Hordeum species based on an ancestral state reconstruction for the diploids and parental donor inference for the polyploids, our results raised new queries about the Hordeum phylogeny. Moreover, both newly-developed assays are applicable in genotyping and phylogenetic analysis of Hordeum and other Triticeae wild species.
Collapse
Affiliation(s)
- Yanlong Jin
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest AandF University, Yangling 712100, China
| | - Xin Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest AandF University, Yangling 712100, China
| | - Congcong Jiang
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest AandF University, Yangling 712100, China
| | - Ping Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
5
|
Schreiber M, Jayakodi M, Stein N, Mascher M. Plant pangenomes for crop improvement, biodiversity and evolution. Nat Rev Genet 2024; 25:563-577. [PMID: 38378816 PMCID: PMC7616794 DOI: 10.1038/s41576-024-00691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2023] [Indexed: 02/22/2024]
Abstract
Plant genome sequences catalogue genes and the genetic elements that regulate their expression. Such inventories further research aims as diverse as mapping the molecular basis of trait diversity in domesticated plants or inquiries into the origin of evolutionary innovations in flowering plants millions of years ago. The transformative technological progress of DNA sequencing in the past two decades has enabled researchers to sequence ever more genomes with greater ease. Pangenomes - complete sequences of multiple individuals of a species or higher taxonomic unit - have now entered the geneticists' toolkit. The genomes of crop plants and their wild relatives are being studied with translational applications in breeding in mind. But pangenomes are applicable also in ecological and evolutionary studies, as they help classify and monitor biodiversity across the tree of life, deepen our understanding of how plant species diverged and show how plants adapt to changing environments or new selection pressures exerted by human beings.
Collapse
Affiliation(s)
- Mona Schreiber
- Department of Biology, University of Marburg, Marburg, Germany
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| |
Collapse
|
6
|
Amosova AV, Gnutikov AA, Rodionov AV, Loskutov IG, Nosov NN, Yurkevich OY, Samatadze TE, Zoshchuk SA, Muravenko OV. Genome Variability in Artificial Allopolyploid Hybrids of Avena sativa L. and Avena macrostachya Balansa ex Coss. et Durieu Based on Marker Sequences of Satellite DNA and the ITS1-5.8S rDNA Region. Int J Mol Sci 2024; 25:5534. [PMID: 38791572 PMCID: PMC11122565 DOI: 10.3390/ijms25105534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Artificial hybrids between cultivated Avena species and wild Avena macrostachya that possess genes for resistance to biotic and abiotic stresses can be important for oat breeding. For the first time, a comprehensive study of genomes of artificial fertile hybrids Avena sativa × Avena macrostachya and their parental species was carried out based on the chromosome FISH mapping of satellite DNA sequences (satDNAs) and also analysis of intragenomic polymorphism in the 18S-ITS1-5.8S rDNA region, using NGS data. Chromosome distribution patterns of marker satDNAs allowed us to identify all chromosomes in the studied karyotypes, determine their subgenomic affiliation, and detect several chromosome rearrangements. Based on the obtained cytogenomic data, we revealed differences between two A. macrostachya subgenomes and demonstrated that only one of them was inherited in the studied octoploid hybrids. Ribotype analyses showed that the second major ribotype of A. macrostachya was species-specific and was not represented in rDNA pools of the octoploids, which could be related to the allopolyploid origin of this species. Our results indicate that the use of marker satDNAs in cytogenomic studies can provide important data on genomic relationships within Avena allopolyploid species and hybrids, and also expand the potential for interspecific crosses for breeding.
Collapse
Affiliation(s)
- Alexandra V. Amosova
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander A. Gnutikov
- Komarov Botanical Institute of Russian Academy of Sciences, 197376 St. Petersburg, Russia
- Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia
| | - Alexander V. Rodionov
- Komarov Botanical Institute of Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Igor G. Loskutov
- Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia
| | - Nikolai N. Nosov
- Komarov Botanical Institute of Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Olga Yu. Yurkevich
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tatiana E. Samatadze
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Svyatoslav A. Zoshchuk
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Olga V. Muravenko
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
7
|
Gnutikov AA, Nosov NN, Punina EO, Loskutov IG, Shneyer VS, Chekrygin SA, Rodionov AV. Hybridization in the Subtribe Alopecurinae Dumort. (Poaceae) According to Molecular Phylogenetic Analysis: Different Ploidy Level Tells Different Origin of the Groups. PLANTS (BASEL, SWITZERLAND) 2024; 13:919. [PMID: 38611448 PMCID: PMC11013341 DOI: 10.3390/plants13070919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
We performed next-generation sequencing of the 18S rDNA-ITS1-5.8S rDNA region along with traditional Sanger sequencing of rbcL, matK, ndhF, and ITS1-5.8S rDNA-ITS2 to clarify the hybridization pattern in the subtribe Alopecurinae and in the genus Alopecurus in particular. Our data support the hybrid origin of Alopecurus × brachystylus from hybridization between A. geniculatus (sect. Alopecurium) and A. pratensis (sect. Alopecurus). Moreover, in the rDNA of hybrid A. × brachystylus, only A. aequalis-like ribotypes from tetraploid A. geniculatus participated. Surprisingly, we found the traces of introgression of A. arundinaceus-like ribotypes not only in hybrid A. × marssonii (A. geniculatus × A. arundinaceus) but in A. aequalis s. str. as well. A high-polyploid group from the section Alopecurus, A. aggr. alpinus has undoubted hybrid origin: e. g., A. brachystachyus has rDNA from the sect. Alopecurium. Alopecurus alpinus, with its allies, is clearly distinct from other members of the sect. Alopecurus (especially by maternal line) and thus we can re-establish a previous opinion about the separate group to which A. alpinus belongs. Species from the section Colobachne (presumably Alpine grasses from Ancient Mediterranean region) probably hybridized with the A. alpinus group. Even A. myosuroides (sect. Pseudophalaris) that could be referred to the separate genus has ribotypes common with the species of the section Alopecurium (A. aequalis, A. geniculatus) in one of the accessions. Additionally, we found that the possible polyphyletic origin of the genus Limnas. Limnas stelleri is very close to Alopecurus magellanicus according to NGS data, while L. malyschevii is more or less distinct from other studied species of the genus Alopecurus.
Collapse
Affiliation(s)
- Alexander A. Gnutikov
- Department of Genetic Resources of Oat, Barley, Rye, Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia; (A.A.G.); (I.G.L.)
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia; (E.O.P.); (V.S.S.)
| | - Nikolai N. Nosov
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia; (E.O.P.); (V.S.S.)
| | - Elizaveta O. Punina
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia; (E.O.P.); (V.S.S.)
| | - Igor G. Loskutov
- Department of Genetic Resources of Oat, Barley, Rye, Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia; (A.A.G.); (I.G.L.)
| | - Victoria S. Shneyer
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia; (E.O.P.); (V.S.S.)
| | - Sergei A. Chekrygin
- “Center Bio-Bank”, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Alexander V. Rodionov
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia; (E.O.P.); (V.S.S.)
| |
Collapse
|
8
|
Zhang G, Ma H. Nuclear phylogenomics of angiosperms and insights into their relationships and evolution. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:546-578. [PMID: 38289011 DOI: 10.1111/jipb.13609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024]
Abstract
Angiosperms (flowering plants) are by far the most diverse land plant group with over 300,000 species. The sudden appearance of diverse angiosperms in the fossil record was referred to by Darwin as the "abominable mystery," hence contributing to the heightened interest in angiosperm evolution. Angiosperms display wide ranges of morphological, physiological, and ecological characters, some of which have probably influenced their species richness. The evolutionary analyses of these characteristics help to address questions of angiosperm diversification and require well resolved phylogeny. Following the great successes of phylogenetic analyses using plastid sequences, dozens to thousands of nuclear genes from next-generation sequencing have been used in angiosperm phylogenomic analyses, providing well resolved phylogenies and new insights into the evolution of angiosperms. In this review we focus on recent nuclear phylogenomic analyses of large angiosperm clades, orders, families, and subdivisions of some families and provide a summarized Nuclear Phylogenetic Tree of Angiosperm Families. The newly established nuclear phylogenetic relationships are highlighted and compared with previous phylogenetic results. The sequenced genomes of Amborella, Nymphaea, Chloranthus, Ceratophyllum, and species of monocots, Magnoliids, and basal eudicots, have facilitated the phylogenomics of relationships among five major angiosperms clades. All but one of the 64 angiosperm orders were included in nuclear phylogenomics with well resolved relationships except the placements of several orders. Most families have been included with robust and highly supported placements, especially for relationships within several large and important orders and families. Additionally, we examine the divergence time estimation and biogeographic analyses of angiosperm on the basis of the nuclear phylogenomic frameworks and discuss the differences compared with previous analyses. Furthermore, we discuss the implications of nuclear phylogenomic analyses on ancestral reconstruction of morphological, physiological, and ecological characters of angiosperm groups, limitations of current nuclear phylogenomic studies, and the taxa that require future attention.
Collapse
Affiliation(s)
- Guojin Zhang
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hong Ma
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
9
|
Li QQ, Khasbagan, Zhang ZP, Wen J, Yu Y. Plastid phylogenomics of the tribe potentilleae (Rosaceae). Mol Phylogenet Evol 2024; 190:107961. [PMID: 37918684 DOI: 10.1016/j.ympev.2023.107961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/08/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
The tribe Potentilleae comprises approximately 1700 species in 13 genera, making it one of the largest of the 16 tribes in Rosaceae. Our understanding of the composition and relationships among members of Potentilleae has advanced dramatically with the application of molecular markers in the last two decades. Yet there is still much work remaining toward a robust phylogenetic framework for the entire Potentilleae and a comprehensive genus-level dating framework for the tribe. The goals of the present study were to establish a phylogenetic framework for Potentilleae, infer the origin and diversification of the tribe using a temporal framework, and explore the taxonomic implications in light of the updated phylogenetic framework. We used the plastome sequences from 158 accessions representing 139 taxa covering all 13 recognized genera of the tribe to reconstruct the Potentilleae phylogeny. High phylogenetic resolution was recovered along the Potentilleae backbone. Two major clades were recovered within Potentilleae, corresponding to the two subtribes Fragariinae and Potentillinae. Within Fragariinae, two subclades were recovered. In one subclade, Sibbaldia sensu stricto is sister to a clade containing Sibbaldianthe, Comarum, Farinopsis, and Alchemilla sensu lato. In the other subclade, Fragaria is sister to a clade comprising Chamaerhodos, Chamaecallis, Drymocallis, Dasiphora, and Potaninia. Within Potentillinae, Argentina is sister to Potentilla sensu stricto. Within Potentilla sensu stricto, clade Himalaya is sister to Alba, and the Himalaya-Alba clade together is sister to a clade comprising Reptans, Potentilla ancistrifolia Bunge, Fragarioides, Ivesioid, and Argentea. Divergence time estimates indicated that tribe Potentilleae originated during the middle Eocene, and subtribes Fragariinae and Potentillinae diverged around the Eocene-Oligocene transition, and divergence times dated for Potentilleae genera ranged from the early Miocene to the late Pleistocene.
Collapse
Affiliation(s)
- Qin-Qin Li
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China; Department of Botany, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, USA
| | - Khasbagan
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China
| | - Zhi-Ping Zhang
- College of Computer Science and Technology, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, USA.
| | - Yan Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
10
|
Yuan S, Nie C, Jia S, Liu T, Zhao J, Peng J, Kong W, Liu W, Gou W, Lei X, Xiong Y, Xiong Y, Yu Q, Ling Y, Ma X. Complete chloroplast genomes of three wild perennial Hordeum species from Central Asia: genome structure, mutation hotspot, phylogenetic relationships, and comparative analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1170004. [PMID: 37554563 PMCID: PMC10405828 DOI: 10.3389/fpls.2023.1170004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/05/2023] [Indexed: 08/10/2023]
Abstract
Hordeum L. is widely distributed in mountain or plateau of subtropical and warm temperate regions around the world. Three wild perennial Hordeum species, including H. bogdanii, H. brevisubulatum, and H. violaceum, have been used as forage and for grassland ecological restoration in high-altitude areas in recent years. To date, the degree of interspecies sequence variation in the three Hordeum species within existing gene pools is still not well-defined. Herein, we sequenced and assembled chloroplast (cp) genomes of the three species. The results revealed that the cp genome of H. bogdanii showed certain sequence variations compared with the cp genomes of the other two species (H. brevisubulatum and H. violaceum), and the latter two were characterized by a higher relative affinity. Parity rule 2 plot (PR2) analysis illuminated that most genes of all ten Hordeum species were concentrated in nucleotide T and G. Numerous single nucleotide polymorphism (SNP) and insertion/deletion (In/Del) events were detected in the three Hordeum species. A series of hotspots regions (tRNA-GGU ~ tRNA-GCA, tRNA-UGU ~ ndhJ, psbE ~ rps18, ndhF ~ tRNA-UAG, etc.) were identified by mVISTA procedures, and the five highly polymorphic genes (tRNA-UGC, tRNA-UAA, tRNA-UUU, tRNA-UAC, and ndhA) were proved by the nucleotide diversity (Pi). Although the distribution and existence of cp simple sequence repeats (cpSSRs) were predicted in the three Hordeum cp genomes, no rearrangement was found between them. A similar phenomenon has been found in the cp genome of the other seven Hordeum species, which has been published so far. In addition, evolutionary relationships were reappraised based on the currently reported cp genome of Hordeum L. This study offers a framework for gaining a better understanding of the evolutionary history of Hordeum species through the re-examination of their cp genomes, and by identifying highly polymorphic genes and hotspot regions that could provide important insights into the genetic diversity and differentiation of these species.
Collapse
Affiliation(s)
- Shuai Yuan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Cong Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Tianqi Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Junming Zhao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jinghan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Weixia Kong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wei Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wenlong Gou
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Xiong Lei
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Yi Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yanli Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qingqing Yu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yao Ling
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Jin Y, Chen S, Xu X, Jiang C, He Z, Shen H, Ji W, Yang P. Host Specificity of Soilborne Pathogens in Hordeum Species and Their Relatives. PLANT DISEASE 2023; 107:1044-1053. [PMID: 36089682 DOI: 10.1094/pdis-04-22-0760-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soilborne pathogens destabilize the yields of Triticeae crops, including barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.). Although genetic resistance derived from relatives of these species has been utilized to prevent rust diseases (i.e., in the wheat-rye 1BL-1RS translocation line), research on resistance against soilborne pathogens remains limited. Here, we performed field trials using 76 genotypes representing 28 Hordeum, six Triticum, and two Aegilops species to examine resistance against three soilborne bymoviruses: barley yellow mosaic virus (BaYMV), barley mild mosaic virus (BaMMV), and wheat yellow mosaic virus (WYMV). We also performed greenhouse tests using the soilborne fungal pathogen Fusarium pseudograminearum, which causes Fusarium crown rot (FCR). Using RT-PCR, we detected BaMMV and BaYMV in several Hordeum species, whereas WYMV induced systemic infection in the Triticum and Aegilops species. The identification of FCR susceptibility in all species examined suggests that F. pseudograminearum is a facultative fungal pathogen in Triticeae. Intraspecies variation in FCR disease severity was observed for several species, pointing to the possibility of exploring host resistance mechanisms. Therefore, by unlocking the host specificity of four soilborne pathogens in Hordeum species and their relatives, we obtained insights for the further exploration of wild sources of soilborne pathogen resistance for future wheat and barley improvement programs.
Collapse
Affiliation(s)
- Yanlong Jin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Shiqiang Chen
- Lixiahe Institute of Agriculture Sciences in Jiangsu Province, Yangzhou 225007, China
| | - Xiao Xu
- Institute of Agricultural Sciences of Coastal Area Jiangsu, Yancheng 224002, China
| | - Congcong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Zhentian He
- Lixiahe Institute of Agriculture Sciences in Jiangsu Province, Yangzhou 225007, China
| | - Huiquan Shen
- Institute of Agricultural Sciences of Coastal Area Jiangsu, Yancheng 224002, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Ping Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
12
|
Coughlan JM. The role of hybrid seed inviability in angiosperm speciation. AMERICAN JOURNAL OF BOTANY 2023; 110:1-14. [PMID: 36801827 DOI: 10.1002/ajb2.16135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 05/11/2023]
Abstract
Understanding which reproductive barriers contribute to speciation is essential to understanding the diversity of life on earth. Several contemporary examples of strong hybrid seed inviability (HSI) between recently diverged species suggest that HSI may play a fundamental role in plant speciation. Yet, a broader synthesis of HSI is needed to clarify its role in diversification. Here, I review the incidence and evolution of HSI. Hybrid seed inviability is common and evolves rapidly, suggesting that it may play an important role early in speciation. The developmental mechanisms that underlie HSI involve similar developmental trajectories in endosperm, even between evolutionarily deeply diverged incidents of HSI. In hybrid endosperm, HSI is often accompanied by whole-scale gene misexpression, including misexpression of imprinted genes which have a key role in endosperm development. I explore how an evolutionary perspective can clarify the repeated and rapid evolution of HSI. In particular, I evaluate the evidence for conflict between maternal and paternal interests in resource allocation to offspring (i.e., parental conflict). I highlight that parental conflict theory generates explicit predictions regarding the expected hybrid phenotypes and genes responsible for HSI. While much phenotypic evidence supports a role of parental conflict in the evolution of HSI, an understanding of the underlying molecular mechanisms of this barrier is essential to test parental conflict theory. Lastly, I explore what factors may influence the strength of parental conflict in natural plant populations as an explanation for why rates of HSI may differ between plant groups and the consequences of strong HSI in secondary contact.
Collapse
Affiliation(s)
- Jenn M Coughlan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
13
|
Disentangling Crocus Series Verni and Its Polyploids. BIOLOGY 2023; 12:biology12020303. [PMID: 36829579 PMCID: PMC9953621 DOI: 10.3390/biology12020303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
Spring crocuses, the eleven species within Crocus series Verni (Iridaceae), consist of di- and tetraploid cytotypes. Among them is a group of polyploids from southeastern Europe with yet-unclear taxonomic affiliation. Crocuses are generally characterized by complex dysploid chromosome number changes, preventing a clear correlation between these numbers and ploidy levels. To reconstruct the evolutionary history of series Verni and particularly its polyploid lineages associated with C. heuffelianus, we used an approach combining phylogenetic analyses of two chloroplast regions, 14 nuclear single-copy genes plus rDNA spacers, genome-wide genotyping-by-sequencing (GBS) data, and morphometry with ploidy estimations through genome size measurements, analysis of genomic heterozygosity frequencies and co-ancestry, and chromosome number counts. Chromosome numbers varied widely in diploids with 2n = 8, 10, 12, 14, 16, and 28 and tetraploid species or cytotypes with 2n = 16, 18, 20, and 22 chromosomes. Crocus longiflorus, the diploid with the highest chromosome number, possesses the smallest genome (2C = 3.21 pg), while the largest diploid genomes are in a range of 2C = 7-8 pg. Tetraploid genomes have 2C values between 10.88 pg and 12.84 pg. Heterozygosity distribution correlates strongly with genome size classes and allows discernment of di- and tetraploid cytotypes. Our phylogenetic analyses showed that polyploids in the C. heuffelianus group are allotetraploids derived from multiple and partly reciprocal crosses involving different genotypes of diploid C. heuffelianus (2n = 10) and C. vernus (2n = 8). Dysploid karyotype changes after polyploidization resulted in the tetraploid cytotypes with 20 and 22 chromosomes. The multi-data approach we used here for series Verni, combining evidence from nuclear and chloroplast phylogenies, genome sizes, chromosome numbers, and genomic heterozygosity for ploidy estimations, provides a way to disentangle the evolution of plant taxa with complex karyotype changes that can be used for the analysis of other groups within Crocus and beyond. Comparing these results with morphometric analysis results in characters that can discern the different taxa currently subsumed under C. heuffelianus.
Collapse
|
14
|
Gnutikov AA, Nosov NN, Loskutov IG, Blinova EV, Shneyer VS, Probatova NS, Rodionov AV. New Insights into the Genomic Structure of Avena L.: Comparison of the Divergence of A-Genome and One C-Genome Oat Species. PLANTS (BASEL, SWITZERLAND) 2022; 11:1103. [PMID: 35567104 PMCID: PMC9102028 DOI: 10.3390/plants11091103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
We used next-generation sequencing analysis of the 3′-part of 18S rDNA, ITS1, and a 5′-part of the 5.8S rDNA region to understand genetic variation among seven diploid A-genome Avena species. We used 4−49 accessions per species that represented the As genome (A. atlantica, A. hirtula, and wiestii), Ac genome (A. canariensis), Ad genome (A. damascena), Al genome (A. longiglumis), and Ap genome (A. prostrata). We also took into our analysis one C-genome species, A. clauda, which previously was found to be related to A-genome species. The sequences of 169 accessions revealed 156 haplotypes of which seven haplotypes were shared by two to five species. We found 16 ribotypes that consisted of a unique sequence with a characteristic pattern of single nucleotide polymorphisms and deletions. The number of ribotypes per species varied from one in A. longiglumis to four in A. wiestii. Although most ribotypes were species-specific, we found two ribotypes shared by three species (one for A. damascena, A. hirtula, and A. wiestii, and the second for A. longiglumis, A. atlantica, and A. wiestii), and a third ribotype shared between A. atlantica and A. wiestii. A characteristic feature of the A. clauda ribotype, a diploid C-genome species, is that two different families of ribotypes have been found in this species. Some of these ribotypes are characteristic of Cc-genome species, whereas others are closely related to As-genome ribotypes. This means that A. clauda can be a hybrid between As- and C-genome oats.
Collapse
Affiliation(s)
- Alexander A. Gnutikov
- Department of Genetic Resources of Oat, Barley, Rye, Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia; (A.A.G.); (I.G.L.); (E.V.B.)
| | - Nikolai N. Nosov
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia; (V.S.S.); (A.V.R.)
| | - Igor G. Loskutov
- Department of Genetic Resources of Oat, Barley, Rye, Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia; (A.A.G.); (I.G.L.); (E.V.B.)
| | - Elena V. Blinova
- Department of Genetic Resources of Oat, Barley, Rye, Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia; (A.A.G.); (I.G.L.); (E.V.B.)
| | - Viktoria S. Shneyer
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia; (V.S.S.); (A.V.R.)
| | - Nina S. Probatova
- Laboratory of Botany, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Alexander V. Rodionov
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia; (V.S.S.); (A.V.R.)
| |
Collapse
|
15
|
The Plastome Sequences of Triticum sphaerococcum (ABD) and Triticum turgidum subsp. durum (AB) Exhibit Evolutionary Changes, Structural Characterization, Comparative Analysis, Phylogenomics and Time Divergence. Int J Mol Sci 2022; 23:ijms23052783. [PMID: 35269924 PMCID: PMC8911259 DOI: 10.3390/ijms23052783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/10/2022] Open
Abstract
The mechanism and course of Triticum plastome evolution is currently unknown; thus, it remains unclear how Triticum plastomes evolved during recent polyploidization. Here, we report the complete plastomes of two polyploid wheat species, Triticum sphaerococcum (AABBDD) and Triticum turgidum subsp. durum (AABB), and compare them with 19 available and complete Triticum plastomes to create the first map of genomic structural variation. Both T. sphaerococcum and T. turgidum subsp. durum plastomes were found to have a quadripartite structure, with plastome lengths of 134,531 bp and 134,015 bp, respectively. Furthermore, diploid (AA), tetraploid (AB, AG) and hexaploid (ABD, AGAm) Triticum species plastomes displayed a conserved gene content and commonly harbored an identical set of annotated unique genes. Overall, there was a positive correlation between the number of repeats and plastome size. In all plastomes, the number of tandem repeats was higher than the number of palindromic and forward repeats. We constructed a Triticum phylogeny based on the complete plastomes and 42 shared genes from 71 plastomes. We estimated the divergence of Hordeum vulgare from wheat around 11.04-11.9 million years ago (mya) using a well-resolved plastome tree. Similarly, Sitopsis species diverged 2.8-2.9 mya before Triticum urartu (AA) and Triticum monococcum (AA). Aegilops speltoides was shown to be the maternal donor of polyploid wheat genomes and diverged ~0.2-0.9 mya. The phylogeny and divergence time estimates presented here can act as a reference framework for future studies of Triticum evolution.
Collapse
|
16
|
Sancho R, Inda LA, Díaz-Pérez A, Des Marais DL, Gordon S, Vogel JP, Lusinska J, Hasterok R, Contreras-Moreira B, Catalán P. Tracking the ancestry of known and 'ghost' homeologous subgenomes in model grass Brachypodium polyploids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1535-1558. [PMID: 34951515 DOI: 10.1111/tpj.15650] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Rubén Sancho
- Department of Agricultural and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - Luis A Inda
- Department of Agricultural and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca, Spain
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, Zaragoza, Spain
| | - Antonio Díaz-Pérez
- Department of Agricultural and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca, Spain
- Instituto de Genética, Facultad de Agronomía, Universidad Central de Venezuela, Caracas, Venezuela
| | | | - Sean Gordon
- DOE Joint Genome Institute, Berkeley, California, USA
| | - John P Vogel
- DOE Joint Genome Institute, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Joanna Lusinska
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Bruno Contreras-Moreira
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
- Department of Genetics and Plant Breeding, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| | - Pilar Catalán
- Department of Agricultural and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
- Tomsk State University, Tomsk, Russia
| |
Collapse
|
17
|
Genome Size and Chromosome Number Evaluation of Astragalus L. sect. Hymenostegis Bunge (Fabaceae). PLANTS 2022; 11:plants11030435. [PMID: 35161416 PMCID: PMC8838222 DOI: 10.3390/plants11030435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022]
Abstract
Astragalus section Hymenostegis is one of the important characteristic elements of thorn-cushion formations in the Irano-Turanian floristic region. In this paper, we examined the chromosome number of 17 species (15 new reports) and provide estimates of genome size for 62 individuals belonging to 38 taxa of A. sect. Hymenostegis, some species outside this section, plus two Oxytropis species. Based on chromosome counts 11 species were found to be diploid (2n = 16), four species tetraploid (2n = 32) and two taxa hexaploid (2n = 48). From genome size measurements on silica-gel dried material, three ploidy levels (2x, 4x and 6x) were inferred, with a majority of species being diploid. The 2C values reach from 2.07 pg in diploid Astragalus zohrabi to 7.16 pg in hexaploid A. rubrostriatus. We found indications that species might occur with different cytotypes. A phylogenetic framework using nrDNA ITS sequences was constructed to understand the evolution of ploidy changes and genome sizes. It showed that genome size values among the studied taxa differ only slightly within ploidy levels and are nearly constant within most species and groups of closely related taxa within the genus Astragalus. The results of this study show that there is a rather strong correlation between genome sizes and chromosome numbers in sect. Hymenostegis. The resolution of the ITS-based phylogenetic tree is too low to infer evolutionary or environmental correlations of genome size differences. Polyploidization seems to contribute to the high species number in Astragalus, however, in sect. Hymenostegis it is not the main driver of speciation.
Collapse
|
18
|
Elisafenko EA, Evtushenko EV, Vershinin AV. The origin and evolution of a two-component system of paralogous genes encoding the centromeric histone CENH3 in cereals. BMC PLANT BIOLOGY 2021; 21:541. [PMID: 34794377 PMCID: PMC8603533 DOI: 10.1186/s12870-021-03264-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 10/12/2021] [Indexed: 06/07/2023]
Abstract
BACKGROUND The cereal family Poaceae is one of the largest and most diverse angiosperm families. The central component of centromere specification and function is the centromere-specific histone H3 (CENH3). Some cereal species (maize, rice) have one copy of the gene encoding this protein, while some (wheat, barley, rye) have two. We applied a homology-based approach to sequenced cereal genomes, in order to finally trace the mutual evolution of the structure of the CENH3 genes and the nearby regions in various tribes. RESULTS We have established that the syntenic group or the CENH3 locus with the CENH3 gene and the boundaries defined by the CDPK2 and bZIP genes first appeared around 50 Mya in a common ancestor of the subfamilies Bambusoideae, Oryzoideae and Pooideae. This locus came to Pooideae with one copy of CENH3 in the most ancient tribes Nardeae and Meliceae. The βCENH3 gene as a part of the locus appeared in the tribes Stipeae and Brachypodieae around 35-40 Mya. The duplication was accompanied by changes in the exon-intron structure. Purifying selection acts mostly on αCENH3s, while βCENH3s form more heterogeneous structures, in which clade-specific amino acid motifs are present. In barley species, the βCENH3 gene assumed an inverted orientation relative to αCENH3 and the CDPK2 gene was substituted with LHCB-l. As the evolution and domestication of plant species went on, the locus was growing in size due to an increasing distance between αCENH3 and βCENH3 because of a massive insertion of the main LTR-containing retrotransposon superfamilies, gypsy and copia, without any evolutionary preference on either of them. A comparison of the molecular structure of the locus in the A, B and D subgenomes of the hexaploid wheat T. aestivum showed that invasion by mobile elements and concomitant rearrangements took place in an independent way even in evolutionarily close species. CONCLUSIONS The CENH3 duplication in cereals was accompanied by changes in the exon-intron structure of the βCENH3 paralog. The observed general tendency towards the expansion of the CENH3 locus reveals an amazing diversity of ways in which different species implement the scenario described in this paper.
Collapse
Affiliation(s)
- Evgeny A Elisafenko
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, 630090, Russia
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, 630090, Russia
| | - Elena V Evtushenko
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, 630090, Russia
| | - Alexander V Vershinin
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia.
| |
Collapse
|
19
|
Boutanaev AM. Components of Intrageneric Genome Size Dynamics in Plants and Animals. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421080032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Phylogeny, origin, and dispersal of Dubyaea (Asteraceae) based on Hyb-Seq data. Mol Phylogenet Evol 2021; 164:107289. [PMID: 34371187 DOI: 10.1016/j.ympev.2021.107289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
Dubyaea DC. is a small genus of Asteraceae that is almost exclusively endemic to the Pan-Himalayan region. Within Dubyaea, phylogenetic relationships remain poorly understood. Here, our well-supported phylogeny based on Hyb-Seq data shows that all samples of Dubyaea in this study belong to a monophyletic group, which is sister to the clade of Soroseris, Syncalathium, and Nabalus. Dubyaea (s. str.) can be divided into three major clades, which are supported by flower color as well as morphological features of the stems and basal leaves. Based on our phylogenetic results, we performed biogeographic analyses and inferred that Dubyaea arose in the late Miocene in Hengduan Mountains and its eastern areas. Following its evolutionary origin, Dubyaea underwent diversification in situ as well as spread to the Himalayas.
Collapse
|
21
|
Nauheimer L, Weigner N, Joyce E, Crayn D, Clarke C, Nargar K. HybPhaser: A workflow for the detection and phasing of hybrids in target capture data sets. APPLICATIONS IN PLANT SCIENCES 2021; 9:APS311441. [PMID: 34336402 PMCID: PMC8312746 DOI: 10.1002/aps3.11441] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/28/2021] [Indexed: 05/24/2023]
Abstract
PREMISE Hybrids contain divergent alleles that can confound phylogenetic analyses but can provide insights into reticulated evolution when identified and phased. We developed a workflow to detect hybrids in target capture data sets and phase reads into parental lineages using a similarity and phylogenetic framework. METHODS We used Angiosperms353 target capture data for Nepenthes, including known hybrids to test the novel workflow. Reference mapping was used to assess heterozygous sites across the data set and to detect hybrid accessions and paralogous genes. Hybrid samples were phased by mapping reads to multiple references and sorting reads according to similarity. Phased accessions were included in the phylogenetic framework. RESULTS All known Nepenthes hybrids and nine additional samples had high levels of heterozygous sites, had reads associated with multiple divergent clades, and were phased into accessions resembling divergent haplotypes. Phylogenetic analysis including phased accessions increased clade support and confirmed parental lineages of hybrids. DISCUSSION HybPhaser provides a novel approach to detect and phase hybrids in target capture data sets, which can provide insights into reticulations by revealing origins of hybrids and reduce conflicting signal, leading to more robust phylogenetic analyses.
Collapse
Affiliation(s)
- Lars Nauheimer
- Australian Tropical HerbariumJames Cook UniversityMcGregor RoadSmithfieldQueensland4878Australia
- Centre for Tropical Bioinformatics and Molecular BiologyJames Cook UniversityMcGregor RoadSmithfieldQueensland4878Australia
- Centre for Tropical Environmental Sustainability ScienceJames Cook UniversityMcGregor RoadSmithfieldQueensland4878Australia
| | - Nicholas Weigner
- Australian Tropical HerbariumJames Cook UniversityMcGregor RoadSmithfieldQueensland4878Australia
| | - Elizabeth Joyce
- Australian Tropical HerbariumJames Cook UniversityMcGregor RoadSmithfieldQueensland4878Australia
- Centre for Tropical Environmental Sustainability ScienceJames Cook UniversityMcGregor RoadSmithfieldQueensland4878Australia
| | - Darren Crayn
- Australian Tropical HerbariumJames Cook UniversityMcGregor RoadSmithfieldQueensland4878Australia
- Centre for Tropical Bioinformatics and Molecular BiologyJames Cook UniversityMcGregor RoadSmithfieldQueensland4878Australia
- Centre for Tropical Environmental Sustainability ScienceJames Cook UniversityMcGregor RoadSmithfieldQueensland4878Australia
| | - Charles Clarke
- Australian Tropical HerbariumJames Cook UniversityMcGregor RoadSmithfieldQueensland4878Australia
- Cairns Botanic GardensCollins AvenueEdge HillQueensland4870Australia
| | - Katharina Nargar
- Australian Tropical HerbariumJames Cook UniversityMcGregor RoadSmithfieldQueensland4878Australia
- National Research Collections AustraliaCommonwealth Industrial and Scientific Research Organisation (CSIRO)GPO Box 1700CanberraAustralian Capital Territory2601Australia
| |
Collapse
|
22
|
Krak K, Caklová P, Kopecký D, Blattner FR, Mahelka V. Horizontally Acquired nrDNAs Persist in Low Amounts in Host Hordeum Genomes and Evolve Independently of Native nrDNA. FRONTIERS IN PLANT SCIENCE 2021; 12:672879. [PMID: 34079572 PMCID: PMC8165317 DOI: 10.3389/fpls.2021.672879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Nuclear ribosomal DNA (nrDNA) has displayed extraordinary dynamics during the evolution of plant species. However, the patterns and evolutionary significance of nrDNA array expansion or contraction are still relatively unknown. Moreover, only little is known of the fate of minority nrDNA copies acquired between species via horizontal transfer. The barley genus Hordeum (Poaceae) represents a good model for such a study, as species of section Stenostachys acquired nrDNA via horizontal transfer from at least five different panicoid genera, causing long-term co-existence of native (Hordeum-like) and non-native (panicoid) nrDNAs. Using quantitative PCR, we investigated copy number variation (CNV) of nrDNA in the diploid representatives of the genus Hordeum. We estimated the copy number of the foreign, as well as of the native ITS types (ribotypes), and followed the pattern of their CNV in relation to the genus' phylogeny, species' genomes size and the number of nrDNA loci. For the native ribotype, we encountered an almost 19-fold variation in the mean copy number among the taxa analysed, ranging from 1689 copies (per 2C content) in H. patagonicum subsp. mustersii to 31342 copies in H. murinum subsp. glaucum. The copy numbers did not correlate with any of the genus' phylogeny, the species' genome size or the number of nrDNA loci. The CNV was high within the recognised groups (up to 13.2 × in the American I-genome species) as well as between accessions of the same species (up to 4×). Foreign ribotypes represent only a small fraction of the total number of nrDNA copies. Their copy numbers ranged from single units to tens and rarely hundreds of copies. They amounted, on average, to between 0.1% (Setaria ribotype) and 1.9% (Euclasta ribotype) of total nrDNA. None of the foreign ribotypes showed significant differences with respect to phylogenetic groups recognised within the sect. Stenostachys. Overall, no correlation was found between copy numbers of native and foreign nrDNAs suggesting the sequestration and independent evolution of native and non-native nrDNA arrays. Therefore, foreign nrDNA in Hordeum likely poses a dead-end by-product of horizontal gene transfer events.
Collapse
Affiliation(s)
- Karol Krak
- Czech Academy of Sciences, Institute of Botany, Prùhonice, Czechia
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague 6, Czechia
| | - Petra Caklová
- Czech Academy of Sciences, Institute of Botany, Prùhonice, Czechia
| | - David Kopecký
- Czech Academy of Sciences, Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Frank R. Blattner
- Experimental Taxonomy, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- German Centre of Integrative Biodiversity Research (iDiv) Halle–Jena–Leipzig, Leipzig, Germany
| | - Václav Mahelka
- Czech Academy of Sciences, Institute of Botany, Prùhonice, Czechia
| |
Collapse
|
23
|
Obaidullah AJ, Alanazi MM, Alsaif NA, Albassam H, Almehizia AA, Alqahtani AM, Mahmud S, Sami SA, Emran TB. Immunoinformatics-guided design of a multi-epitope vaccine based on the structural proteins of severe acute respiratory syndrome coronavirus 2. RSC Adv 2021; 11:18103-18121. [PMID: 35480208 PMCID: PMC9033181 DOI: 10.1039/d1ra02885e] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulting in a contagious respiratory tract infection that has become a global burden since the end of 2019. Notably, fewer patients infected with SARS-CoV-2 progress from acute disease onset to death compared with the progression rate associated with two other coronaviruses, SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Several research organizations and pharmaceutical industries have attempted to develop successful vaccine candidates for the prevention of COVID-19. However, increasing evidence indicates that the SARS-CoV-2 genome undergoes frequent mutation; thus, an adequate analysis of the viral strain remains necessary to construct effective vaccines. The current study attempted to design a multi-epitope vaccine by utilizing an approach based on the SARS-CoV-2 structural proteins. We predicted the antigenic T- and B-lymphocyte responses to four structural proteins after screening all structural proteins according to specific characteristics. The predicted epitopes were combined using suitable adjuvants and linkers, and a secondary structure profile indicated that the vaccine shared similar properties with the native protein. Importantly, the molecular docking analysis and molecular dynamics simulations revealed that the constructed vaccine possessed a high affinity for toll-like receptor 4 (TLR4). In addition, multiple descriptors were obtained from the simulation trajectories, including the root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), solvent-accessible surface area (SASA), and radius of gyration (R g), demonstrating the rigid nature and inflexibility of the vaccine and receptor molecules. In addition, codon optimization, based on Escherichia coli K12, was used to determine the GC content and the codon adaptation index (CAI) value, which further followed for the incorporation into the cloning vector pET28+(a). Collectively, these findings suggested that the constructed vaccine could be used to modulate the immune reaction against SARS-CoV-2.
Collapse
Affiliation(s)
- Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Nawaf A Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Hussam Albassam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Abdulrahman A Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Ali M Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University Abha 62529 Saudi Arabia
| | - Shafi Mahmud
- Microbiology Laboratory, Bioinformatics Division, Department of Genetic Engineering and Biotechnology, University of Rajshahi Rajshahi 6205 Bangladesh
| | - Saad Ahmed Sami
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong Chittagong 4331 Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh Chittagong 4381 Bangladesh
| |
Collapse
|
24
|
Šlenker M, Kantor A, Marhold K, Schmickl R, Mandáková T, Lysak MA, Perný M, Caboňová M, Slovák M, Zozomová-Lihová J. Allele Sorting as a Novel Approach to Resolving the Origin of Allotetraploids Using Hyb-Seq Data: A Case Study of the Balkan Mountain Endemic Cardamine barbaraeoides. FRONTIERS IN PLANT SCIENCE 2021; 12:659275. [PMID: 33995457 PMCID: PMC8115912 DOI: 10.3389/fpls.2021.659275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/10/2021] [Indexed: 05/19/2023]
Abstract
Mountains of the Balkan Peninsula are significant biodiversity hotspots with great species richness and a large proportion of narrow endemics. Processes that have driven the evolution of the rich Balkan mountain flora, however, are still insufficiently explored and understood. Here we focus on a group of Cardamine (Brassicaceae) perennials growing in wet, mainly mountainous habitats. It comprises several Mediterranean endemics, including those restricted to the Balkan Peninsula. We used target enrichment with genome skimming (Hyb-Seq) to infer their phylogenetic relationships, and, along with genomic in situ hybridization (GISH), to resolve the origin of tetraploid Cardamine barbaraeoides endemic to the Southern Pindos Mts. (Greece). We also explored the challenges of phylogenomic analyses of polyploid species and developed a new approach of allele sorting into homeologs that allows identifying subgenomes inherited from different progenitors. We obtained a robust phylogenetic reconstruction for diploids based on 1,168 low-copy nuclear genes, which suggested both allopatric and ecological speciation events. In addition, cases of plastid-nuclear discordance, in agreement with divergent nuclear ribosomal DNA (nrDNA) copy variants in some species, indicated traces of interspecific gene flow. Our results also support biogeographic links between the Balkan and Anatolian-Caucasus regions and illustrate the contribution of the latter region to high Balkan biodiversity. An allopolyploid origin was inferred for C. barbaraeoides, which highlights the role of mountains in the Balkan Peninsula both as refugia and melting pots favoring species contacts and polyploid evolution in response to Pleistocene climate-induced range dynamics. Overall, our study demonstrates the importance of a thorough phylogenomic approach when studying the evolution of recently diverged species complexes affected by reticulation events at both diploid and polyploid levels. We emphasize the significance of retrieving allelic and homeologous variation from nuclear genes, as well as multiple nrDNA copy variants from genome skim data.
Collapse
Affiliation(s)
- Marek Šlenker
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Adam Kantor
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Karol Marhold
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Roswitha Schmickl
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czechia
| | - Terezie Mandáková
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Martin A. Lysak
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | | | - Michaela Caboňová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Slovák
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Judita Zozomová-Lihová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
25
|
Mahelka V, Krak K, Fehrer J, Caklová P, Nagy Nejedlá M, Čegan R, Kopecký D, Šafář J. A Panicum-derived chromosomal segment captured by Hordeum a few million years ago preserves a set of stress-related genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1141-1164. [PMID: 33484020 DOI: 10.1111/tpj.15167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Intra-specific variability is a cornerstone of evolutionary success of species. Acquiring genetic material from distant sources is an important adaptive mechanism in bacteria, but it can also play a role in eukaryotes. In this paper, we investigate the nature and evolution of a chromosomal segment of panicoid (Poaceae, Panicoideae) origin occurring in the nuclear genomes of species of the barley genus Hordeum (Pooideae). The segment, spanning over 440 kb in the Asian Hordeum bogdanii and 219 kb in the South American Hordeum pubiflorum, resides on a pair of nucleolar organizer region (NOR)-bearing chromosomes. Conserved synteny and micro-collinearity of the segment in both species indicate a common origin of the segment, which was acquired before the split of the respective barley lineages 5-1.7 million years ago. A major part of the foreign DNA consists of several approximately 68 kb long repeated blocks containing five stress-related protein-coding genes and transposable elements (TEs). Whereas outside these repeats, the locus was invaded by multiple TEs from the host genome, the repeated blocks are rather intact and appear to be preserved. The protein-coding genes remained partly functional, as indicated by conserved reading frames, a low amount of non-synonymous mutations, and expression of mRNA. A screen across Hordeum species targeting the panicoid protein-coding genes revealed the presence of the genes in all species of the section Stenostachys. In summary, our study shows that grass genomes can contain large genomic segments obtained from distantly related species. These segments usually remain undetected, but they may play an important role in the evolution and adaptation of species.
Collapse
Affiliation(s)
- Václav Mahelka
- Institute of Botany, Czech Academy of Sciences, Průhonice, 25243, Czech Republic
| | - Karol Krak
- Institute of Botany, Czech Academy of Sciences, Průhonice, 25243, Czech Republic
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague 6, 16500, Czech Republic
| | - Judith Fehrer
- Institute of Botany, Czech Academy of Sciences, Průhonice, 25243, Czech Republic
| | - Petra Caklová
- Institute of Botany, Czech Academy of Sciences, Průhonice, 25243, Czech Republic
| | | | - Radim Čegan
- Institute of Biophysics, Czech Academy of Sciences, Brno, 61265, Czech Republic
| | - David Kopecký
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc, 77900, Czech Republic
| | - Jan Šafář
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc, 77900, Czech Republic
| |
Collapse
|
26
|
Bai A, Erdős PL, Semple C, Steel M. Defining phylogenetic networks using ancestral profiles. Math Biosci 2021; 332:108537. [PMID: 33453221 DOI: 10.1016/j.mbs.2021.108537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 11/16/2022]
Abstract
Rooted phylogenetic networks provide a more complete representation of the ancestral relationship between species than phylogenetic trees when reticulate evolutionary processes are at play. One way to reconstruct a phylogenetic network is to consider its 'ancestral profile' (the number of paths from each ancestral vertex to each leaf). In general, this information does not uniquely determine the underlying phylogenetic network. A recent paper considered a new class of phylogenetic networks called 'orchard networks' where this uniqueness was claimed to hold. Here we show that an additional restriction on the network, that of being 'stack-free', is required in order for the original uniqueness claim to hold. On the other hand, if the additional stack-free restriction is lifted, we establish an alternative result; namely, there is uniqueness within the class of orchard networks up to the resolution of vertices of high in-degree.
Collapse
Affiliation(s)
- Allan Bai
- School of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand.
| | - Péter L Erdős
- Alfréd Rényi Institute of Mathematics, Budapest, Hungary.
| | - Charles Semple
- School of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand.
| | - Mike Steel
- School of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
27
|
Zhang H, Xiao W, Yu W, Jiang Y, Li R. Halophytic Hordeum brevisubulatum HbHAK1 Facilitates Potassium Retention and Contributes to Salt Tolerance. Int J Mol Sci 2020; 21:ijms21155292. [PMID: 32722526 PMCID: PMC7432250 DOI: 10.3390/ijms21155292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 01/30/2023] Open
Abstract
Potassium retention under saline conditions has emerged as an important determinant for salt tolerance in plants. Halophytic Hordeum brevisubulatum evolves better strategies to retain K+ to improve high-salt tolerance. Hence, uncovering K+-efficient uptake under salt stress is vital for understanding K+ homeostasis. HAK/KUP/KT transporters play important roles in promoting K+ uptake during multiple stresses. Here, we obtained nine salt-induced HAK/KUP/KT members in H. brevisubulatum with different expression patterns compared with H. vulgare through transcriptomic analysis. One member HbHAK1 showed high-affinity K+ transporter activity in athak5 to cope with low-K+ or salt stresses. The expression of HbHAK1 in yeast Cy162 strains exhibited strong activities in K+ uptake under extremely low external K+ conditions and reducing Na+ toxicity to maintain the survival of yeast cells under high-salt-stress. Comparing with the sequence of barley HvHAK1, we found that C170 and R342 in a conserved domain played pivotal roles in K+ selectivity under extremely low-K+ conditions (10 μM) and that A13 was responsible for the salt tolerance. Our findings revealed the mechanism of HbHAK1 for K+ accumulation and the significant natural adaptive sites for HAK1 activity, highlighting the potential value for crops to promote K+-uptake under stresses.
Collapse
Affiliation(s)
- Haiwen Zhang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.Z.); (W.X.); (W.Y.); (Y.J.)
| | - Wen Xiao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.Z.); (W.X.); (W.Y.); (Y.J.)
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Wenwen Yu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.Z.); (W.X.); (W.Y.); (Y.J.)
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ying Jiang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.Z.); (W.X.); (W.Y.); (Y.J.)
| | - Ruifen Li
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.Z.); (W.X.); (W.Y.); (Y.J.)
- Correspondence: ; Tel.: +86-10-51503257
| |
Collapse
|
28
|
Zhang H, Feng H, Zhang J, Ge R, Zhang L, Wang Y, Li L, Wei J, Li R. Emerging crosstalk between two signaling pathways coordinates K+ and Na+ homeostasis in the halophyte Hordeum brevisubulatum. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4345-4358. [PMID: 32280989 DOI: 10.1093/jxb/eraa191] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
K+/Na+ homeostasis is the primary core response for plant to tolerate salinity. Halophytes have evolved novel regulatory mechanisms to maintain a suitable K+/Na+ ratio during long-term adaptation. The wild halophyte Hordeum brevisubulatum can adopt efficient strategies to achieve synergistic levels of K+ and Na+ under high salt stress. However, little is known about its molecular mechanism. Our previous study indicated that HbCIPK2 contributed to prevention of Na+ accumulation and K+ reduction. Here, we further identified the HbCIPK2-interacting proteins including upstream Ca2+ sensors, HbCBL1, HbCBL4, and HbCBL10, and downstream phosphorylated targets, the voltage-gated K+ channel HbVGKC1 and SOS1-like transporter HbSOS1L. HbCBL1 combined with HbCIPK2 could activate HbVGKC1 to absorb K+, while the HbCBL4/10-HbCIPK2 complex modulated HbSOS1L to exclude Na+. This discovery suggested that crosstalk between the sodium response and the potassium uptake signaling pathways indeed exists for HbCIPK2 as the signal hub, and paved the way for understanding the novel mechanism of K+/Na+ homeostasis which has evolved in the halophytic grass.
Collapse
Affiliation(s)
- Haiwen Zhang
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, China
| | - Hao Feng
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, China
| | - Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Tiantan Hospital Affiliated with Capital Medical University, Beijing, China
| | - Rongchao Ge
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Liyuan Zhang
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Yunxiao Wang
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Legong Li
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, China
| | - Jianhua Wei
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, China
| | - Ruifen Li
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, China
| |
Collapse
|
29
|
Yin B, Sun G, Sun D, Ren X. Phylogenetic analysis of two single-copy nuclear genes revealed origin of tetraploid barley Hordeum marinum. PLoS One 2020; 15:e0235475. [PMID: 32603381 PMCID: PMC7326175 DOI: 10.1371/journal.pone.0235475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/16/2020] [Indexed: 01/31/2023] Open
Abstract
Sea barley Hordeum marinum is an important germplasm resource. However, the origin of this tetraploid H. marinum subsp. gussoneanum is still unclear, which has caused great perplexity to the exploration and utilization of germplasm resources. We used two single-copy nuclear genes, thioredoxin-like gene (TRX) and waxy1 gene encoding granule-bound starch synthase (WAXY1) to analyze 41 accessions of Hordeum marinum. The phylogenies of different genes told different story of evolution of tetraploids of H. marinum subsp. gussoneanum. The phylogenetic trees showed that two distinct copies of sequences from both genes were detected for some accessions of the tetraploids of H. marinum subsp. gussoneanum, and diploid marinum might also contribute to the origin and evolution of the tetraploid gussoneanum. Our findings suggested that tetraploid more likely originated from the diploids of H. marinum subsp. gussoneanum and another ancestor that might be an extinct unknown diploid species. Homogenization of gene in tetraploids also occurred after polyploidization as both TRX and WAXY1 sequences in some accessions of tetraploid H. marinum subsp. gussoneanum cannot be distinguished, indicating the complicated evolution of this tetraploid.
Collapse
Affiliation(s)
- Bo Yin
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Genlou Sun
- Biology Department, Saint Mary’s University, Halifax, NS, Canada
| | - Daokun Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xifeng Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
30
|
Nürk NM, Linder HP, Onstein RE, Larcombe MJ, Hughes CE, Piñeiro Fernández L, Schlüter PM, Valente L, Beierkuhnlein C, Cutts V, Donoghue MJ, Edwards EJ, Field R, Flantua SGA, Higgins SI, Jentsch A, Liede‐Schumann S, Pirie MD. Diversification in evolutionary arenas-Assessment and synthesis. Ecol Evol 2020; 10:6163-6182. [PMID: 32607221 PMCID: PMC7319112 DOI: 10.1002/ece3.6313] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 12/23/2022] Open
Abstract
Understanding how and why rates of evolutionary diversification vary is a key issue in evolutionary biology, ecology, and biogeography. Evolutionary rates are the net result of interacting processes summarized under concepts such as adaptive radiation and evolutionary stasis. Here, we review the central concepts in the evolutionary diversification literature and synthesize these into a simple, general framework for studying rates of diversification and quantifying their underlying dynamics, which can be applied across clades and regions, and across spatial and temporal scales. Our framework describes the diversification rate (d) as a function of the abiotic environment (a), the biotic environment (b), and clade-specific phenotypes or traits (c); thus, d ~ a,b,c. We refer to the four components (a-d) and their interactions collectively as the "Evolutionary Arena." We outline analytical approaches to this framework and present a case study on conifers, for which we parameterize the general model. We also discuss three conceptual examples: the Lupinus radiation in the Andes in the context of emerging ecological opportunity and fluctuating connectivity due to climatic oscillations; oceanic island radiations in the context of island formation and erosion; and biotically driven radiations of the Mediterranean orchid genus Ophrys. The results of the conifer case study are consistent with the long-standing scenario that low competition and high rates of niche evolution promote diversification. The conceptual examples illustrate how using the synthetic Evolutionary Arena framework helps to identify and structure future directions for research on evolutionary radiations. In this way, the Evolutionary Arena framework promotes a more general understanding of variation in evolutionary rates by making quantitative results comparable between case studies, thereby allowing new syntheses of evolutionary and ecological processes to emerge.
Collapse
Affiliation(s)
- Nicolai M. Nürk
- Department of Plant SystematicsBayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
| | - H. Peter Linder
- Department of Systematic & Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - Renske E. Onstein
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | | | - Colin E. Hughes
- Department of Systematic & Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - Laura Piñeiro Fernández
- Department of Systematic & Evolutionary BotanyUniversity of ZurichZurichSwitzerland
- Department of BotanyUniversity of HohenheimStuttgartGermany
| | | | - Luis Valente
- Naturalis Biodiversity CenterUnderstanding Evolution GroupLeidenThe Netherlands
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Carl Beierkuhnlein
- Department of BiogeographyBayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
| | - Vanessa Cutts
- School of GeographyUniversity of NottinghamNottinghamUK
| | - Michael J. Donoghue
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticut
| | - Erika J. Edwards
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticut
| | - Richard Field
- School of GeographyUniversity of NottinghamNottinghamUK
| | | | | | - Anke Jentsch
- Department of Disturbance EcologyBayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
| | - Sigrid Liede‐Schumann
- Department of Plant SystematicsBayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
| | - Michael D. Pirie
- Johannes Gutenberg‐UniversitätMainzGermany
- University MuseumUniversity of BergenBergenNorway
| |
Collapse
|
31
|
Ourari M, Coriton O, Martin G, Huteau V, Keller J, Ainouche ML, Amirouche R, Ainouche A. Screening diversity and distribution of Copia retrotransposons reveals a specific amplification of BARE1 elements in genomes of the polyploid Hordeum murinum complex. Genetica 2020; 148:109-123. [PMID: 32361835 DOI: 10.1007/s10709-020-00094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
We explored diversity, distribution and evolutionary dynamics of Ty1-Copia retrotransposons in the genomes of the Hordeum murinum polyploid complex and related taxa. Phylogenetic and fluorescent in situ hybridization (FISH) analyses of reverse transcriptase sequences identified four Copia families in these genomes: the predominant BARE1 (including three groups or subfamilies, A, B and C), and the less represented RIRE1, IKYA and TAR-1. Within the BARE1 family, BARE1-A elements and a subgroup of BARE1-B elements (named B1) have proliferated in the allopolyploid members of the H. murinum complex (H. murinum and H. leporinum), and in their extant diploid progenitor, subsp. glaucum. Moreover, we found a specific amplification of BARE1-B elements within each Hordeum species surveyed. The low occurrence of RIRE1, IKYA and TAR-1 elements in the allopolyploid cytotypes suggests that they are either weakly represented or highly degenerated in their diploid progenitors. The results demonstrate that BARE1-A and BARE1-B1 Copia elements are particularly well represented in the genomes of the H. murinum complex and constitute its genomic hallmark. No BARE1-A and -B1 homologs were detected in the reference barley genome. The similar distribution of RT-Copia probes across chromosomes of diploid, tetraploid and hexaploid taxa of the murinum complex shows no evidence of proliferation following polyploidization.
Collapse
Affiliation(s)
- Malika Ourari
- Laboratory of Ecology and Environment, Department of Environment Biological Sciences, Faculty of Nature and Life Sciences, Université de Bejaia, Targa Ouzemmour, 06000, Bejaia, Algeria
| | - Olivier Coriton
- Institut National de Recherche en Agriculture, Alimentation et Environnement, UMR1349 INRAE-AgroCampus Ouest-Université de Rennes 1, Bât 301, INRA Centre de Bretagne-Normandie, BP 35327, 35653, Le Rheu Cedex, France
| | - Guillaume Martin
- CIRAD, UMR AGAP, 34398, Montpellier, France.,Université de Montpellier, AGAP, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Virginie Huteau
- Institut National de Recherche en Agriculture, Alimentation et Environnement, UMR1349 INRAE-AgroCampus Ouest-Université de Rennes 1, Bât 301, INRA Centre de Bretagne-Normandie, BP 35327, 35653, Le Rheu Cedex, France
| | - Jean Keller
- Université de Toulouse, LRSV, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, 31320, Auzeville-Tolosane, France
| | - Malika-Lily Ainouche
- Université de Rennes 1, UMR-CNRS 6553, EcoBio, Campus Scientifique de Beaulieu, Bât. 14A, 35042, Rennes Cedex, France
| | - Rachid Amirouche
- Université des Sciences et de la Technologie Houari Boumediene, Faculté des Sciences Biologiques, Lab. LBPO, USTHB, BP 32 El-Alia, Bab-Ezzouar, 16111, Alger, Algerie.
| | - Abdelkader Ainouche
- Université de Rennes 1, UMR-CNRS 6553, EcoBio, Campus Scientifique de Beaulieu, Bât. 14A, 35042, Rennes Cedex, France
| |
Collapse
|
32
|
Bernhardt N, Brassac J, Dong X, Willing EM, Poskar CH, Kilian B, Blattner FR. Genome-wide sequence information reveals recurrent hybridization among diploid wheat wild relatives. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:493-506. [PMID: 31821649 DOI: 10.1111/tpj.14641] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/13/2019] [Accepted: 11/28/2019] [Indexed: 05/07/2023]
Abstract
Many conflicting hypotheses regarding the relationships among crops and wild species closely related to wheat (the genera Aegilops, Amblyopyrum, and Triticum) have been postulated. The contribution of hybridization to the evolution of these taxa is intensely discussed. To determine possible causes for this, and provide a phylogeny of the diploid taxa based on genome-wide sequence information, independent data were obtained from genotyping-by-sequencing and a target-enrichment experiment that returned 244 low-copy nuclear loci. The data were analyzed using Bayesian, likelihood and coalescent-based methods. D statistics were used to test if incomplete lineage sorting alone or together with hybridization is the source for incongruent gene trees. Here we present the phylogeny of all diploid species of the wheat wild relatives. We hypothesize that most of the wheat-group species were shaped by a primordial homoploid hybrid speciation event involving the ancestral Triticum and Am. muticum lineages to form all other species except Ae. speltoides. This hybridization event was followed by multiple introgressions affecting all taxa except Triticum. Mostly progenitors of the extant species were involved in these processes, while recent interspecific gene flow seems insignificant. The composite nature of many genomes of wheat-group taxa results in complicated patterns of diploid contributions when these lineages are involved in polyploid formation, which is, for example, the case for tetraploid and hexaploid wheats. Our analysis provides phylogenetic relationships and a testable hypothesis for the genome compositions in the basic evolutionary units within the wheat group of Triticeae.
Collapse
Affiliation(s)
- Nadine Bernhardt
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Germany
| | - Jonathan Brassac
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Germany
| | - Xue Dong
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Plant Germplasm and Genomics Centre, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
| | - Eva-Maria Willing
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - C Hart Poskar
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Germany
| | - Benjamin Kilian
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Germany
- Global Crop Diversity Trust, 53113, Bonn, Germany
| | - Frank R Blattner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| |
Collapse
|
33
|
Chen N, Chen WJ, Yan H, Wang Y, Kang HY, Zhang HQ, Zhou YH, Sun GL, Sha LN, Fan X. Evolutionary patterns of plastome uncover diploid-polyploid maternal relationships in Triticeae. Mol Phylogenet Evol 2020; 149:106838. [PMID: 32304825 DOI: 10.1016/j.ympev.2020.106838] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 03/25/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Abstract
To investigate the diploid-polyploid relationships and the role of maternal progenitors in establishment of polyploid richness in Triticeae, 35 polyploids representing almost all genomic constitutions together with 48 diploid taxa representing 20 basic genomes in the tribe were analyzed. Phylogenomic reconstruction, genetic distance matrix, and nucleotide diversity patterns of plastome sequences indicated that (1) The maternal donor of the annual polyploid species with the U- and D-genome are related to extant Ae. umbellulata and Ae. tauschii, respectively. The maternal donor to the annual polyploid species with the S-, G-, and B-genome originated from the species of Sitopsis section of the genus Aegilops. The annual species with the Xe-containing polyploids were donated by Eremopyrum as the female parent; (2) Pseudoroegneria and Psathyrostachys were the maternal donor of perennial species with the St- and Ns-containing polyploids, respectively; (3) The Lophopyrum, Thinopyrum and Dasypyrum genomes contributed cytoplasm genome to Pseudoroegneria species as a result of incomplete lineage sorting and/or chloroplast captures, and these lineages were genetically transmitted to the St-containing polyploid species via polyploidization; (4) There is a reticulate relationship among the St-containing polyploid species. It can be suggested that genetic heterogeneity might associate with the richness of the polyploids in Triticeae.
Collapse
Affiliation(s)
- Ning Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Yaan 625014, Sichuan, China
| | - Wen-Jie Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai, China; Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810008, Qinghai, China
| | - Hao Yan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Hou-Yang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Hai-Qin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Yong-Hong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Yaan 625014, Sichuan, China
| | - Gen-Lou Sun
- Biology Department, Saint Mary's University, Halifax NS B3H 3C3, Canada
| | - Li-Na Sha
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Yaan 625014, Sichuan, China.
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Yaan 625014, Sichuan, China.
| |
Collapse
|
34
|
Dreissig S, Mascher M, Heckmann S. Variation in Recombination Rate Is Shaped by Domestication and Environmental Conditions in Barley. Mol Biol Evol 2020; 36:2029-2039. [PMID: 31209472 PMCID: PMC6736446 DOI: 10.1093/molbev/msz141] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Meiotic recombination generates genetic diversity upon which selection can act. Recombination rates are highly variable between species, populations, individuals, sexes, chromosomes, and chromosomal regions. The underlying mechanisms are controlled at the genetic and epigenetic level and show plasticity toward the environment. Environmental plasticity may be divided into short- and long-term responses. We estimated recombination rates in natural populations of wild barley and domesticated landraces using a population genetics approach. We analyzed recombination landscapes in wild barley and domesticated landraces at high resolution. In wild barley, high recombination rates are found in more interstitial chromosome regions in contrast to distal chromosome regions in domesticated barley. Among subpopulations of wild barley, natural variation in effective recombination rate is correlated with temperature, isothermality, and solar radiation in a nonlinear manner. A positive linear correlation was found between effective recombination rate and annual precipitation. We discuss our findings with respect to how the environment might shape effective recombination rates in natural populations. Higher recombination rates in wild barley populations subjected to specific environmental conditions could be a means to maintain fitness in a strictly inbreeding species.
Collapse
Affiliation(s)
- Steven Dreissig
- Meiosis Research Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Seeland, Germany
| | - Martin Mascher
- Domestication Genomics Research Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Seeland, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Stefan Heckmann
- Meiosis Research Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Seeland, Germany
| |
Collapse
|
35
|
Brandrud MK, Baar J, Lorenzo MT, Athanasiadis A, Bateman RM, Chase MW, Hedrén M, Paun O. Phylogenomic Relationships of Diploids and the Origins of Allotetraploids in Dactylorhiza (Orchidaceae). Syst Biol 2020; 69:91-109. [PMID: 31127939 PMCID: PMC6902629 DOI: 10.1093/sysbio/syz035] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 05/12/2019] [Accepted: 05/17/2019] [Indexed: 12/04/2022] Open
Abstract
Disentangling phylogenetic relationships proves challenging for groups that have evolved recently, especially if there is ongoing reticulation. Although they are in most cases immediately isolated from diploid relatives, sets of sibling allopolyploids often hybridize with each other, thereby increasing the complexity of an already challenging situation. Dactylorhiza (Orchidaceae: Orchidinae) is a genus much affected by allopolyploid speciation and reticulate phylogenetic relationships. Here, we use genetic variation at tens of thousands of genomic positions to unravel the convoluted evolutionary history of Dactylorhiza. We first investigate circumscription and relationships of diploid species in the genus using coalescent and maximum likelihood methods, and then group 16 allotetraploids by maximum affiliation to their putative parental diploids, implementing a method based on genotype likelihoods. The direction of hybrid crosses is inferred for each allotetraploid using information from maternally inherited plastid RADseq loci. Starting from age estimates of parental taxa, the relative ages of these allotetraploid entities are inferred by quantifying their genetic similarity to the diploids and numbers of private alleles compared with sibling allotetraploids. Whereas northwestern Europe is dominated by young allotetraploids of postglacial origins, comparatively older allotetraploids are distributed further south, where climatic conditions remained relatively stable during the Pleistocene glaciations. Our bioinformatics approach should prove effective for the study of other naturally occurring, nonmodel, polyploid plant complexes.
Collapse
Affiliation(s)
- Marie K Brandrud
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Juliane Baar
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Maria T Lorenzo
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Alexander Athanasiadis
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | | | - Mark W Chase
- Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AB, UK
- Department of Environment and Agriculture, Curtin University, Bentley, Western Australia 6102, Australia
| | - Mikael Hedrén
- Department of Biology, University of Lund, Sölvegatan 37, SE-223 62 Lund, Sweden
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| |
Collapse
|
36
|
Georgiev O, Mishev K, Krasnikova M, Kitanova M, Dimitrova A, Karagyozov L. The Hordeum bulbosum 25S-18S rDNA region: comparison with Hordeum vulgare and other Triticeae. ACTA ACUST UNITED AC 2019; 74:319-328. [PMID: 31421048 DOI: 10.1515/znc-2018-0109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 07/18/2019] [Indexed: 11/15/2022]
Abstract
Hordeum vulgare and Hordeum bulbosum are two closely related barley species, which share a common H genome. H. vulgare has two nucleolar organizer regions (NORs), while the NOR of H. bulbosum is only one. We sequenced the 2.5 kb 25S-18S region in the rDNA of H. bulbosum and compared it to the same region in H. vulgare as well as to the other Triticeae. The region includes an intergenic spacer (IGS) with a number of subrepeats, a promoter, and an external transcribed spacer (5'ETS). The IGS of H. bulbosum downstream of 25S rRNA contains two 143-bp repeats and six 128-bp repeats. In contrast, the IGS in H. vulgare contains an array of seven 79-bp repeats and a varying number of 135-bp repeats. The 135-bp repeats in H. vulgare and the 128-bp repeats in H. bulbosum show similarity. Compared to H. vulgare, the 5'ETS of H. bulbosum is shorter. Additionally, the 5'ETS regions in H. bulbosum and H. vulgare diverged faster than in other Triticeae genera. Alignment of the Triticeae promoter sequences suggests that in Hordeum, as in diploid Triticum, transcription starts with guanine and not with adenine as it is in many other plants.
Collapse
Affiliation(s)
- Oleg Georgiev
- Institute of Molecular Life Sciences, University Zurich-Irchel, Winterthurer Str. 190, CH-8057 Zurich, Switzerland
| | - Kiril Mishev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Maria Krasnikova
- Department of Genetics, Faculty of Biology, St. Kl. Ohridsky University of Sofia, 8 Dragan Tsankov bld., 1164 Sofia, Bulgaria
| | - Meglena Kitanova
- Department of Genetics, Faculty of Biology, St. Kl. Ohridsky University of Sofia, 8 Dragan Tsankov bld., 1164 Sofia, Bulgaria
| | - Anna Dimitrova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria, Phone: +359 2 9792677, Fax: +359 2 9785516, E-mail:
| | - Luchezar Karagyozov
- Department of Genetics, Faculty of Biology, St. Kl. Ohridsky University of Sofia, 8 Dragan Tsankov bld., 1164 Sofia, Bulgaria
| |
Collapse
|
37
|
Radchuk V, Sharma R, Potokina E, Radchuk R, Weier D, Munz E, Schreiber M, Mascher M, Stein N, Wicker T, Kilian B, Borisjuk L. The highly divergent Jekyll genes, required for sexual reproduction, are lineage specific for the related grass tribes Triticeae and Bromeae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:961-974. [PMID: 31021020 PMCID: PMC6851964 DOI: 10.1111/tpj.14363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 05/26/2023]
Abstract
Phylogenetically related groups of species contain lineage-specific genes that exhibit no sequence similarity to any genes outside the lineage. We describe here that the Jekyll gene, required for sexual reproduction, exists in two much diverged allelic variants, Jek1 and Jek3. Despite low similarity, the Jek1 and Jek3 proteins share identical signal peptides, conserved cysteine positions and direct repeats. The Jek1/Jek3 sequences are located at the same chromosomal locus and inherited in a monogenic Mendelian fashion. Jek3 has a similar expression as Jek1 and complements the Jek1 function in Jek1-deficient plants. Jek1 and Jek3 allelic variants were almost equally distributed in a collection of 485 wild and domesticated barley accessions. All domesticated barleys harboring the Jek1 allele belong to single haplotype J1-H1 indicating a genetic bottleneck during domestication. Domesticated barleys harboring the Jek3 allele consisted of three haplotypes. Jekyll-like sequences were found only in species of the closely related tribes Bromeae and Triticeae but not in other Poaceae. Non-invasive magnetic resonance imaging revealed intrinsic grain structure in Triticeae and Bromeae, associated with the Jekyll function. The emergence of Jekyll suggests its role in the separation of the Bromeae and Triticeae lineages within the Poaceae and identifies the Jekyll genes as lineage-specific.
Collapse
Affiliation(s)
- Volodymyr Radchuk
- Leibniz‐Institute of Plant Genetics and Crop Plant Research (IPK)06466GaterslebenGermany
| | - Rajiv Sharma
- Leibniz‐Institute of Plant Genetics and Crop Plant Research (IPK)06466GaterslebenGermany
- Present address:
Division of Plant SciencesSchool of Life SciencesUniversity of DundeeThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | - Elena Potokina
- Leibniz‐Institute of Plant Genetics and Crop Plant Research (IPK)06466GaterslebenGermany
- Vavilov Institute of Plant Genetic Resources (VIR)St. Petersburg190000Russian Federation
| | - Ruslana Radchuk
- Leibniz‐Institute of Plant Genetics and Crop Plant Research (IPK)06466GaterslebenGermany
| | - Diana Weier
- Leibniz‐Institute of Plant Genetics and Crop Plant Research (IPK)06466GaterslebenGermany
| | - Eberhard Munz
- Leibniz‐Institute of Plant Genetics and Crop Plant Research (IPK)06466GaterslebenGermany
- Department of Experimental Physics 5University of WürzburgWürzburgGermany
| | | | - Martin Mascher
- Leibniz‐Institute of Plant Genetics and Crop Plant Research (IPK)06466GaterslebenGermany
| | - Nils Stein
- Leibniz‐Institute of Plant Genetics and Crop Plant Research (IPK)06466GaterslebenGermany
| | - Thomas Wicker
- Department of Plant and Microbial BiologyUniversity of ZürichZürichSwitzerland
| | - Benjamin Kilian
- Leibniz‐Institute of Plant Genetics and Crop Plant Research (IPK)06466GaterslebenGermany
- Present address:
Global Crop Diversity Trust53113BonnGermany
| | - Ljudmilla Borisjuk
- Leibniz‐Institute of Plant Genetics and Crop Plant Research (IPK)06466GaterslebenGermany
| |
Collapse
|
38
|
Zhang LN, Ma PF, Zhang YX, Zeng CX, Zhao L, Li DZ. Using nuclear loci and allelic variation to disentangle the phylogeny of Phyllostachys (Poaceae, Bambusoideae). Mol Phylogenet Evol 2019; 137:222-235. [PMID: 31112779 DOI: 10.1016/j.ympev.2019.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 11/18/2022]
Abstract
With the development of sequencing technologies, the use of multiple nuclear genes has become conventional for resolving difficult phylogenies. However, this technique also presents challenges due to gene-tree discordance, as a result of incomplete lineage sorting (ILS) and reticulate evolution. Although alleles can show sequence variation within individuals, which contain information regarding the evolution of organisms, they continue to be ignored in almost all phylogenetic analyses using randomly phased genome sequences. Here, we tried to incorporate alleles from multiple nuclear loci to study the phylogeny of the economically important bamboo genus Phyllostachys (Poaceae, Bambusoideae). Obtaining a total of 3926 sequences, we documented extensive allelic variation for 61 genes from 39 sampled species. Using datasets consisting of selected alleles, we demonstrated substantial discordance among phylogenetic relationships inferred from different alleles, as well as between concatenation and coalescent methods. Furthermore, ILS and hybridization were suggested to be underlying causes of the discordant phylogenetic signals. Taking these possible causes for conflicting phylogenetic results into consideration, we recovered the monophyly of Phyllostachys and its two morphology-defined sections. Our study also suggests that alleles deserve more attention in phylogenetic studies, since ignoring them can yield highly supported but spurious phylogenies. Meanwhile, alleles are helpful for unraveling complex evolutionary processes, particularly hybridization.
Collapse
Affiliation(s)
- Li-Na Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Peng-Fei Ma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yu-Xiao Zhang
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, Yunnan 650224, China
| | - Chun-Xia Zeng
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Lei Zhao
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
39
|
Nemati Z, Harpke D, Gemicioglu A, Kerndorff H, Blattner FR. Saffron (Crocus sativus) is an autotriploid that evolved in Attica (Greece) from wild Crocus cartwrightianus. Mol Phylogenet Evol 2019; 136:14-20. [PMID: 30946897 DOI: 10.1016/j.ympev.2019.03.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 10/27/2022]
Abstract
Crocus sativus, the saffron crocus, is the source of saffron, which is made from the dried stigmas of the plant. It is a male-sterile triploid lineage that ever since its origin has been propagated vegetatively. Its mode of evolution and area of origin are matters of long-lasting debates. Here we analyzed chloroplast genomes and genome-wide DNA polymorphisms obtained through genotyping-by-sequencing (GBS) to infer the parent and area of origin of C. sativus. These data were complemented by genome size measurements and analyses of nuclear single-copy genes. We could place 99.3% of saffron GBS alleles in Crocus cartwrightianus, a species occurring in southeastern mainland Greece and on Aegean islands, identifying it as the sole progenitor of the saffron crocus. Phylogenetic and population assignment analyses together with chloroplast polymorphisms indicated the C. cartwrightianus population in the vicinity of Athens as most similar to C. sativus. We conclude that the crop is an autotriploid that evolved in Attica by combining two different genotypes of C. cartwrightianus. Triploid sterility and vegetative propagation prevented afterwards segregation of the favorable traits of saffron, resulting in worldwide cultivation of a unique clonal lineage.
Collapse
Affiliation(s)
- Zahra Nemati
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Dörte Harpke
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Almila Gemicioglu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany; Dept. of Biology, University of Istanbul, Istanbul, Turkey
| | - Helmut Kerndorff
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Frank R Blattner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
| |
Collapse
|
40
|
Acosta JM, Zuloaga FO, Reinheimer R. Nuclear phylogeny and hypothesized allopolyploidization events in the Subtribe Otachyriinae (Paspaleae, Poaceae). SYST BIODIVERS 2019. [DOI: 10.1080/14772000.2019.1572035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Juan M. Acosta
- Instituto de Botánica Darwinion (CONICET-ANCEFN), Labardén 200, Casilla de Correo 22, B1642HYD, San Isidro, Buenos Aires, Argentina
| | - Fernando O. Zuloaga
- Instituto de Botánica Darwinion (CONICET-ANCEFN), Labardén 200, Casilla de Correo 22, B1642HYD, San Isidro, Buenos Aires, Argentina
| | - Renata Reinheimer
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, FBCB, Santa Fe, Argentina
| |
Collapse
|
41
|
Morales-Briones DF, Tank DC. Extensive allopolyploidy in the neotropical genus Lachemilla (Rosaceae) revealed by PCR-based target enrichment of the nuclear ribosomal DNA cistron and plastid phylogenomics. AMERICAN JOURNAL OF BOTANY 2019; 106:415-437. [PMID: 30882906 DOI: 10.1002/ajb2.1253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
PREMISE OF THE STUDY Polyploidy has been long recognized as an important force in plant evolution. Previous studies had suggested widespread occurrence of polyploidy and the allopolyploid origin of several species in the diverse neotropical genus Lachemilla (Rosaceae). Nonetheless, this evidence has relied mostly on patterns of cytonuclear discordance, and direct evidence from nuclear allelic markers is still needed. METHODS Here we used PCR target enrichment in combination with high throughput sequencing to obtain multiple copies of the nuclear ribosomal (nr) DNA cistron and 45 regions of the plastid genome (cpDNA) from 219 accessions representing 48 species of Lachemilla and to explore the allopolyploid origin of species in this group. KEY RESULTS We were able to identify multiple nrDNA ribotypes and establish clear evidence of allopolyploidy in 33 species of Lachemilla, showing that this condition is common and widespread in the genus. Additionally, we found evidence for three autopolyploid species. We also established multiple, independent origins of several allopolyploid species. Finally, based solely on the cpDNA phylogeny, we identified that the monotypic genus Farinopsis is the sister group of Lachemilla and allied genera within subtribe Fragariinae. CONCLUSIONS Our study demonstrates the utility of the nuclear ribosomal DNA cistron to detect allopolyploidy when concerted evolution of this region is not complete. Additionally, with a robust chloroplast phylogeny in place, the direction of hybridization events can be established, and multiple, independent origins of allopolyploid species can be identified.
Collapse
Affiliation(s)
- Diego F Morales-Briones
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, ID, 83844-3051, USA
- Stillinger Herbarium, University of Idaho, 875 Perimeter Drive, MS 1133, Moscow, ID, 83844-1133, USA
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, ID, 83844-3051, USA
| | - David C Tank
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, ID, 83844-3051, USA
- Stillinger Herbarium, University of Idaho, 875 Perimeter Drive, MS 1133, Moscow, ID, 83844-1133, USA
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, ID, 83844-3051, USA
| |
Collapse
|
42
|
Šarhanová P, Pfanzelt S, Brandt R, Himmelbach A, Blattner FR. SSR-seq: Genotyping of microsatellites using next-generation sequencing reveals higher level of polymorphism as compared to traditional fragment size scoring. Ecol Evol 2018; 8:10817-10833. [PMID: 30519409 PMCID: PMC6262739 DOI: 10.1002/ece3.4533] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 01/13/2023] Open
Abstract
Microsatellites (or simple sequence repeats, SSR) are widely used markers in population genetics. Traditionally, genotyping was and still is carried out through recording fragment length. Now, next-generation sequencing (NGS) makes it easy to obtain also sequence information for the loci of interest. This avoids misinterpretations that otherwise could arise due to size homoplasy. Here, an NGS strategy is described that allows to genotype hundreds of individuals at many custom-designed SSR loci simultaneously, combining multiplex PCR, barcoding, and Illumina sequencing. We created three different datasets for which alleles were coded according to (a) length of the repetitive region, (b) total fragment length, and (c) sequence identity, in order to evaluate the eventual benefits from having sequence data at hand, not only fragment length data. For each dataset, genetic diversity statistics, as well as F ST and R ST values, were calculated. The number of alleles per locus, as well as observed and expected heterozygosity, was highest in the sequence identity dataset, because of single-nucleotide polymorphisms and insertions/deletions in the flanking regions of the SSR motif. Size homoplasy was found to be very common, amounting to 44.7%-63.5% (mean over all loci) in the three study species. Thus, the information obtained by next-generation sequencing offers a better resolution than the traditional way of SSR genotyping and allows for more accurate evolutionary interpretations.
Collapse
Affiliation(s)
- Petra Šarhanová
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
- Present address:
Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Simon Pfanzelt
- Institute of Biology and Environmental SciencesCarl von Ossietzky University OldenburgOldenburgGermany
- Present address:
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
| | - Ronny Brandt
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
- Present address:
Max Planck Genome Centre CologneCologneGermany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
| | - Frank R. Blattner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
| |
Collapse
|
43
|
Mandák B, Krak K, Vít P, Lomonosova MN, Belyayev A, Habibi F, Wang L, Douda J, Štorchová H. Hybridization and polyploidization within the Chenopodium album aggregate analysed by means of cytological and molecular markers. Mol Phylogenet Evol 2018; 129:189-201. [PMID: 30172008 DOI: 10.1016/j.ympev.2018.08.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 10/28/2022]
Abstract
Hybridization and polyploidization represent an important speciation mechanism in the diploid-polyploid complex of the Chenopodium album aggregate. In the present study we successfully reconstructed the evolutionary histories of the majority of Eurasian representatives of the C. album aggregate, resulting in the most comprehensive phylogenetic analysis of this taxonomically intricate group of species to date. We applied a combination of classical karyology for precise chromosome number determination, genomic in-situ hybridization for the determination of genomic composition, flow cytometry for the estimation of genome size and sequencing of plastid (cpDNA) and nuclear (ribosomal internal transcribed spacer - ITS and the introns of the FLOWERING LOCUS T LIKE genes - FTL) markers for a phylogenetic reconstruction and the identification of parental genomes in polyploid taxa. The FTL markers identified eight well supported evolutionary lineages. Five of them include at least one diploid species, and the remaining three comprise solely the subgenomes of polyploids that probably represent extinct or unknown diploid taxa. The existence of eight basic diploid lineages explains the origin of seven Eurasian polyploid groups and brings evidence of a nearly unlimited number of subgenomic combinations. The supposed promiscuity generated new species wherever different diploid lineages met each other and gave rise to tetraploid species or whenever they met other tetraploid species to produce hexaploid species throughout their evolutionary history. Finally, we unravelled a surprisingly simple scheme of polyploid species formation within the C. album aggregate. We determined seven groups of polyploid species differing in their origin in either Eurasia or Africa and convincingly demonstrated that (1) all Chenopodium polyploid species under study are of allopolyploid origin, (2) there are eight major monophyletic evolutionary lineages represented by extant or extinct/unknown diploid taxa, (3) those monophyletic lineages represent individual subgenomes, (4) hybridization among the lineages created seven subgenomic combinations of polyploid taxa, (5) taxa represented by particular subgenome combinations were further subjected to diversification, and (6) the majority of species are relatively young, not exceeding the age of the Quaternary period.
Collapse
Affiliation(s)
- Bohumil Mandák
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6 - Suchdol, CZ-165 21, Czech Republic; The Czech Academy of Sciences, Institute of Botany, Zámek 1, CZ-252 43 Průhonice, Czech Republic.
| | - Karol Krak
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6 - Suchdol, CZ-165 21, Czech Republic; The Czech Academy of Sciences, Institute of Botany, Zámek 1, CZ-252 43 Průhonice, Czech Republic
| | - Petr Vít
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6 - Suchdol, CZ-165 21, Czech Republic; The Czech Academy of Sciences, Institute of Botany, Zámek 1, CZ-252 43 Průhonice, Czech Republic
| | - Maria N Lomonosova
- Central Siberian Botanical Garden, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alexander Belyayev
- The Czech Academy of Sciences, Institute of Botany, Zámek 1, CZ-252 43 Průhonice, Czech Republic
| | - Farzaneh Habibi
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Lei Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, China
| | - Jan Douda
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6 - Suchdol, CZ-165 21, Czech Republic
| | - Helena Štorchová
- Plant Reproduction Laboratory, Institute of Experimental Botany v.v.i., The Czech Academy of Sciences, Praha 6 - Lysolaje, CZ-165 00, Czech Republic
| |
Collapse
|
44
|
Towards the Development of Perennial Barley for Cold Temperate Climates—Evaluation of Wild Barley Relatives as Genetic Resources. SUSTAINABILITY 2018. [DOI: 10.3390/su10061969] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Reconstructing the origins and the biogeography of species' genomes in the highly reticulate allopolyploid-rich model grass genus Brachypodium using minimum evolution, coalescence and maximum likelihood approaches. Mol Phylogenet Evol 2018; 127:256-271. [PMID: 29879468 DOI: 10.1016/j.ympev.2018.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/25/2018] [Accepted: 06/02/2018] [Indexed: 12/21/2022]
Abstract
The identification of homeologous genomes and the biogeographical analyses of highly reticulate allopolyploid-rich groups face the challenge of incorrectly inferring the genomic origins and the biogeographical patterns of the polyploids from unreliable strictly bifurcating trees. Here we reconstruct a plausible evolutionary scenario of the diverging and merging genomes inherited by the diploid and allopolyploid species and cytotypes of the model grass genus Brachypodium. We have identified the ancestral Brachypodium genomes and inferred the paleogeographical ranges for potential hybridization events that originated its allopolyploid taxa. We also constructed a comprehensive phylogeny of Brachypodium from five nuclear and plastid genes using Species Tree Minimum Evolution allele grafting and Species Network analysis. The divergence ages of the lineages were estimated from a consensus maximum clade credibility tree using fossil calibrations, whereas ages of origin of the diploid and allopolyploid species were inferred from coalescence Bayesian methods. The biogeographical events of the genomes were reconstructed using a stratified Dispersal-Extinction-Colonization model with three temporal windows. Our combined Minimum Evolution-coalescence-Bayesian approach allowed us to infer the origins and the identities of the homeologous genomes of the Brachypodium allopolyploids, matching the expected ploidy levels of the hybrids. To date, the current extant progenitor genomes (species) are only known for B. hybridum. Putative ancestral homeologous genome have been inherited by B. mexicanum, ancestral and recent genomes by B. boissieri, and only recently evolved genomes by B. retusum and the core perennial clade allopolyploids (B. phoenicoides, B. pinnatum 4x, B. rupestre 4x). We dissected the complex spatio-temporal evolution of ancestral and recent genomes and have detected successive splitting, dispersal and merging events for dysploid homeologous genomes in diverse geographical scenarios that have led to the current extant taxa. Our data support Mid-Miocene splits of the Holarctic ancestral genomes that preceded the Late Miocene origins of Brachypodium ancestors of the modern diploid species. Successive divergences of the annual B. stacei and B. distachyon diploid genomes were implied to have occurred in the Mediterranean region during the Late Miocene-Pliocene. By contrast, a profusion of splits, range expansions and different genome mergings were inferred for the perennial diploid genomes in the Mediterranean and Eurasian regions, with sporadic colonizations and further mergings in other continents during the Quaternary. A reliable biogeographical scenario was obtained for the Brachypodium genomes and allopolyploids where homeologous genomes split from their respective diploid counterpart lineages in the same ancestral areas, showing similar or distinct dispersals. By contrast, the allopolyploid taxa remained in the same ancestral ranges after hybridization and genome doubling events. Our approach should have utility in deciphering the genomic composition and the historical biogeography of other allopolyploid-rich organismal groups, which are predominant in eukaryotes.
Collapse
|
46
|
Liu SH, Edwards CE, Hoch PC, Raven PH, Barber JC. Genome skimming provides new insight into the relationships in Ludwigia section Macrocarpon, a polyploid complex. AMERICAN JOURNAL OF BOTANY 2018; 105:875-887. [PMID: 29791715 DOI: 10.1002/ajb2.1086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/14/2018] [Indexed: 05/24/2023]
Abstract
PREMISE OF THE STUDY Interpreting relationships within groups containing polyploids, which are frequent in angiosperms, can be greatly assisted by genomic techniques. In this study, we used a genome-skimming approach to investigate the evolutionary relationships and origins of polyploids in the monophyletic group, Ludwigia section Macrocarpon (Onagraceae), which includes diploid, tetraploid, and hexaploid taxa. METHODS We sampled all known taxa and ploidy levels in the section and conducted shotgun sequencing. We assembled plastomes, mitochondrial sequences, and completed nuclear ribosomal regions, reconstructed phylogenies, and conducted comparative genomic analyses for plastomes to gain insights into the relationships among studied taxa. KEY RESULTS Within the section, results showed that the South American diploid taxa L. bonariensis and L. lagunae were closely related. We reported the first chromosome count (2n = 4× = 32) for L. neograndiflora, which is closely related to the two South American diploid taxa, although its exact origin remains unclear. The samples of the widespread, polyploid taxon L. octovalvis do not form a monophyletic group. Both tetraploid and hexaploid L. octovalvis lineages have originated more than once. At least one tetraploid in the L. octovalvis lineage may have been involved in the origins of hexaploids. One or more extinct/unsampled intermediate tetraploids in the L. octovalvis lineages had also likely been involved in the origins of hexaploids. CONCLUSIONS Genome skimming provided important insights into the complex evolutionary relationships within sect. Macrocarpon, but additional sampling and data from single-copy nuclear regions are necessary to further elucidate the origins of the polyploids in this section.
Collapse
Affiliation(s)
- Shih-Hui Liu
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, Saint Louis, Missouri, 63103, USA
- Missouri Botanical Garden, P.O. Box 299, Saint Louis, Missouri, 63166, USA
- Herbarium (HAST), Biodiversity Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei, 11529, Taiwan
| | | | - Peter C Hoch
- Missouri Botanical Garden, P.O. Box 299, Saint Louis, Missouri, 63166, USA
| | - Peter H Raven
- Missouri Botanical Garden, P.O. Box 299, Saint Louis, Missouri, 63166, USA
| | - Janet C Barber
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, Saint Louis, Missouri, 63103, USA
| |
Collapse
|
47
|
Gregg WCT, Ather SH, Hahn MW. Gene-Tree Reconciliation with MUL-Trees to Resolve Polyploidy Events. Syst Biol 2018; 66:1007-1018. [PMID: 28419377 DOI: 10.1093/sysbio/syx044] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 03/30/2017] [Indexed: 11/13/2022] Open
Abstract
Polyploidy can have a huge impact on the evolution of species, and it is a common occurrence, especially in plants. The two types of polyploids-autopolyploids and allopolyploids-differ in the level of divergence between the genes that are brought together in the new polyploid lineage. Because allopolyploids are formed via hybridization, the homoeologous copies of genes within them are at least as divergent as orthologs in the parental species that came together to form them. This means that common methods for estimating the parental lineages of allopolyploidy events are not accurate, and can lead to incorrect inferences about the number of gene duplications and losses. Here, we have adapted an algorithm for topology-based gene-tree reconciliation to work with multi-labeled trees (MUL-trees). By definition, MUL-trees have some tips with identical labels, which makes them a natural representation of the genomes of polyploids. Using this new reconciliation algorithm we can: accurately place allopolyploidy events on a phylogeny, identify the parental lineages that hybridized to form allopolyploids, distinguish between allo-, auto-, and (in most cases) no polyploidy, and correctly count the number of duplications and losses in a set of gene trees. We validate our method using gene trees simulated with and without polyploidy, and revisit the history of polyploidy in data from the clades including both baker's yeast and bread wheat. Our re-analysis of the yeast data confirms the allopolyploid origin and parental lineages previously identified for this group. The method presented here should find wide use in the growing number of genomes from species with a history of polyploidy. [Polyploidy; reconciliation; whole-genome duplication.].
Collapse
Affiliation(s)
- W C Thomas Gregg
- Department of Biology and School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - S Hussain Ather
- Department of Biology and School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - Matthew W Hahn
- Department of Biology and School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
48
|
Valderrama E, Richardson JE, Kidner CA, Madriñán S, Stone GN. Transcriptome mining for phylogenetic markers in a recently radiated genus of tropical plants (Renealmia L.f., Zingiberaceae). Mol Phylogenet Evol 2018; 119:13-24. [DOI: 10.1016/j.ympev.2017.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/17/2017] [Accepted: 10/03/2017] [Indexed: 11/25/2022]
|
49
|
Eriksson JS, de Sousa F, Bertrand YJK, Antonelli A, Oxelman B, Pfeil BE. Allele phasing is critical to revealing a shared allopolyploid origin of Medicago arborea and M. strasseri (Fabaceae). BMC Evol Biol 2018; 18:9. [PMID: 29374461 PMCID: PMC5787288 DOI: 10.1186/s12862-018-1127-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 01/22/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Whole genome duplication plays a central role in plant evolution. There are two main classes of polyploid formation: autopolyploids which arise within one species by doubling of similar homologous genomes; in contrast, allopolyploidy (hybrid polyploidy) arise via hybridization and subsequent doubling of nonhomologous (homoeologous) genomes. The distinction between polyploid origins can be made using gene phylogenies, if alleles from each genome can be correctly retrieved. We examined whether two closely related tetraploid Mediterranean shrubs (Medicago arborea and M. strasseri) have an allopolyploid origin - a question that has remained unsolved despite substantial previous research. We sequenced and analyzed ten low-copy nuclear genes from these and related species, phasing all alleles. To test the efficacy of allele phasing on the ability to recover the evolutionary origin of polyploids, we compared these results to analyses using unphased sequences. RESULTS In eight of the gene trees the alleles inferred from the tetraploids formed two clades, in a non-sister relationship. Each of these clades was more closely related to alleles sampled from other species of Medicago, a pattern typical of allopolyploids. However, we also observed that alleles from one of the remaining genes formed two clades that were sister to one another, as is expected for autopolyploids. Trees inferred from unphased sequences were very different, with the tetraploids often placed in poorly supported and different positions compared to results obtained using phased alleles. CONCLUSIONS The complex phylogenetic history of M. arborea and M. strasseri is explained predominantly by shared allotetraploidy. We also observed that an increase in woodiness is correlated with polyploidy in this group of species and present a new possibility that woodiness could be a transgressive phenotype. Correctly phased homoeologues are likely to be critical for inferring the hybrid origin of allopolyploid species, when most genes retain more than one homoeologue. Ignoring homoeologous variation by merging the homoeologues can obscure the signal of hybrid polyploid origins and produce inaccurate results.
Collapse
Affiliation(s)
- Jonna S Eriksson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530, Gothenburg, Sweden. .,Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden.
| | - Filipe de Sousa
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530, Gothenburg, Sweden
| | - Yann J K Bertrand
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530, Gothenburg, Sweden
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530, Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden.,Gothenburg Botanical Garden, SE-41319, Göteborg, Sweden
| | - Bengt Oxelman
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530, Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden
| | - Bernard E Pfeil
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530, Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden
| |
Collapse
|
50
|
Jetten L, van Iersel L. Nonbinary Tree-Based Phylogenetic Networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:205-217. [PMID: 27723601 DOI: 10.1109/tcbb.2016.2615918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Rooted phylogenetic networks are used to describe evolutionary histories that contain non-treelike evolutionary events such as hybridization and horizontal gene transfer. In some cases, such histories can be described by a phylogenetic base-tree with additional linking arcs, which can, for example, represent gene transfer events. Such phylogenetic networks are called tree-based. Here, we consider two possible generalizations of this concept to nonbinary networks, which we call tree-based and strictly-tree-based nonbinary phylogenetic networks. We give simple graph-theoretic characterizations of tree-based and strictly-tree-based nonbinary phylogenetic networks. Moreover, we show for each of these two classes that it can be decided in polynomial time whether a given network is contained in the class. Our approach also provides a new view on tree-based binary phylogenetic networks. Finally, we discuss two examples of nonbinary phylogenetic networks in biology and show how our results can be applied to them.
Collapse
|