1
|
Oliveira-Paula GH, Martins AC, Ferrer B, Tinkov AA, Skalny AV, Aschner M. The impact of manganese on vascular endothelium. Toxicol Res 2024; 40:501-517. [PMID: 39345740 PMCID: PMC11436708 DOI: 10.1007/s43188-024-00260-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/10/2024] [Accepted: 07/26/2024] [Indexed: 10/01/2024] Open
Abstract
Manganese (Mn) is an essential trace element involved in various physiological processes, but excessive exposure may lead to toxicity. The vascular endothelium, a monolayer of endothelial cells within blood vessels, is a primary target of Mn toxicity. This review provides a comprehensive overview of the impact of Mn on vascular endothelium, focusing on both peripheral and brain endothelial cells. In vitro studies have demonstrated that high concentrations of Mn can induce endothelial cell cytotoxicity, increase permeability, and disrupt cell-cell junctions through mechanisms involving oxidative stress, mitochondrial damage, and activation of signaling pathways, such as Smad2/3-Snail. Conversely, low concentrations of Mn may protect endothelial cells from the deleterious effects of high glucose and advanced glycation end-products. In the central nervous system, Mn can cross the blood-brain barrier (BBB) and accumulate in the brain parenchyma, leading to neurotoxicity. Several transport mechanisms, including ZIP8, ZIP14, and SPCA1, have been identified for Mn uptake by brain endothelial cells. Mn exposure can impair BBB integrity by disrupting tight junctions and increasing permeability. In vivo studies have corroborated these findings, highlighting the importance of endothelial barriers in mediating Mn toxicity in the brain and kidneys. Maintaining optimal Mn homeostasis is crucial for preserving endothelial function, and further research is needed to develop targeted therapeutic strategies to prevent or mitigate the adverse effects of Mn overexposure. Graphical Abstract
Collapse
Affiliation(s)
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003 Russia
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435 Russia
| | - Anatoly V. Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003 Russia
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435 Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| |
Collapse
|
2
|
Gao P, Ren G, Liang J, Liu J. STAT6 Upregulates NRP1 Expression in Endothelial Cells and Promotes Angiogenesis. Front Oncol 2022; 12:823377. [PMID: 35600336 PMCID: PMC9117725 DOI: 10.3389/fonc.2022.823377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
The role of signal transducer and activator of transcription 6 (STAT6) in tumor growth has been widely recognized. However, its effects on the regulation of angiogenesis remain unclear. In this study, we found that STAT6 promoted angiogenesis, possibly by increasing the expression of neuropilin-1 (NRP1) in endothelial cells (ECs). Both STAT6 inhibitor (AS1517499) and STAT6 siRNA reduced EC proliferation, migration, and tube-formation, accompanied by downregulation of NRP1, an angiogenesis regulator. Furthermore, IL-13 induced activation of STAT6 and then increased NRP1 expression in ECs. IL-13-induced EC migration and tube formation were inhibited by NRP1 siRNA. Luciferase assay and chromatin immunoprecipitation assay demonstrated that STAT6 could directly bind to human NRP1 promoter and increase the promoter activity. In tumor xenograft models, inhibition of STAT6 reduced xenograft growth, tumor angiogenesis, and NRP1 expression in vivo. Overall, these results clarified the novel mechanism by which STAT6 regulates angiogenesis, and suggested that STAT6 may be a potential target for anti-angiogenesis therapy.
Collapse
Affiliation(s)
- Peng Gao
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Guanghui Ren
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Jiangjiu Liang
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Ju Liu
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
3
|
Politis MD, Freedman JC, Haynes EN, Sanders AP. Association of Manganese Biomarker Concentrations with Blood Pressure and Kidney Parameters among Healthy Adolescents: NHANES 2013-2018. CHILDREN (BASEL, SWITZERLAND) 2021; 8:846. [PMID: 34682111 PMCID: PMC8534392 DOI: 10.3390/children8100846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/19/2022]
Abstract
Deficiency or excess exposure to manganese (Mn), an essential mineral, may have potentially adverse health effects. The kidneys are a major organ of Mn site-specific toxicity because of their unique role in filtration, metabolism, and excretion of xenobiotics. We hypothesized that Mn concentrations were associated with poorer blood pressure (BP) and kidney parameters such as estimated glomerular filtration rate (eGFR), blood urea nitrogen (BUN), and albumin creatinine ratio (ACR). We conducted a cross-sectional analysis of 1931 healthy U.S. adolescents aged 12-19 years participating in National Health and Nutrition Examination Survey cycles 2013-2014, 2015-2016, and 2017-2018. Blood and urine Mn concentrations were measured using inductively coupled plasma mass spectrometry. Systolic and diastolic BP were calculated as the average of available readings. eGFR was calculated from serum creatinine using the Bedside Schwartz equation. We performed multiple linear regression, adjusting for age, sex, body mass index, race/ethnicity, and poverty income ratio. We observed null relationships between blood Mn concentrations with eGFR, ACR, BUN, and BP. In a subset of 691 participants, we observed that a 10-fold increase in urine Mn was associated with a 16.4 mL/min higher eGFR (95% Confidence Interval: 11.1, 21.7). These exploratory findings should be interpreted cautiously and warrant investigation in longitudinal studies.
Collapse
Affiliation(s)
- Maria D. Politis
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Jacob C. Freedman
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Erin N. Haynes
- Department of Epidemiology Preventative Medicine and Environmental Health, College of Public Health, University of Kentucky, Lexington, KY 40506, USA;
| | - Alison P. Sanders
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
4
|
Fu SH, Lai MC, Zheng YY, Sun YW, Qiu JJ, Gui F, Zhang Q, Liu F. MiR-195 inhibits the ubiquitination and degradation of YY1 by Smurf2, and induces EMT and cell permeability of retinal pigment epithelial cells. Cell Death Dis 2021; 12:708. [PMID: 34267179 PMCID: PMC8282777 DOI: 10.1038/s41419-021-03956-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022]
Abstract
The dysregulated microRNAs (miRNAs) are involved in diabetic retinopathy progression. Epithelial mesenchymal transition (EMT) and cell permeability are important events in diabetic retinopathy. However, the function and mechanism of miR-195 in EMT and cell permeability in diabetic retinopathy remain largely unclear. Diabetic retinopathy models were established using streptozotocin (STZ)-induced diabetic mice and high glucose (HG)-stimulated ARPE-19 cells. Retina injury was investigated by hematoxylin-eosin (HE) staining. EMT and cell permeability were analyzed by western blotting, immunofluorescence, wound healing, and FITC-dextran assays. MiR-195 expression was detected via qRT-PCR. YY1, VEGFA, Snail1, and Smurf2 levels were detected via western blotting. The interaction relationship was analyzed via ChIP, Co-IP, or dual-luciferase reporter assay. The retina injury, EMT, and cell permeability were induced in STZ-induced diabetic mice. HG induced EMT and cell permeability in ARPE-19 cells. MiR-195, YY1, VEGFA, and Snail1 levels were enhanced, but Smurf2 abundance was reduced in STZ-induced diabetic mice and HG-stimulated ARPE-19 cells. VEGFA knockdown decreased Snail1 expression and attenuated HG-induced EMT and cell permeability. YY1 silence reduced VEGFA and Snail1 expression, and mitigated HG-induced EMT and cell permeability. YY1 could bind with VEGFA and Snail1, and it was degraded via Smurf2-mediated ubiquitination. MiR-195 knockdown upregulated Smurf2 to decrease YY1 expression and inhibited HG-induced EMT and cell permeability. MiR-195 targeted Smurf2, increased expression of YY1, VEGFA, and Snail1, and promoted HG-induced EMT and cell permeability. MiR-195 promotes EMT and cell permeability of HG-stimulated ARPE-19 cells by increasing VEGFA/Snail1 via inhibiting the Smurf2-mediated ubiquitination of YY1.
Collapse
Affiliation(s)
- Shu-Hua Fu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P. R. China
| | - Mei-Chen Lai
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P. R. China
| | - Yun-Yao Zheng
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P. R. China
| | - Ya-Wen Sun
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P. R. China
| | - Jing-Jing Qiu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P. R. China
| | - Fu Gui
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P. R. China
| | - Qian Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P. R. China
| | - Fei Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P. R. China.
| |
Collapse
|
5
|
Gandhi D, Rudrashetti AP, Rajasekaran S. The impact of environmental and occupational exposures of manganese on pulmonary, hepatic, and renal functions. J Appl Toxicol 2021; 42:103-129. [PMID: 34237170 DOI: 10.1002/jat.4214] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022]
Abstract
Manganese (Mn) is an essential trace element for humans, but long-term environmental or occupational exposures can lead to numerous health problems. Although many studies have identified an association between Mn exposures and neurological abnormalities, emerging data suggest that occupationally and environmentally relevant levels of Mn may also be linked to multiple organ dysfunction in the general population. In this regard, many experimental and clinical studies provide support for a causal link between Mn exposure and structural and functional changes that are responsible for organ dysfunction in major organs like lung, liver, and kidney. The underlying mechanisms suggested to Mn toxicity include altered activities of the components of intracellular signaling cascades, oxidative stress, apoptosis, affected cell cycle regulation, autophagy, angiogenesis, and an inflammatory response. We further discussed the sources and possible mechanisms of Mn absorption and distribution in different organs. Finally, treatment strategies available for treating Mn toxicity as well as directions for future studies were discussed.
Collapse
Affiliation(s)
- Deepa Gandhi
- Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | | | - Subbiah Rajasekaran
- Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|