1
|
Lu Q, Yu J, Xia N, Jin M, Zhao W, Fan X, Zhang R, Wang J, Jiang Z, Yu Q. Obeticholic acid aggravates liver fibrosis by activating hepatic farnesoid X receptor-induced apoptosis in cholestatic mice. Chem Biol Interact 2024; 406:111364. [PMID: 39725190 DOI: 10.1016/j.cbi.2024.111364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/15/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Obeticholic acid (OCA) was approved for the treatment of primary biliary cholangitis (PBC) patients. However, it can cause severe drug-induced liver injury (DILI), which may put PBC patients at risk of acute-on-chronic liver failure (ACLF) and even death. Farnesoid X receptor (FXR) is considered as the target of OCA for cholestasis, but there is still a lack of research on whether hepatic and ileal FXR have different effects after OCA treatment. The aim of this study was to investigate the mechanism of OCA aggravating liver fibrosis in cholestasis. The results showed that 40 mg/kg OCA elevated serum AST, ALT, ALP and γ-GT levels in bile duct ligation (BDL) mice. Besides, severe fibrosis and necrosis were observed in the OCA-treated BDL mice, which was related to hepatic apoptosis pathway activation. Both hepatic and ileal FXR signaling could be significantly activated by OCA. However, ileum-specific knockout of Fxr aggravated OCA-induced liver injury in BDL mice. On the contrary, hepatic-specific knockout of Fxr structurally and functionally ameliorated liver pathological processes in the OCA-treated BDL mice, which was due to the blockade of hepatic FXR-induced apoptosis. In conclusion, the mechanism of OCA aggravating liver fibrosis in cholestasis was based on the activation of hepatic FXR-induced apoptosis. It was also indicated ileal FXR might be a safer pharmacological target for bile acids regulation.
Collapse
Affiliation(s)
- Qian Lu
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Jingyi Yu
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ninglin Xia
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ming Jin
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Wen Zhao
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Xue Fan
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Rongmi Zhang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Jie Wang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhenzhou Jiang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China.
| | - Qinwei Yu
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Wang K, Zhang P, Sun H, Cui S, Ao L, Cui M, Xu X, Wang L, Xu Y, Wang G, Wang H, Hao H. Dual-function natural products: Farnesoid X receptor agonist/inflammation inhibitor for metabolic dysfunction-associated steatotic liver disease therapy. Chin J Nat Med 2024; 22:965-976. [PMID: 39510639 DOI: 10.1016/s1875-5364(24)60706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 11/15/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver disease globally, with only one Food and Drug Administration (FDA)-approved drug for its treatment. Given MASLD's complex pathophysiology, therapies that simultaneously target multiple pathways are highly desirable. One promising approach is dual-modulation of the farnesoid X receptor (FXR), which regulates lipid and bile acid metabolism. However, FXR agonists alone are insufficient due to their limited anti-inflammatory effects. This study aimed to dto identify natural products capable of both FXR activation and inflammation inhibition to provide a comprehensive therapeutic approach for MASLD. Potential FXR ligands from the Natural Product Library were predicted via virtual screening using the Protein Preparation Wizard module in Schrodinger (2018) for molecular docking. Direct binding and regulation of candidate compounds on FXR were analyzed using surface plasmon resonance (SPR) binding assay, reporter gene analysis, and reverse transcription-polymerase chain reaction (RT-PCR). The anti-inflammatory properties of these compounds were evaluated in AML12 cells treated with tumor necrosis factor-alpha (TNF-α). Dual-function compounds with FXR agonism and inflammation inhibition were further identified in cells transfected with Fxr siRNA and treated with TNF-α. The effects of these dual-function compounds on lipid accumulation and inflammation were evaluated in cells treated with palmitic acid. Results revealed that 17 natural products were predicted via computational molecular docking as potential FXR agonists, with 15 exhibiting a strong affinity for FXR recombinant protein. Nine isoflavone compounds significantly enhanced FXR reporter luciferase activity and the mRNA expressions of Shp and Ostb. Structure-activity relationship analysis indicated that introducing isopropyl or methoxy groups at the C7 position or a methoxy group at the C6 position could enhance the agonistic efficacy of isoflavones. Three compounds (2, 6, and 8) were identified as dual-function natural products functioning as FXR agonists and inflammatory inhibitors, while one compound (12) acted as an FXR agonist to inhibit inflammation. These natural products protected hepatocytes against palmitic acid-induced lipid accumulation and inflammation. In conclusion, compounds 2, 6, and 8 (genistein, biochanin A, and 7-methoxyisoflavone, respectively) were identified as dual-function bioactive products that transactivate FXR and inhibit inflammation, serving as potential candidates or lead compounds for MASLD therapy.
Collapse
Affiliation(s)
- Kang Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Pengfei Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Huiyong Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Shuang Cui
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Lanjia Ao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Ming Cui
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaowei Xu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Lin Wang
- Basic Science Research Center Base (Pharmaceutical Science), Shandong province, Yantai University, Yantai 264005, China
| | - Yuanyuan Xu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Tasly Diyi Pharmaceutical Co., Ltd, Huaian 223002, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China.
| | - Hong Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
3
|
Zhao Q, Lu Y, Duan J, Du D, Pu Q, Li F. Gut microbiota depletion and FXR inhibition exacerbates zonal hepatotoxicity of sunitinib. Theranostics 2024; 14:7219-7240. [PMID: 39629129 PMCID: PMC11610149 DOI: 10.7150/thno.99926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/11/2024] [Indexed: 12/06/2024] Open
Abstract
Rationale: Sunitinib is a small-molecule tyrosine kinase inhibitor associated with the side-effect of liver injury. The impaired cell type in liver and the hepatotoxicity mechanisms is still unclear. Methods: Spatial metabolomics, transmission electron microscopy, immunofluorescence co-staining, and isolation of bile duct cells and liver sinusoidal endothelial cells (LSECs) were used to evaluate the zonated hepatotoxicity of sunitinib. Farnesoid X receptor (FXR) conditional knockout mice, metagenomics analysis, bacteria clearance, bacterial culture, Parabacteroides distasonis and 3-oxolithocholic acid supplementation were used to evaluate the hepatotoxicity mechanisms of sunitinib. Results: Phenotype analysis found that hepatic autophagy, apoptosis, and mitochondrial injury were observed in vivo or in vitro after sunitinib treatment. By using spatial metabolomics and isolation of bile duct cells and LSECs, the zonated drug toxicity was observed around the portal vein. Hepatocytes, bile duct cells, and LSECs were damaged after sunitinib treatment. FXR inhibition and gut microbiota depletion aggravated sunitinib-induced liver injury. For diurnal variation, sunitinib-induced liver injury was enhanced at night compared with that at day, and FXR and gut microbiota participated in circadian rhythmic hepatotoxicity induced by sunitinib. Conclusions: Our data suggested activation of FXR and Parabacteroides distasonis supplementation may be used to improve sunitinib-induced hepatotoxicity.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Gastroenterology & Hepatology, Laboratory of Hepatointestinal Diseases and Metabolism, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
- Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yingmei Lu
- Department of Gastroenterology & Hepatology, Laboratory of Hepatointestinal Diseases and Metabolism, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingyi Duan
- Department of Gastroenterology & Hepatology, Laboratory of Hepatointestinal Diseases and Metabolism, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dan Du
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qianlun Pu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fei Li
- Department of Gastroenterology & Hepatology, Laboratory of Hepatointestinal Diseases and Metabolism, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
- Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, 610041, China
- Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
4
|
Zhang Q, Guo S, Wang H. The Protective Role of Baicalin in the Regulation of NLRP3 Inflammasome in Different Diseases. Cell Biochem Biophys 2024:10.1007/s12013-024-01597-y. [PMID: 39443419 DOI: 10.1007/s12013-024-01597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
The NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome consists of pro-caspase-1, NLRP3 and apoptosis-related speckle-like protein (ASC). It can detect multiple microorganisms, endogenous danger signals and environmental stimulus including adenosine triphosphate (ATP), urate, cholesterol crystals, and so on, thereby forming activated NLRP3 inflammasome. During the course of the activation of NLRP3 inflammasome, pro-caspase-1 is transformed into activated caspase-1 that results in the maturation and secretion of interleukin-1beta (IL-1β) and IL-18. The dysfunction of NLRP3 inflammasome participates in multiple diseases such as liver diseases, renal diseases, nervous system diseases and diabetes. Baicalin is the primary bioactive component of Scutellaria baicalensis, which has been used since ancient times. Baicalin has many types of biological functions, such as anti-bacterial, anti-tumor and antioxidant. More and more evidence suggests that baicalin regulation of NLRP3 inflammasome is involved in different diseases. However, the mechanism is still elusive. Here, we reviewed the progress of baicalin regulation of NLRP3 inflammasome in many kinds of diseases to lay a foundation for future researches.
Collapse
Affiliation(s)
- Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
5
|
Su Y, Zhou Q, Wu Q, Ding Y, Jiang M, Zhang X, Wang J, Wang X, Ge C. Infection‑associated bile acid disturbance contributes to macrophage activation in patients with cirrhosis. Mol Med Rep 2024; 30:150. [PMID: 38963032 PMCID: PMC11234163 DOI: 10.3892/mmr.2024.13274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/23/2024] [Indexed: 07/05/2024] Open
Abstract
Cirrhosis impairs macrophage function and disrupts bile acid homeostasis. Although bile acids affect macrophage function in patients with sepsis, whether and how the bile acid profile is changed by infection in patients with cirrhosis to modulate macrophage function remains unclear. The present study aimed to investigate the changes in the bile acid profile of patients with cirrhosis and infection and their effects on macrophage function. Serum was collected from 20 healthy subjects, 18 patients with cirrhosis and 39 patients with cirrhosis and infection. Bile acid profiles were detected using high‑performance liquid chromatography‑triple time‑of‑flight mass spectrometer. The association between bile acid changes and infection was analysed using receiver operating characteristic (ROC) curves. Infection‑altered bile acids were used in combination with lipopolysaccharides (LPS) to stimulate RAW264.7/THP‑1 cells in vitro. The migratory capacity was evaluated using wound healing and Transwell migration assays. The expression of Arg‑1, iNOS, IκBα, phosphorylated (p‑)IκBα and p65 was examined with western blotting and immunofluorescence, Tnfα, Il1b and Il6 mRNA was examined with RT‑qPCR, and CD86, CD163 and phagocytosis was measured with flow cytometry. The ROC curves showed that decreased hyodeoxycholic acid (HDCA) and deoxycholic acid (DCA) levels were associated with infection. HDCA or DCA combined with LPS enhanced the phagocytic and migratory ability of macrophages, accompanied by upregulation of iNOS and CD86 protein expression as well as Tnfα, Il1b, and Il6 mRNA expression. However, neither HDCA nor DCA alone showed an effect on these phenotypes. In addition, DCA and HDCA acted synergistically with LPS to increase the expression of p‑IκBα and the intranuclear migration of p65. Infection changed the bile acid profile in patients with cirrhosis, among which the reduction of DCA and HDCA associated most strongly with infection. HDCA and DCA enhanced the sensitivity of macrophage function loss to LPS stimulation. These findings suggested a potential role for monitoring the bile acid profile that could help manage patients with cirrhosis and infection.
Collapse
Affiliation(s)
- Yong Su
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qiaoling Zhou
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qiong Wu
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yijie Ding
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Meijie Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Xiaoyu Zhang
- Health Management Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jia Wang
- Department of Pharmacy, Hefei First People's Hospital, Hefei, Anhui 230032, P.R. China
| | - Xinming Wang
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Chaoliang Ge
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
6
|
Xiong A, Lu L, Jiang K, Wang X, Chen Y, Wang X, Zhang W, Zhuge Y, Huang W, Li L, Liao Q, Yang F, Liu P, Ding L, Wang Z, Yang L. Functional metabolomics characterizes the contribution of farnesoid X receptor in pyrrolizidine alkaloid-induced hepatic sinusoidal obstruction syndrome. Arch Toxicol 2024; 98:2557-2576. [PMID: 38703205 DOI: 10.1007/s00204-024-03762-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/10/2024] [Indexed: 05/06/2024]
Abstract
Consumption of herbal products containing pyrrolizidine alkaloids (PAs) is one of the major causes for hepatic sinusoidal obstruction syndrome (HSOS), a deadly liver disease. However, the crucial metabolic variation and biomarkers which can reflect these changes remain amphibious and thus to result in a lack of effective prevention, diagnosis and treatments against this disease. The aim of the study was to determine the impact of HSOS caused by PA exposure, and to translate metabolomics-derived biomarkers to the mechanism. In present study, cholic acid species (namely, cholic acid, taurine conjugated-cholic acid, and glycine conjugated-cholic acid) were identified as the candidate biomarkers (area under the ROC curve 0.968 [95% CI 0.908-0.994], sensitivity 83.87%, specificity 96.55%) for PA-HSOS using two independent cohorts of patients with PA-HSOS. The increased primary bile acid biosynthesis and decreased liver expression of farnesoid X receptor (FXR, which is known to inhibit bile acid biosynthesis in hepatocytes) were highlighted in PA-HSOS patients. Furtherly, a murine PA-HSOS model induced by senecionine (50 mg/kg, p.o.), a hepatotoxic PA, showed increased biosynthesis of cholic acid species via inhibition of hepatic FXR-SHP singling and treatment with the FXR agonist obeticholic acid restored the cholic acid species to the normal levels and protected mice from senecionine-induced HSOS. This work elucidates that increased levels of cholic acid species can serve as diagnostic biomarkers in PA-HSOS and targeting FXR may represent a therapeutic strategy for treating PA-HSOS in clinics.
Collapse
Affiliation(s)
- Aizhen Xiong
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
- Shanghai R & D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China.
| | - Longhui Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Kaiyuan Jiang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Xiaoning Wang
- E-Institute of Shanghai Municipal Education Committee, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yan Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Xunjiang Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Wei Zhang
- Department of Gastroenterology, The Drum Tower Hospital of Nanjing, Affiliated to Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Yuzheng Zhuge
- Department of Gastroenterology, The Drum Tower Hospital of Nanjing, Affiliated to Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Lujin Li
- Center for Drug of Clinical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Qi Liao
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Fan Yang
- Department of Obstetrics and Gynecology, and Shanghai Key Laboratory of Gynecologic Oncology Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ping Liu
- E-Institute of Shanghai Municipal Education Committee, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lili Ding
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
- Shanghai R & D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China.
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
- Shanghai R & D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China.
| | - Li Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
- Shanghai R & D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China.
| |
Collapse
|
7
|
Yao T, Fu L, Wu Y, Li L. Christensenella minuta Alleviates Acetaminophen-Induced Hepatotoxicity by Regulating Phenylalanine Metabolism. Nutrients 2024; 16:2314. [PMID: 39064757 PMCID: PMC11280030 DOI: 10.3390/nu16142314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Acetaminophen (APAP)-induced liver injury (AILI), even liver failure, is a significant challenge due to the limited availability of therapeutic medicine. Christensenella minuta (C. minuta), as a probiotic therapy, has shown promising prospects in metabolism and inflammatory diseases. Our research aimed to examine the influence of C. minuta on AILI and explore the molecular pathways underlying it. We found that administration of C. minuta remarkably alleviated AILI in a mouse model, as evidenced by decreased levels of alanine transaminase (ALT) and aspartate aminotransferase (AST) and improvements in the histopathological features of liver sections. Additionally, there was a notable decrease in malondialdehyde (MDA), accompanied by restoration of the reduced glutathione/oxidized glutathione (GSH/GSSG) balance, and superoxide dismutase (SOD) activity. Furthermore, there was a significant reduction in inflammatory markers (IL6, IL1β, TNF-α). C. minuta regulated phenylalanine metabolism. No significant difference in intestinal permeability was observed in either the model group or the treatment group. High levels of phenylalanine aggravated liver damage, which may be linked to phenylalanine-induced dysbiosis and dysregulation in cytochrome P450 metabolism, sphingolipid metabolism, the PI3K-AKT pathway, and the Integrin pathway. Furthermore, C. minuta restored the diversity of the microbiota, modulated metabolic pathways and MAPK pathway. Overall, this research demonstrates that supplementing with C. minuta offers both preventive and remedial benefits against AILI by modulating the gut microbiota, phenylalanine metabolism, oxidative stress, and the MAPK pathway, with high phenylalanine supplementation being identified as a risk factor exacerbating liver injury.
Collapse
Affiliation(s)
| | | | | | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| |
Collapse
|
8
|
Shi J, Zhu L, Tang BY, Yang WQ, Xi SY, Zhang CL, Li PF, Wang YJ, Guo KH, Huang JR, Huang CR, Yu ZX, Yu BK, Zhang CF, Zhang YM. Regulatory effect of Yinchenhao decoction on bile acid metabolism to improve the inflammatory microenvironment of hepatocellular carcinoma in mice. J Nat Med 2024; 78:633-643. [PMID: 38704807 DOI: 10.1007/s11418-024-01812-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/03/2024] [Indexed: 05/07/2024]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with extremely high mortality. The tumor microenvironment is the "soil" of its occurrence and development, and the inflammatory microenvironment is an important part of the "soil". Bile acid is closely related to the occurrence of HCC. Bile acid metabolism disorder is not only directly involved in the occurrence and development of HCC but also affects the inflammatory microenvironment of HCC. Yinchenhao decoction, a traditional Chinese medicine formula, can regulate bile acid metabolism and may affect the inflammatory microenvironment of HCC. To determine the effect of Yinchenhao decoction on bile acid metabolism in mice with HCC and to explore the possible mechanism by which Yinchenhao decoction improves the inflammatory microenvironment of HCC by regulating bile acid metabolism, we established mice model of orthotopic transplantation of hepatocellular carcinoma. These mice were treated with three doses of Yinchenhao decoction, then liver samples were collected and tested. Yinchenhao decoction can regulate the disorder of bile acid metabolism in liver cancer mice. Besides, it can improve inflammatory reactions, reduce hepatocyte degeneration and necrosis, and even reduce liver weight and the liver index. Taurochenodeoxycholic acid, hyodeoxycholic acid, and taurohyodeoxycholic acid are important molecules in the regulation of the liver inflammatory microenvironment, laying a foundation for the regulation of the liver tumor inflammatory microenvironment based on bile acids. Yinchenhao decoction may improve the inflammatory microenvironment of mice with HCC by ameliorating hepatic bile acid metabolism.
Collapse
Affiliation(s)
- Jian Shi
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Lin Zhu
- Department of Traditional Chinese Medicine, Binhai County People's Hospital, Yancheng, China
| | - Bang-Yi Tang
- Department of Science and Education, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, China
| | - Wan-Qing Yang
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Sheng-Yan Xi
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Chen-Long Zhang
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
- Department of Traditional Chinese Medicine, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Peng-Fei Li
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
- Department of Traditional Chinese Medicine, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Yu-Jie Wang
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
- Department of Traditional Chinese Medicine, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Kai-Hang Guo
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
- Department of Traditional Chinese Medicine, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Jing-Ru Huang
- Central Laboratory, School of Medicine, Xiamen University, Xiamen, China
| | - Chen-Rui Huang
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Zhou-Xin Yu
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Bao-Kang Yu
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Chun-Fang Zhang
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China.
- Department of Traditional Chinese Medicine, Xiang'an Hospital of Xiamen University, Xiamen, China.
| | - Yu-Mei Zhang
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China.
- Department of Traditional Chinese Medicine, Xiang'an Hospital of Xiamen University, Xiamen, China.
| |
Collapse
|
9
|
Huang T, Liang X, Bao H, Ma G, Tang X, Luo H, Xiao X. Multi-omics analysis reveals the associations between altered gut microbiota, metabolites, and cytokines during pregnancy. mSystems 2024; 9:e0125223. [PMID: 38323818 PMCID: PMC10949498 DOI: 10.1128/msystems.01252-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/28/2023] [Indexed: 02/08/2024] Open
Abstract
For embryo implantation and fetal development, the maternal immune system undergoes dramatic changes. The mechanisms involved in inducing alterations of maternal immunity have not been fully clarified. Gut microbiome and metabolites were thought to influence the host immune response. During normal pregnancy, notable changes occur in the gut microbiota and metabolites. However, the relationship of these alterations to immune function during pregnancy remains unclear. In this study, we examined gut microbiota, fecal metabolites, plasma metabolites, and cytokines in pregnant women and non-pregnant women. Our findings revealed that, in comparison to non-pregnant women, pregnant women exhibit a significant increase in the relative abundance of Actinobacteriota and notable differences in metabolic pathways related to bile acid secretion. Furthermore, there was a marked reduction in pro-inflammatory cytokines levels in pregnant women. Correlation analyses indicated that these alterations in cytokines may be linked to specific gut bacteria and metabolites. Bacteria within the same microbial modules exhibited consistent effects on cytokines, suggesting that gut bacteria may function as functional groups. Mediation analysis further identified that certain bacteria might influence cytokines through metabolites, such as bile acids and arachidonic acid. Our findings propose potential biological connections between bacteria, metabolites, and immunity, which require further validation in future studies.IMPORTANCEA great number of studies have focused on diseases induced by intestinal microecological disorders and immune imbalances. However, the understanding of how intestinal microbiota interacts with immunity during normal pregnancy, which is fundamental to studying pathological pregnancies related to intestinal microbiota disturbances, has not been well elucidated. Our study employed multi-omics analysis to discover that changes in gut microbiota and metabolites during pregnancy can impact immune function. In addition, we identified several metabolites that may mediate the effect of gut microbes on plasma cytokines. Our study offered new insights into our understanding of the connections between the gut microbiome, metabolome, and the immune system during pregnancy.
Collapse
Affiliation(s)
- Ting Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xinyuan Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Han Bao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guangyu Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaomei Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Huijuan Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Tao W, Fan Q, Wei J. Gut-Liver Axis as a Therapeutic Target for Drug-Induced Liver Injury. Curr Issues Mol Biol 2024; 46:1219-1236. [PMID: 38392196 PMCID: PMC10887627 DOI: 10.3390/cimb46020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Drug-induced liver injury (DILI) is a liver disease that remains difficult to predict and diagnose, and the underlying mechanisms are yet to be fully clarified. The gut-liver axis refers to the reciprocal interactions between the gut and the liver, and its homeostasis plays a prominent role in maintaining liver health. It has been recently reported that patients and animals with DILI have a disrupted gut-liver axis, involving altered gut microbiota composition, increased intestinal permeability and lipopolysaccharide translocation, decreased short-chain fatty acids production, and impaired bile acid metabolism homeostasis. The present review will summarize the evidence from both clinical and preclinical studies about the role of the gut-liver axis in the pathogenesis of DILI. Moreover, we will focus attention on the potential therapeutic strategies for DILI based on improving gut-liver axis function, including herbs and phytochemicals, probiotics, fecal microbial transplantation, postbiotics, bile acids, and Farnesoid X receptor agonists.
Collapse
Affiliation(s)
- Wenjing Tao
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Qiwen Fan
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jintao Wei
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
11
|
Zhou D, Li Y. Gut microbiota and tumor-associated macrophages: potential in tumor diagnosis and treatment. Gut Microbes 2023; 15:2276314. [PMID: 37943609 PMCID: PMC10653702 DOI: 10.1080/19490976.2023.2276314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Avoiding immune destruction and polymorphic microbiomes are two key hallmarks of cancer. The tumor microenvironment (TME) is essential for the development of solid tumors, and the function of tumor-associated macrophages (TAMs) in the TME is closely linked to tumor prognosis. Therefore, research on TAMs could improve the progression and control of certain tumor patients. Additionally, the intestinal flora plays a crucial role in metabolizing substances and maintaining a symbiotic relationship with the host through a complex network of interactions. Recent experimental and clinical studies have suggested a potential link between gut microbiome and TME, particularly in regulating TAMs. Understanding this association could improve the efficacy of tumor immunotherapy. This review highlights the regulatory role of intestinal flora on TAMs, with a focus on gut microbiota and their metabolites. The implications of this association for tumor diagnosis and treatment are also discussed, providing a promising avenue for future clinical treatment strategies.
Collapse
Affiliation(s)
- Dongqin Zhou
- The Second Affliated Hospital & Yuying Children's Hospital / The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yongsheng Li
- The Second Affliated Hospital & Yuying Children's Hospital / The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
12
|
Cao P, Gan J, Wu S, Hu Y, Xia B, Li X, Zeng H, Cheng B, Yu H, Li F, Si L, Huang J. Molecular mechanisms of hepatoprotective effect of tectorigenin against ANIT-induced cholestatic liver injury: Role of FXR and Nrf2 pathways. Food Chem Toxicol 2023:113914. [PMID: 37348807 DOI: 10.1016/j.fct.2023.113914] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Cholestatic liver injury is caused by toxic action or allergic reaction, resulting in abnormality of bile formation and excretion. Few effective therapies have become available for the treatment of cholestasis. Herein, we found that tectorigenin (TG), a natural isoflavone, showed definite protective effects on alpha-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury, significantly reversing the abnormality of plasma alanine/aspartate aminotransferase, total/direct bilirubin and alkaline phosphatase, as well as hepatic reactive oxygen species, catalase and superoxide dismutase. Importantly, the targeted metabolomic determination found that BA homeostasis could be well maintained in TG-treated cholestatic mice, especially the levels of glycocholic acid, tauromuricholic acid, taurocholic acid, taurolithocholic acid, tauroursodeoxycholic acid and taurodeoxycholic acid. Overall, primary/secondary and amidated/unamidated bile acid (BA) levels were significantly altered upon ANIT stimulation but could be restored by TG intervention to certain extents. In addition, TG boosted the expression of farnesoid x receptor (FXR), which in turn upregulated multidrug resistance protein 2 (MRP2) and bile salt export pump (BSEP) to accelerate the excretion of BA. Meanwhile, TG enhanced the expression of Nrf2 and its upstream genes PI3K/Akt and downstream target genes HO-1, NQO1, GCLC and GCLM to strengthen the antioxidant capacity. Taken together, TG plays a vital role in maintaining BA homeostasis and ameliorating cholestatic liver injury through regulating FXR-mediated BA efflux and Nrf2-mediated antioxidative pathways.
Collapse
Affiliation(s)
- Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Jun Gan
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sanlan Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Yixin Hu
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Xia
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoyue Li
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hongan Zeng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Bingyu Cheng
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huifan Yu
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Fei Li
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Luqin Si
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jiangeng Huang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
13
|
Kovacevic B, Ionescu CM, Wagle SR, Jones M, Lewkowicz M, Wong EYM, Đanić M, Mikov M, Mooranian A, Al-Salami H. Impact of Novel Teflon-DCA Nanogel Matrix on Cellular Bioactivity. J Pharm Sci 2023; 112:700-707. [PMID: 36150468 DOI: 10.1016/j.xphs.2022.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 12/18/2022]
Abstract
The biocompatibility and effects on cells' bioactivity of developed pharmaceuticals are crucial properties, required to permit their safe delivery. Nanogel matrices offer a promising role in emerging pharmaceutics; however, it is crucial that they and their excipients do not demonstrate detrimental effects on the cells to which they interact. This study investigated the use of Teflon and the secondary bile acid deoxycholic acid in the formation of novel nanogel matrices. Each has properties which may be of benefit for the nanogels created and their use in the pharmaceutical industry. Rheological parameters and scanning electron microscopy studies were conducted. In order to assess the developed nanogels' impacts on cellular bioactivity, studies using Seahorse assays were conducted on three cell types, hepatic, muscle and pancreatic beta cells. Results demonstrated the addition of Teflon did not alter the morphological characteristics of resulting nanogels or the metabolic profiles of the cell lines. Interestingly, pancreatic beta cells highlighted the potential of Teflon to exert a protective profile from mitochondrial damage. Overall, the developed nanogels showed potentially promising profiles in certain studies conducted which may lead to future research.
Collapse
Affiliation(s)
- Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Michael Lewkowicz
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Elaine Y M Wong
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Maja Đanić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, 21101, Serbia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, 21101, Serbia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia.
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia.
| |
Collapse
|
14
|
Dvořák Z, Li H, Mani S. Microbial Metabolites as Ligands to Xenobiotic Receptors: Chemical Mimicry as Potential Drugs of the Future. Drug Metab Dispos 2023; 51:219-227. [PMID: 36184080 PMCID: PMC9900867 DOI: 10.1124/dmd.122.000860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 08/28/2022] [Accepted: 09/19/2022] [Indexed: 01/31/2023] Open
Abstract
Xenobiotic receptors, such as the pregnane X receptor, regulate multiple host physiologic pathways including xenobiotic metabolism, certain aspects of cellular metabolism, and innate immunity. These ligand-dependent nuclear factors regulate gene expression via genomic recognition of specific promoters and transcriptional activation of the gene. Natural or endogenous ligands are not commonly associated with this class of receptors; however, since these receptors are expressed in a cell-type specific manner in the liver and intestines, there has been significant recent effort to characterize microbially derived metabolites as ligands for these receptors. In general, these metabolites are thought to be weak micromolar affinity ligands. This journal anniversary minireview focuses on recent efforts to derive potentially nontoxic microbial metabolite chemical mimics that could one day be developed as drugs combating xenobiotic receptor-modifying pathophysiology. The review will include our perspective on the field and recommend certain directions for future research. SIGNIFICANCE STATEMENT: Xenobiotic receptors (XRs) regulate host drug metabolism, cellular metabolism, and immunity. Their presence in host intestines allows them to function not only as xenosensors but also as a response to the complex metabolic environment present in the intestines. Specifically, this review focuses on describing microbial metabolite-XR interactions and the translation of these findings toward discovery of novel chemical mimics as potential drugs of the future for diseases such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Zdeněk Dvořák
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Departments of Medicine (H.L., S.M.), Molecular Pharmacology (S.M.), and Genetics (S.M.), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hao Li
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Departments of Medicine (H.L., S.M.), Molecular Pharmacology (S.M.), and Genetics (S.M.), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sridhar Mani
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Departments of Medicine (H.L., S.M.), Molecular Pharmacology (S.M.), and Genetics (S.M.), Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
15
|
Luo P, Chen J, Zhang Q, Xia F, Wang C, Bai Y, Tang H, Liu D, Gu L, Du Q, Xiao W, Yang C, Wang J. Dissection of cellular and molecular mechanisms of aristolochic acid-induced hepatotoxicity via single-cell transcriptomics. PRECISION CLINICAL MEDICINE 2022; 5:pbac023. [PMID: 36349141 PMCID: PMC9635452 DOI: 10.1093/pcmedi/pbac023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022] Open
Abstract
Background Aristolochic acids (AAs), a class of carcinogenic and mutagenic natural products from Aristolochia and Asarum plants, are well-known to be responsible for inducing nephrotoxicity and urothelial carcinoma. Recently, accumulating evidence suggests that exposure to AAs could also induce hepatotoxicity and even hepatocellular carcinoma, though the mechanisms are poorly defined. Methods Here, we aimed to dissect the underlying cellular and molecular mechanisms of aristolochic acid I (AAI)-induced hepatotoxicity by using advanced single-cell RNA sequencing (scRNA-seq) and proteomics techniques. We established the first single-cell atlas of mouse livers in response to AAI. Results In hepatocytes, our results indicated that AAI activated NF-κB and STAT3 signaling pathways, which may contribute to the inflammatory response and apoptosis. In liver sinusoidal endothelial cells (LSECs), AAI activated multiple oxidative stress and inflammatory associated signaling pathways and induced apoptosis. Importantly, AAI induced infiltration of cytotoxic T cells and activation of proinflammatory macrophage and neutrophil cells in the liver to produce inflammatory cytokines to aggravate inflammation. Conclusions Collectively, our study provides novel knowledge of AAs-induced molecular characteristics of hepatotoxicity at a single-cell level and suggests future treatment options for AAs associated hepatotoxicity.
Collapse
Affiliation(s)
- Piao Luo
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiayun Chen
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qian Zhang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Fei Xia
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chen Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yunmeng Bai
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Huan Tang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dandan Liu
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liwei Gu
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qingfeng Du
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wei Xiao
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Chuanbin Yang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Jigang Wang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Southern Medical University, Dongguan 523125, China
| |
Collapse
|
16
|
Li Q, Chen F, Wang F. The immunological mechanisms and therapeutic potential in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Cell Biosci 2022; 12:187. [PMID: 36414987 PMCID: PMC9682794 DOI: 10.1186/s13578-022-00921-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
Acute liver failure caused by drug overdose is a significant clinical problem in developed countries. Acetaminophen (APAP), a widely used analgesic and antipyretic drug, but its overdose can cause acute liver failure. In addition to APAP-induced direct hepatotoxicity, the intracellular signaling mechanisms of APAP-induced liver injury (AILI) including metabolic activation, mitochondrial oxidant stress and proinflammatory response further affect progression and severity of AILI. Liver inflammation is a result of multiple interactions of cell death molecules, immune cell-derived cytokines and chemokines, as well as damaged cell-released signals which orchestrate hepatic immune cell infiltration. The immunoregulatory interplay of these inflammatory mediators and switching of immune responses during AILI lead to different fate of liver pathology. Thus, better understanding the complex interplay of immune cell subsets in experimental models and defining their functional involvement in disease progression are essential to identify novel therapeutic targets for the treatment of AILI. Here, this present review aims to systematically elaborate on the underlying immunological mechanisms of AILI, its relevance to immune cells and their effector molecules, and briefly discuss great therapeutic potential based on inflammatory mediators.
Collapse
Affiliation(s)
- Qianhui Li
- grid.511083.e0000 0004 7671 2506Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, No.628, Zhenyuan Road, Shenzhen, 518107 China
| | - Feng Chen
- grid.511083.e0000 0004 7671 2506Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, No.628, Zhenyuan Road, Shenzhen, 518107 China
| | - Fei Wang
- grid.511083.e0000 0004 7671 2506Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, No.628, Zhenyuan Road, Shenzhen, 518107 China
| |
Collapse
|
17
|
Rausch M, Samodelov SL, Visentin M, Kullak-Ublick GA. The Farnesoid X Receptor as a Master Regulator of Hepatotoxicity. Int J Mol Sci 2022; 23:ijms232213967. [PMID: 36430444 PMCID: PMC9695947 DOI: 10.3390/ijms232213967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The nuclear receptor farnesoid X receptor (FXR, NR1H4) is a bile acid (BA) sensor that links the enterohepatic circuit that regulates BA metabolism and elimination to systemic lipid homeostasis. Furthermore, FXR represents a real guardian of the hepatic function, preserving, in a multifactorial fashion, the integrity and function of hepatocytes from chronic and acute insults. This review summarizes how FXR modulates the expression of pathway-specific as well as polyspecific transporters and enzymes, thereby acting at the interface of BA, lipid and drug metabolism, and influencing the onset and progression of hepatotoxicity of varying etiopathogeneses. Furthermore, this review article provides an overview of the advances and the clinical development of FXR agonists in the treatment of liver diseases.
Collapse
|
18
|
Liu K, Chen X, Ren Y, Liu C, Yuan A, Zheng L, Li B, Zhang Y. Identification of a novel farnesoid X receptor agonist, kaempferol-7-O-rhamnoside, a compound ameliorating drug-induced liver injury based on virtual screening and in vitro validation. Toxicol Appl Pharmacol 2022; 454:116251. [PMID: 36150480 DOI: 10.1016/j.taap.2022.116251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022]
Abstract
Farnesoid X receptor (FXR), a bile acid receptor, plays an essential role in maintaining bile acid and liver homeostasis and has been recognized as an essential target for drug-induced liver injury (DILI). This study aimed to identify potential FXR agonists by virtual screening, molecular dynamics (MD) simulation, and biological assays. First, an in-house Traditional Chinese medicine compound database was screened using a virtual approach based on molecular docking to reveal potential FXR agonists. Secondly, MD was applied to analyze the process of agonist binding. Finally, the acetaminophen (APAP)-induced L02 cells model evaluated the pharmacodynamic activity of agonists treating DILI. Virtual screening results showed that kaempferol-7-O-rhamnoside was confirmed as the FXR agonist. MD results showed that kaempferol-7-O-rhamnoside could stably bind the FXR. In addition, in vitro cell-based assay showed that kaempferol-7-O-rhamnoside could promote the expression of the FXR gene and inhibit the Cyp7a1 gene expression in APAP-induced cells, significantly reducing the activities of AST, AKP and ROS, and enhancing the expression of GSH. The current study confirmed that kaempferol-7-O-rhamnoside might improve liver function by promoting proliferation, ameliorating oxidative stress, and regulating FXR target genes as observed in vitro. Therefore, in this study, discovering the FXR agonist, kaempferol-7-O-rhamnoside, provides valuable guidance for developing novel drugs against DILI.
Collapse
Affiliation(s)
- Kaiyang Liu
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xi Chen
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yue Ren
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Chaoqun Liu
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Anlei Yuan
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lulu Zheng
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Beiyan Li
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yanling Zhang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
19
|
Hepatic SIRT6 Modulates Transcriptional Activities of FXR to Alleviate Acetaminophen-induced Hepatotoxicity. Cell Mol Gastroenterol Hepatol 2022; 14:271-293. [PMID: 35526796 PMCID: PMC9218579 DOI: 10.1016/j.jcmgh.2022.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS Excessive acetaminophen (APAP) intake causes oxidative stress and inflammation, leading to fatal hepatotoxicity; however, the mechanism remains unclear. This study aims to explore the protective effects and detailed mechanisms of sirtuin 6 (SIRT6) in the defense against APAP-induced hepatotoxicity. METHODS Hepatocyte-specific SIRT6 knockout mice, farnesoid X receptor (FXR) knockout mice, and mice with genetic or pharmacological activation of SIRT6 were subjected to APAP to evaluate the critical role of SIRT6 in the pathogenesis of acute liver injury. RNA sequences were used to investigate molecular mechanisms underlying this process. RESULTS Hepatic SIRT6 expression was substantially reduced in the patients and mice with acute liver injury. The deletion of SIRT6 in mice and mice primary hepatocytes led to high N-acetyl-p-benzo-quinoneimine and low glutathione levels in the liver, thereby enhancing APAP overdose-induced liver injury, manifested as increased hepatic centrilobular necrosis, oxidative stress, and inflammation. Conversely, overexpression or pharmacological activation of SIRT6 enhanced glutathione and decreased N-acetyl-p-benzo-quinoneimine, thus alleviating APAP-induced hepatotoxicity via normalization of liver damage, inflammatory infiltration, and oxidative stress. Our molecular analysis revealed that FXR is regulated by SIRT6, which is associated with the pathological progression of ALI. Mechanistically, SIRT6 deacetylates FXR and elevates FXR transcriptional activity. FXR ablation in mice and mice primary hepatocytes prominently blunted SIRT6 overexpression and activation-mediated ameliorative effects. Conversely, pharmacological activation of FXR mitigated APAP-induced hepatotoxicity in SIRT6 knockout mice. CONCLUSIONS Our current study suggests that SIRT6 plays a crucial role in APAP-induced hepatotoxicity, and pharmacological activation of SIRT6 may represent a novel therapeutic strategy for APAP overdose-induced liver injury.
Collapse
|
20
|
Gu R, Liang A, Liao G, To I, Shehu A, Ma X. Roles of co-factors in drug-induced liver injury: drug metabolism and beyond. Drug Metab Dispos 2022; 50:646-654. [PMID: 35221288 PMCID: PMC9132098 DOI: 10.1124/dmd.121.000457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 02/22/2022] [Indexed: 11/22/2022] Open
Abstract
Drug-induced liver injury (DILI) remains one of the major concerns for healthcare providers and patients. Unfortunately, it is difficult to predict and prevent DILI in the clinic because detailed mechanisms of DILI are largely unknown. Many risk factors have been identified for both "intrinsic" and "idiosyncratic" DILI, suggesting that cofactors are an important aspect in understanding DILI. This review outlines the cofactors that potentiate DILI and categorizes them into two types: (1) the specific cofactors that target metabolic enzymes, transporters, antioxidation defense, immune response, and liver regeneration; and (2) the general cofactors that include inflammation, age, gender, comorbidity, gut microbiota, and lifestyle. The underlying mechanisms by which cofactors potentiate DILI are also discussed. SIGNIFICANCE STATEMENT: This review summarizes the risk factors for DILI, which can be used to predict and prevent DILI in the clinic. This work also highlights the gaps in the DILI field and provides future perspectives on the roles of cofactors in DILI.
Collapse
Affiliation(s)
- Ruizhi Gu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences (R.G., A.S., X.M.) and School of Pharmacy (A.L., G.L., I.T.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alina Liang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences (R.G., A.S., X.M.) and School of Pharmacy (A.L., G.L., I.T.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Grace Liao
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences (R.G., A.S., X.M.) and School of Pharmacy (A.L., G.L., I.T.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Isabelle To
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences (R.G., A.S., X.M.) and School of Pharmacy (A.L., G.L., I.T.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Amina Shehu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences (R.G., A.S., X.M.) and School of Pharmacy (A.L., G.L., I.T.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences (R.G., A.S., X.M.) and School of Pharmacy (A.L., G.L., I.T.), University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
The pathophysiological function of non-gastrointestinal farnesoid X receptor. Pharmacol Ther 2021; 226:107867. [PMID: 33895191 DOI: 10.1016/j.pharmthera.2021.107867] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Farnesoid X receptor (FXR) influences bile acid homeostasis and the progression of various diseases. While the roles of hepatic and intestinal FXR in enterohepatic transport of bile acids and metabolic diseases were reviewed previously, the pathophysiological functions of FXR in non-gastrointestinal cells and tissues have received little attention. Thus, the roles of FXR in the liver, immune system, nervous system, cardiovascular system, kidney, and pancreas beyond the gastrointestinal system are reviewed herein. Gain of FXR function studies in non-gastrointestinal tissues reveal that FXR signaling improves various experimentally-induced metabolic and immune diseases, including non-alcoholic fatty liver disease, type 2 diabetes, primary biliary cholangitis, sepsis, autoimmune diseases, multiple sclerosis, and diabetic nephropathy, while loss of FXR promotes regulatory T cells production, protects the brain against ischemic injury, atherosclerosis, and inhibits pancreatic tumor progression. The downstream pathways regulated by FXR are diverse and tissue/cell-specific, and FXR has both ligand-dependent and ligand-independent activities, all of which may explain why activation and inhibition of FXR signaling could produce paradoxical or even opposite effects in some experimental disease models. FXR signaling is frequently compromised by diseases, especially during the progressive stage, and rescuing FXR expression may provide a promising strategy for boosting the therapeutic effect of FXR agonists. Tissue/cell-specific modulation of non-gastrointestinal FXR could influence the treatment of various diseases. This review provides a guide for drug discovery and clinical use of FXR modulators.
Collapse
|