1
|
Lu X, Xie T, van Faassen M, Kema IP, van Beek AP, Xu X, Huo X, Wolffenbuttel BHR, van Vliet-Ostaptchouk JV, Nolte IM, Snieder H. Effects of endocrine disrupting chemicals and their interactions with genetic risk scores on cardiometabolic traits. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169972. [PMID: 38211872 DOI: 10.1016/j.scitotenv.2024.169972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Ubiquitous non-persistent endocrine disrupting chemicals (EDCs) have inconsistent associations with cardiometabolic traits. Additionally, large-scale genome-wide association studies (GWASs) have yielded many genetic risk variants for cardiometabolic traits and diseases. This study aimed to investigate the associations between a wide range of EDC exposures (parabens, bisphenols, and phthalates) and 14 cardiometabolic traits and whether these are moderated by their respective genetic risk scores (GRSs). Data were from 1074 participants aged 18 years or older of the Lifelines Cohort Study, a large population-based biobank. GRSs for 14 cardiometabolic traits were calculated based on genome-wide significant common variants from recent GWASs. The concentrations of 15 EDCs in 24-hour urine were measured by isotope dilution liquid chromatography tandem mass spectrometry technology. The main effects of trait-specific GRSs and each of the EDC exposures and their interaction effects on the 14 cardiometabolic traits were examined in multiple linear regression. The present study confirmed significant main effects for all GRSs on their corresponding cardiometabolic trait. Regarding the main effects of EDC exposures, 26 out of 280 EDC-trait tests were significant with explained variances ranging from 0.43 % (MMP- estimated glomerular filtration rate (eGFR)) to 2.37 % (PrP-waist-hip ratio adjusted body mass index (WHRadjBMI)). We confirmed the association of MiBP and MBzP with WHRadjBMI and body mass index (BMI), and showed that parabens, bisphenol F, and many other phthalate metabolites significantly contributed to the variance of WHRadjBMI, BMI, high-density lipoprotein (HDL), eGFR, fasting glucose (FG), and diastolic blood pressure (DBP). Only one association between BMI and bisphenol F was nominally significantly moderated by the GRS explaining 0.36 % of the variance. However, it did not survive multiple testing correction. We showed that non-persistent EDC exposures exerted effects on BMI, WHRadjBMI, HDL, eGFR, FG, and DBP. However no evidence for a modulating role of GRSs was found.
Collapse
Affiliation(s)
- Xueling Lu
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands; Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 515041, Guangdong, China
| | - Tian Xie
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - André P van Beek
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 510632, Guangdong, China
| | - Bruce H R Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Jana V van Vliet-Ostaptchouk
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands.
| |
Collapse
|
2
|
Moscoso-Ruiz I, Cantarero-Malagón S, Rivas A, Zafra-Gómez A. New analytical method for the determination of endocrine disruptors in human faeces using gas chromatography coupled to tandem mass spectrometry. Anal Bioanal Chem 2024; 416:1085-1099. [PMID: 38108843 DOI: 10.1007/s00216-023-05087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/25/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Endocrine-disrupting chemicals are environmental pollutants that can enter our bodies and cause diverse pathologies. Some bisphenols and parabens have been shown to be capable of modifying proper functioning of the endocrine system. Among other dysfunctions, endocrine-disrupting chemicals can cause changes in intestinal microbiota. Faeces are a convenient matrix that can be useful for identifying the quantity of endocrine disruptors that reach the intestine and the extent to which the organism is exposed to these pollutants. The present work developed a new analytical method to determine 17 compounds belonging to the paraben and bisphenol families found in human faeces. The extraction method was optimized using an ultrasound-assisted extraction technique followed by a clean-up step based on the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) technique. Optimization was performed using the design of experiments technique. In validation analysis, the method was proven to be linear over a wide range. R-squared outcomes were between 95 and 99%. Selectiveness and sensitivity outcomes were acceptable, with detection limits being between 1 and 10 ng g-1 in all cases, whilst quantification limits were between 3 and 25 ng g-1 in all instances, with the exception of bisphenol AF. The method was deemed accurate, with recovery values being close to 100% and relative standard deviations being lower than 15% in all cases. Applicability was examined by analysing 13 samples collected from volunteers (male and female). All samples were contaminated with at least one of the analytes studied. The most commonly found compounds were methylparaben and bisphenol A, which were detected in almost all samples and quantitatively determined in 11 and 12 samples, respectively. Of the 17 compounds analysed, 11 were found in at least one sample. Outcomes demonstrate that faeces can be a good matrix for the determination of exposure to contaminants of interest here.
Collapse
Affiliation(s)
- Inmaculada Moscoso-Ruiz
- Department of Analytical Chemistry, University of Granada, 18071, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.Granada, 18016, Granada, Spain
| | | | - Ana Rivas
- Instituto de Investigación Biosanitaria Ibs.Granada, 18016, Granada, Spain
- Department of Nutrition and Food Science, University of Granada, 18071, Granada, Spain
- Institute of Nutrition and Food Technology (INYTA)"José Mataix Verdú", Biomedical Research Centre (CIBM), University of Granada, 18100, Granada, Spain
| | - Alberto Zafra-Gómez
- Department of Analytical Chemistry, University of Granada, 18071, Granada, Spain.
- Instituto de Investigación Biosanitaria Ibs.Granada, 18016, Granada, Spain.
- Institute of Nutrition and Food Technology (INYTA)"José Mataix Verdú", Biomedical Research Centre (CIBM), University of Granada, 18100, Granada, Spain.
| |
Collapse
|
3
|
Gozalo AS, Elkins WR. A Review of the Effects of Some Extrinsic Factors on Mice Used in Research. Comp Med 2023; 73:413-431. [PMID: 38217072 PMCID: PMC10752364 DOI: 10.30802/aalas-cm-23-000028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 11/15/2023] [Indexed: 01/14/2024]
Abstract
Animals have been used in research for over 2,000 y. From very crude experiments conducted by ancient scholars, animal research, as a science, was refined over hundreds of years to what we know it as today. However, the housing conditions of animals used for research did not improve significantly until less than 100 years ago when guidelines for housing research animals were first published. In addition, it was not until relatively recently that some extrinsic factors were recognized as a research variable, even when animals were housed under recommended guidelines. For example, temperature, humidity, light, noise, vibration, diet, water, caging, bedding, etc., can all potentially affect research using mice, contributing the inability of others to reproduce published findings. Consequently, these external factors should be carefully considered in the design, planning, and execution of animal experiments. In addition, as recommended by others, the housing and husbandry conditions of the animals should be described in detail in publications resulting from animal research to improve study reproducibility. Here, we briefly review some common, and less common, external factors that affect research in one of the most popular animal models, the mouse.
Collapse
Affiliation(s)
- Alfonso S Gozalo
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - William R Elkins
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
4
|
Wagner VA, Holl KL, Clark KC, Reho JJ, Dwinell MR, Lehmler HJ, Raff H, Grobe JL, Kwitek AE. Genetic background in the rat affects endocrine and metabolic outcomes of bisphenol F exposure. Toxicol Sci 2023; 194:84-100. [PMID: 37191987 PMCID: PMC10306406 DOI: 10.1093/toxsci/kfad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Environmental bisphenol compounds like bisphenol F (BPF) are endocrine-disrupting chemicals (EDCs) affecting adipose and classical endocrine systems. Genetic factors that influence EDC exposure outcomes are poorly understood and are unaccounted variables that may contribute to the large range of reported outcomes in the human population. We previously demonstrated that BPF exposure increased body growth and adiposity in male N/NIH heterogeneous stock (HS) rats, a genetically heterogeneous outbred population. We hypothesize that the founder strains of the HS rat exhibit EDC effects that were strain- and sex-dependent. Weanling littermate pairs of male and female ACI, BN, BUF, F344, M520, and WKY rats randomly received either vehicle (0.1% EtOH) or 1.125 mg BPF/l in 0.1% EtOH for 10 weeks in drinking water. Body weight and fluid intake were measured weekly, metabolic parameters were assessed, and blood and tissues were collected. BPF increased thyroid weight in ACI males, thymus and kidney weight in BUF females, adrenal weight in WKY males, and possibly increased pituitary weight in BN males. BUF females also developed a disruption in activity and metabolic rate with BPF exposure. These sex- and strain-specific exposure outcomes illustrate that HS rat founders possess diverse bisphenol-exposure risk alleles and suggest that BPF exposure may intensify inherent organ system dysfunction existing in the HS rat founders. We propose that the HS rat will be an invaluable model for dissecting gene EDC interactions on health.
Collapse
Affiliation(s)
- Valerie A Wagner
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Katie L Holl
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Karen C Clark
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - John J Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Melinda R Dwinell
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Rat Genome Database, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52246, USA
| | - Hershel Raff
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Endocrine Research Laboratory, Aurora St. Luke’s Medical Center, Advocate Aurora Research Institute, Milwaukee, Wisconsin 53233, USA
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Rat Genome Database, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
5
|
Mondal M, Basak S, Ali S, Roy D, Haydar MS, Sarkar K, Ghosh NN, Roy K, Roy MN. Assembled Bisphenol A with cyclic oligosaccharide as the controlled release complex to reduce risky effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43300-43319. [PMID: 36656475 DOI: 10.1007/s11356-023-25217-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Herein, in order to improve the bioavailability of a non-biodegradable pollutant, inclusion complexation procedures had been used to develop better formulations of this pollutant, Bisphenol A (BPA). In our research, an inclusion complex (IC) of β-cyclodextrin (β-CD) with BPA was formed to investigate the effect of β-CD on the water solubility, anti-oxidant, anti-bacterial activity, toxicity, and thermal stability of BPA. UV-Vis and other spectrometric methods such as NMR, FTIR, and XRD indicated the molecular mechanism of interactions between β-CD and BPA, which was further hypothesized using molecular modeling to confirm preliminary results. Studies of TGA and DSC demonstrated that encapsulation boosted the thermal stability of BPA. This research also makes predictions about BPA's release behavior when CT-DNA is present. In vitro testing of the IC's antibacterial activities showed that it outperformed pure BPA. The in silico study was found to have a considerable decrease in toxicity level for IC compared to pure BPA. Therefore, β-CD-encapsulated BPA can lessen toxicity by raising antioxidant levels. Additionally, as its antibacterial activity increases, it may be employed therapeutically. Thus, this discovery of creating BPA formulations with controlled release and/or protective properties allows for a more logical application of BPA by reducing its hazardous effects through boosting its efficacy.
Collapse
Affiliation(s)
- Modhusudan Mondal
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Shatarupa Basak
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Salim Ali
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Debadrita Roy
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Md Salman Haydar
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Darjeeling, 734013, India
| | - Kushankur Sarkar
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Darjeeling, 734013, India
| | | | - Kanak Roy
- Department of Chemistry, Alipurduar University, Alipurduar, 736122, India
| | - Mahendra Nath Roy
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India.
- Alipurduar University, Alipurduar, 736122, India.
| |
Collapse
|