1
|
Kapic A, Zaman K, Nguyen V, Prokai-Tatrai K, Prokai L. Identification of Estrogen-Responsive Proteins in Mouse Seminal Vesicles Through Mass Spectrometry-Based Proteomics. Pharmaceuticals (Basel) 2024; 17:1508. [PMID: 39598420 PMCID: PMC11597337 DOI: 10.3390/ph17111508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Although estrogenic compounds promise therapeutic potential in treating various conditions, concerns regarding their endocrine-disrupting effects have been raised. Current methodologies for screening estrogenicity in rodent models are limited to the female-specific uterotrophic bioassay. Studies have reported enlargement of the seminal vesicles in orchiectomized males treated with estrogens. However, identifying estrogenicity strictly through changes in wet weights is uninformative regarding the molecular mechanisms of these agents. Therefore, protein-based biomarkers can complement and improve the sensitivity of weight-based assessments. To this end, we present a discovery-driven proteomic analysis of 17β-estradiol's effects on the seminal vesicles. Methods: We treated orchidectomized mice with the hormone for five days and used the vehicle-treated group as a control. Seminal vesicles were analyzed by shotgun approach using data-dependent nanoflow liquid chromatography-tandem mass spectrometry and label-free quantification. Proteins found to be differentially expressed between the two groups were processed through a bioinformatics pipeline focusing on pathway analyses and assembly of protein interaction networks. Results: Out of 668 identified proteins that passed rigorous validation criteria, 133 were regulated significantly by 17β-estradiol. Ingenuity Pathway Analysis® linked them to several hormone-affected pathways, including those associated with immune function such as neutrophil degranulation. The altered protein interaction networks were also related to functions including endocrine disruption, abnormal metabolism, and therapeutic effects. Conclusions: We identified several potential biomarkers for estrogenicity in mouse seminal vesicles, many of them not previously linked with exogenous 17β-estradiol exposure.
Collapse
Affiliation(s)
| | | | | | | | - Laszlo Prokai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (A.K.); (K.Z.); (V.N.); (K.P.-T.)
| |
Collapse
|
2
|
Li J, Fu C, Zhu M, Huang X, Song S, Dong F. Mechanical energy triggered piezo-catalyzation of Bi 2WO 6 nanoplates on ferrate (Fe(VI)) oxidation in alkaline media: Performance and mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123862. [PMID: 38537799 DOI: 10.1016/j.envpol.2024.123862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/16/2024] [Accepted: 03/23/2024] [Indexed: 04/21/2024]
Abstract
Piezo-electricity, as a unique physical phenomenon, demonstrates high effectiveness in capturing the environmental mechanical energy into polarization charges, offering the possibility to activate the advanced oxidation processes via the electron pathway. However, information regarding the intensification of Fe(VI) through piezo-catalysis is limited. Therefore, our study is the first to apply Bi2WO6 nanoplates for piezo-catalyzation of Fe(VI) to enhance bisphenol A (BPA) degradation. Compared to Fe(VI) alone, the Fe(VI)/piezo/Bi2WO6 system exhibited excellent BPA removal ability, with the degradation rate increased by 32.6% at pH 9.0. Based on the experimental and theoretical results, Fe(VI), Fe(V), Fe(IV) and •OH were confirmed as reaction active species in the reaction, and the increased BPA removal mainly resulted from the enhanced formation of Fe(IV)/Fe(V) species. Additionally, effects of coexisting anions (e.g., Cl-, NO3-, SO42- and HCO3-), humic acid and different water matrixes (e.g., deionized water, tap water and lake water) on BPA degradation were studied. Results showed the Fe(VI)/piezo/Bi2WO6 system still maintained satisfactory BPA degradation efficiencies under these conditions, guaranteeing future practical applications in surface water treatment. Furthermore, the results of intermediates identification, ECOSAR calculation and cytotoxicity demonstrated that BPA degradation by Fe(VI)/piezo/Bi2WO6 posed a diminishing ecological risk. Overall, these findings provide a novel mechanical energy-driven piezo-catalytic approach for Fe(VI) activation, enabling highly efficient pollutant removal under alkaline condition.
Collapse
Affiliation(s)
- Jinzhe Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chuyun Fu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Meng Zhu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xinwen Huang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Feilong Dong
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing, 312085, China.
| |
Collapse
|
3
|
Wang YX, Dai W, Li YZ, Wu ZY, Kan YQ, Zeng HC, He QZ. Bisphenol S induces oxidative stress-mediated impairment of testosterone synthesis by inhibiting the Nrf2/HO-1 signaling pathway. J Biochem Mol Toxicol 2023; 37:e23273. [PMID: 36541330 DOI: 10.1002/jbt.23273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/01/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
Bisphenol S (BPS) is an environmental endocrine disruptor widely used in industrial production. BPS induces oxidative stress and exhibits male reproductive toxicity in mice, but the mechanisms by which BPS impairs steroid hormone synthesis are not fully understood. Nuclear factor erythroid 2-related factor 2(Nrf2)/HO-1 signaling is a key pathway in improving cellular antioxidant defense capacities. Therefore, this study explored the effects of exposure to BPS on testosterone synthesis in adult male mice and its mechanisms with regard to the Nrf2/HO-1 signaling pathway. Adult male C57BL/6 mice were orally exposed to BPS (2, 20, and 200 mg/kg BW) with sesame oil as a vehicle (0.1 ml/10 g BW) per day for 28 consecutive days. The results showed that compared with the control group, serum testosterone levels were substantially reduced in the 20 and 200 mg/kg BPS treatment groups, and testicular testosterone levels were reduced in all BPS treatment groups. These changes were accompanied by a prominent decrease in the expression levels of testosterone synthesis-related enzymes (STAR, CYP11A1, CYP17A1, HSD3B1, and HSD17B3) in the mouse testis. In addition, BPS induced oxidative stress in the testis by upregulating the messenger RNA and protein levels of Keap1 and downregulating the levels of Nrf2, HO-1, and downstream antioxidant enzymes (CAT, SOD1, and Gpx4). In summary, our results indicate that exposure of adult male mice to BPS can inhibit Nrf2/HO-1 signaling and antioxidant enzyme activity, which induces oxidative stress and thereby may impair testosterone synthesis in testicular tissues, leading to reproductive damage.
Collapse
Affiliation(s)
- Yu-Xiao Wang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, People's Republic of China
| | - Wei Dai
- Yuecheng District Centers for Disease Control and Prevention, Shaoxing, Zhejiang, People's Republic of China
| | - Yi-Zhou Li
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, People's Republic of China
| | - Zi-Yao Wu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, People's Republic of China
| | - Ya-Qi Kan
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, People's Republic of China
| | - Huai-Cai Zeng
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, People's Republic of China.,Department of Occupational and Environmental Health, Guilin Medical University, Guilin, People's Republic of China
| | - Qing-Zhi He
- School of Biotechnology, Guilin Medical University, Guilin, People's Republic of China
| |
Collapse
|
4
|
Lecante LL, Gaye B, Delbes G. Impact of in Utero Rat Exposure to 17Alpha-Ethinylestradiol or Genistein on Testicular Development and Germ Cell Gene Expression. FRONTIERS IN TOXICOLOGY 2022; 4:893050. [PMID: 35722060 PMCID: PMC9201280 DOI: 10.3389/ftox.2022.893050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
Although the decline in male fertility is believed to partially result from environmental exposures to xenoestrogens during critical developmental windows, the underlying mechanisms are still poorly understood. Experimental in utero exposures in rodents have demonstrated the negative impact of xenoestrogens on reproductive development, long-term adult reproductive function and offspring health. In addition, transcriptomic studies have demonstrated immediate effects on gene expression in fetal reproductive tissues, However, the immediate molecular effects on the developing germ cells have been poorly investigated. Here, we took advantage of a transgenic rat expressing the green fluorescent protein specifically in germ cells allowing purification of perinatal GFP-positive germ cells. Timed-pregnant rats were exposed to ethinylestradiol (EE2, 2 μg/kg/d), genistein (GE, 10 mg/kg/d) or vehicle by gavage, from gestational days (GD) 13–19; testes were sampled at GD20 or post-natal (PND) 5 for histological analysis and sorting of GFP-positive cells. While EE2-exposed females gained less weight during treatment compared to controls, neither treatment affected the number of pups per litter, sex ratio, anogenital distance, or body and gonadal weights of the offspring. Although GE significantly decreased circulating testosterone at GD20, no change was observed in either testicular histology or germ cell and sertoli cell densities. Gene expression was assessed in GFP-positive cells using Affymetrix Rat Gene 2.0 ST microarrays. Analysis of differentially expressed genes (DEGs) (p < 0.05; fold change 1.5) identified expression changes of 149 and 128 transcripts by EE2 and GE respectively at GD20, and 287 and 207 transcripts at PND5, revealing an increased effect after the end of treatment. Only about 1% of DEGs were common to both stages for each treatment. Functional analysis of coding DEG revealed an overrepresentation of olfactory transduction in all groups. In parallel, many non-coding RNAs were affected by both treatments, the most represented being small nucleolar and small nuclear RNAs. Our data suggest that despite no immediate toxic effects, fetal exposure to xenoestrogens can induce subtle immediate changes in germ cell gene expression. Moreover, the increased number of DEGs between GD20 and PND5 suggests an effect of early exposures with latent impact on later germ cell differentiation.
Collapse
|
5
|
Tian F, Li Q, Shi L, Li J, Shi M, Zhu Y, Li H, Ge RS. In utero bisphenol AF exposure causes fetal Leydig cell dysfunction and induces multinucleated gonocytes by generating oxidative stress and reducing the SIRT1/PGC1α signals. Toxicol Appl Pharmacol 2022; 447:116069. [PMID: 35605789 DOI: 10.1016/j.taap.2022.116069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/20/2022] [Accepted: 05/13/2022] [Indexed: 12/01/2022]
Abstract
Bisphenol AF (BPAF) is one of the primary alternatives of bisphenol A. It has been ubiquitously detected in the environment and is an emerging endocrine disrupting compound. However, the effects of BPAF exposure on fetal Leydig cells and germ cells and the underlying mechanisms remain largely unknown. To this end, pregnant Sprague-Dawley rats were exposed to 10, 50, and 200 mg/kg/d BPAF by gavage from gestational days 14 to 21. The neonatal rats were sacrificed on day 1 at birth. The results showed that serum testosterone levels were significantly decreased at 50 and 200 mg/kg/d, the expression of Scarb1, Star, Cyp17a1, Hsd17b3, and Dhh and their proteins were markedly down-regulated at 50 and 100 mg/kg/d. BPAF exposure also significantly increased the incidence of multinucleated gonocytes at 200 mg/kg/d. We further detected significant increase of testicular malondialdehyde levels and reduction of antioxidants, including SOD1, SOD2, and CAT at 50 and/or 200 mg/kg/d. Furthermore, BPAF markedly reduced the levels of SIRT1 and PGC1α at 200 mg/kg/d while significantly increased AMPK phosphorylation in the testes at 50 and 200 mg/kg/d. In conclusion, our results provide novel in vivo data that BPAF can induce fetal Leydig cell dysfunction by interfering with steroidogenic networks and induce the formation of multinucleated gonocytes after suppressing the antioxidant defense system and reducing SIRT1 and PGC1α signals and increasing the phosphorylation of AMPK, which highlights the potential health risk of environmental exposure to BPAF in inducing male reproductive tract malformation.
Collapse
Affiliation(s)
- Fuhong Tian
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's, Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Qiyao Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Lei Shi
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Jingjing Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's, Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Mengna Shi
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's, Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Yang Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's, Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Huitao Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's, Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's, Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
6
|
Delbes G, Blázquez M, Fernandino JI, Grigorova P, Hales BF, Metcalfe C, Navarro-Martín L, Parent L, Robaire B, Rwigemera A, Van Der Kraak G, Wade M, Marlatt V. Effects of endocrine disrupting chemicals on gonad development: Mechanistic insights from fish and mammals. ENVIRONMENTAL RESEARCH 2022; 204:112040. [PMID: 34509487 DOI: 10.1016/j.envres.2021.112040] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Over the past century, evidence has emerged that endocrine disrupting chemicals (EDCs) have an impact on reproductive health. An increased frequency of reproductive disorders has been observed worldwide in both wildlife and humans that is correlated with accidental exposures to EDCs and their increased production. Epidemiological and experimental studies have highlighted the consequences of early exposures and the existence of key windows of sensitivity during development. Such early in life exposures can have an immediate impact on gonadal and reproductive tract development, as well as on long-term reproductive health in both males and females. Traditionally, EDCs were thought to exert their effects by modifying the endocrine pathways controlling reproduction. Advances in knowledge of the mechanisms regulating sex determination, differentiation and gonadal development in fish and rodents have led to a better understanding of the molecular mechanisms underlying the effects of early exposure to EDCs on reproduction. In this manuscript, we review the key developmental stages sensitive to EDCs and the state of knowledge on the mechanisms by which model EDCs affect these processes, based on the roadmap of gonad development specific to fish and mammals.
Collapse
Affiliation(s)
- G Delbes
- Centre Armand Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Canada.
| | - M Blázquez
- Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - J I Fernandino
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
| | | | - B F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - C Metcalfe
- School of Environment, Trent University, Trent, Canada
| | - L Navarro-Martín
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - L Parent
- Université TELUQ, Montréal, Canada
| | - B Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada; Department of Obstetrics and Gynecology, McGill University, Montreal, Canada
| | - A Rwigemera
- Centre Armand Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Canada
| | - G Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| | - M Wade
- Environmental Health Science & Research Bureau, Health Canada, Ottawa, Canada
| | - V Marlatt
- Department of Biological Sciences, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
7
|
Ješeta M, Navrátilová J, Franzová K, Fialková S, Kempisty B, Ventruba P, Žáková J, Crha I. Overview of the Mechanisms of Action of Selected Bisphenols and Perfluoroalkyl Chemicals on the Male Reproductive Axes. Front Genet 2021; 12:692897. [PMID: 34646297 PMCID: PMC8502804 DOI: 10.3389/fgene.2021.692897] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
Male fertility has been deteriorating worldwide for considerable time, with the greatest deterioration recorded mainly in the United States, Europe countries, and Australia. That is, especially in countries where an abundance of chemicals called endocrine disruptors has repeatedly been reported, both in the environment and in human matrices. Human exposure to persistent and non-persistent chemicals is ubiquitous and associated with endocrine-disrupting effects. This group of endocrine disrupting chemicals (EDC) can act as agonists or antagonists of hormone receptors and can thus significantly affect a number of physiological processes. It can even negatively affect human reproduction with an impact on the development of gonads and gametogenesis, fertilization, and the subsequent development of embryos. The negative effects of endocrine disruptors on sperm gametogenesis and male fertility in general have been investigated and repeatedly demonstrated in experimental and epidemiological studies. Male reproduction is affected by endocrine disruptors via their effect on testicular development, impact on estrogen and androgen receptors, potential epigenetic effect, production of reactive oxygen species or direct effect on spermatozoa and other cells of testicular tissue. Emerging scientific evidence suggests that the increasing incidence of male infertility is associated with the exposure to persistent and non-persistent endocrine-disrupting chemicals such as bisphenols and perfluoroalkyl chemicals (PFAS). These chemicals may impact men’s fertility through various mechanisms. This study provides an overview of the mechanisms of action common to persistent (PFAS) and nonpersistent (bisphenols) EDC on male fertility.
Collapse
Affiliation(s)
- Michal Ješeta
- Department of Obstetrics and Gynecology, Faculty of Medicine Masaryk University and University Hospital Brno, Brno, Czechia.,Department of Veterinary Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Jana Navrátilová
- RECETOX Centre, Faculty of Science, Masaryk University, Brno, Czechia
| | - Kateřina Franzová
- Department of Obstetrics and Gynecology, Faculty of Medicine Masaryk University and University Hospital Brno, Brno, Czechia
| | - Sandra Fialková
- RECETOX Centre, Faculty of Science, Masaryk University, Brno, Czechia
| | - Bartozs Kempisty
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland.,Department of Anatomy, Poznan University of Medical Sciences, Poznan, Poland.,Department of Veterinary Medicine, Nicolaus Copernicus University, Torun, Poland.,Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
| | - Pavel Ventruba
- Department of Obstetrics and Gynecology, Faculty of Medicine Masaryk University and University Hospital Brno, Brno, Czechia
| | - Jana Žáková
- Department of Obstetrics and Gynecology, Faculty of Medicine Masaryk University and University Hospital Brno, Brno, Czechia
| | - Igor Crha
- Department of Obstetrics and Gynecology, Faculty of Medicine Masaryk University and University Hospital Brno, Brno, Czechia.,Department of Nursing and Midwifery, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
8
|
Natsch A. Scientific discrepancies in European regulatory proposals on endocrine disruptors-REACH regulation quo vadis? Arch Toxicol 2021; 95:3601-3609. [PMID: 34505931 PMCID: PMC8492591 DOI: 10.1007/s00204-021-03152-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 11/26/2022]
Abstract
The EU chemical strategy for sustainability places a high focus on endocrine-disrupting chemicals (ED), the importance of their identification with increased testing and a ban in consumer products by a generic approach. It is assumed that for ED no threshold and hence no safe dose exists, leading to this generic approach. This view appears to be linked to the claim that for ED ‘low-dose non-monotonic dose response’ (low-dose NMDR) effects are observed. Without this hypothesis, there are no scientific reasons why classical risk assessment cannot be applied to the ED mode-of-action. Thus, whether for ED low-dose NMDR effects are considered a reproducible scientific fact by European authorities is Gretchen’s question in this politicized field. Recent documents by the SCCS, EFSA and ECHA reviewed herein illustrate the diverging views within European scientific bodies on this issue. Furthermore, ED researchers never replicated findings on low-dose NMDR in blinded inter-laboratory experiments and the CLARITY-BPA core studies could not find evidence for reproducible NMDR for BPA. ECHA proposes a battery of in vitro tests to test all chemicals for ED properties. However, these tests were never validated for relevance and their high positivity rate could lead to increased follow-up animal testing. Based on (i) lack of reproducibility data for low-dose NMDR, (ii) diverging views within European authorities on NMDR and (iii) lack of fully validated in vitro test methods it might be premature to fast-track the wide-ranging changes in the regulatory landscape proposed by the authorities ultimately leading to drastically increased animal testing.
Collapse
Affiliation(s)
- Andreas Natsch
- Fragrances S&T, Ingredients Research, Givaudan Schweiz AG, Kemptpark 50, CH-8310, Kemptthal, Switzerland.
| |
Collapse
|
9
|
Gao J, Duan X, O'Shea K, Dionysiou DD. Degradation and transformation of bisphenol A in UV/Sodium percarbonate: Dual role of carbonate radical anion. WATER RESEARCH 2020; 171:115394. [PMID: 31881497 DOI: 10.1016/j.watres.2019.115394] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/08/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
The bicarbonate and carbonate ions (HCO3- &CO32-) will consume hydroxyl radical (HO•) to generate carbonate radical anion (CO3•-) in hydroxyl radical based advanced oxidation processes (HO•-AOPs) resulting in reduced oxidation efficiencies of the systems. However, despite the HO• quenching effect of carbonate species, the contribution of CO3•- to the degradation of bisphenol A (BPA) was observed in UV/sodium percarbonate (UV/SPC). In order to study the performance of UV/SPC for BPA degradation and the role of CO3•- in this process, the degradation kinetics and mechanisms of BPA in UV/SPC and in UV/hydrogen peroxide (UV/H2O2) were compared at equivalent concentration of H2O2. In this study, the observed degradation rates of BPA by UV/SPC and by UV/H2O2 in Milli-Q water were similar. Variation of the BPA degradation rates in the presence of radical quenchers, tert-butanol and phenol, suggested that both CO3•- and HO• contributed to the degradation of BPA in UV/SPC. Second order rate constant of CO3•- towards BPA ( [Formula: see text] = 2.23 × 108 M-1 s-1) and steady state concentrations of CO3•- ( [Formula: see text] = 2.3 × 10-12 M) and HO• ( [Formula: see text] = 1.82 × 10-14 M) in UV/SPC were determined with competition kinetics at 1 mM SPC and pH 8.5. The high [Formula: see text] observed in UV/SPC compensated for the smaller [Formula: see text] compared to [Formula: see text] and the consumption of HO• making the degradation rate of BPA in UV/SPC comparable to that in UV/H2O2. Detailed studies on identification of transformation products (TPs) of BPA in UV/SPC revealed that phenol ring and isopropylidene bridge were the main reactive sites of BPA. Degradation pathways were proposed accordingly. The results of kinetic and mechanistic studies provide better fundamental understanding of the degradation of BPA in UV/SPC and HCO3-&CO32- impact on BPA degradation by HO•-AOPs. This also demonstrates potential for CO3•- based water purification technologies.
Collapse
Affiliation(s)
- Jiong Gao
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, USA
| | - Xiaodi Duan
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, USA
| | - Kevin O'Shea
- Department of Chemistry and Biochemistry, Florida International University, Miami, USA
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, USA.
| |
Collapse
|
10
|
Li X, Wen Z, Wang Y, Mo J, Zhong Y, Ge RS. Bisphenols and Leydig Cell Development and Function. Front Endocrinol (Lausanne) 2020; 11:447. [PMID: 32849262 PMCID: PMC7411000 DOI: 10.3389/fendo.2020.00447] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Bisphenol A (BPA) is a ubiquitous environmental pollutant, mainly from the production and use of plastics and the degradation of wastes related to industrial plastics. Evidence from laboratory animal and human studies supports the view that BPA has an endocrine disrupting effect on Leydig cell development and function. To better understand the adverse effects of BPA, we reviewed its role and mechanism by analyzing rodent data in vivo and in vitro and human epidemiological evidence. BPA has estrogen and anti-androgen effects, thereby destroying the development and function of Leydig cells and causing related reproductive diseases such as testicular dysgenesis syndrome, delayed puberty, and subfertility/infertility. Due to the limitation of BPA production, the increased use of BPA analogs has also attracted attention to these new chemicals. They may share actions and mechanisms similar to or different from BPA.
Collapse
Affiliation(s)
- Xiaoheng Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zina Wen
- Chengdu Xi'nan Gynecology Hospital, Chengdu, China
| | - Yiyan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiaying Mo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ying Zhong
- Chengdu Xi'nan Gynecology Hospital, Chengdu, China
- *Correspondence: Ying Zhong
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
- Ren-Shan Ge
| |
Collapse
|
11
|
Sun J, Beger RD, Sloper DT, Nakamura N. Metabolomics-based pathway changes in testis fragments treated with ethinylestradiol in vitro. Birth Defects Res 2019; 111:1643-1654. [PMID: 31347792 DOI: 10.1002/bdr2.1560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND There is a need to develop in vitro models to test drugs and chemicals that induce toxicity in the male reproductive system. We have evaluated an in vitro mouse testis organ culture model capable of producing viable, fertilization-proven sperm as a possible toxicity test model. Although this in vitro model was limited to round spermatid differentiation, histopathology observations could still be performed. Liquid chromatography/mass spectrometry analysis (LC/MS)-based metabolomics was used to measure metabolome changes of chemically treated in vitro testis fragments. METHODS On Postnatal Day 5, C57BL/6J mouse testes were divided into four fragments, which were placed onto a 1.5% agarose gel cube and cultured in α-MEM including 0.4% AlbuMAX I (Day 0). On Day 1 of culture, testis fragments were treated with 0 (control), 0.01, or 1 nM ethinylestradiol (EE). On Day 20 of culture, the testis fragments were collected for LC/MS and histology analysis. RESULTS Several metabolites involved in glycogen metabolism and glycolysis pathways (uridine diphosphate-glucose, glucose phosphate, and pyruvate), in the tricarboxylic acid cycle pathway (oxaloacetate and aspartate), and in the arginine and proline metabolism (arginine and spermine) were significantly altered in the 1 nM EE treated group compared to the control group. The metabolite changes were associated with an increase in percentage of seminiferous tubules with round spermatids as well as dose-dependent dead cells. CONCLUSION These findings suggest that EE treatment may cause testicular toxicity by affecting glycogen metabolism and energy pathways. To confirm these findings, further experiments will be necessary using other testicular toxicants.
Collapse
Affiliation(s)
- Jinchun Sun
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas
| | - Richard D Beger
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas
| | - Daniel T Sloper
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas
| | - Noriko Nakamura
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas
| |
Collapse
|
12
|
Nakamura N, Sloper DT, Del Valle PL. Gene expression profiling of cultured mouse testis fragments treated with ethinylestradiol. J Toxicol Sci 2019; 44:667-679. [PMID: 31588058 DOI: 10.2131/jts.44.667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The assessment of xenobiotic-induced testicular toxicity is important in drug development. Nonetheless, in vitro models to test drugs and chemicals that may cause testicular toxicity are lacking, requiring the continued use of animal models for those studies. We previously evaluated an in vitro mouse testis organ culture system using ethinylestradiol (EE), a well-studied testicular toxicant, and demonstrated a dose-dependent relationship between adverse effects to germ cell differentiation and increasing EE concentrations. However, we terminated that study after 20 days of culture due to oxygen deficiency during germ cell differentiation. Therefore, in the current study, we aimed to identify gene(s) with potential for supporting the histopathological evaluations of testicular toxicity using in vitro testis organ culture system. We cultured testis fragments obtained from mice at postnatal day (PND) 5 in α-Minimal Essential Medium containing 40 mg/mL AlbuMAX™ I and treated them with 0.01 or 1 nM EE on day 1 of culture. On day 20, we collected testis fragments for RNA sequencing analysis and quantitative polymerase chain reaction (qPCR). We found that phospholipase C, zeta 1 and testis-specific serine kinase 4 genes, that are involved in spermatogenesis and predominantly expressed in the testis, were significantly reduced in testis fragments treated with the highest concentration of EE. Also, cytochrome P450, family 26, subfamily b, polypeptide 1 (Cyp26b1) and interleukin 16 (Il16) were up-regulated in the highest EE-treated groups. Further studies are needed to confirm the variations of these gene expression using other testicular toxicants.
Collapse
Affiliation(s)
- Noriko Nakamura
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, USA
| | - Daniel T Sloper
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, USA
| | - Pedro L Del Valle
- Center for Drug Evaluation and Research, Food and Drug Administration, USA
| |
Collapse
|
13
|
John N, Rehman H, Razak S, David M, Ullah W, Afsar T, Almajwal A, Alam I, Jahan S. Comparative study of environmental pollutants bisphenol A and bisphenol S on sexual differentiation of anteroventral periventricular nucleus and spermatogenesis. Reprod Biol Endocrinol 2019; 17:53. [PMID: 31292004 PMCID: PMC6621953 DOI: 10.1186/s12958-019-0491-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Bisphenol A is well known endocrine-disrupting chemical while Bisphenol S was considered a safe alternative. The present study aims to examine the comparative effects of xenobiotic bisphenol-A (BPA) and its substitute bisphenol-S (BPS) on spermatogenesis and development of sexually dimorphic nucleus population of dopaminergic neurons in the anteroventral periventricular nucleus (AVPV) of the hypothalamus in male pups. METHODS Sprague Dawley rat's pups were administered subcutaneously at the neonatal stage from postnatal day PND1 to PND 27. Thirty animals were divided into six experimental groups (6 animals/group). The first group served as control and was provided with normal olive oil. The four groups were treated with 2 μg/kg and 200 μg/kg of BPA and BPS, respectively. The sixth group was given with 50 μg/kg of estradiol dissolved in olive oil as a standard to find the development of dopaminergic tyrosine hydroxylase neurons in AVPV regions. Histological analysis for testicular tissues and immunohistochemistry for brain tissues was performed. RESULTS The results revealed adverse histopathological changes in testis after administration of different doses of BPA and BPS. These degenerative changes were marked by highly significant (p < 0.001) decrease in tubular and luminal diameters of seminiferous tubule and epithelial height among bisphenols treated groups as compared to control. Furthermore, significantly increased (p < 0.001) TH-ir cell bodies in the AVPV region of the brain with 200 μg/kg dose of BPA and BPS was evident. CONCLUSION It is concluded that exposure of BPA and BPS during a critical developmental period can structural impairments in testes and affects sexual differentiation of a dimorphic dopaminergic population of AVPV region of hypothalamus in the male brain.
Collapse
Affiliation(s)
- Naham John
- 0000 0001 2215 1297grid.412621.2Reproductive Physiology Lab, Department of Animal Sciences, Quaid- i- Azam University Islamabad, Islamabad, 45320 Pakistan
| | - Humaira Rehman
- 0000 0001 2215 1297grid.412621.2Reproductive Physiology Lab, Department of Animal Sciences, Quaid- i- Azam University Islamabad, Islamabad, 45320 Pakistan
| | - Suhail Razak
- 0000 0001 2215 1297grid.412621.2Reproductive Physiology Lab, Department of Animal Sciences, Quaid- i- Azam University Islamabad, Islamabad, 45320 Pakistan
- 0000 0004 1773 5396grid.56302.32Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mehwish David
- 0000 0001 2215 1297grid.412621.2Reproductive Physiology Lab, Department of Animal Sciences, Quaid- i- Azam University Islamabad, Islamabad, 45320 Pakistan
| | - Waheed Ullah
- 0000 0001 2215 1297grid.412621.2Reproductive Physiology Lab, Department of Animal Sciences, Quaid- i- Azam University Islamabad, Islamabad, 45320 Pakistan
| | - Tayyaba Afsar
- 0000 0004 1773 5396grid.56302.32Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ali Almajwal
- 0000 0004 1773 5396grid.56302.32Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Iftikhar Alam
- 0000 0004 1773 5396grid.56302.32Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Sarwat Jahan
- 0000 0001 2215 1297grid.412621.2Reproductive Physiology Lab, Department of Animal Sciences, Quaid- i- Azam University Islamabad, Islamabad, 45320 Pakistan
| |
Collapse
|
14
|
Levorato S, Rietjens IMCM, Carmichael PL, Hepburn PA. Novel approaches to derive points of departure for food chemical risk assessment. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Fahim AT, Abd El-Fattah AA, Sadik NAH, Ali BM. Resveratrol and dimethyl fumarate ameliorate testicular dysfunction caused by chronic unpredictable mild stress-induced depression in rats. Arch Biochem Biophys 2019; 665:152-165. [DOI: 10.1016/j.abb.2019.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 02/07/2023]
|
16
|
Gonzalez TL, Rae JM, Colacino JA. Implication of environmental estrogens on breast cancer treatment and progression. Toxicology 2019; 421:41-48. [PMID: 30940549 DOI: 10.1016/j.tox.2019.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/05/2019] [Accepted: 03/28/2019] [Indexed: 12/22/2022]
Abstract
Breast cancer is the most diagnosed malignancy among women in the United States. Approximately 70% of breast tumors express estrogen receptor alpha and are deemed ER-positive. ER-positive breast tumors depend upon endogenous estrogens to promote ER-mediated cellular proliferation. Decades of research have led to a fundamental understanding of the role ER signaling in this disease and this knowledge has led to significant advancements in the clinical use of antiestrogens for breast cancer treatment. However, adjuvant breast cancer recurrence and metastatic disease progression due to endocrine therapy resistance are prominent and unresolved issues. The established role that estrogens play in breast cancer pathogenesis explains why some patients initially respond to endocrine therapy but also why a significant number of patients become refractory to antiestrogen treatment. It is been hypothesized that exposure to environmental steroid hormone mimics and/or acquired mechanisms of resistance may explain why endocrine therapy fails in a subset of breast cancer patients. This review will highlight: 1) the relationship between ER signaling and breast cancer pathogenesis, 2) the implication of environmental exposures on steroid hormone regulated processes including breast cancer, and 3) the unresolved issue of endocrine therapy resistance.
Collapse
Affiliation(s)
- Thomas L Gonzalez
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA.
| | - James M Rae
- Division of Hematology/ Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA; Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
17
|
Lv Y, Li L, Fang Y, Chen P, Wu S, Chen X, Ni C, Zhu Q, Huang T, Lian Q, Ge RS. In utero exposure to bisphenol A disrupts fetal testis development in rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:217-224. [PMID: 30557795 DOI: 10.1016/j.envpol.2018.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 12/01/2018] [Accepted: 12/02/2018] [Indexed: 06/09/2023]
Abstract
Bisphenol A (BPA) is widely used in consumer products and is a potential endocrine disruptor linked with abnormal development of male reproductive tract. However, its action and its effects on the pathways in the development of male gonad are still unclear. Here we report that effects of BPA exposure during gestation on male gonad development. Sprague-Dawley rats were gavaged daily with BPA (0, 4, 40, and 400 mg/kg body weight) from gestational day 12 to day 21. BPA dose-dependently decreased serum testosterone levels (0.45 ± 0.08 ng/ml and 0.32 ± 0.08 ng/ml for 40 and 400 mg/kg BPA, respectively) versus the control level (1.11 ± 0.22 ng/ml, Mean ± SE). BPA lowered Leydig cell Insl3 and Hsd17b3 mRNA and their protein levels at doses of 40 and 400 mg/kg. BPA also lowered Leydig cell (Lhcgr, Cyp11a1, and Cyp17a1) and Sertoli cell (Amh) mRNA and their protein levels at 400 mg/kg. BPA decreased fetal Leydig cell number via inhibiting their proliferation, but it did not affect fetal Sertoli cell number. In conclusion, the current study shows that in utero exposure to BPA inhibits fetal Leydig and Sertoli cell differentiation, possibly disrupting the development of male reproductive tract.
Collapse
Affiliation(s)
- Yao Lv
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Lili Li
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Yinghui Fang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Panpan Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Siwen Wu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Xiuxiu Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Chaobo Ni
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Qiqi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Tongliang Huang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Qingquan Lian
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
18
|
Ronis MJ, Gomez-Acevedo H, Shankar K, Sharma N, Blackburn M, Singhal R, Mercer KE, Badger TM. EB 2017 Article: Soy protein isolate feeding does not result in reproductive toxicity in the pre-pubertal rat testis. Exp Biol Med (Maywood) 2019; 243:695-707. [PMID: 29763383 DOI: 10.1177/1535370218771333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The isoflavone phytoestrogens found in the soy protein isolate used in soy infant formulas have been shown to have estrogenic actions in the developing male reproductive tract resulting in reproductive toxicity. However, few studies have examined potential estrogenicity of soy protein isolate as opposed to that of pure isoflavones. In this study, we fed weanling male Sprague-Dawley rats a semi-purified diet with casein or soy protein isolate as the sole protein source from postnatal day 21 to 33. Additional groups were fed casein or soy protein isolate and treated s.c. with 10 µg/kg/d estradiol via osmotic minipump. Estradiol treatment reduced testis, prostate weights, and serum androgen concentrations ( P < 0.05). Soy protein isolate had no effect. Estradiol up-regulated 489 and down-regulated 1237 testicular genes >1.5-fold ( P < 0.05). In contrast, soy protein isolate only significantly up-regulated expression of 162 genes and down-regulated 16 genes. The top 30 soy protein isolate-up-regulated genes shared 93% concordance with estradiol up-regulated genes. There was little overlap between soy protein isolate down-regulated genes and those down-regulated by estradiol treatment. Functional annotation analysis revealed significant differences in testicular biological processes affected by estradiol or soy protein isolate. Estradiol had major actions on genes involved in reproductive processes including down-regulation of testicular steroid synthesis and expression of steroid receptor activated receptor (Star) and cytochrome P450 17α-hydroxylase/(Cyp17a1). In contrast, soy protein isolate primarily affected pathways associated with macromolecule modifications including ubiquitination and histone methylation. Our results indicate that rather than acting as a weak estrogen in the developing testis, soy protein isolate appears to act as a selective estrogen receptor modulator with little effect on reproductive processes. Impact statement Soy protein isolate (SPI) is the sole protein used to make soy-based infant formulas. SPI contains phytoestrogens, which are structurally similar to estradiol. These phytoestrogens, daidzein, genistein, and equol, fit the definition of endocrine-disrupting compounds, and at high concentrations, have estrogenic actions resulting in reproductive toxicity in the developing male, when provided as isolated chemicals. However, few animal studies have examined the potential estrogenicity of SPI as opposed to pure isoflavones. In this study, SPI feeding did not elicit an estrogenic response in the testis nor any adverse outcomes including reduced testicular growth, or androgen production during early development in rats when compared to those receiving estradiol. These findings are consistent with emerging data showing no differences in reproductive development in males and female children that received breast milk, cow's milk formula, or soy infant formula during the postnatal feeding period.
Collapse
Affiliation(s)
- Martin Jj Ronis
- 1 Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center - New Orleans, LA 70112, USA
| | - Horacio Gomez-Acevedo
- 2 Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Kartik Shankar
- 3 Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.,4 Arkansas Children's Nutrition Center, Little Rock, AR, 72202, USA
| | - Neha Sharma
- 4 Arkansas Children's Nutrition Center, Little Rock, AR, 72202, USA
| | | | - Rohit Singhal
- 4 Arkansas Children's Nutrition Center, Little Rock, AR, 72202, USA
| | - Kelly E Mercer
- 3 Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.,4 Arkansas Children's Nutrition Center, Little Rock, AR, 72202, USA
| | - Thomas M Badger
- 3 Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.,4 Arkansas Children's Nutrition Center, Little Rock, AR, 72202, USA
| |
Collapse
|
19
|
Nakamura N, Sloper DT, Del Valle PL. Evaluation of an in vitro mouse testis organ culture system for assessing male reproductive toxicity. Birth Defects Res 2018; 111:70-77. [PMID: 30575315 DOI: 10.1002/bdr2.1431] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/05/2018] [Accepted: 10/29/2018] [Indexed: 11/09/2022]
Abstract
BACKGROUND Development of an in vitro system capable of producing mature sperm remains a challenging goal, with only few successes reported. Such a system, could be used to test agents for potential toxicity to the male reproductive system; to explore this, we exposed immature mouse testis fragments in culture to ethinylestradiol (EE), a well-known testicular toxicant in vivo. METHODS Testis fragments from postnatal day 5 mice were cultured in Albumax I medium. After 24 hr of culture, fragments were treated with 0.01, 0.1 or 1 nM EE, then harvested after 20 days in culture and examined for histology or gene expression measures by quantitative PCR. RESULTS There was substantial variability between fragments in the degree of spermatogenesis observed. The percentage of seminiferous tubules containing any dead germ cells increased as a result of EE exposure in a dose dependent fashion. This was accompanied with a decreased percentage of tubules with round spermatids. Expression of estrogen receptor 1, cytochrome P450, family 11, subfamily a, and polypeptide 1 also was reduced, depending on the dose. CONCLUSION These gene expression changes in the testis fragments are similar to those seen after animals have been exposed to EE. Gene expression changes in testis fragments are encouraging, but the variability across samples will need to be reduced for this in vitro system to become a generally applicable method for assessing testicular toxicants.
Collapse
Affiliation(s)
- Noriko Nakamura
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas
| | - Daniel T Sloper
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas
| | - Pedro L Del Valle
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
20
|
Nakamura N, Vijay V, Desai VG, Hansen DK, Han T, Chang CW, Chen YC, Harrouk W, McIntyre B, Foster PM, Fuscoe JC, Inselman AL. Transcript profiling in the testes and prostates of postnatal day 30 Sprague-Dawley rats exposed prenatally and lactationally to 2-hydroxy-4-methoxybenzophenone. Reprod Toxicol 2018; 82:111-123. [PMID: 30316929 PMCID: PMC6434700 DOI: 10.1016/j.reprotox.2018.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/19/2018] [Accepted: 10/03/2018] [Indexed: 01/13/2023]
Abstract
2-hydroxy-4-methoxybenzophenone (HMB) is an ultraviolet light-absorbing compound that is used in sunscreens, cosmetics and plastics. HMB has been reported to have weak estrogenic activity by in vivo and in vitro studies, making it a chemical with potential reproductive concern. To explore if prenatal and lactational HMB exposure alters gene expression profiles of the developing reproductive organs, we performed microarray analysis using the prostate and testis of postnatal day (PND) 30 male Sprague-Dawley rats offspring exposed to 0, 3000, or 30,000 ppm of HMB from gestational day 6 through PND 21. Gene expression profiles of the prostate and testis were differentially affected by HMB dose with significant alterations observed at the 30,000 ppm HMB group. Tissue-specific gene expression was also identified. These genes, whose expression was altered by HMB exposure, may be considered as candidate biomarker(s) for testicular or prostatic toxicity; however, further studies are necessary to explore this potential.
Collapse
Affiliation(s)
- Noriko Nakamura
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States.
| | - Vikrant Vijay
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Varsha G Desai
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Deborah K Hansen
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Tao Han
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Ching-Wei Chang
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Yu-Chuan Chen
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Wafa Harrouk
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Barry McIntyre
- National Toxicology Program, Research Triangle Park, NC 27709, United States
| | - Paul M Foster
- National Toxicology Program, Research Triangle Park, NC 27709, United States
| | - James C Fuscoe
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Amy L Inselman
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| |
Collapse
|
21
|
Gao S, Xiong W, Wei L, Liu J, Liu X, Xie J, Song X, Bi J, Li B. Transcriptome profiling analysis reveals the role of latrophilin in controlling development, reproduction and insecticide susceptibility in Tribolium castaneum. Genetica 2018; 146:287-302. [DOI: 10.1007/s10709-018-0020-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/30/2018] [Indexed: 12/23/2022]
|
22
|
Fernández I, Gavaia PJ, Laizé V, Cancela ML. Fish as a model to assess chemical toxicity in bone. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 194:208-226. [PMID: 29202272 DOI: 10.1016/j.aquatox.2017.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/14/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
Environmental toxicology has been expanding as growing concerns on the impact of produced and released chemical compounds over the environment and human health are being demonstrated. Among the toxic effects observed in organisms exposed to pollutants, those affecting skeletal tissues (osteotoxicity) have been somehow overlooked in comparison to hepato-, immune-, neuro- and/or reproductive toxicities. Nevertheless, sub-lethal effects of toxicants on skeletal development and/or bone maintenance may result in impaired growth, reduced survival rate, increased disease susceptibility and diminished welfare. Osteotoxicity may occur by acute or chronic exposure to different environmental insults. Because of biologically and technically advantagous features - easy to breed and inexpensive to maintain, external and rapid rate of development, translucent larvae and the availability of molecular and genetic tools - the zebrafish (Danio rerio) has emerged in the last decade as a vertebrate model system of choice to evaluate osteotoxicity. Different experimental approaches in fish species and analytical tools have been applied, from in vitro to in vivo systems, from specific to high throughput methodologies. Current knowledge on osteotoxicity and underlying mechanisms gained using fish, with a special emphasis on zebrafish systems, is reviewed here. Osteotoxicants have been classified into four categories according to the pathway involved in the transduction of the osteotoxic effects: activation/inhibition of membrane and/or nuclear receptors, alteration of redox condition, mimicking of bone constituents and unknown pathways. Knowledge on these pathways is also reported here as it may provide critical insights into the development, production and release of future chemical compounds with none or low osteotoxicity, thus promoting the green/environmental friendly chemistry.
Collapse
Affiliation(s)
- Ignacio Fernández
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal.
| | - Paulo J Gavaia
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Campus de Gambelas, Faro, Portugal; Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| |
Collapse
|
23
|
Kradolfer D, Flöter VL, Bick JT, Fürst RW, Rode K, Brehm R, Henning H, Waberski D, Bauersachs S, Ulbrich SE. Epigenetic effects of prenatal estradiol-17β exposure on the reproductive system of pigs. Mol Cell Endocrinol 2016; 430:125-37. [PMID: 27062901 DOI: 10.1016/j.mce.2016.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/24/2016] [Accepted: 04/06/2016] [Indexed: 11/17/2022]
Abstract
There is growing evidence that early life exposure to endocrine disrupting chemicals might increase the risk for certain adult onset diseases, in particular reproductive health problems and hormone dependent cancers. Studies in rodents suggest that perinatal exposure to even low doses of estrogenic substances can cause adverse effects, including epigenetic reprogramming of the prostate and increased formation of precancerous lesions. We analyzed the effects of an in utero exposure to the strongest natural estrogen, estradiol-17β, in a pig model. Two different low and one high dose of estradiol-17β (0.05, 10 and 1000 μg/kg body weight/day) were orally applied to gilts during pregnancy and potential effects on the reproductive system of the offspring were analyzed. No significant effects on sperm vitality parameters and testes size were observed in adult boars. However, prenatal exposure to the high dose decreased absolute, but not relative weight of the testes in prepubertal piglets. RNA sequencing revealed significantly regulated genes of the prepubertal prostate, while testes and uteri were not affected. Notably, we found an increased prostate expression of CCDC80 and a decreased ADH1C expression in the low dose treatment groups. BGN and SPARC, two genes associated with prostate tumor progression, were as well more abundant in exposed animals. Strikingly, the gene body DNA methylation level of BGN was accordingly increased in the high dose group. Thus, while only prenatal exposure to a high dose of estrogen altered testes development and local DNA methylation of the prostate, even low dose exposure had significant effects on gene expression in the prostate of prepubertal piglet offspring. The relevance of these distinct, but subtle transcriptional changes following low dose treatment lacking a clear phenotype calls for further long-term investigations. An epigenetic reprogramming of the pig prostate due to prenatal estrogen cannot be neglected.
Collapse
Affiliation(s)
- David Kradolfer
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland.
| | - Veronika L Flöter
- Technische Universität München, Physiology Weihenstephan, Freising, Germany
| | - Jochen T Bick
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Rainer W Fürst
- Technische Universität München, Physiology Weihenstephan, Freising, Germany
| | - Kristina Rode
- University of Veterinary Medicine Hannover, Institute of Anatomy, Hannover, Germany
| | - Ralph Brehm
- University of Veterinary Medicine Hannover, Institute of Anatomy, Hannover, Germany
| | - Heiko Henning
- University of Veterinary Medicine Hannover, Unit for Reproductive Medicine, Hannover, Germany; Utrecht University, Dep. of Equine Sciences, Faculty of Vet. Med., Utrecht, The Netherlands
| | - Dagmar Waberski
- University of Veterinary Medicine Hannover, Unit for Reproductive Medicine, Hannover, Germany
| | - Stefan Bauersachs
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland; Technische Universität München, Physiology Weihenstephan, Freising, Germany.
| |
Collapse
|
24
|
Omics in reproductive and developmental toxicology. Reprod Toxicol 2016. [DOI: 10.3109/9781420073447-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Lei X, Cui K, Liu Q, Zhang H, Li Z, Huang B, Shi D. Exogenous Estradiol Benzoate Induces Spermatogenesis Disorder through Influencing Apoptosis and Oestrogen Receptor Signalling Pathway. Reprod Domest Anim 2015; 51:75-84. [PMID: 26684898 DOI: 10.1111/rda.12648] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/07/2015] [Indexed: 01/22/2023]
Abstract
As the exact role for exogenous oestrogen in spermatogenesis is not fully understood, the aim of this study was to investigate the effect of estradiol benzoate (EB) exposure to male mice on their spermatogenesis and fertility. Sixty male mice aged 4 weeks were randomly divided into three groups, including a control group and two treatment groups. The mice of the control group were injected with 250 μl paraffin oil only by every other day subcutaneous injection for 4 weeks. Meantime, the mice of the treatment groups were injected with EB at the concentration of 5 or 10 mg/kg, respectively. Results showed that EB slowed down the body weight gains and generated testicular atrophy with spermatogenesis disorder compared with that of the control mice, and consequently induced their infertility. Moreover, the number of TUNEL-positive cells in the testis of EB-treated mice was significantly increased with the EB concentration rise. In comparison with controls, the mRNA expression level of pro-apoptosis factors (Fas, TNF, Cytochrome C, Apaf1, Chop, Caspase-3, Caspase-8, Caspase-9 and Caspase-12) and key genes in oestrogen receptor (ER) signalling pathway (ER α, ER β, Erk1/2, Hsp90 and DAX-1) were upregulated in the testes of the treatment groups. Furthermore, Western blotting results proved the protein expression level of Fas, TNF, Cytochrome C, Chop, Caspase-3, cleaved Caspase-3, Caspase-9, Erk1/2 and Hsp90 were upregulated, and the phosphorylation level of Erk1/2 was also increased. These results indicate that EB may impair spermatogenesis through influencing the apoptosis and ER signalling pathway.
Collapse
Affiliation(s)
- X Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - K Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Q Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - H Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Z Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - B Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - D Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
26
|
Anderson D, Cordell HJ, Fakiola M, Francis RW, Syn G, Scaman ESH, Davis E, Miles SJ, McLeay T, Jamieson SE, Blackwell JM. First genome-wide association study in an Australian aboriginal population provides insights into genetic risk factors for body mass index and type 2 diabetes. PLoS One 2015; 10:e0119333. [PMID: 25760438 PMCID: PMC4356593 DOI: 10.1371/journal.pone.0119333] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 01/28/2015] [Indexed: 12/15/2022] Open
Abstract
A body mass index (BMI) >22kg/m2 is a risk factor for type 2 diabetes (T2D) in Aboriginal Australians. To identify loci associated with BMI and T2D we undertook a genome-wide association study using 1,075,436 quality-controlled single nucleotide polymorphisms (SNPs) genotyped (Illumina 2.5M Duo Beadchip) in 402 individuals in extended pedigrees from a Western Australian Aboriginal community. Imputation using the thousand genomes (1000G) reference panel extended the analysis to 6,724,284 post quality-control autosomal SNPs. No associations achieved genome-wide significance, commonly accepted as P<5x10-8. Nevertheless, genes/pathways in common with other ethnicities were identified despite the arrival of Aboriginal people in Australia >45,000 years ago. The top hit (rs10868204 Pgenotyped = 1.50x10-6; rs11140653 Pimputed_1000G = 2.90x10-7) for BMI lies 5' of NTRK2, the type 2 neurotrophic tyrosine kinase receptor for brain-derived neurotrophic factor (BDNF) that regulates energy balance downstream of melanocortin-4 receptor (MC4R). PIK3C2G (rs12816270 Pgenotyped = 8.06x10-6; rs10841048 Pimputed_1000G = 6.28x10-7) was associated with BMI, but not with T2D as reported elsewhere. BMI also associated with CNTNAP2 (rs6960319 Pgenotyped = 4.65x10-5; rs13225016 Pimputed_1000G = 6.57x10-5), previously identified as the strongest gene-by-environment interaction for BMI in African-Americans. The top hit (rs11240074 Pgenotyped = 5.59x10-6, Pimputed_1000G = 5.73x10-6) for T2D lies 5' of BCL9 that, along with TCF7L2, promotes beta-catenin's transcriptional activity in the WNT signaling pathway. Additional hits occurred in genes affecting pancreatic (KCNJ6, KCNA1) and/or GABA (GABRR1, KCNA1) functions. Notable associations observed for genes previously identified at genome-wide significance in other populations included MC4R (Pgenotyped = 4.49x10-4) for BMI and IGF2BP2 Pimputed_1000G = 2.55x10-6) for T2D. Our results may provide novel functional leads in understanding disease pathogenesis in this Australian Aboriginal population.
Collapse
Affiliation(s)
- Denise Anderson
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Heather J. Cordell
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, United Kingdom
| | - Michaela Fakiola
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
- Cambridge Institute for Medical Research, Department of Medicine, and Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Richard W. Francis
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Genevieve Syn
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Elizabeth S. H. Scaman
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Elizabeth Davis
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
- Department of Endocrinology and Diabetes, Princess Margaret Hospital for Children, Subiaco, Western Australia, 6008, Australia
| | - Simon J. Miles
- Ngangganawili Aboriginal Health Service, Wiluna, Western Australia, 6646, Australia
| | - Toby McLeay
- Ngangganawili Aboriginal Health Service, Wiluna, Western Australia, 6646, Australia
| | - Sarra E. Jamieson
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Jenefer M. Blackwell
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
- Cambridge Institute for Medical Research, Department of Medicine, and Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
27
|
Ali S, Steinmetz G, Montillet G, Perrard MH, Loundou A, Durand P, Guichaoua MR, Prat O. Exposure to low-dose bisphenol A impairs meiosis in the rat seminiferous tubule culture model: a physiotoxicogenomic approach. PLoS One 2014; 9:e106245. [PMID: 25181051 PMCID: PMC4152015 DOI: 10.1371/journal.pone.0106245] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/29/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Bisphenol A (BPA) is one of the most widespread chemicals in the world and is suspected of being responsible for male reproductive impairments. Nevertheless, its molecular mode of action on spermatogenesis is unclear. This work combines physiology and toxicogenomics to identify mechanisms by which BPA affects the timing of meiosis and induces germ-cell abnormalities. METHODS We used a rat seminiferous tubule culture model mimicking the in vivo adult rat situation. BPA (1 nM and 10 nM) was added to the culture medium. Transcriptomic and meiotic studies were performed on the same cultures at the same exposure times (days 8, 14, and 21). Transcriptomics was performed using pangenomic rat microarrays. Immunocytochemistry was conducted with an anti-SCP3 antibody. RESULTS The gene expression analysis showed that the total number of differentially expressed transcripts was time but not dose dependent. We focused on 120 genes directly involved in the first meiotic prophase, sustaining immunocytochemistry. Sixty-two genes were directly involved in pairing and recombination, some of them with high fold changes. Immunocytochemistry indicated alteration of meiotic progression in the presence of BPA, with increased leptotene and decreased diplotene spermatocyte percentages and partial meiotic arrest at the pachytene checkpoint. Morphological abnormalities were observed at all stages of the meiotic prophase. The prevalent abnormalities were total asynapsis and apoptosis. Transcriptomic analysis sustained immunocytological observations. CONCLUSION We showed that low doses of BPA alter numerous genes expression, especially those involved in the reproductive system, and severely impair crucial events of the meiotic prophase leading to partial arrest of meiosis in rat seminiferous tubule cultures.
Collapse
Affiliation(s)
- Sazan Ali
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Centre National de la Recherche Scientifique (CNRS) UMR 7263/ Institut de Recherche pour le Développement (IRD) 237, Faculté de Médecine, Aix-Marseille Université (AMU), Marseille, France
| | - Gérard Steinmetz
- Institute of Environmental Biology and Biotechnology (IBEB), Life Science division, French Alternative Energy and Atomic Energy Commission (CEA), Marcoule, Bagnols-sur-Cèze, France
| | - Guillaume Montillet
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Centre National de la Recherche Scientifique (CNRS) UMR 5242/ Institut National de la Recherche Agronomique (INRA), Ecole Normale Supérieure de Lyon (ENS), Lyon, France
| | - Marie-Hélène Perrard
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Centre National de la Recherche Scientifique (CNRS) UMR 5242/ Institut National de la Recherche Agronomique (INRA), Ecole Normale Supérieure de Lyon (ENS), Lyon, France
| | - Anderson Loundou
- Unité d'Aide Méthodologique à la Recherche clinique, Faculté de Médecine, Aix-Marseille Université (AMU), Marseille, France
| | - Philippe Durand
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Centre National de la Recherche Scientifique (CNRS) UMR 5242/ Institut National de la Recherche Agronomique (INRA), Ecole Normale Supérieure de Lyon (ENS), Lyon, France
| | - Marie-Roberte Guichaoua
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Centre National de la Recherche Scientifique (CNRS) UMR 7263/ Institut de Recherche pour le Développement (IRD) 237, Faculté de Médecine, Aix-Marseille Université (AMU), Marseille, France
| | - Odette Prat
- Institute of Environmental Biology and Biotechnology (IBEB), Life Science division, French Alternative Energy and Atomic Energy Commission (CEA), Marcoule, Bagnols-sur-Cèze, France
| |
Collapse
|
28
|
Bondesson M, Hao R, Lin CY, Williams C, Gustafsson JÅ. Estrogen receptor signaling during vertebrate development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:142-51. [PMID: 24954179 DOI: 10.1016/j.bbagrm.2014.06.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 01/03/2023]
Abstract
Estrogen receptors are expressed and their cognate ligands produced in all vertebrates, indicative of important and conserved functions. Through evolution estrogen has been involved in controlling reproduction, affecting both the development of reproductive organs and reproductive behavior. This review broadly describes the synthesis of estrogens and the expression patterns of aromatase and the estrogen receptors, in relation to estrogen functions in the developing fetus and child. We focus on the role of estrogens for the development of reproductive tissues, as well as non-reproductive effects on the developing brain. We collate data from human, rodent, bird and fish studies and highlight common and species-specific effects of estrogen signaling on fetal development. Morphological malformations originating from perturbed estrogen signaling in estrogen receptor and aromatase knockout mice are discussed, as well as the clinical manifestations of rare estrogen receptor alpha and aromatase gene mutations in humans. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
Affiliation(s)
- Maria Bondesson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, TX, USA.
| | - Ruixin Hao
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA; DuPont Haskell Global Centers for Health and Environmental Sciences, Newark, DE, USA
| | - Chin-Yo Lin
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, TX, USA
| | - Cecilia Williams
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, TX, USA
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, TX, USA; Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| |
Collapse
|
29
|
Garcia TX, Costa GMJ, França LR, Hofmann MC. Sub-acute intravenous administration of silver nanoparticles in male mice alters Leydig cell function and testosterone levels. Reprod Toxicol 2014; 45:59-70. [PMID: 24447867 PMCID: PMC4309383 DOI: 10.1016/j.reprotox.2014.01.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/19/2013] [Accepted: 01/08/2014] [Indexed: 11/24/2022]
Abstract
The aim of this study was to determine whether short-term, in vivo exposure to silver nanoparticles (AgNPs) could be toxic to male reproduction. Low dose (1mg/kg/dose) AgNPs were intravenously injected into male CD1 mice over 12 days. Treatment resulted in no changes in body and testis weights, sperm concentration and motility, fertility indices, or follicle-stimulating hormone and luteinizing hormone serum concentrations; however, serum and intratesticular testosterone concentrations were significantly increased 15 days after initial treatment. Histologic evaluation revealed significant changes in epithelium morphology, germ cell apoptosis, and Leydig cell size. Additionally, gene expression analysis revealed Cyp11a1 and Hsd3b1 mRNA significantly upregulated in treated animals. These data suggest that AgNPs do not impair spermatogonial stem cells in vivo since treatment did not result in significant decreases in testis weight and sperm concentrations. However, AgNPs appear to affect Leydig cell function, yielding increasing testicular and serum testosterone levels.
Collapse
Affiliation(s)
- Thomas X Garcia
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA; Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guilherme M J Costa
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luiz R França
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marie-Claude Hofmann
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA; Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
30
|
Chapalamadugu KC, VandeVoort CA, Settles ML, Robison BD, Murdoch GK. Maternal bisphenol a exposure impacts the fetal heart transcriptome. PLoS One 2014; 9:e89096. [PMID: 24586524 PMCID: PMC3934879 DOI: 10.1371/journal.pone.0089096] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 01/14/2014] [Indexed: 01/08/2023] Open
Abstract
Conditions during fetal development influence health and disease in adulthood, especially during critical windows of organogenesis. Fetal exposure to the endocrine disrupting chemical, bisphenol A (BPA) affects the development of multiple organ systems in rodents and monkeys. However, effects of BPA exposure on cardiac development have not been assessed. With evidence that maternal BPA is transplacentally delivered to the developing fetus, it becomes imperative to examine the physiological consequences of gestational exposure during primate development. Herein, we evaluate the effects of daily, oral BPA exposure of pregnant rhesus monkeys (Macaca mulatta) on the fetal heart transcriptome. Pregnant monkeys were given daily oral doses (400 µg/kg body weight) of BPA during early (50–100±2 days post conception, dpc) or late (100±2 dpc – term), gestation. At the end of treatment, fetal heart tissues were collected and chamber specific transcriptome expression was assessed using genome-wide microarray. Quantitative real-time PCR was conducted on select genes and ventricular tissue glycogen content was quantified. Our results show that BPA exposure alters transcription of genes that are recognized for their role in cardiac pathophysiologies. Importantly, myosin heavy chain, cardiac isoform alpha (Myh6) was down-regulated in the left ventricle, and ‘A Disintegrin and Metalloprotease 12’, long isoform (Adam12-l) was up-regulated in both ventricles, and the right atrium of the heart in BPA exposed fetuses. BPA induced alteration of these genes supports the hypothesis that exposure to BPA during fetal development may impact cardiovascular fitness. Our results intensify concerns about the role of BPA in the genesis of human metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Kalyan C. Chapalamadugu
- Department of Animal and Veterinary Science, University of Idaho, Moscow, Idaho, United States of America
| | - Catherine A. VandeVoort
- Department of Obstetrics and Gynecology, University of California Davis, Davis, California, United States of America
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - Matthew L. Settles
- Department of Computer Science, University of Idaho, Moscow, Idaho, United States of America
- Program in Bioinformatics and Computational Biology, University of Idaho, Moscow, Idaho, United States of America
| | - Barrie D. Robison
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Program in Bioinformatics and Computational Biology, University of Idaho, Moscow, Idaho, United States of America
| | - Gordon K. Murdoch
- Department of Animal and Veterinary Science, University of Idaho, Moscow, Idaho, United States of America
- * E-mail:
| |
Collapse
|
31
|
Manfo FPT, Jubendradass R, Nantia EA, Moundipa PF, Mathur PP. Adverse effects of bisphenol A on male reproductive function. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 228:57-82. [PMID: 24162092 DOI: 10.1007/978-3-319-01619-1_3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
BPA is a ubiquitous environmental contaminant, resulting mainly from manufacturing,use or disposal of plastics of which it is a component, and the degradation of industrial plastic-related wastes. Growing evidence from research on laboratory animals, wildlife, and humans supports the view that BPA produces an endocrine disrupting effect and adversely affects male reproductive function. To better understand the adverse effects caused by exposure to BPA, we performed an up-to-date literature review on the topic, with particular emphasis on in utero exposure, and associated effects on spermatogenesis, steroidogenesis, and accessory organs.BPA studies on experimental animals show that effects are generally more detrimental during in utero exposure, a critical developmental stage for the embryo. BPA has been found to produce several defects in the embryo, such as feminization of male fetuses, atrophy of the testes and epididymides, increased prostate size, shortening of AGD, disruption of BTB, and alteration of adult sperm parameters (e.g.,sperm count, motility, and density). BPA also affects embryo thyroid development.During the postnatal and pubertal periods and adulthood, BPA affects the hypothalamic-pituitary-testicular axis by modulating hormone (e.g., LH and FSH,androgen and estrogen) synthesis, expression and function of respective receptors(ER, AR). These effects alter sperm parameters. BPA also induces oxidative stress in the testis and epididymis, by inhibiting antioxidant enzymes and stimulating lipid peroxidation. This suggests that employing antioxidants may be a promising strategy to relieve BPA-induced disturbances.Epidemiological studies have also provided data indicating that BPA alters male reproductive function in humans. These investigations revealed that men occupationally exposed to BPA had high blood/urinary BPA levels, and abnormal semen parameters. BPA-exposed men also showed reduced libido and erectile ejaculatory difficulties; moreover, the overall BPA effects on male reproduction appear to be more harmful if exposure occurs in utero. The regulation of BPA and BPA-related products should be reinforced, particularly where exposure during the fetal period can occur. The current TDI for BPA is proposed as 25 and 50 1-1g/kg bwt/day (European Food Safety Authority and Health Canada, respectively). Based on the evidence available, we believe that a TDI value of 5 1-1g/kg bwt/day is more appropriate (the endpoint is modulation of rat testicular function). Certain BPA derivatives are being considered as alternatives to BPA. However, certain of these related products display adverse effects that are similar to those of BPA. These effects should be carefully considered before using them as final alternatives to BPA in plastic production.
Collapse
Affiliation(s)
- Faustin Pascal Tsagué Manfo
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, 63, Buea, Cameroon
| | | | | | | | | |
Collapse
|
32
|
Chalmey C, Giton F, Chalmel F, Fiet J, Jégou B, Mazaud-Guittot S. Systemic compensatory response to neonatal estradiol exposure does not prevent depletion of the oocyte pool in the rat. PLoS One 2013; 8:e82175. [PMID: 24358151 PMCID: PMC3864944 DOI: 10.1371/journal.pone.0082175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/21/2013] [Indexed: 11/19/2022] Open
Abstract
The formation of ovarian follicles is a finely tuned process that takes place within a narrow time-window in rodents. Multiple factors and pathways have been proposed to contribute to the mechanisms triggering this process but the role of endocrine factors, especially estrogens, remains elusive. It is currently hypothesized that removal from the maternal hormonal environment permits follicle formation at birth. However, experimentally-induced maintenance of high 17β-estradiol (E2) levels leads to subtle, distinct, immediate effects on follicle formation and oocyte survival depending on the species and dose. In this study, we examined the immediate effects of neonatal E2 exposure from post-natal day (PND) 0 to PND2 on the whole organism and on ovarian follicle formation in rats. Measurements of plasma E2, estrone and their sulfate conjugates after E2 exposure showed that neonatal female rats rapidly acquire the capability to metabolize and clear excessive E2 levels. Concomitant modifications to the mRNA content of genes encoding selected E2 metabolism enzymes in the liver and the ovary in response to E2 exposure indicate that E2 may modify the neonatal maturation of these organs. In the liver, E2 treatment was associated with lower acquisition of the capability to metabolize E2. In the ovary, E2 depleted the oocyte pool in a dose dependent manner by PND3. In 10 µg/day E2-treated ovaries, apoptotic oocytes were observed in newly formed follicles in addition to areas of ovarian cord remodeling. At PND6, follicles without any visible oocyte were present and multi-oocyte follicles were not observed. Our study reveals a major species-difference. Indeed, neonatal exposure to E2 depletes the oocyte pool in the rat ovary, whereas in the mouse it is well known to increase oocyte survival.
Collapse
Affiliation(s)
- Clémentine Chalmey
- Institut National de la Santé et de la Recherche Médicale, Unité 1085 Institut de Recherche en Santé Environnement et Travail, Institut Fédératif de Recherche 140, Université de Rennes 1, Rennes, France
| | - Franck Giton
- AP-HP, Hôpital H. Mondor - A. Chenevier, service de Biochimie et de Génétique, Créteil, France
- Institut National de la Santé et de la Recherche Médicale, U955 Équipe 07, Créteil, France
| | - Frédéric Chalmel
- Institut National de la Santé et de la Recherche Médicale, Unité 1085 Institut de Recherche en Santé Environnement et Travail, Institut Fédératif de Recherche 140, Université de Rennes 1, Rennes, France
| | - Jean Fiet
- Institut National de la Santé et de la Recherche Médicale, U955 Équipe 07, Créteil, France
| | - Bernard Jégou
- Institut National de la Santé et de la Recherche Médicale, Unité 1085 Institut de Recherche en Santé Environnement et Travail, Institut Fédératif de Recherche 140, Université de Rennes 1, Rennes, France
- Ecole des Hautes Études en Santé Publique, Rennes, France
| | - Séverine Mazaud-Guittot
- Institut National de la Santé et de la Recherche Médicale, Unité 1085 Institut de Recherche en Santé Environnement et Travail, Institut Fédératif de Recherche 140, Université de Rennes 1, Rennes, France
- * E-mail:
| |
Collapse
|
33
|
Black MB, Parks BB, Pluta L, Chu TM, Allen BC, Wolfinger RD, Thomas RS. Comparison of microarrays and RNA-seq for gene expression analyses of dose-response experiments. Toxicol Sci 2013; 137:385-403. [PMID: 24194394 DOI: 10.1093/toxsci/kft249] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Relative to microarrays, RNA-seq has been reported to offer higher precision estimates of transcript abundance, a greater dynamic range, and detection of novel transcripts. However, previous comparisons of the 2 technologies have not covered dose-response experiments that are relevant to toxicology. Male F344 rats were exposed for 13 weeks to 5 doses of bromobenzene, and liver gene expression was measured using both microarrays and RNA-seq. Multiple normalization methods were evaluated for each technology, and gene expression changes were statistically analyzed using both analysis of variance and benchmark dose (BMD). Fold-change values were highly correlated between the 2 technologies, whereas the -log p values showed lower correlation. RNA-seq detected fewer statistically significant genes at lower doses, but more significant genes based on fold change except when a negative binomial transformation was applied. Overlap in genes significant by both p value and fold change was approximately 30%-40%. Random sampling of the RNA-seq data showed an equivalent number of differentially expressed genes compared with microarrays at ~5 million reads. Quantitative RT-PCR of differentially expressed genes uniquely identified by each technology showed a high degree of confirmation when both fold change and p value were considered. The mean dose-response expression of each gene was highly correlated between technologies, whereas estimates of sample variability and gene-based BMD values showed lower correlation. Differences in BMD estimates and statistical significance may be due, in part, to differences in the dynamic range of each technology and the degree to which normalization corrects genes at either end of the scale.
Collapse
Affiliation(s)
- Michael B Black
- * The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | | | | | | | | | | | | |
Collapse
|
34
|
Parfett C, Williams A, Zheng J, Zhou G. Gene batteries and synexpression groups applied in a multivariate statistical approach to dose–response analysis of toxicogenomic data. Regul Toxicol Pharmacol 2013; 67:63-74. [DOI: 10.1016/j.yrtph.2013.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/26/2013] [Indexed: 12/28/2022]
|
35
|
A systematic review of Bisphenol A "low dose" studies in the context of human exposure: a case for establishing standards for reporting "low-dose" effects of chemicals. Food Chem Toxicol 2013; 62:935-48. [PMID: 23867546 DOI: 10.1016/j.fct.2013.07.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/17/2013] [Accepted: 07/01/2013] [Indexed: 12/30/2022]
Abstract
Human exposure to the chemical Bisphenol A is almost ubiquitous in surveyed industrialized societies. Structural features similar to estrogen confer the ability of Bisphenol A (BPA) to bind estrogen receptors, giving BPA membership in the group of environmental pollutants called endocrine disruptors. References by scientists, the media, political entities, and non-governmental organizations to many toxicity studies as "low dose" has led to the belief that exposure levels in these studies are similar to humans, implying that BPA is toxic to humans at current exposures. Through systematic, objective comparison of our current, and a previous compilation of the "low-dose" literature to multiple estimates of human external and internal exposure levels, we found that the "low-dose" moniker describes exposures covering 8-12 orders of magnitude, the majority (91-99% of exposures) being greater than the upper bound of human exposure in the general infant, child and adult U.S. Population. "low dose" is therefore a descriptor without specific meaning regarding human exposure. Where human exposure data are available, for BPA and other environmental chemicals, reference to toxicity study exposures by direct comparison to human exposure would be more informative, more objective, and less susceptible to misunderstanding.
Collapse
|
36
|
Murkes D, Lalitkumar PGL, Leifland K, Lundström E, Söderqvist G. Percutaneous estradiol/oral micronized progesterone has less-adverse effects and different gene regulations than oral conjugated equine estrogens/medroxyprogesterone acetate in the breasts of healthy women in vivo. Gynecol Endocrinol 2012; 28 Suppl 2:12-5. [PMID: 22834417 DOI: 10.3109/09513590.2012.706670] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene expression analysis of healthy postmenopausal women in a prospective clinical study indicated that genes encoding for epithelial proliferation markers Ki-67 and progesterone receptor B mRNA are differentially expressed in women using hormone therapy (HT) with natural versus synthetic estrogens. Two 28-day cycles of daily estradiol (E2) gel 1.5 mg and oral micronized progesterone (P) 200 mg/day for the last 14 days of each cycle did not significantly increase breast epithelial proliferation (Ki-67 MIB-1 positive cells) at the cell level nor at the mRNA level (MKI-67 gene). A borderline significant beneficial reduction in anti-apoptotic protein bcl-2, favouring apoptosis, was also seen followed by a slight numeric decrease of its mRNA. By contrast, two 28-day cycles of daily oral conjugated equine estrogens (CEE) 0.625 mg and oral medroxyprogesterone acetate (MPA) 5 mg for the last 14 days of each cycle significantly increased proliferation at both the cell level and at the mRNA level, and significantly enhanced mammographic breast density, an important risk factor for breast cancer. In addition, CEE/MPA affected around 2,500 genes compared with just 600 affected by E2/P. These results suggest that HT with natural estrogens affects a much smaller number of genes and has less-adverse effects on the normal breast in vivo than conventional, synthetic therapy.
Collapse
MESH Headings
- Administration, Cutaneous
- Administration, Oral
- Adult
- Breast Density
- Breast Neoplasms/epidemiology
- Breast Neoplasms/prevention & control
- Cell Proliferation/drug effects
- Estradiol/administration & dosage
- Estradiol/adverse effects
- Estradiol/therapeutic use
- Estrogen Replacement Therapy/adverse effects
- Estrogens, Conjugated (USP)/administration & dosage
- Estrogens, Conjugated (USP)/adverse effects
- Estrogens, Conjugated (USP)/therapeutic use
- Female
- Gels
- Gene Expression Profiling
- Gene Expression Regulation/drug effects
- Humans
- Ki-67 Antigen/genetics
- Ki-67 Antigen/metabolism
- Mammary Glands, Human/abnormalities
- Mammary Glands, Human/cytology
- Mammary Glands, Human/drug effects
- Mammary Glands, Human/metabolism
- Medroxyprogesterone Acetate/administration & dosage
- Medroxyprogesterone Acetate/adverse effects
- Medroxyprogesterone Acetate/therapeutic use
- Middle Aged
- Postmenopause
- RNA, Messenger/metabolism
- Risk Factors
- Sweden/epidemiology
Collapse
Affiliation(s)
- Daniel Murkes
- Department of Obsterics and Gynecology, Södertälje Hospital, Södertälje, Sweden
| | | | | | | | | |
Collapse
|
37
|
Horstman KA, Naciff JM, Overmann GJ, Foertsch LM, Richardson BD, Daston GP. Effects of transplacental 17-α-ethynyl estradiol or bisphenol A on the developmental profile of steroidogenic acute regulatory protein in the rat testis. ACTA ACUST UNITED AC 2012; 95:318-25. [PMID: 22752971 DOI: 10.1002/bdrb.21020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 06/06/2012] [Indexed: 11/08/2022]
Abstract
Previous research from our laboratory has determined the transcript profiles for developing fetal rat female and male reproductive tracts following transplacental exposure to estrogens. Prenatal exposure to bisphenol A (BPA) or 17-α-ethynyl estradiol (EE) significantly affects steroidogenic acute regulatory (StAR) protein transcript levels in the developing male rat reproductive tract. The purpose of this study was to establish the intratesticular distribution and temporal expression pattern of StAR, a key gene involved in steroidogenesis. Beginning on gestation day (GD) 11, pregnant Sprague-Dawley rats were exposed daily to 10μg/kg/day EE and fetal testes were harvested at GD16, 18, or 20. Quantitative reverse transcriptase PCR (QRT-PCR) demonstrated no significant difference in StAR transcript levels present at GD16. However, at GD18, StAR transcripts were significantly decreased following exposure. Immunohistochemistry demonstrated similar StAR protein levels in interstitial region of GD16 testes and an obvious decrease in StAR protein levels in the interstitial region of GD18 testes. Moreover, starting at GD11 additional dams were dosed with 0.001 or 0.1 μg/kg/day EE or 0.02, 0.5, 400 mg/kg/day BPA via subcutaneous injections. QRT-PCR validated previous microarray dose-related decreases in StAR transcripts at GD20, whereas immunohistochemistry results demonstrated decreases in StAR protein levels in the interstitial region at the highest EE and BPA doses only. Neither EE nor BPA exposure caused morphological changes in the developing seminiferous cords, Sertoli cells, gonocytes, or the interstitial region or Leydig cells at GD16-20. High levels of estrogens decrease StAR expression in the fetal rat testis during late gestation.
Collapse
Affiliation(s)
- Karla A Horstman
- Mason Business Center, The Procter and Gamble Company, Mason, OH, USA
| | | | | | | | | | | |
Collapse
|
38
|
Hermsen SAB, Pronk TE, van den Brandhof EJ, van der Ven LTM, Piersma AH. Concentration-Response Analysis of Differential Gene Expression in the Zebrafish Embryotoxicity Test Following Flusilazole Exposure. Toxicol Sci 2012; 127:303-12. [DOI: 10.1093/toxsci/kfs092] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
39
|
Villeneuve DL, Garcia-Reyero N, Escalon BL, Jensen KM, Cavallin JE, Makynen EA, Durhan EJ, Kahl MD, Thomas LM, Perkins EJ, Ankley GT. Ecotoxicogenomics to support ecological risk assessment: a case study with bisphenol A in fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:51-9. [PMID: 21786754 DOI: 10.1021/es201150a] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Effects of bisphenol A (BPA) on ovarian transcript profiles as well as targeted end points with endocrine/reproductive relevance were examined in two fish species, fathead minnow (Pimephales promelas) and zebrafish (Danio rerio), exposed in parallel using matched experimental designs. Four days of waterborne exposure to 10 μg BPA/L caused significant vitellogenin induction in both species. However, zebrafish were less sensitive to effects on hepatic gene expression and steroid production than fathead minnow and the magnitude of vitellogenin induction was more modest (i.e., 3-fold compared to 13,000-fold in fathead minnow). The concentration-response at the ovarian transcriptome level was nonmonotonic and violated assumptions that underlie proposed methods for estimating hazard thresholds from transcriptomic results. However, the nonmonotonic profile was consistent among species and there were nominal similarities in the functions associated with the differentially expressed genes, suggesting potential activation of common pathway perturbation motifs in both species. Overall, the results provide an effective case study for considering the potential application of ecotoxicogenomics to ecological risk assessments and provide novel comparative data regarding effects of BPA in fish.
Collapse
Affiliation(s)
- Daniel L Villeneuve
- Mid-Continent Ecology Division, U.S. Environmental Protection Agency, 6201 Congdon Blvd., Duluth, Minnesota, United States.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Robinson JF, Pennings JLA, Piersma AH. A review of toxicogenomic approaches in developmental toxicology. Methods Mol Biol 2012; 889:347-371. [PMID: 22669676 DOI: 10.1007/978-1-61779-867-2_22] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Over the past decade, the use of gene expression profiling (i.e., toxicogenomics or transcriptomics) has been established as the vanguard "omics" technology to investigate exposure-induced molecular changes that underlie the development of disease. As this technology quickly advances, researchers are striving to keep pace in grasping the complexity of toxicogenomic response while at the same time determine its applicability for the field of developmental toxicology. Initial studies suggest toxicogenomics to be a promising tool for multiple types of study designs, including exposure-response investigations (dose and duration), chemical classification, and model comparisons. In this review, we examine the use of toxicogenomics in developmental toxicology, discussing biological and technical factors that influence response and interpretation. Additionally, we provide a framework to guide toxicogenomic investigations in the field of developmental toxicology.
Collapse
Affiliation(s)
- Joshua F Robinson
- National Institute for Public Health and the Environment-RIVM, Bilthoven, The Netherlands
| | | | | |
Collapse
|
41
|
Song MK, Kim YJ, Song M, Choi HS, Ryu JC. Dose-response functional gene analysis by exposure to 3 different polycyclic aromatic hydrocarbons in human hepatocytes. Mol Cell Toxicol 2011. [DOI: 10.1007/s13273-011-0028-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
42
|
Mruk DD, Cheng CY. Environmental contaminants: Is male reproductive health at risk? SPERMATOGENESIS 2011; 1:283-290. [PMID: 22332111 PMCID: PMC3271639 DOI: 10.4161/spmg.1.4.18328] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 09/21/2011] [Accepted: 09/22/2011] [Indexed: 02/06/2023]
Abstract
Contaminants such as cadmium, bisphenol A and lead pollute our environment and affect male reproductive function. There is evidence that toxicant exposure adversely affects fertility. Cadmium and bisphenol A exert their effects in the testis by perturbing blood-testis barrier function, which in turn affects germ cell adhesion in the seminiferous epithelium because of a disruption of the functional axis between these sites. In essence, cadmium mediates its adverse effects at the blood-testis barrier by disrupting cell adhesion protein complexes, illustrating that toxicants can dismantle cell junctions in the testis. Herein, we will discuss how environmental toxicants may affect reproductive function. We will also examine how these adverse effects on fertility may be mediated in part by adipose tissue and bone. Lastly, we will briefly discuss how toxicant-induced damage may be effectively managed so that fertility can be maintained. It is hoped that this information will offer a new paradigm for future studies.
Collapse
Affiliation(s)
- Dolores D Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; The Population Council; New York, NY USA
| | | |
Collapse
|
43
|
LaRocca J, Boyajian A, Brown C, Smith SD, Hixon M. Effects of in utero exposure to Bisphenol A or diethylstilbestrol on the adult male reproductive system. ACTA ACUST UNITED AC 2011; 92:526-33. [PMID: 21922642 DOI: 10.1002/bdrb.20336] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 08/15/2011] [Indexed: 11/07/2022]
Abstract
The objective of this study was to determine whether in utero exposure to Bisphenol A (BPA) induced reproductive tract abnormalities in the adult male testis. Using the C57/Bl6 mouse, we examined sex-organ weights, anogenital distance, and testis histopathology in adult males exposed in utero via oral gavage to sesame oil, 50 µg/kg BPA, 1000 µg/kg BPA, or 2 µg/kg diethylstilbestrol (DES) as a positive control from gestational days 10 to 16. No changes in sperm production or germ cell apoptosis were observed in adult testes after exposure to either chemical. Adult mRNA levels of genes associated with sexual maturation and differentiation, GATA4 and ID2, were significantly lower only in DES-exposed testes. In summary, the data indicate no gross alterations in spermatogenesis after in utero exposure to BPA or DES. At the molecular level, in utero exposure to DES, but not BPA, leads to decreased mRNA expression of genes associated with Sertoli cell differentiation.
Collapse
Affiliation(s)
- Jessica LaRocca
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | | | | | | | | |
Collapse
|
44
|
Knudsen TB, Kavlock RJ, Daston GP, Stedman D, Hixon M, Kim JH. Developmental toxicity testing for safety assessment: new approaches and technologies. ACTA ACUST UNITED AC 2011; 92:413-20. [PMID: 21770025 DOI: 10.1002/bdrb.20315] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 05/31/2011] [Indexed: 11/11/2022]
Abstract
The ILSI Health and Environmental Sciences Institute's Developmental and Reproductive Toxicology Technical Committee held a 2-day workshop entitled "Developmental Toxicology-New Directions" in April 2009. The fourth session of this workshop focused on new approaches and technologies for the assessment of developmental toxicology. This session provided an overview of the application of genomics technologies for developmental safety assessment, the use of mouse embryonic stem cells to capture data on developmental toxicity pathways, dynamical cell imaging of zebrafish embryos, the use of computation models of development pathways and systems, and finally, high-throughput in vitro approaches being utilized by the EPA ToxCast program. Issues discussed include the challenges of anchoring in vitro predictions to relevant in vivo endpoints and the need to validate pathway-based predictions with targeted studies in whole animals. Currently, there are 10,000 to 30,000 chemicals in world-wide commerce in need of hazard data for assessing potential health risks. The traditional animal study designs for assessing developmental toxicity cannot accommodate the evaluation of this large number of chemicals, requiring that alternative technologies be utilized. Though a daunting task, technologies are being developed and utilized to make that goal reachable.
Collapse
Affiliation(s)
- Thomas B Knudsen
- National Center for Computational Toxicology, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Sullivan AW, Hamilton P, Patisaul HB. Neonatal agonism of ERβ impairs male reproductive behavior and attractiveness. Horm Behav 2011; 60:185-94. [PMID: 21554883 PMCID: PMC3126896 DOI: 10.1016/j.yhbeh.2011.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 04/19/2011] [Accepted: 04/19/2011] [Indexed: 12/14/2022]
Abstract
The organization of the developing male rodent brain is profoundly influenced by endogenous steroids, most notably estrogen. This process may be disrupted by estrogenic endocrine disrupting compounds (EDCs) resulting in altered sex behavior and the capacity to attract a mate in adulthood. To better understand the relative role each estrogen receptor (ER) subtype (ERα and ERβ) plays in mediating these effects, we exposed male Long Evans rats to estradiol benzoate (EB, 10 μg), vehicle, or agonists specific for ERβ (DPN, 1 mg/kg) or ERα (PPT, 1 mg/kg) daily for the first four days of life, and then assessed adult male reproductive behavior and attractiveness via a partner preference paradigm. DPN had a greater adverse impact than PPT on reproductive behavior, suggesting a functional role for ERβ in the organization of these male-specific behaviors. Therefore the impact of neonatal ERβ agonism was further investigated by repeating the experiment using vehicle, EB and additional DPN doses (0.5 mg/kg, 1 mg/kg, and 2 mg/kg bw). Exposure to DPN suppressed male reproductive behavior and attractiveness in a dose dependent manner. Finally, males were exposed to EB or an environmentally relevant dose of genistein (GEN, 10 mg/kg), a naturally occurring xenoestrogen, which has a higher relative binding affinity for ERβ than ERα. Sexual performance was impaired by GEN but not attractiveness. In addition to suppressing reproductive behavior and attractiveness, EB exposure significantly lowered the testis to body weight ratio, and circulating testosterone levels. DPN and GEN exposure only impaired behavior, suggesting that disrupted androgen secretion does not underlie the impairment.
Collapse
Affiliation(s)
- Alana W Sullivan
- Department of Biology, North Carolina State University, Raleigh NC 27695, USA
| | | | | |
Collapse
|
46
|
Assessment of subclinical, toxicant-induced hepatic gene expression profiles after low-dose, short-term exposures in mice. Regul Toxicol Pharmacol 2011; 60:54-72. [DOI: 10.1016/j.yrtph.2011.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 02/09/2011] [Accepted: 02/09/2011] [Indexed: 12/19/2022]
|
47
|
Lehraiki A, Chamaillard C, Krust A, Habert R, Levacher C. Genistein impairs early testosterone production in fetal mouse testis via estrogen receptor alpha. Toxicol In Vitro 2011; 25:1542-7. [PMID: 21624456 DOI: 10.1016/j.tiv.2011.05.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 10/18/2022]
Abstract
The widespread consumption of soy-based products raises the issue of the reproductive toxicity of phytoestrogens. Indeed, it is well known that genistein, an isoflavone found in soybeans and soy products, mimics the actions of estrogens and that the fetal testis is responsive to estrogens. Therefore we investigated whether genistein could have deleterious effects on fetal testis. Using organ cultures of fetal testes from wild type and ERα or ERβ knock-out mice we show that genistein inhibits testosterone secretion by fetal Leydig cells during early fetal development (E12.5), within the "masculinization programming window". This effect occurs through an ERα-dependent mechanism and starting at 10 nM genistein, a concentration which is compatible with human consumption. No effect of genistein on the number of gonocytes was detected at any of the studied developmental stages. These results suggest that fetal exposure to phytoestrogens can affect the development and function of the male reproductive system.
Collapse
Affiliation(s)
- Abdelali Lehraiki
- Laboratory of Gonad Differentiation and Radiobiology, Stem Cells and Radiation Service, Institute of Cellular and Molecular Radiation Biology, Life Sciences Division, Commissariat à l'Energie Atomique, B.P. 6, 92265 Fontenay-aux-Roses, France
| | | | | | | | | |
Collapse
|
48
|
van Dartel DAM, Piersma AH. The embryonic stem cell test combined with toxicogenomics as an alternative testing model for the assessment of developmental toxicity. Reprod Toxicol 2011; 32:235-44. [PMID: 21575713 DOI: 10.1016/j.reprotox.2011.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 04/20/2011] [Accepted: 04/29/2011] [Indexed: 01/15/2023]
Abstract
One of the most studied in vitro alternative testing methods for identification of developmental toxicity is the embryonic stem cell test (EST). Although the EST has been formally validated, the applicability domain as well as the predictability of the model needs further study to allow successful implementation of the EST as an alternative testing method in regulatory toxicity testing. Genomics technologies have already provided a proof of principle of their value in identification of toxicants such as carcinogenic compounds. Also within the EST, gene expression profiling has shown its value in the identification of developmental toxicity and in the evaluation of factors critical for risk assessment, such as dose and time responses. It is expected that the implementation of genomics into the EST will provide a more detailed end point evaluation as compared to the classical morphological scoring of differentiation cultures. Therefore, genomics may contribute to improvement of the EST, both in terms of definition of its applicability domain as well as its predictive capacity. In the present review, we present the progress that has been made with regard to the prediction of developmental toxicity using the EST combined with transcriptomics. Furthermore, we discuss the developments of additional aspects required for further optimization of the EST, including kinetics, the use of human embryonic stem cells (ESC) and computational toxicology. Finally, the current and future use of the EST model for prediction of developmental toxicity in testing strategies and in regulatory toxicity evaluations is discussed.
Collapse
Affiliation(s)
- Dorien A M van Dartel
- Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | |
Collapse
|
49
|
Ludwig S, Tinwell H, Schorsch F, Cavaillé C, Pallardy M, Rouquié D, Bars R. A molecular and phenotypic integrative approach to identify a no-effect dose level for antiandrogen-induced testicular toxicity. Toxicol Sci 2011; 122:52-63. [PMID: 21525395 DOI: 10.1093/toxsci/kfr099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The safety assessment of chemicals for humans relies on identifying no-observed adverse effect levels (NOAELs) in animal toxicity studies using standard methods. With the advent of high information content technologies, especially microarrays, it is pertinent to determine the impact of molecular data on the NOAELs. Consequently, we conducted an integrative study to identify a no-transcriptomic effect dose using microarray analyses coupled with quantitative reverse transcriptase PCR (RT-qPCR) and determined how this correlated with the NOAEL. We assessed the testicular effects of the antiandrogen, flutamide (FM), in a rat 28-day toxicity study using doses of 0.2-30 mg/kg/day. Plasma testosterone levels and testicular histopathology indicated a NOAEL of 1 mg/kg/day. A no-effect dose of 0.2 mg/kg/day was established based on molecular data relevant to the phenotypic changes. We observed differential gene expression starting from 1 mg/kg/day and a deregulation of more than 1500 genes at 30 mg/kg/day. Dose-related changes were identified for the major pathways (e.g., fatty acid metabolism) associated with the testicular lesion (Leydig cell hyperplasia) that were confirmed by RT-qPCR. These data, along with protein accumulation profiles and FM metabolite concentrations in testis, supported the no-effect dose of 0.2 mg/kg/day. Furthermore, the microarray data indicated a dose-dependent change in the fatty acid catabolism pathway, a biological process described for the first time to be affected by FM in testicular tissue. In conclusion, the present data indicate the existence of a transcriptomic threshold, which must be exceeded to progress from a normal state to an adaptative state and subsequently to adverse toxicity.
Collapse
Affiliation(s)
- Sophie Ludwig
- Department of Research Toxicology, Université Paris-Sud, INSERM UMR 996, Chatenay-Malabry, France
| | | | | | | | | | | | | |
Collapse
|
50
|
Rhomberg LR, Goodman JE, Haber LT, Dourson M, Andersen ME, Klaunig JE, Meek B, Price PS, McClellan RO, Cohen SM. Linear low-dose extrapolation for noncancer heath effects is the exception, not the rule. Crit Rev Toxicol 2011; 41:1-19. [PMID: 21226629 PMCID: PMC3038594 DOI: 10.3109/10408444.2010.536524] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The nature of the exposure-response relationship has a profound influence on risk analyses. Several arguments have been proffered as to why all exposure-response relationships for both cancer and noncarcinogenic endpoints should be assumed to be linear at low doses. We focused on three arguments that have been put forth for noncarcinogens. First, the general "additivity-to-background" argument proposes that if an agent enhances an already existing disease-causing process, then even small exposures increase disease incidence in a linear manner. This only holds if it is related to a specific mode of action that has nonuniversal properties-properties that would not be expected for most noncancer effects. Second, the "heterogeneity in the population" argument states that variations in sensitivity among members of the target population tend to "flatten out and linearize" the exposure-response curve, but this actually only tends to broaden, not linearize, the dose-response relationship. Third, it has been argued that a review of epidemiological evidence shows linear or no-threshold effects at low exposures in humans, despite nonlinear exposure-response in the experimental dose range in animal testing for similar endpoints. It is more likely that this is attributable to exposure measurement error rather than a true nonthreshold association. Assuming that every chemical is toxic at high exposures and linear at low exposures does not comport to modern-day scientific knowledge of biology. There is no compelling evidence-based justification for a general low-exposure linearity; rather, case-specific mechanistic arguments are needed.
Collapse
|