1
|
Nishikawa MU, Iwaki M, Tashiro K, Kurose K. Identification of gene expression markers and development of evaluation method using cell-based and RT-PCR-based assay for skin sensitising potential of chemicals. Xenobiotica 2020; 50:1359-1369. [PMID: 32394774 DOI: 10.1080/00498254.2020.1767320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Recently, alternatives to animal testing have been used to evaluate skin sensitisers in cosmetic products. However, testing is still complicated and expensive. To develop a simpler, cost-effective and more accurate evaluation method for the skin sensitising chemicals, we employed cell-based and RT-PCR-based assay. Representative sensitiser specific gene expression in THP-1 cells was analysed by microarray. Gene ontology (GO) analysis revealed that 26 genes induced by the sensitisers were associated with immune function. First, seven of the 26 genes were chosen arbitrarily as candidate markers for our sensitisation assay. Then, THP-1 cells were exposed to 13 reference chemicals with known sensitising potential, and real-time RT-PCR assays targeting the candidate marker genes were performed. Among them, six markers were able to properly evaluate the sensitisation potential by classifying the gene induction rates with appropriate criteria. Especially, the results of the assay using TREM1 and TNFRSF12A gene markers showed 100% sensitivity and specificity. An existing test method, h-CLAT, requires a flow cytometer and is complicated to operate. In contrast, our method is relatively simpler and more cost-effective. Therefore, our method is a promising one to evaluate sensitising chemicals.
Collapse
Affiliation(s)
- Maho Ukaji Nishikawa
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Megumi Iwaki
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Kosuke Tashiro
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Kouichi Kurose
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
2
|
Kimber I, Agius R, Basketter DA, Corsini E, Cullinan P, Dearman RJ, Gimenez-Arnau E, Greenwell L, Hartung T, Kuper F, Maestrelli P, Roggen E, Rovida C. Chemical Respiratory Allergy: Opportunities for Hazard Identification and Characterisation. Altern Lab Anim 2019; 35:243-65. [PMID: 17559314 DOI: 10.1177/026119290703500212] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Ian Kimber
- Syngenta Central Toxicology Laboratory, Macclesfield, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Basketter D, Pease C, Kasting G, Kimber I, Casati S, Cronin M, Diembeck W, Gerberick F, Hadgraft J, Hartung T, Marty JP, Nikolaidis E, Patlewicz G, Roberts D, Roggen E, Rovida C, van de Sandt J. Skin Sensitisation and Epidermal Disposition: The Relevance of Epidermal Disposition for Sensitisation Hazard Identification and Risk Assessment. Altern Lab Anim 2019; 35:137-54. [PMID: 17411362 DOI: 10.1177/026119290703500124] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- David Basketter
- Unilever Safety and Environmental Assurance Centre, Bedfordshire, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
One of the most powerful tools in immunotoxicology is the assessment of cytokines, the proteins/peptides responsible for regulating a variety of processes including immunity, inflammation, apoptosis, and hematopoiesis. Cytokine production measurements offer outstanding information and may eventually substitute for other more laborious procedures in the assessment of immunotoxicity. The particular profile of cytokine production provides indeed important information regarding the nature of many immunotoxic responses.Recent expansion in the knowledge of cytokine biology and the realization that cytokines play a role in human diseases have created a need for the precise assessment and accurate interpretation of their presence and activity in body fluids, tissues, and cells. Proper evaluation of cytokines requires attention to several technical details. Multi-cytokine analysis still needs to be standardized in terms of optimum source for analysis, protocols, and quality control issues, such as the use of reference standards and the expression of results.Important practical details and considerations will be discussed in this chapter, including the source of the sample to be tested (circulating fluids or ex vivo/in vitro isolated cells); the potential effects of collection, processing, and storage of the results of the assays, as well as potential variables associated with the source material (matrix effects, relevance, inhibitory substances); and factors influencing the choice of assay used (bioassay, immunoassay, molecular biology technique, flow cytometry).
Collapse
Affiliation(s)
- Emanuela Corsini
- School of Pharmacy, Department of Environmental Health and Policy, Laboratory of Toxicology, Università degli Studi di Milano, Milan, Italy.
| | | |
Collapse
|
5
|
Stiefel C, Schwack W. Photoprotection in changing times - UV filter efficacy and safety, sensitization processes and regulatory aspects. Int J Cosmet Sci 2014; 37:2-30. [DOI: 10.1111/ics.12165] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/20/2014] [Indexed: 12/14/2022]
Affiliation(s)
- C. Stiefel
- Institute of Food Chemistry; University of Hohenheim; Garbenstrasse 28 70599 Stuttgart Germany
| | - W. Schwack
- Institute of Food Chemistry; University of Hohenheim; Garbenstrasse 28 70599 Stuttgart Germany
| |
Collapse
|
6
|
Vocanson M, Nicolas JF, Basketter D. In vitroapproaches to the identification and characterization of skin sensitizers. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17469872.2013.814882] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Basketter D, Maxwell G. Identification and characterization of allergens:in vitroapproaches. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17469872.2.4.471] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Evaluation of the performance of the reduced local lymph node assay for skin sensitization testing. Regul Toxicol Pharmacol 2013; 66:66-71. [DOI: 10.1016/j.yrtph.2013.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/10/2013] [Accepted: 02/12/2013] [Indexed: 11/20/2022]
|
9
|
Santinha DR, Luísa Dória M, Neves BM, Maciel EA, Martins J, Helguero L, Domingues P, Teresa Cruz M, Rosário Domingues M. Prospective phospholipid markers for skin sensitization prediction in keratinocytes: A phospholipidomic approach. Arch Biochem Biophys 2013; 533:33-41. [DOI: 10.1016/j.abb.2013.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/28/2013] [Accepted: 02/20/2013] [Indexed: 11/27/2022]
|
10
|
Van Den Heuvel RL, Lambrechts N, Verstraelen S, Nelissen IC, Schoeters GER. Chemical sensitization and allergotoxicology. EXPERIENTIA SUPPLEMENTUM (2012) 2012; 101:289-314. [PMID: 22945573 DOI: 10.1007/978-3-7643-8340-4_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Chemical sensitization remains an important environmental and occupational health issue. A wide range of substances have been shown to possess the ability to induce skin sensitization or respiratory sensitization. As a consequence, there is a need to have appropriate methods to identify sensitizing agents. Although a considerable investment has been made in exploring opportunities to develop methods for hazard identification and characterization, there are, as yet, no validated nonanimal methods available. A state of the art of the different in vitro approaches to identify contact and respiratory capacity of chemicals is covered in this chapter.
Collapse
Affiliation(s)
- Rosette L Van Den Heuvel
- Environmental Risk and Health Unit-Toxicology, Flemish Institute for Technological Research (VITO N.V.), Centre for Advanced R&D on Alternative Methods (CARDAM), Boeretang 200, 2400, Mol, Belgium,
| | | | | | | | | |
Collapse
|
11
|
Klein SG, Hennen J, Serchi T, Blömeke B, Gutleb AC. Potential of coculture in vitro models to study inflammatory and sensitizing effects of particles on the lung. Toxicol In Vitro 2011; 25:1516-34. [PMID: 21963807 DOI: 10.1016/j.tiv.2011.09.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 07/18/2011] [Accepted: 09/06/2011] [Indexed: 12/30/2022]
Abstract
Exposure to particulate matter (PM) like nanoparticles (NPs) has increased in the last century due to increased combustion processes, road traffic, etc. In addition, the progress in chemical and cosmetic industry led to many new compounds, e.g. fragrances, which humans are exposed to every day. Many chemicals are known to act as contact and some as respiratory sensitizers, causing allergic reactions. Exposure to small particles of less than 100 nm in diameter is linked with an increased risk of respiratory diseases, such as asthma or rhinitis. To date already more than 1000 customer products contain eNPs without knowing much about the health effects. In comparison to chemicals, the mechanisms by which PM and eNPs can cause sensitization are still not fully understood. Validated and regulatory accepted in vitro models to assess this hazard in its full range are still missing. While a huge number of animal studies contributed to our knowledge about sensitization processes, knowledge on involved cellular mechanisms is still limited. In this review relevant in vitro models to study and elucidate these mechanisms in more detail are presented and their potential to serve as part of a tiered testing strategy is discussed.
Collapse
Affiliation(s)
- Sebastian G Klein
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public, Gabriel Lippmann, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | | | | | | | | |
Collapse
|
12
|
Borak J, Fields C, Andrews LS, Pemberton MA. Methyl methacrylate and respiratory sensitization: a critical review. Crit Rev Toxicol 2011; 41:230-68. [PMID: 21401327 PMCID: PMC3072694 DOI: 10.3109/10408444.2010.532768] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 10/14/2010] [Indexed: 12/16/2022]
Abstract
Methyl methacrylate (MMA) is a respiratory irritant and dermal sensitizer that has been associated with occupational asthma in a small number of case reports. Those reports have raised concern that it might be a respiratory sensitizer. To better understand that possibility, we reviewed the in silico, in chemico, in vitro, and in vivo toxicology literature, and also epidemiologic and occupational medicine reports related to the respiratory effects of MMA. Numerous in silico and in chemico studies indicate that MMA is unlikely to be a respiratory sensitizer. The few in vitro studies suggest that MMA has generally weak effects. In vivo studies have documented contact skin sensitization, nonspecific cytotoxicity, and weakly positive responses on local lymph node assay; guinea pig and mouse inhalation sensitization tests have not been performed. Cohort and cross-sectional worker studies reported irritation of eyes, nose, and upper respiratory tract associated with short-term peaks exposures, but little evidence for respiratory sensitization or asthma. Nineteen case reports described asthma, laryngitis, or hypersensitivity pneumonitis in MMA-exposed workers; however, exposures were either not well described or involved mixtures containing more reactive respiratory sensitizers and irritants. The weight of evidence, both experimental and observational, argues that MMA is not a respiratory sensitizer.
Collapse
Affiliation(s)
- Jonathan Borak
- Department of Epidemiology and Public Health, Yale University, New Haven, Connecticut 06510, USA.
| | | | | | | |
Collapse
|
13
|
Kimber I, Basketter DA, Gerberick GF, Ryan CA, Dearman RJ. Chemical allergy: translating biology into hazard characterization. Toxicol Sci 2010; 120 Suppl 1:S238-68. [PMID: 21097995 DOI: 10.1093/toxsci/kfq346] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The induction by chemicals of allergic sensitization and allergic disease is an important and challenging branch of toxicology. Skin sensitization resulting in allergic contact dermatitis represents the most common manifestation of immunotoxicity in humans, and many hundreds of chemicals have been implicated as skin sensitizers. There are far fewer chemicals that have been shown to cause sensitization of the respiratory tract and asthma, but the issue is no less important because hazard identification remains a significant challenge, and occupational asthma can be fatal. In all areas of chemical allergy, there have been, and remain still, intriguing challenges where progress has required a close and productive alignment between immunology, toxicology, and clinical medicine. What the authors have sought to do here is to exemplify, within the framework of chemical allergy, how an investment in fundamental research and an improved understanding of relevant biological and biochemical mechanisms can pay important dividends in driving new innovations in hazard identification, hazard characterization, and risk assessment. Here we will consider in turn three specific areas of research in chemical allergy: (1) the role of epidermal Langerhans cells in the development of skin sensitization, (2) T lymphocytes and skin sensitization, and (3) sensitization of the respiratory tract. In each area, the aim is to identify what has been achieved and how that progress has impacted on the development of new approaches to toxicological evaluation. Success has been patchy, and there is still much to be achieved, but the journey has been fascinating and there have been some very important developments. The conclusion drawn is that continued investment in research, if coupled with an appetite for translating the fruits of that research into imaginative new tools for toxicology, should continue to better equip us for tackling the important challenges that remain to be addressed.
Collapse
Affiliation(s)
- Ian Kimber
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.
| | | | | | | | | |
Collapse
|
14
|
Prediction of the contact sensitizing potential of chemicals using analysis of gene expression changes in human THP-1 monocytes. Toxicol Lett 2010; 199:51-9. [DOI: 10.1016/j.toxlet.2010.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 07/23/2010] [Accepted: 08/06/2010] [Indexed: 11/15/2022]
|
15
|
Identification of PDL-1 as a novel biomarker of sensitizer exposure in dendritic-like cells. Toxicol In Vitro 2010; 24:1727-35. [DOI: 10.1016/j.tiv.2010.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/27/2010] [Accepted: 05/12/2010] [Indexed: 11/23/2022]
|
16
|
Chipinda I, Ajibola RO, Morakinyo MK, Ruwona TB, Simoyi RH, Siegel PD. Rapid and simple kinetics screening assay for electrophilic dermal sensitizers using nitrobenzenethiol. Chem Res Toxicol 2010; 23:918-25. [PMID: 20402462 DOI: 10.1021/tx100003w] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The need for alternatives to animal-based skin sensitization testing has spurred research on the use of in vitro, in silico, and in chemico methods. Glutathione and other select peptides have been used to determine the reactivity of electrophilic allergens to nucleophiles, but these methods are inadequate to accurately measure rapid kinetics observed with many chemical sensitizers. A kinetic spectrophotometric assay involving the reactivity of electrophilic sensitizers to nitrobenzenethiol was evaluated. Stopped-flow techniques and conventional UV spectrophotometric measurements enabled the determination of reaction rates with half-lives ranging from 0.4 ms (benzoquinone) to 46.2 s (ethyl acrylate). Rate constants were measured for seven extreme, five strong, seven moderate, and four weak/nonsensitizers. Seventeen out of the 23 tested chemicals were pseudo-first order, and three were second order. In three out of the 23 chemicals, deviations from first and second order were apparent where the chemicals exhibited complex kinetics whose rates are mixed order. The reaction rates of the electrophiles correlated positively with their EC3 values within the same mechanistic domain. Nonsensitizers such as benzaldehyde, sodium lauryl sulfate, and benzocaine did not react with nitrobenzenethiol. Cyclic anhydrides, select diones, and aromatic aldehydes proved to be false negatives in this assay. The findings from this simple and rapid absorbance model show that for the same mechanistic domain, skin sensitization is driven mainly by electrophilic reactivity. This simple, rapid, and inexpensive absorbance-based method has great potential for use as a preliminary screening tool for skin allergens.
Collapse
Affiliation(s)
- Itai Chipinda
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505-2888, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Ahuja V, Eisenblätter M, Ignatius R, Stahlmann R. Ammonium perfluorooctanoate substantially alters phenotype and cytokine secretion of human monocyte-derived dendritic cells in vitro. Immunopharmacol Immunotoxicol 2010; 31:641-6. [PMID: 19874235 DOI: 10.3109/08923970902947317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Perfluoroalkyl carboxylic acids (PFCA) are commercially used for their surfactant properties combined with chemical and thermal stability. Differentiation of peripheral monocytes to immature dendritic cells (DCs) in the presence of the PFCA, ammonium perfluorooctanoate (APFO, 200 microM) led to a considerably increased expression of CD86 and HLA-DR on immature DCs. However, these phenotypic changes were not reflected by an increased T cell-stimulatory capacity of the cells. Notably, activated, fully mature APFO-treated DCs secreted significantly less IL-12 and IL-10 than control cells. Thus, APFO at non-cytotoxic concentration affects the phenotype and cytokine secretion of human DCs.
Collapse
Affiliation(s)
- Varun Ahuja
- Institute of Clinical Pharmacology and Toxicology, Charité Medical University, Berlin, Germany.
| | | | | | | |
Collapse
|
18
|
Yoshikawa Y, Sasahara Y, Kitano Y, Kanazawa N, Shima H, Hashimoto-Tamaoki T. Upregulation of genes orchestrating keratinocyte differentiation, including the novel marker gene ID2, by contact sensitizers in human bulge-derived keratinocytes. J Biochem Mol Toxicol 2010; 24:10-20. [PMID: 20146380 DOI: 10.1002/jbt.20307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the epidermis, keratinocytes are involved in physical and first-line immune protection of the host. In this study, we analyzed the molecular responses to certain contact sensitizers (2,4-dinitrochlorobenzene and NiSO(4)) and irritants (sodium dodecyl sulfate and benzalkonium chloride) in cultured human keratinocytes from the bulge region of a plucked hair follicle (bulge-derived keratinocytes [BDKs]) and compared these molecular responses to those with the human monocytic leukemia cell line, THP-1. The BDKs, individually established without invasive biopsies, showed high reactivity to these stimulants. As a primary response to the contact sensitizers, the NRF2-mediated signaling pathway was upregulated in BDKs and THP-1. The expression of IL1B and IL8 genes was not induced by the irritants but by the sensitizers in THP-1. However, the expression of the IL1B and IL8 genes was induced at higher levels by the irritants in BDKs than by the sensitizers. Many genes orchestrating keratinocyte differentiation, including ID2, were significantly upregulated in response to the sensitizers in BDKs but not those in THP-1. The use of the ID2 gene to discriminate between sensitizers and irritants might be effective as a novel marker for application during in vitro sensitization with BDKs.
Collapse
Affiliation(s)
- Yoshie Yoshikawa
- Department of Genetics, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Migdal C, Foggia L, Tailhardat M, Courtellemont P, Haftek M, Serres M. Sensitization effect of thimerosal is mediated in vitro via reactive oxygen species and calcium signaling. Toxicology 2010; 274:1-9. [PMID: 20457211 DOI: 10.1016/j.tox.2010.04.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 04/14/2010] [Accepted: 04/28/2010] [Indexed: 11/29/2022]
Abstract
Thimerosal, a mercury derivative composed of ethyl mercury chloride (EtHgCl) and thiosalicylic acid (TSA), is widely used as a preservative in vaccines and cosmetic products and causes cutaneous reactions. Since dendritic cells (DCs) play an essential role in the immune response, the sensitization potency of chemicals was studied in vitro using U937, a human promyelomonocytic cell line that is used as a surrogate of monocytic differentiation and activation. Currently, this cell line is under ECVAM (European Center for the Validation of Alternative Methods) validation as an alternative method for discriminating chemicals. Thimerosal and mercury derivatives induced in U937 an overexpression of CD86 and interleukin (IL)-8 secretion similarly to 1-chloro-2,4-dinitrobenzene (DNCB), a sensitizer used as a positive control for DC activation. Non-sensitizers, dichloronitrobenzene (DCNB), TSA and sodium dodecyl sulfate (SDS), an irritant, had no effect. U937 activation was prevented by cell pretreatment with N-acetyl-L-cysteine (NAC) but not with thiol-independent antioxidants except vitamin E which affected CD86 expression by preventing lipid peroxidation of cell membranes. Thimerosal, EtHgCl and DNCB induced glutathione (GSH) depletion and reactive oxygen species (ROS) within 15 min; another peak was detected after 2h for mercury compounds only. MitoSOX, a specific mitochondrial fluorescent probe, confirmed that ROS were essentially produced by mitochondria in correlation with its membrane depolarization. Changes in mitochondrial membrane permeability induced by mercury were reversed by NAC but not by thiol-independent antioxidants. Thimerosal and EtHgCl also induced a calcium (Ca2+) influx with a peak at 3h, suggesting that Ca2+ influx is a secondary event following ROS induction as Ca2+ influx was suppressed after pretreatment with NAC but not with thiol-independent antioxidants. Ca2+ influx was also suppressed when culture medium was deprived of Ca2+ confirming the specificity of the measure. In conclusion, these data suggest that thimerosal induced U937 activation via oxidative stress from mitochondrial stores and mitochondrial membrane depolarization with a primordial effect of thiol groups. A cross-talk between ROS and Ca2+ influx was demonstrated.
Collapse
Affiliation(s)
- Camille Migdal
- EA 41-69, Université Lyon 1, Pavillon R, Hôpital Edouard Herriot, 69437 Lyon Cedex 03, France
| | | | | | | | | | | |
Collapse
|
20
|
Feser K, Kietzmann M, Bäumer W, Krause C, Bach F. Effects of Degradable Mg-Ca Alloys on Dendritic Cell Function. J Biomater Appl 2010; 25:685-97. [DOI: 10.1177/0885328209360424] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Degradable magnesium alloys are new materials for implants used in orthopedic and trauma surgery. The aim of this study was to investigate the influence of degradable magnesium alloys on the function of dendritic cells (DC) as these cells represent the major antigen presenting cells of the body. MgP (pure magnesium), MgCa 0.6 (0.6% calcium), MgCa 0.8 (0.8% calcium), MgCa 1.0 (1% calcium), and MgCa 1.2 (1.2% calcium) alloys were degraded in cell culture medium. In parallel, murine bone marrow-derived DC were incubated with increasing concentrations (0.1—10 mmol/L) of magnesium chloride and calcium chloride, respectively. Incubation of DC with degradation media over 6 days had no influence on cell viability and only marginal influence on DC migration. Also, the production of TNFα and expression of CD86 was not enhanced by incubation with degraded magnesium alloys. The mixed leukocyte reaction revealed that there was also no increase of the T-cell proliferation in comparison to untreated controls. However, there was a trend toward macrophage development at the expense of DC expansion and an enhanced DC migration was induced by incubation with higher magnesium concentrations. Particularly the latter should be verified in in vivo experiments.
Collapse
Affiliation(s)
- K. Feser
- Department of Pharmacology, Toxicology and Pharmacy University of Veterinary Medicine Hannover, Germany
| | - M. Kietzmann
- Department of Pharmacology, Toxicology and Pharmacy University of Veterinary Medicine Hannover, Germany
| | - W. Bäumer
- Department of Pharmacology, Toxicology and Pharmacy University of Veterinary Medicine Hannover, Germany,
| | - C. Krause
- Institute of Materials Science, Leibniz University of Hannover, Germany
| | - F.W. Bach
- Institute of Materials Science, Leibniz University of Hannover, Germany
| |
Collapse
|
21
|
Abstract
A brief historical perspective of immunotoxicology is presented describing the early development of predictive screening tests to identify xenobiotics that may cause immunosuppression or skin sensitization. This includes a discussion of the evolution of the discipline to support a better understanding of basic -science and improvement of human risk assessment. The last section describes the need for additional validated screening tests and recent efforts to address this gap in the other areas of immunotoxicology including food and respiratory allergy, autoimmunity and immunostimulation.
Collapse
|
22
|
Abstract
One of the most potentially useful tools in immunotoxicology is the assessment of cytokines, the proteins/peptides that are responsible for regulating a variety of processes including immunity, inflammation, apoptosis, and hematopoiesis. Cytokine production measurements offer an outstanding promise and may eventually substitute for other more laborious procedures. The particular profile of cytokine production may provide an important information regarding the nature of many immunotoxic responses.Recent expansion in the knowledge of cytokine biology and the realization that cytokines play a role in human diseases have created a need for the precise assessment and accurate interpretation of their presence and activity in the body fluids, tissues and cells. Proper evaluation of cytokines requires attention to several technical details. Multi-cytokine analysis still needs to be standardized in terms of optimum source for analysis, protocols and quality control issues, such as the use of reference standards and the expression of results.Important practical details and considerations will be discussed in this chapter, including the source of the sample to be tested (circulating fluids, or ex vivo/in vitro isolated cells), the potential effects of collection, processing, and storage of the results of the assays, as well as potential variables associated with the source material (matrix effects, relevance, inhibitory substances), and factors influencing the choice of assay used (bioassay, immunoassay, molecular biology technique, flow cytometry).
Collapse
|
23
|
Kimber I, Basketter DA, Dearman RJ. Chemical allergens--what are the issues? Toxicology 2009; 268:139-42. [PMID: 19646501 DOI: 10.1016/j.tox.2009.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/20/2009] [Accepted: 07/21/2009] [Indexed: 11/27/2022]
Abstract
Chemical allergy describes the adverse health effects that may result when exposure to a chemical elicits an immune response. Allergy develops in two phases. In the first phase, exposure of an inherently susceptible subject results in stimulation of an immune response or immunological priming. If the then sensitised subject is exposed on a subsequent occasion to the same chemical then an accelerated and more aggressive secondary immune response will be provoked resulting in inflammation and the signs and symptoms of a clinically discernible allergic reaction. The two forms of chemical allergy of greatest relevance for occupational toxicology are skin sensitisation resulting in allergic contact dermatitis, and sensitisation of the respiratory tract associated with occupational rhinitis and asthma. In this brief survey we identify what we believe currently represent the key issues and key challenges in these areas.
Collapse
Affiliation(s)
- Ian Kimber
- Faculty of Life Sciences, University of Manchester, Faculty of Life Sciences, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| | | | | |
Collapse
|
24
|
Hirota M, Suzuki M, Hagino S, Kagatani S, Sasaki Y, Aiba S, Itagaki H. Modification of cell-surface thiols elicits activation of human monocytic cell line THP-1: possible involvement in effect of haptens 2,4-dinitrochlorobenzene and nickel sulfate. J Toxicol Sci 2009; 34:139-50. [PMID: 19336971 DOI: 10.2131/jts.34.139] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Human monocytic cell line THP-1 cells are used as an indicator for in vitro skin sensitization testing. Although p38 mitogen-activated protein kinases (MAPKs) and intracellular redox imbalance play crucial roles in the activation of THP-1 by skin sensitizers, the trigger of cell activation has not been identified. Therefore, we examined whether haptens induce THP-1 maturation directly or indirectly. 2,4-Dinitrochlorobenzene (DNCB), but not dinitrophenol (DNP)-conjugated bovine serum albumin or DNP-conjugated fetal bovine serum, induced CD86 expression. DNCB and nickel sulfate (NiSO4) also induced related changes of cell-surface thiols and phosphorylation of p38 MAPK. However, DNCB is membrane-permeable, and so its direct effect may not be confined to cell membrane proteins. Next, we found that CD86 expression and macrophage inflammatory protein-1beta (MIP-1beta) production were augmented by the membrane-impermeable thiol blocker 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), and these changes were suppressed by an inhibitor of the p38 MAPK pathway, SB203580. Finally, we confirmed that endocytotic activity for bovine serum albumin (BSA) Alexa Fluor 488 conjugate did not affect cell-surface thiols on THP-1 cells. Thus, our data indicate that the changes of cell-surface thiols are one of the triggers of maturation, and play a key role in activation of THP-1 cells by haptens.
Collapse
Affiliation(s)
- Morihiko Hirota
- Quality Assessment Center, Shiseido Co., Ltd., Yokohama-shi.
| | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Kwon S, Holland D, Kern P. Skin safety evaluation of laundry detergent products. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2009; 72:1369-1379. [PMID: 20077208 DOI: 10.1080/15287390903212675] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The conduct of a scientifically sound safety assessment of new ingredients and finished products is essential prior to their introduction into the marketplace. Such assessments are based on a risk assessment paradigm established by the National Academy of Science (NAS, 1983) that consists of a four-step process: hazard identification, dose-response assessment, exposure assessment, and risk characterization. This risk assessment paradigm has been (1) used as a framework for estimating an adverse health risk posed by environmental chemicals, and (2) applied to systemic toxicological endpoints. The general principles of risk assessment may be applied to skin safety evaluation of consumer products, considering that dermal toxicity is also a threshold phenomenon. This study describes a risk assessment-based approach for skin safety evaluation of laundry detergent products.
Collapse
Affiliation(s)
- Seok Kwon
- Kobe Technical Center, Procter & Gamble Innovation Godo Kaisha, Kobe, Japan.
| | | | | |
Collapse
|
27
|
|
28
|
Dearman RJ, Cumberbatch M, Portsmouth C, Maxwell G, Basketter DA, Kimber I. Synergistic effects of chemical insult and toll-like receptor ligands on dendritic cell activation. Toxicol In Vitro 2008; 22:1927-34. [DOI: 10.1016/j.tiv.2008.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 09/16/2008] [Accepted: 09/16/2008] [Indexed: 11/24/2022]
|
29
|
Assuring Consumer Safety without Animal Testing: A Feasibility Case Study for Skin Sensitisation. Altern Lab Anim 2008; 36:557-68. [DOI: 10.1177/026119290803600511] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Allergic Contact Dermatitis (ACD; chemical-induced skin sensitisation) represents a key consumer safety endpoint for the cosmetics industry. At present, animal tests (predominantly the mouse Local Lymph Node Assay) are used to generate skin sensitisation hazard data for use in consumer safety risk assessments. An animal testing ban on chemicals to be used in cosmetics will come into effect in the European Union (EU) from March 2009. This animal testing ban is also linked to an EU marketing ban on products containing any ingredients that have been subsequently tested in animals, from March 2009 or March 2013, depending on the toxicological endpoint of concern. Consequently, the testing of cosmetic ingredients in animals for their potential to induce skin sensitisation will be subject to an EU marketing ban, from March 2013 onwards. Our conceptual framework and strategy to deliver a non-animal approach to consumer safety risk assessment can be summarised as an evaluation of new technologies (e.g. ‘omics’, informatics), leading to the development of new non-animal ( in silico and in vitro) predictive models for the generation and interpretation of new forms of hazard characterisation data, followed by the development of new risk assessment approaches to integrate these new forms of data and information in the context of human exposure. Following the principles of the conceptual framework, we have been investigating existing and developing new technologies, models and approaches, in order to explore the feasibility of delivering consumer safety risk assessment decisions in the absence of new animal data. We present here our progress in implementing this conceptual framework, with the skin sensitisation endpoint used as a case study.
Collapse
|
30
|
Basketter D, Maxwell G. In VitroApproaches to the Identification and Characterization of Skin Sensitizers. Cutan Ocul Toxicol 2008; 26:359-73. [DOI: 10.1080/15569520701622993] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Basketter DA, Kan-King-Yu D, Dierkes P, Jowsey IR. Does Irritation Potency Contribute to the Skin Sensitization Potency of Contact Allergens? Cutan Ocul Toxicol 2008; 26:279-86. [DOI: 10.1080/15569520701555359] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Mehrotra P, Upadhyaya S, Sinkar VP, Banerjee G, Mishra KP. Differential Phosphorylation of MAPK Isoforms in Keratinocyte Cell Line by Contact Allergens and Irritant. Toxicol Mech Methods 2008; 17:101-7. [DOI: 10.1080/15376510600860250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Gerberick F, Aleksic M, Basketter D, Casati S, Karlberg AT, Kern P, Kimber I, Lepoittevin JP, Natsch A, Ovigne JM, Rovida C, Sakaguchi H, Schultz T. Chemical reactivity measurement and the predicitve identification of skin sensitisers. The report and recommendations of ECVAM Workshop 64. Altern Lab Anim 2008; 36:215-42. [PMID: 18522487 DOI: 10.1177/026119290803600210] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Frank Gerberick
- Procter & Gamble Company, Miami Valley Innovation Center, Cincinnati, OH 45253, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chipinda I, Hettick JM, Simoyi RH, Siegel PD. Zinc diethyldithiocarbamate allergenicity: potential haptenation mechanisms. Contact Dermatitis 2008; 59:79-89. [DOI: 10.1111/j.1600-0536.2008.01399.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Abstract
Skin sensitisation is an important toxicological endpoint. The possibility that chemicals used in the workplace and in consumer products might cause skin sensitisation is a major concern for individuals, for employers and for marketing. In European REACH (Registration, Evaluation, and Authorisation of Chemicals) legislation, the sensitising potential should therefore be assessed for chemicals below the 10 ton threshold. Development of methods for prediction of skin sensitisation potential without animal testing has been an active research area for some time, but has received further impetus with the advent of REACH and the EU Cosmetics Directive (EU 2003). This paper addresses the issue of non-animal based prediction of sensitisation by a mechanistic approach. It is known that the sequence of molecular, biomolecular and cellular events between exposure to a skin sensitiser and development of the sensitised state involves several stages, in particular penetration through the stratum corneum, covalent binding to carrier protein, migration of Langerhans cells, presentation of the antigen to naïve T-cells. In this paper each of these stages is considered with respect to the extent to which it is dependent on the chemical properties of the sensitiser. The evidence suggests that, although penetration of the stratum corneum, stimulation of migration and maturation of Langerhans cells, and antigen recognition are important events in the induction of sensitisation, except in certain specific circumstances they can be taken for granted. They are not important factors in determining whether a compound will be a sensitiser or not, nor are they important factors in determining how potent one sensitiser will be relative to another. The ability to bind covalently to carrier protein is the major structure-dependent determinant of skin sensitisation potential. A chemistry-based prediction strategy is proposed involving reaction mechanistic domain assignment, reactivity and hydrophobicity determination, and application of quantitative mechanistic modelling (QMM) or read-across.
Collapse
Affiliation(s)
- David W Roberts
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England.
| | | |
Collapse
|
36
|
Differential modulation of CXCR4 and CD40 protein levels by skin sensitizers and irritants in the FSDC cell line. Toxicol Lett 2008; 177:74-82. [DOI: 10.1016/j.toxlet.2007.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 12/12/2007] [Accepted: 12/17/2007] [Indexed: 11/19/2022]
|
37
|
Karlberg AT, Bergström MA, Börje A, Luthman K, Nilsson JLG. Allergic contact dermatitis--formation, structural requirements, and reactivity of skin sensitizers. Chem Res Toxicol 2007; 21:53-69. [PMID: 18052130 DOI: 10.1021/tx7002239] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Contact allergy is caused by a wide range of chemicals after skin contact. Its clinical manifestation, allergic contact dermatitis (ACD), is developed upon repeated contact with the allergen. This perspective focuses on two areas that have yielded new useful information during the last 20 years: (i) structure-activity relationship (SAR) studies of contact allergy based on the concept of hapten-protein binding and (ii) mechanistic investigations regarding activation of nonsensitizing compounds to contact allergens by air oxidation or skin metabolism. The second area is more thoroughly reviewed since the full picture has previously not been published. Prediction of the sensitizing capacity of a chemical is important to avoid outbreaks of ACD in the population. Much research has been devoted to the development of in vitro and in silico predictive testing methods. Today, no method exists that is sensitive enough to detect weak allergens and that is robust enough to be used for routine screening. To cause sensitization, a chemical must bind to macromolecules (proteins) in the skin. Expert systems containing information about the relationship between the chemical structure and the ability of chemicals to haptenate proteins are available. However, few designed SAR studies based on mechanistic investigations of prohaptens have been published. Many compounds are not allergenic themselves but are activated in the skin (e.g., metabolically) or before skin contact (e.g., via air oxidation) to form skin sensitizers. Thus, more basic research is needed on the chemical reactions involved in the antigen formation and the immunological mechanisms. The clinical importance of air oxidation to activate nonallergenic compounds has been demonstrated. Oxidized fragrance terpenes, in contrast to the pure terpenes, gave positive patch test reactions in consecutive dermatitis patients as frequently as the most common standard allergens. This shows the importance of using compounds to which people are exposed when screening for ACD in dermatology clinics.
Collapse
Affiliation(s)
- Ann-Therese Karlberg
- Dermatochemistry and Skin Allergy and Medical Chemistry, Department of Chemistry, Götegorg University, Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
38
|
Schreiner M, Peiser M, Briechle D, Stahlmann R, Zuberbier T, Wanner R. A loose-fit coculture of activated keratinocytes and dendritic cell-related cells for prediction of sensitizing potential. Allergy 2007; 62:1419-28. [PMID: 17983376 DOI: 10.1111/j.1398-9995.2007.01511.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protection against contact allergy begins with the collection of reliable data about the sensitizing potential of chemicals. Today, the local lymph node assay (LLNA) in mice is widely used to identify sensitizing substances. For several reasons, an in vitro assay could be preferable to animal experiments. We propose an in vitro test for the detection of a sensitizing potential of a chemical composed of a single layer of human nondifferentiating keratinocytes and of allogenic floating monocytes which are cocultured in serum-free medium in the presence of a cytokine cocktail. Within days, the coculture develops to an allergen- sensitive system consisting of activated keratinocytes and of mobile dendritic cell-related cells (DC-related cell). The sensitizing potential can be determined by analyzing the expression of the dendritic cell maturation marker CD86. For the model contact allergens tested so far [trinitrobenzenesulfonic acid (TNBS), phenylendiamine, and 4-aminoacetanilide], the strength of the reaction was in concordance with results from the LLNA. Sensitivity of the assay allowed testing at concentrations without general cytotoxicity. Thus, a differentiation between allergens and irritants was possible. Regarding cytokine secretion, the assay distinguished between the allergen TNBS and the Toll-like receptor ligand lipopolysaccharide. The coculture can be set up from cryopreserved cells. The assay is easy to perform and reproducible. Donor-variance is negligible. This in vitro assay based on a loose-fit coculture is a reasonable approach to screen for the sensitizing potential of xenobiotics and might partially replace the LLNA and other animal tests.
Collapse
|
39
|
Respiratory sensitization and allergy: current research approaches and needs. Toxicol Appl Pharmacol 2007; 226:1-13. [PMID: 18023833 DOI: 10.1016/j.taap.2007.10.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 09/07/2007] [Accepted: 10/05/2007] [Indexed: 11/24/2022]
Abstract
There are currently no accepted regulatory models for assessing the potential of a substance to cause respiratory sensitization and allergy. In contrast, a number of models exist for the assessment of contact sensitization and allergic contact dermatitis (ACD). Research indicates that respiratory sensitizers may be identified through contact sensitization assays such as the local lymph node assay, although only a small subset of the compounds that yield positive results in these assays are actually respiratory sensitizers. Due to the increasing health concerns associated with occupational asthma and the impending directives on the regulation of respiratory sensitizers and allergens, an approach which can identify these compounds and distinguish them from contact sensitizers is required. This report discusses some of the important contrasts between respiratory allergy and ACD, and highlights several prominent in vivo, in vitro and in silico approaches that are being applied or could be further developed to identify compounds capable of causing respiratory allergy. Although a number of animal models have been used for researching respiratory sensitization and allergy, protocols and endpoints for these approaches are often inconsistent, costly and difficult to reproduce, thereby limiting meaningful comparisons of data between laboratories and development of a consensus approach. A number of emerging in vitro and in silico models show promise for use in the characterization of contact sensitization potential and should be further explored for their ability to identify and differentiate contact and respiratory sensitizers. Ultimately, the development of a consistent, accurate and cost-effective model will likely incorporate a number of these approaches and will require effective communication, collaboration and consensus among all stakeholders.
Collapse
|
40
|
Bergström MA, Ott H, Carlsson A, Neis M, Zwadlo-Klarwasser G, Jonsson CAM, Merk HF, Karlberg AT, Baron JM. A Skin-Like Cytochrome P450 Cocktail Activates Prohaptens to Contact Allergenic Metabolites. J Invest Dermatol 2007; 127:1145-53. [PMID: 17124504 DOI: 10.1038/sj.jid.5700638] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Allergic contact dermatitis is a complex syndrome representing immunological responses to cutaneous exposure to protein-reactive chemicals. Although many contact sensitizers directly can elicit this disorder, others (prohaptens) require activation. Knowledge regarding the activating mechanisms remains limited, but one possibility is metabolic activation by cytochrome P450 (CYP) enzymes in the skin. We have, after quantitative reverse transcriptase-PCR studies of the CYP content in 18 human skin samples, developed an enriched skin-like recombinant human (rh) CYP cocktail using CYP1A1, 1B1, 2B6, 2E1, and 3A5. To validate the rhCYP cocktail, a prohaptenic conjugated diene ((5R)-5-isopropenyl-2-methyl-1-methylene-2-cyclohexene) was investigated using: the skin-like rhCYP cocktail, a liver-like rhCYP cocktail, single rhCYP enzymes, liver microsomes, keratinocytes, and a dendritic cell (DC) assay. The diene was activated to sensitizing epoxides in all non-cell-based incubations including the skin-like rhCYP cocktail. An exocyclic epoxide metabolite ((7R)-7-isopropenyl-4-methyl-1-oxaspiro[2.5]oct-4-ene) was found to be mainly responsible for the allergenic activity of the diene. This epoxide also induced pronounced DC activation indicated by upregulation of IL-8. The skin-like rhCYP cocktail provides a simplified alternative to using skin tissue preparations in mechanistic studies of CYP-mediated skin metabolism of prohaptens and offers the future possibility of designing in vitro predictive assays for assessment of allergenic activity of prohaptens.
Collapse
Affiliation(s)
- Moa Andresen Bergström
- Dermatochemistry and Skin Allergy, Department of Chemistry, Göteborg University, Göteborg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Arkusz J, Stepnik M, Lewińska D, Stańczyk M, Palus J, Dziubałtowska E. Interleukin-1β expression in murine J774A.1 macrophages exposed to platinum compounds: The role of p38 and ERK 1/2 mitogen-activated protein kinases. Toxicol In Vitro 2007; 21:371-9. [PMID: 17084586 DOI: 10.1016/j.tiv.2006.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 09/12/2006] [Accepted: 09/14/2006] [Indexed: 11/18/2022]
Abstract
Although skin and respiratory sensitizing properties of platinum compounds have been proved in humans and mice, little is known about signal transduction pathways leading to cytokine production in the induction phase. It is generally assumed that induction of skin sensitization, but not skin irritation, is associated with a rapid increase in the IL-1beta mRNA expression. In this study, IL-1beta expression and a role of mitogen-activated protein kinases (MAPKs) in this process were investigated in murine macrophages J774A.1 exposed to four platinum compounds. Potassium tetrachloroplatinate (K(2)PtCl(4); TCPP), ammonium tetrachloroplatinate ((NH(4))(2)PtCl(4); TCPA), ammonium hexachloroplatinate ((NH(4))(2)PtCl(6); HCPA) showed a very similar range of cytotoxic concentrations (IC(50) values: 238 microM+/-30; 269 microM+/-39 and 245 microM+/-31, respectively) as assessed in the 24-h MTT reduction test. Cytotoxicity of cis-diammineplatinum dichloride (cisplatin) was considerably higher (IC(50) of 23 microM+/-4). While increased expression of IL-1beta mRNA was observed in the macrophages exposed to each test compound, IL-1beta protein production was detected in cell lysates after treatment with TCPP, TCPA and HCPA for 24h (concentration range of 150-350 microM) as well as for 2h (450-650 microM). The treatment with each compound resulted in the phosphorylation of both p38 MAPK and ERK 1/2 (p44/42). Blocking the activation of p38 MAPK as well as ERK 1/2 with specific inhibitors (SB203580 and U0126, respectively) down-regulated the IL-1beta expression. Interestingly, the skin irritant sodium dodecyl sulfate did not trigger phosphorylation of these kinases, nor induced IL-1beta production. These data suggest that p38 MAPK and ERK 1/2 play an important role in induction of IL-1beta expression in J774A.1 macrophages exposed to test platinum compounds.
Collapse
Affiliation(s)
- Joanna Arkusz
- Nofer Institute of Occupational Medicine, 8 Teresy St, 91-348 Lodz, Poland
| | | | | | | | | | | |
Collapse
|
42
|
Python F, Goebel C, Aeby P. Assessment of the U937 cell line for the detection of contact allergens. Toxicol Appl Pharmacol 2007; 220:113-24. [PMID: 17306317 DOI: 10.1016/j.taap.2006.12.026] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 12/19/2006] [Accepted: 12/26/2006] [Indexed: 10/23/2022]
Abstract
The human myeloid cell line U937 was evaluated as an in vitro test system to identify contact sensitizers in order to develop alternatives to animal tests for the cosmetic industry. Specific culture conditions (i.e., presence of interleukin-4, IL-4) were applied to obtain a dendritic cell-like phenotype. In the described test protocol, these cells were exposed to test chemicals and then analyzed by flow cytometry for CD86 expression and by quantitative real-time reverse transcriptase-polymerase chain reaction for IL-1beta and IL-8 gene expressions. Eight sensitizers, three non-sensitizers and five oxidative hair dye precursors were examined after 24-, 48- and 72-h exposure times. Test item-specific modulations of the chosen activation markers (CD86, IL-1beta and IL-8) suggest that this U937 activation test could discriminate test items classified as contact sensitizers or non-sensitizers in the local lymph node assay in mice (LLNA). More specifically, a test item can be considered as a potential sensitizer when it significantly induced the upregulation of the expression of at least two markers. Using this approach, we could correctly evaluate the dendritic cell (DC) activation potential for 15 out of 16 tested chemicals. We conclude that the U937 activation test may represent an useful tool in a future in vitro test battery for predicting sensitizing properties of chemicals.
Collapse
Affiliation(s)
- François Python
- Experimental Product Safety, The Procter and Gamble Co., Wella-Cosmital SA, Marly, Switzerland.
| | | | | |
Collapse
|
43
|
Kimber I, Dearman RJ, Betts CJ, Gerberick GF, Ryan CA, Kern PS, Patlewicz GY, Basketter DA. The local lymph node assay and skin sensitization: a cut-down screen to reduce animal requirements? Contact Dermatitis 2006; 54:181-5. [PMID: 16650091 DOI: 10.1111/j.0105-1873.2006.00827.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The local lymph node assay (LLNA), an alternative approach to skin-sensitizing testing, has made a significant contribution to animal welfare by permitting a reduction and refinement of animal use. Although there is clearly an aspiration to eliminate the use of animals in such tests, it is appropriate also to consider other opportunities for refinement and reduction of animal use. We have therefore explored the use of a modified version of the LLNA for screening purposes when there is a need to evaluate the sensitizing activity of a large number of chemicals, as will be the case under the auspices of registration, evaluation and authorization of chemicals (REACH). Using an existing LLNA database of 211 chemicals, we have examined whether a cut-down assay comprising a single high-dose group and a concurrent vehicle control would provide a realistic approach for screening chemicals for sensitizing potential. The analyses reported here suggest this is the case. We speculate that the animal welfare benefits may be enhanced further by reducing the number of animals per experimental group. However, a detailed evaluation will be necessary to provide reassurance that a reduction in group size would provide adequate sensitivity across a range of skin sensitization potencies.
Collapse
Affiliation(s)
- Ian Kimber
- Syngenta Central Toxicology Laboratory, Alderley Park, Macclesfield, Cheshire, UK.
| | | | | | | | | | | | | | | |
Collapse
|