1
|
Westmark CJ. Toward an understanding of the role of the exposome on fragile X phenotypes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 173:141-170. [PMID: 37993176 DOI: 10.1016/bs.irn.2023.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Fragile X syndrome (FXS) is the leading known monogenetic cause of autism with an estimated 21-50% of FXS individuals meeting autism diagnostic criteria. A critical gap in medical care for persons with autism is an understanding of how environmental exposures and gene-environment interactions affect disease outcomes. Our research indicates more severe neurological and metabolic outcomes (seizures, autism, increased body weight) in mouse and human models of autism spectrum disorders (ASD) as a function of diet. Thus, early-life exposure to chemicals in the diet could cause or exacerbate disease outcomes. Herein, we review the effects of potential dietary toxins, i.e., soy phytoestrogens, glyphosate, and polychlorinated biphenyls (PCB) in FXS and other autism models. The rationale is that potentially toxic chemicals in the diet, particularly infant formula, could contribute to the development and/or severity of ASD and that further study in this area has potential to improve ASD outcomes through dietary modification.
Collapse
Affiliation(s)
- Cara J Westmark
- Department of Neurology, University of Wisconsin-Madison, Medical Sciences Center, Room 3619, 1300 University Avenue, Madison, WI, United States; Molecular Environmental Toxicology Center, University of Wisconsin-Madison, Medical Sciences Center, Room 3619, 1300 University Avenue, Madison, WI, United States.
| |
Collapse
|
2
|
Dewulf M, Van Eetvelde M, Wiczkowski W, Opsomer G. Dairy calves are exposed to isoflavones during the developmentally most sensitive period of their life. Theriogenology 2023; 201:53-58. [PMID: 36841122 DOI: 10.1016/j.theriogenology.2023.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/13/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Isoflavones represent a class of phytoestrogens present in plants. In dairy cows, dietary isoflavones have been shown to negatively affect reproductive performance. To the best of our knowledge, no studies have yet been conducted to determine if calves are pre- or neonatally confronted with isoflavones and their metabolites. In the present study, we hypothesize that isoflavones are passed on from the dam to the offspring in utero. Twenty-three pregnant Holstein Friesian dams and their calves, originating from three commercial dairy farms in Belgium, were included. Heparin blood samples were collected during the first, second, and third trimester of gestation from all pregnant dams. Heparin blood and hair samples were obtained from the offspring within 24 h after parturition. Colostrum samples were collected from a subset of eight dams to determine the concentration of isoflavones and their metabolites. During the first and second trimester of gestation, the dams were fed either a youngstock (nulliparous dams) or a lactation (multiparous dams) diet. During the third trimester, both groups received a similar dry cow diet. Genistein and daidzein levels were unaffected by diet type, while their metabolite [equol, dihydrodaidzein (DHD), and o-desmethylangolensin (ODMA)] concentrations were significantly higher in the lactation group. Furthermore, metabolite concentrations decreased significantly during gestation. Isoflavones and their metabolites were detected in all colostrum samples. No correlation could be found between levels in colostrum and blood of pregnant dams or calves. Peripheral levels of isoflavones and their metabolites were significantly lower in newborn calves in comparison to their dams. Genistein and daidzein concentrations were found to be significantly higher in the calves' hair versus blood samples, suggesting prenatal exposure to isoflavones for an extended period of time. In contrast, no isoflavone metabolites were detected in the calves' hair samples. This is the first study to demonstrate that dairy calves are exposed to isoflavones during the developmentally most sensitive period of their lives. Results obtained pave the way for more extensive research to examine which effects isoflavones might have on developing organ systems like the reproductive system.
Collapse
Affiliation(s)
- Manon Dewulf
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Mieke Van Eetvelde
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Wiesław Wiczkowski
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences in Olsztyn, Tuwima 10, 10-748, Olsztyn, Poland
| | - Geert Opsomer
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| |
Collapse
|
3
|
Solano F, Hernández E, Juárez-Rojas L, Rojas-Maya S, López G, Romero C, Casillas F, Betancourt M, López A, Heidari R, Ommati MM, Retana-Márquez S. Reproductive disruption in adult female and male rats prenatally exposed to mesquite pod extract or daidzein. Reprod Biol 2022; 22:100683. [PMID: 35932513 DOI: 10.1016/j.repbio.2022.100683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/28/2022]
Abstract
Phytoestrogens are considered to be endocrine disruptors, since they can alter the endocrine system, thus disturbing many reproductive events. The intake of diets containing a high content of phytoestrogens has increased worldwide in human populations and in domestic animals. Phytoestrogens in maternal blood can pass through the placenta to the fetus in high amounts and can have long-term organizational effects. Mesquite (Prosopis sp) is a leguminous plant widely used to feed several livestock species, and is also used in the human diet. In this study we assessed the effects of exposure to mesquite pod extract during the periconception and pregnancy periods on the reproduction of male and female descendants. The females of three experimental groups received one of the following treatments: 1) vehicle injection; 2) mesquite pod extract or 3) the isoflavone daidzein during the periconception and pregnancy periods. Estrous cyclicity, sexual behavior and hormones, as well as uterine and vaginal epithelia were evaluated in the female descendants. In the males, sexual behavior and hormones, apoptosis in testicular cells and sperm quality were evaluated. In females the following was observed: alterations in estrous cycles, decreased sexual behavior, estradiol and progesterone levels, increased uterine and vaginal epithelia. In males, we observed a decrease in sexual behavior, testosterone and sperm quality, and apoptosis increased in testicular cells. All these effects were similar to those caused by daidzein. These results indicate that prenatal exposure to mesquite pod extract or daidzein, administered to females before and during pregnancy, can disrupt normal organizational-activational programming of reproductive physiology in female and male descendants.
Collapse
Affiliation(s)
- Floriberta Solano
- Masters in Biology of Animal Reproduction, Autonomous Metropolitan University, Campus Iztapalapa, México City, Mexico
| | - Eunice Hernández
- Masters in Biology of Animal Reproduction, Autonomous Metropolitan University, Campus Iztapalapa, México City, Mexico
| | - Lizbeth Juárez-Rojas
- Department of Biology of Reproduction, Autonomous Metropolitan University, Campus Iztapalapa, México City, Mexico
| | - Susana Rojas-Maya
- Department of Neuroendocrinology of Reproductive Behavior, Veterinary Faculty, National Autonomous University of Mexico, Mexico
| | - Gabriela López
- Department of Biology of Reproduction, Autonomous Metropolitan University, Campus Iztapalapa, México City, Mexico
| | - Carlos Romero
- Department of Biology of Reproduction, Autonomous Metropolitan University, Campus Iztapalapa, México City, Mexico
| | - Fahiel Casillas
- Department of Biology of Reproduction, Autonomous Metropolitan University, Campus Iztapalapa, México City, Mexico
| | - Miguel Betancourt
- Department of Health Sciences, Autonomous Metropolitan University, Campus Iztapalapa, México City, Mexico
| | - Alma López
- Department of Health Sciences, Autonomous Metropolitan University, Campus Iztapalapa, México City, Mexico
| | - Reza Heidari
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, People's Republic of China; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Socorro Retana-Márquez
- Department of Biology of Reproduction, Autonomous Metropolitan University, Campus Iztapalapa, México City, Mexico.
| |
Collapse
|
4
|
Barzani H, Ali H, Şahin C, Kıran M, Yardım Y. A new approach for the voltammetric sensing of the phytoestrogen genistein in the urine samples at a non‐modified boron‐doped diamond electrode. ELECTROANAL 2022. [DOI: 10.1002/elan.202100608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Matsui T. Polyphenols-absorption and occurrence in the body system. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2022. [DOI: 10.3136/fstr.fstr-d-21-00264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Toshiro Matsui
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduated School of Kyushu University
| |
Collapse
|
6
|
Zhang Y, Abe C, Ochiai K, Matsui T. Tissue Distribution of Orally Administered Prenylated Isoflavones, Glyceollins, in Sprague-Dawley Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15165-15174. [PMID: 34875172 DOI: 10.1021/acs.jafc.1c05208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Apart from the physiological effects of glyceollins, information regarding their tissue distribution is scarce in the literature. Thus, the aim of this study is to clarify the distribution of glyceollins in rat organs. Glyceollins I and III were orally administered to Sprague-Dawley rats (1.0 mg/kg) with daidzein as control, and their accumulations in organs were investigated by liquid chromatography-time-of-flight/mass spectrometry (LC-TOF/MS). Glyceollins accumulated in intact and conjugated forms in circulatory organs with a Tmax of 0.5 h, in the following order of descending preference: liver, kidney, heart, lung, soleus muscle, and abdominal aorta. The accumulation of hydrophobic glyceollin I was more than 1.5 times higher than that of III. In contrast, daidzein and hydroxy equol were detected only in the liver and kidneys at lower concentrations (1/100 times) than those of glyceollins. In conclusion, prenylated isoflavones, glyceollins, were preferentially distributed in circulatory organs as intact, sulfated, or glucuronidated forms up to 6 h after the intake.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Chizumi Abe
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Koji Ochiai
- DAIZ Inc., 3-14-3 Minami-kumamoto, Chuo-ku, Kumamoto 860-0812, Japan
| | - Toshiro Matsui
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
7
|
da Costa Alves M, Pereira DE, de Cássia de Araújo Bidô R, Rufino Freitas JC, Fernandes Dos Santos CP, Barbosa Soares JK. Effects of the aqueous extract of Phyllanthus niruri Linn during pregnancy and lactation on neurobehavioral parameters of rats' offspring. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113862. [PMID: 33484906 DOI: 10.1016/j.jep.2021.113862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/29/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phyllanthus niruri L. (Phyllanthaceae) is a plant used in traditional medicine, mainly to treat kidney stones. However, the effects of maternal exposure to P. niruri remain poorly explored. AIM OF THE STUDY The objective of this study was to investigate the effects of administration of aqueous extract of P. niruri (AEPN) during pregnancy and lactation, in maternal toxicity, reflex maturation, and offspring memory. MATERIALS AND METHODS Pregnant rats were divided into three groups (n = 8/group): Control (vehicle), AEPN 75, and AEPN 150 (each respectively treated with P. niruri at a dose of 75 and 150 mg/kg/day). The animals were treated via intragastric gavage during pregnancy and lactation. Weight gain, feed intake, and reproductive performance were analyzed in the mothers. In the offspring, the following tests were performed: Neonatal Reflex Ontogeny, Open Field Habituation Test and the Object Recognition Test in adulthood. RESULTS Maternal exposure to AEPN did not influence weight gain, feed intake, or reproductive parameters. In the offspring, anticipation of reflex ontogenesis (time of completion) was observed (p < 0.05). During adulthood, the AEPN groups presented decreases in exploratory activity upon their second exposure to the Open Field Habituation Test (in a dose-dependent manner) (p < 0.05). In the Object Recognition Test, administration of the extract at 75 and 150 mg/kg induced significant dose-dependent improvements in short and long-term memory (p < 0.05). CONCLUSION Administration of the AEPN accelerated the reflex maturation in neonates, and improved offspring memory while inducing no maternal or neonatal toxicity.
Collapse
Affiliation(s)
- Maciel da Costa Alves
- Federal University of Campina Grande, Sítio Olho d'água da Bica, 58175-000, Cuité, Paraíba State, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Sítio Olho d'água da Bica, 58175-000, Cuité, Paraíba State, Brazil.
| | - Diego Elias Pereira
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Sítio Olho d'água da Bica, 58175-000, Cuité, Paraíba State, Brazil; Federal University of Paraiba, University City, 58051-900, João Pessoa, Paraíba State, Brazil.
| | - Rita de Cássia de Araújo Bidô
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Sítio Olho d'água da Bica, 58175-000, Cuité, Paraíba State, Brazil; Federal University of Paraiba, University City, 58051-900, João Pessoa, Paraíba State, Brazil.
| | - Juliano Carlo Rufino Freitas
- Federal University of Campina Grande, Sítio Olho d'água da Bica, 58175-000, Cuité, Paraíba State, Brazil; Chemistry Department, Rural Federal University of Pernambuco, University City, 50740-540, Recife, Pernambuco State, Brazil.
| | | | - Juliana Késsia Barbosa Soares
- Federal University of Campina Grande, Sítio Olho d'água da Bica, 58175-000, Cuité, Paraíba State, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Sítio Olho d'água da Bica, 58175-000, Cuité, Paraíba State, Brazil; Federal University of Paraiba, University City, 58051-900, João Pessoa, Paraíba State, Brazil.
| |
Collapse
|
8
|
Han Y, Gao C, Wang H, Sun J, Liang M, Feng Y, Liu Q, Fu S, Cui L, Gao C, Li Y, Yang Y, Sun B. Macrophage membrane-coated nanocarriers Co-Modified by RVG29 and TPP improve brain neuronal mitochondria-targeting and therapeutic efficacy in Alzheimer's disease mice. Bioact Mater 2020; 6:529-542. [PMID: 32995678 PMCID: PMC7492821 DOI: 10.1016/j.bioactmat.2020.08.017] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 12/30/2022] Open
Abstract
Neuronal mitochondrial dysfunction caused by excessive reactive oxygen species (ROS) is an early event of sporadic Alzheimer's disease (AD), and considered to be a key pathologic factor in the progression of AD. The targeted delivery of the antioxidants to mitochondria of injured neurons in brain is a promising therapeutic strategy for AD. A safe and effective drug delivery system (DDS) which is able to cross the blood-brain barrier (BBB) and target neuronal mitochondria is necessary. Recently, bioactive materials-based DDS has been widely investigated for the treatment of AD. Herein, we developed macrophage (MA) membrane-coated solid lipid nanoparticles (SLNs) by attaching rabies virus glycoprotein (RVG29) and triphenylphosphine cation (TPP) molecules to the surface of MA membrane (RVG/TPP-MASLNs) for functional antioxidant delivery to neuronal mitochondria. According to the results, MA membranes camouflaged the SLNs from being eliminated by RES-rich organs by inheriting the immunological characteristics of macrophages. The unique properties of the DDS after decoration with RVG29 on the surface was demonstrated by the ability to cross the BBB and the selective targeting to neurons. After entering the neurons in CNS, TPP further lead the DDS to mitochondria driven by electric charge. The Genistein (GS)- encapsulated DDS (RVG/TPP-MASLNs-GS) exhibited the most favorable effects on reliveing AD symptoms in vitro and in vivo by the synergies gained from the combination of MA membranes, RVG29 and TPP. These results demonstrated a promising therapeutic candidate for delaying the progression of AD via neuronal mitochondria-targeted delivery by the designed biomimetic nanosystems. MA membranes inherited the immunological properties of macrophages, providing RVG/TPP-MASLNs with enhanced RES evasion. RVG/TPP-MASLNs combined the advantages of RVG29, TPP and MA, greatly improving the efficiency for brain targeting delivery. The biomimetic nanosystems effectively improve the curative effect of genistein on the symptoms of AD mice with biosafety.
Collapse
Affiliation(s)
- Yang Han
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Chunhong Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Hao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Jiejie Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Meng Liang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Ye Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Qianqian Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Shiyao Fu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Lin Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Yi Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Yang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Baoshan Sun
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 10016, PR China.,Instituto National de Investigação Agrária e Veterinária, I.P., Pólo Dois Portos, Quinta da Almoinha, Dois Portos, 2565-191, Portugal
| |
Collapse
|
9
|
Oestrogenic Endocrine Disruptors in the Placenta and the Fetus. Int J Mol Sci 2020; 21:ijms21041519. [PMID: 32102189 PMCID: PMC7073155 DOI: 10.3390/ijms21041519] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/26/2022] Open
Abstract
Endocrine disrupting chemicals (EDCs) are exogenous substances that interfere with the stability and regulation of the endocrine system of the body or its offspring. These substances are generally stable in chemical properties, not easy to be biodegraded, and can be enriched in organisms. In the past half century, EDCs have gradually entered the food chain, and these substances have been frequently found in maternal blood. Perinatal maternal hormone levels are unstable and vulnerable to EDCs. Some EDCs can affect embryonic development through the blood-fetal barrier and cause damage to the neuroendocrine system, liver function, and genital development. Some also effect cross-generational inheritance through epigenetic mechanisms. This article mainly elaborates the mechanism and detection methods of estrogenic endocrine disruptors, such as bisphenol A (BPA), organochlorine pesticides (OCPs), diethylstilbestrol (DES) and phthalates (PAEs), and their effects on placenta and fetal health in order to raise concerns about the proper use of products containing EDCs during pregnancy and provide a reference for human health.
Collapse
|
10
|
Liu X, Li F, Xie J, Huang D, Xie M. Fetal and neonatal genistein exposure aggravates to interfere with ovarian follicle development of obese female mice induced by high-fat diet. Food Chem Toxicol 2019; 135:110982. [PMID: 31747621 DOI: 10.1016/j.fct.2019.110982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/02/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
With epidemic of obesity, it affects aspects of female reproduction. Genistein could ameliorate obesity in people and animals, but might exert adverse effects on the female reproductive system. To evaluate the effects of fetal and neonatal genistein exposure on the ovarian health of F1 obese female mice with obesity induced by high-fat diet after weaning, we simulated a diet-induced obesity model to observe and determine biological effects of genistein exposure on the ovarian follicle of overfed female mice. Results showed that F1 female mice with obesity induced by high-fat diet significantly prolonged the estrus cycle, disrupted sex hormonal balance and ovarian follicle development after they were exposed to 25 mg/kg b.w./day of genistein during the fetal and neonatal stages. Genistein significantly up-regulated the ovarian mRNA expression of estrogen receptor beta in F1 obese female mice, and high-fat diet influenced the ovarian mRNA expression of estrogen receptor alpha, luteinizing hormone receptor and follicle-stimulating hormone receptor. Hence, genistein exposure from the fetal stage might increase the risk of reproductive diseases in obese females in later life. Thus, the long-term risks of genistein to obese females should be thoroughly assessed.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Fenfen Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Danfei Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China.
| |
Collapse
|
11
|
Abdel-Aleem GA, Shafik NM, El-Magd MA, Mohamed DA. Soya bean rich diet is associated with adult male rat aggressive behavior: relation to RF amide-related peptide 3-aromatase-neuroestrogen pathway in the brain. Metab Brain Dis 2019; 34:1103-1115. [PMID: 31134480 DOI: 10.1007/s11011-019-00431-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Abstract
Relation between soya bean (SB) consumption and aggressive behavior has not been elucidated yet. Thus, this study was conducted to investigate the effect of large amount of SB consumption on adult male rats' aggressive behavior through investigating changes in the expression of gonadotropin-inhibitory hormone/ RF amide-related peptide 3 (GnIH/RFRP3), neuropeptide FF receptor, cytochrome P450, family 19, subfamily A, polypeptide 1 (Cyp19A1), estrogen receptors α and β and the levels of neuroestrogen, dopamine, glutamate and testosterone as well as aromatase activity in the brain. Adult male rats were divided into three equal groups: group I, control group, received standard diet; group II and group III received 25% and 50% SB of their standard diet contents, respectively, for 12 weeks. The obtained results showed that feeding male rats with large amount of SB could induce aggressive behavior in a dose dependant manner possibly through inhibition of brain GnIH/RFRP-aromatase-neuroestrogen pathway. These effects may be through decreasing aromatase activity, neuroestrogen concentration, Cyp19A1 and ER β mRNA levels and increasing ER α mRNA levels and immunostaining as well as testosterone, dopamine and glutamate levels in the brain. These findings also provide further support for the inhibitory role of RFRP3 on aggressive behavior of male rats. These data may open new avenues for the potential harmful effects of consumption large amounts of SB rich food on humans.
Collapse
Affiliation(s)
- Ghada A Abdel-Aleem
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Egypt, Tanta, Egypt
| | - Noha M Shafik
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Egypt, Tanta, Egypt.
| | - Mohammed A El-Magd
- Department of Anatomy, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt.
| | - Darin A Mohamed
- Department of Histopathology, Faculty of Medicine, Tanta University, Egypt, Tanta, Egypt
| |
Collapse
|
12
|
Fabian E, Gomes C, Birk B, Williford T, Hernandez TR, Haase C, Zbranek R, van Ravenzwaay B, Landsiedel R. In vitro-to-in vivo extrapolation (IVIVE) by PBTK modeling for animal-free risk assessment approaches of potential endocrine-disrupting compounds. Arch Toxicol 2018; 93:401-416. [DOI: 10.1007/s00204-018-2372-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/04/2018] [Indexed: 11/30/2022]
|
13
|
Put "gender glasses" on the effects of phenolic compounds on cardiovascular function and diseases. Eur J Nutr 2018; 57:2677-2691. [PMID: 29696400 DOI: 10.1007/s00394-018-1695-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 04/19/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The influence of sex and gender is particularly relevant in cardiovascular diseases (CVD) as well as in several aspects of drug pharmacodynamics and pharmacokinetics. Anatomical and physiological differences between the sexes may influence the activity of many drugs, including the possibility of their interaction with other drugs, bioactive compounds, foods and beverages. Phenolic compounds could interact with our organism at organ, cellular, and molecular levels triggering a preventive action against chronic diseases, including CVD. RESULTS This article will review the role of sex on the activity of these bioactive molecules, considering the existence of sex differences in oxidative stress. It describes the pharmacokinetics of phenolic compounds, their effects on vessels, on cardiovascular system, and during development, including the role of nuclear receptors and microbiota. CONCLUSIONS Although there is a large gap between the knowledge of the sex differences in the phenolic compounds' activity and safety, and the urgent need for more research, available data underlie the possibility that plant-derived phenolic compounds could differently influence the health of male and female subjects.
Collapse
|
14
|
Kaneko A, Matsumoto T, Matsubara Y, Sekiguchi K, Koseki J, Yakabe R, Aoki K, Aiba S, Yamasaki K. Glucuronides of phytoestrogen flavonoid enhance macrophage function via conversion to aglycones by β-glucuronidase in macrophages. IMMUNITY INFLAMMATION AND DISEASE 2017; 5:265-279. [PMID: 28480538 PMCID: PMC5569364 DOI: 10.1002/iid3.163] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 12/24/2022]
Abstract
Introduction Flavonoids are converted to inactive metabolites like glucuronides in the gut, and circulate mainly as glucuronides in blood stream, resulting in low concentrations of active aglycones in plasma. It is therefore unclear how oral flavonoids exert their effects in tissues. We recently reported the plasma pharmacokinetics of some flavonoids and suggested the possibility that the absorbed flavonoids modified macrophage functions leading to enhance bacterial clearance. We aimed to confirm their pharmacological profiles focusing on tissue macrophages. Methods Pseudoinfection was induced by intradermal injection of FITC‐conjugated and killed Staphylococcus aureus into the ears of mice treated with or without genistein 7‐O‐glucuronide (GEN7G, 1 mg/kg, i.v.). FACS analysis was performed on single cell suspensions dispersed enzymatically from the skin lesions at 6 h post pseudoinfection to evaluate phagocytic activities of monocytes/macrophages (CD11b+Ly6G−) and neutrophils (CD11b+Ly6G+). Phagocytosis of the FITC‐conjugated bacteria by four glucuronides including GEN7G was evaluated in cultures of mouse macrophages. Results After GEN7G injection, genistein was identified in the inflamed ears as well as GEN7G, and the phagocytic activity of CD11b+Ly6G− cells was increased. GEN7G was converted to genistein by incubation with macrophage‐related β‐glucuronidase. Macrophage culture assays revealed that GEN7G increased phagocytosis, and the action was dampened by a β‐glucuronidase inhibitor. Binding of aglycones to estrogen receptors (ERs), putative receptors of flavonoid aglycones, correlated to biological activities, and glucuronidation reduced the binding to ERs. An ER antagonist suppressed the increase of macrophage function by GEN7G, whereas estradiol enhanced phagocytosis as well. Conclusions This study suggests a molecular mechanism by which oral flavonoids are carried as glucuronides and activated to aglycones by β‐glucuronidase in tissue macrophages, and contributes to the pharmacological study of glucuronides.
Collapse
Affiliation(s)
- Atsushi Kaneko
- Tsumura Research Laboratories, Tsumura & Co., Ami-machi, Inashiki-gun, Ibaraki, Japan
| | - Takashi Matsumoto
- Tsumura Research Laboratories, Tsumura & Co., Ami-machi, Inashiki-gun, Ibaraki, Japan
| | - Yosuke Matsubara
- Tsumura Research Laboratories, Tsumura & Co., Ami-machi, Inashiki-gun, Ibaraki, Japan
| | - Kyoji Sekiguchi
- Tsumura Research Laboratories, Tsumura & Co., Ami-machi, Inashiki-gun, Ibaraki, Japan
| | - Junichi Koseki
- Tsumura Research Laboratories, Tsumura & Co., Ami-machi, Inashiki-gun, Ibaraki, Japan
| | - Ryo Yakabe
- Analytical and Pharmaceutical Technology Research Center, Tsumura & Co., Ami-machi, Inashiki-gun, Ibaraki, Japan
| | - Katsuyuki Aoki
- Analytical and Pharmaceutical Technology Research Center, Tsumura & Co., Ami-machi, Inashiki-gun, Ibaraki, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
| | - Kenshi Yamasaki
- Department of Dermatology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
| |
Collapse
|
15
|
Genistein Alleviates Neuroinflammation and Restores Cognitive Function in Rat Model of Hepatic Encephalopathy: Underlying Mechanisms. Mol Neurobiol 2017; 55:1762-1772. [PMID: 28224477 DOI: 10.1007/s12035-017-0454-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/13/2017] [Indexed: 01/07/2023]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric syndrome resulting from acute liver failure. Previously, we demonstrated hepatoprotective effects of genistein in D-galactosamine (D-GalN)-induced fulminant hepatic failure (FHF). In this study, we evaluated behavioural and neuroprotective effects of genistein in rat model of HE. HE was induced by intraperitonial administration of D-GalN (250 mg/kg BW) twice a week for 30 days Genistein was given as co-treatment through oral gavage daily at dose of 5 mg/kg BW. D-GalN administration significantly resulted in acute liver failure which was further associated with hyperammonemia, neurological dysfunction, as evident from behavioural and functional impairment and reduced learning ability in Morris water maze. Genistein significantly alleviated behavioural and functional impairment and restored learning ability in Morris water maze. Considerable histopathological changes, including portal inflammation, sinusoidal dilation, necrotic lesions and swelled astrocytes with pale nuclei, were seen in the liver and brain sections of D-GalN-challenged rats while genistein co-treated rats revealed normal cellular and morphological architecture as no pathological features were seen. Furthermore, pro-inflammatory markers (interleukin (IL)-10, IL-4, IL-1β and TNF-α) and membrane expression of subunits α1 of GABAA receptor and GluR2 of AMPA marked significant increase, while subunits GluR1 of AMPA receptors showed reduced expression in D-GalN-challenged rats leading to neuroinflammation and dysregulated neurotransmission. Genistein significantly normalized altered expression of pro-inflammatory cytokines and membrane receptor of GABA and GluR. Our study suggests strong therapeutic potential of genistein in animal model of HE. Genistein can be used a strong anti-oxidant to attenuate neurotoxic effects of xenobiotics.
Collapse
|
16
|
Ganesan P, Arulselvan P, Choi DK. Phytobioactive compound-based nanodelivery systems for the treatment of type 2 diabetes mellitus - current status. Int J Nanomedicine 2017; 12:1097-1111. [PMID: 28223801 PMCID: PMC5310641 DOI: 10.2147/ijn.s124601] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a major chronic disease that is prevalent worldwide, and it is characterized by an increase in blood glucose, disturbances in the metabolism, and alteration in insulin secretion. Nowadays, food-based therapy has become an important treatment mode for type 2 diabetes, and phytobioactive compounds have gained an increasing amount of attention to this end because they have an effect on multiple biological functions, including the sustained secretion of insulin and regeneration of pancreatic islets cells. However, the poor solubility and lower permeability of these phyto products results in a loss of bioactivity during processing and oral delivery, leading to a significant reduction in the bioavailability of phytobioactive compounds to treat T2DM. Recently, nanotechnological systems have been developed for use as various types of carrier systems to improve the delivery of bioactive compounds and thus obtain a greater bioavailability. Furthermore, carrier systems in most nanodelivery systems are highly biocompatible, with nonimmunologic behavior, a high degree of biodegradability, and greater mucoadhesive strength. Therefore, this review focuses on the various types of nanodelivery systems that can be used for phytobioactive compounds in treating T2DM with greater antidiabetic effects. There is also additional focus on improving the effects of various phytobioactive compounds through nanotechnological delivery to ensure a highly efficient treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Palanivel Ganesan
- Nanotechnology Research Center and Department of Applied Life Science
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| | - Palanisamy Arulselvan
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Dong-Kug Choi
- Nanotechnology Research Center and Department of Applied Life Science
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
17
|
Meena R, Supriya C, Pratap Reddy K, Sreenivasula Reddy P. Altered spermatogenesis, steroidogenesis and suppressed fertility in adult male rats exposed to genistein, a non-steroidal phytoestrogen during embryonic development. Food Chem Toxicol 2016; 99:70-77. [PMID: 27884790 DOI: 10.1016/j.fct.2016.11.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 10/20/2022]
Abstract
This article focuses on the effects of prenatal exposure to genistein on the mother, her pregnancy and reproductive functions of the male progeny, since these issues have ethological relevance in both animals and humans. Pregnant Wistar rats received i.p. injections of genistein at a dose level of 2, 20 or 100 mg/kg body weight daily from 12th to 19th day of gestation. Male pups from control and genistein exposed animals were weaned and allowed to develop until 100 days of age; however, when they were 90 days old, twelve males from each group were cohabited with untreated 90-day old females for 8 days. Results revealed a significant decrease in indices of reproductive organs in adult male rats exposed to genistein during embryonic development. Dose dependent reduction was observed in daily sperm production and epididymal sperm density and quality in genistein treated rats. Significant decrease was observed in the activity levels of 3β- and 17β-hydroxysteroid dehydrogenases in testis of experimental rats with a decline in plasma testosterone levels. Histological examination of testis of genistein treated rats indicated deterioration in testicular architecture. In the fertility study, the mean number of implantations and live fetuses per dam mated with 100 mg genistein exposed males was reduced.
Collapse
Affiliation(s)
- R Meena
- Department of Biotechnology, Sri Venkateswara University, Tirupati 517502, India
| | - Ch Supriya
- Department of Biotechnology, Sri Venkateswara University, Tirupati 517502, India
| | - K Pratap Reddy
- Department of Biotechnology, Sri Venkateswara University, Tirupati 517502, India
| | | |
Collapse
|
18
|
Ovario-protective effects of genistein against cyclophosphamide toxicity in rats: Role of anti-müllerian hormone and oestradiol. Eur J Pharmacol 2016; 789:163-171. [DOI: 10.1016/j.ejphar.2016.07.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 01/25/2023]
|
19
|
Soukup ST, Helppi J, Müller DR, Zierau O, Watzl B, Vollmer G, Diel P, Bub A, Kulling SE. Phase II metabolism of the soy isoflavones genistein and daidzein in humans, rats and mice: a cross-species and sex comparison. Arch Toxicol 2016; 90:1335-47. [PMID: 26838042 DOI: 10.1007/s00204-016-1663-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/04/2016] [Indexed: 12/19/2022]
Abstract
Soy isoflavones (IF) are in the focus of biomedical research since more than two decades. To assess their bioactivity, IF are investigated in rats and mice as a model. As the biological activity of IF is affected by their biotransformation, our aim was to comprehensively compare the conjugative and microbial metabolism of daidzein and genistein in adult humans, rats and mice of both sexes. One identical soy extract and a validated LC-MS method were used for all studies. We detected considerable differences between the three species. In rats and mice, sex-specific differences were observed in addition. The major plasma phase II metabolites in humans were the 7-sulfo-4'-glucuronides (39-49 %) and, in case of genistein, also the diglucuronide (34 %), whereas in mice monosulfates (33-41 %) and monoglucuronides (30-40 %) predominated. In male rats the disulfates (23-62 %) and 7-sulfo-4'-glucuronides (19-54 %) were predominant, while in female rats the 7-glucuronides (81-93 %) exhibited highest concentrations. The portion of aglycones was low in humans (0.5-1.3 %) and rats (0.5-3.1 %) but comparatively high in mice (3.1-26.0 %), especially in the case of daidzein. Furthermore, substantial differences were observed between daidzein and genistein metabolism. In contrast to humans, all rats and mice were equol producer, independent of their sex. In conclusion, there are marked differences between humans, rats and mice in the profile of major metabolites following IF phase II metabolism. These differences may contribute to resolve inconsistencies in results concerning the bioactivity of IF and should be considered when applying findings of animal studies to humans, e.g., for risk assessment.
Collapse
Affiliation(s)
- Sebastian T Soukup
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Jussi Helppi
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Dennis R Müller
- Department of Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany
| | - Oliver Zierau
- Molecular Cell Physiology and Endocrinology, Institute for Zoology, Technische Universität Dresden, Dresden, Germany
| | - Bernhard Watzl
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Günter Vollmer
- Molecular Cell Physiology and Endocrinology, Institute for Zoology, Technische Universität Dresden, Dresden, Germany
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany
| | - Achim Bub
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany.
| |
Collapse
|
20
|
Ebaid HM, Elgawish RAR, Abdelrazek HMA, Gaffer G, Tag HM. Prenatal Exposure to Soy Isoflavones Altered the Immunological Parameters in Female Rats. Int J Toxicol 2016; 35:274-83. [PMID: 26758869 DOI: 10.1177/1091581815625595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Information on the effects of phytoestrogens on animals has increased recently; however, there were only few studies on prenatal exposure on cellular immune response. Pregnant rats were assigned to 3 groups (12 rats per group), the first was fed control diet, the second was fed low-dose (6.5 g/100 g of diet) soy isoflavones, while the third was fed high-dose (26 g/100 g of diet) soy isoflavones. The female offspring cell-mediated immune response was determined using phytohemagglutinin (PHA) injection, and intumesce index was calculated on postnatal day 50. After 24 hours of PHA injection, blood samples were collected for tumor necrosis factor α, interferon γ (IFN-γ), and interleukin (IL)-12 determination. Spleen, thymus, and PHA-injected footpads were fixed for histopathology. Intumesce index was significantly (P < 0.05) reduced in rats' offspring born from dams fed low- and high-dietary soy isoflavones than that in control groups. Thymic relative weights in offspring of rats fed high-dietary soy isoflavones showed a significant (P < 0.05) decrease compared to that in the control group. Female offspring where low and high-dietary soy isoflavones were fed to their dams showed a significant (P < 0.05) decrease in IFN-γ and IL-12 than that in control ones. Spleen of rats born from dams fed high dose of dietary soy isoflavones showed lymphocytic depletion in white pulp. Taking together, it is clear that dietary soy isoflavones at prenatal period had immunosuppressive effect on female offspring after PHA stimulation. This effect was mediated through reduced IFN-γ that interplayed in IL-12 production pathway thus reducing its level.
Collapse
Affiliation(s)
- Hala M Ebaid
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Rania Abdel Rahman Elgawish
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ghada Gaffer
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Hend M Tag
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
21
|
Barenys M, Gassmann K, Baksmeier C, Heinz S, Reverte I, Schmuck M, Temme T, Bendt F, Zschauer TC, Rockel TD, Unfried K, Wätjen W, Sundaram SM, Heuer H, Colomina MT, Fritsche E. Epigallocatechin gallate (EGCG) inhibits adhesion and migration of neural progenitor cells in vitro. Arch Toxicol 2016; 91:827-837. [PMID: 27116294 DOI: 10.1007/s00204-016-1709-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/06/2016] [Indexed: 01/18/2023]
Abstract
Food supplements based on herbal products are widely used during pregnancy as part of a self-care approach. The idea that such supplements are safe and healthy is deeply seated in the general population, although they do not underlie the same strict safety regulations than medical drugs. We aimed to characterize the neurodevelopmental effects of the green tea catechin epigallocatechin gallate (EGCG), which is now commercialized as high-dose food supplement. We used the "Neurosphere Assay" to study the effects and unravel underlying molecular mechanisms of EGCG treatment on human and rat neural progenitor cells (NPCs) development in vitro. EGCG alters human and rat NPC development in vitro. It disturbs migration distance, migration pattern, and nuclear density of NPCs growing as neurospheres. These functional impairments are initiated by EGCG binding to the extracellular matrix glycoprotein laminin, preventing its binding to β1-integrin subunits, thereby prohibiting cell adhesion and resulting in altered glia alignment and decreased number of migrating young neurons. Our data raise a concern on the intake of high-dose EGCG food supplements during pregnancy and highlight the need of an in vivo characterization of the effects of high-dose EGCG exposure during neurodevelopment.
Collapse
Affiliation(s)
- Marta Barenys
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Kathrin Gassmann
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Christine Baksmeier
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Sabrina Heinz
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Ingrid Reverte
- Laboratory of Toxicology and Environmental Health/NEUROLAB, Department of Psychology, Universitat Rovira i Virgili, Campus Sescelades, 43007, Tarragona, Spain
| | - Martin Schmuck
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Thomas Temme
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Farina Bendt
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Tim-Christian Zschauer
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Thomas Dino Rockel
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Klaus Unfried
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Wim Wätjen
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 22, 06120, Halle/Saale, Germany
| | - Sivaraj Mohana Sundaram
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Heike Heuer
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Maria Teresa Colomina
- Laboratory of Toxicology and Environmental Health/NEUROLAB, Department of Psychology, Universitat Rovira i Virgili, Campus Sescelades, 43007, Tarragona, Spain
| | - Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.
| |
Collapse
|
22
|
Willemin ME, Desmots S, Le Grand R, Lestremau F, Zeman FA, Leclerc E, Moesch C, Brochot C. PBPK modeling of the cis- and trans-permethrin isomers and their major urinary metabolites in rats. Toxicol Appl Pharmacol 2016; 294:65-77. [DOI: 10.1016/j.taap.2016.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/12/2016] [Accepted: 01/16/2016] [Indexed: 12/16/2022]
|
23
|
Fontana R, Della Torre S. The Deep Correlation between Energy Metabolism and Reproduction: A View on the Effects of Nutrition for Women Fertility. Nutrients 2016; 8:87. [PMID: 26875986 PMCID: PMC4772050 DOI: 10.3390/nu8020087] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/21/2016] [Accepted: 02/02/2016] [Indexed: 01/01/2023] Open
Abstract
In female mammals, mechanisms have been developed, throughout evolution, to integrate environmental, nutritional and hormonal cues in order to guarantee reproduction in favorable energetic conditions and to inhibit it in case of food scarcity. This metabolic strategy could be an advantage in nutritionally poor environments, but nowadays is affecting women's health. The unlimited availability of nutrients, in association with reduced energy expenditure, leads to alterations in many metabolic pathways and to impairments in the finely tuned inter-relation between energy metabolism and reproduction, thereby affecting female fertility. Many energetic states could influence female reproductive health being under- and over-weight, obesity and strenuous physical activity are all conditions that alter the profiles of specific hormones, such as insulin and adipokines, thus impairing women fertility. Furthermore, specific classes of nutrients might affect female fertility by acting on particular signaling pathways. Dietary fatty acids, carbohydrates, proteins and food-associated components (such as endocrine disruptors) have per se physiological activities and their unbalanced intake, both in quantitative and qualitative terms, might impair metabolic homeostasis and fertility in premenopausal women. Even though we are far from identifying a "fertility diet", lifestyle and dietary interventions might represent a promising and invaluable strategy to manage infertility in premenopausal women.
Collapse
Affiliation(s)
- Roberta Fontana
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, Milan 20133, Italy.
- Department of Drug Discovery and Development, Italian Institute of Technology, via Morego 30, Genova 16163, Italy.
| | - Sara Della Torre
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, Milan 20133, Italy.
- Center of Excellence of Neurodegenerative Diseases, University of Milan, via Balzaretti 9, Milan 20133, Italy.
| |
Collapse
|
24
|
Matsumoto T, Matsubara Y, Mizuhara Y, Sekiguchi K, Koseki J, Tsuchiya K, Nishimura H, Watanabe J, Kaneko A, Maemura K, Hattori T, Kase Y. Plasma Pharmacokinetics of Polyphenols in a Traditional Japanese Medicine, Jumihaidokuto, Which Suppresses Propionibacterium acnes-Induced Dermatitis in Rats. Molecules 2015; 20:18031-46. [PMID: 26437394 PMCID: PMC6332076 DOI: 10.3390/molecules201018031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 09/24/2015] [Accepted: 09/27/2015] [Indexed: 12/22/2022] Open
Abstract
Most orally administered polyphenols are metabolized, with very little absorbed as aglycones and/or unchanged forms. Metabolic and pharmacokinetic studies are therefore necessary to understand the pharmacological mechanisms of polyphenols. Jumihaidokuto (JHT), a traditional Japanese medicine, has been used for treatment of skin diseases including inflammatory acne. Because JHT contains various types of bioactive polyphenols, our aim was to clarify the metabolism and pharmacokinetics of the polyphenols in JHT and identify active metabolites contributing to its antidermatitis effects. Orally administered JHT inhibited the increase in ear thickness in rats induced by intradermal injection of Propionibacterium acnes. Quantification by LC-MS/MS indicated that JHT contains various types of flavonoids and is also rich in hydrolysable tannins, such as 1,2,3,4,6-penta-O-galloyl glucose. Pharmacokinetic and antioxidant analyses showed that some flavonoid conjugates, such as genistein 7-O-glucuronide and liquiritigenin 7-O-glucuronide, appeared in rat plasma and had an activity to inhibit hydrogen peroxide-dependent oxidation. Furthermore, 4-O-methylgallic acid, a metabolite of Gallic acid, appeared in rat plasma and inhibited the nitric oxide reaction. JHT has numerous polyphenols; it inhibited dermatitis probably via the antioxidant effect of its metabolites. Our study is beneficial for understanding in vivo actions of orally administered polyphenol drugs.
Collapse
Affiliation(s)
- Takashi Matsumoto
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki 300-1192, Japan.
| | - Yousuke Matsubara
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki 300-1192, Japan.
| | - Yasuharu Mizuhara
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki 300-1192, Japan.
| | - Kyoji Sekiguchi
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki 300-1192, Japan.
| | - Junichi Koseki
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki 300-1192, Japan.
| | - Kazuaki Tsuchiya
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki 300-1192, Japan.
| | - Hiroaki Nishimura
- Kampo Formulations Development Center, Production Division, Tsumura & Co., Ibaraki 300-1192, Japan.
| | - Junko Watanabe
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki 300-1192, Japan.
| | - Atsushi Kaneko
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki 300-1192, Japan.
| | - Kazuya Maemura
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki 300-1192, Japan.
| | - Tomohisa Hattori
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki 300-1192, Japan.
| | - Yoshio Kase
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., Ibaraki 300-1192, Japan.
| |
Collapse
|
25
|
Westmark CJ. A hypothesis regarding the molecular mechanism underlying dietary soy-induced effects on seizure propensity. Front Neurol 2014; 5:169. [PMID: 25232349 PMCID: PMC4153031 DOI: 10.3389/fneur.2014.00169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/21/2014] [Indexed: 11/13/2022] Open
Abstract
Numerous neurological disorders including fragile X syndrome, Down syndrome, autism, and Alzheimer’s disease are co-morbid with epilepsy. We have observed elevated seizure propensity in mouse models of these disorders dependent on diet. Specifically, soy-based diets exacerbate audiogenic-induced seizures in juvenile mice. We have also found potential associations between the consumption of soy-based infant formula and seizure incidence, epilepsy comorbidity, and autism diagnostic scores in autistic children by retrospective analyses of medical record data. In total, these data suggest that consumption of high levels of soy protein during postnatal development may affect neuronal excitability. Herein, we present our theory regarding the molecular mechanism underlying soy-induced effects on seizure propensity. We hypothesize that soy phytoestrogens interfere with metabotropic glutamate receptor signaling through an estrogen receptor-dependent mechanism, which results in elevated production of key synaptic proteins and decreased seizure threshold.
Collapse
Affiliation(s)
- Cara Jean Westmark
- Department of Neurology, Medical Sciences Center, University of Wisconsin , Madison, WI , USA
| |
Collapse
|
26
|
Wilson L, Arabshahi A, Simons B, Prasain JK, Barnes S. Improved high sensitivity analysis of polyphenols and their metabolites by nano-liquid chromatography-mass spectrometry. Arch Biochem Biophys 2014; 559:3-11. [PMID: 24967696 DOI: 10.1016/j.abb.2014.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 11/16/2022]
Abstract
This study was conducted to assess the value of a high resolution, high mass accuracy time-of-flight analyzer in combination with nanoliquid chromatography for the analysis of polyphenols and their metabolites. The goal was to create a method that utilizes small volumes of biological fluids and provides a significant improvement in sensitivity compared with existing methods. Accordingly, nanoLC-MS and nanoLC-pseudo-multiple reaction monitoring (MRM) methods were developed that had a lower limit of quantification of 0.5 nM for several polyphenols and were linear over 2-3 orders of magnitude (R(2)>0.999). Using urine samples, the ability to observe and quantify polyphenols in such a complex biological fluid depended on much narrower mass windows (0.050 amu or less) on a TOF analyzer than those used on a quadrupole analyzer (0.7 amu). Although a greater selectivity was possible with the low mass resolution of a triple quadrupole instrument using the MRM approach, for the daidzein metabolite O-DMA, a chromatographically resolvable second peak could only be substantially reduced by using a 0.01 amu mass window. The advantage of a TOF analyzer for product ion data is that the whole MSMS spectrum is collected at high mass accuracy and MRM experiments are conducted in silico after the analysis.
Collapse
Affiliation(s)
- Landon Wilson
- The Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ali Arabshahi
- The Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Jeevan K Prasain
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA; The Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA; The O'Brien Acute Kidney Injury Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA; The Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA; The O'Brien Acute Kidney Injury Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
27
|
Westmark CJ. Soy infant formula and seizures in children with autism: a retrospective study. PLoS One 2014; 9:e80488. [PMID: 24622158 PMCID: PMC3951190 DOI: 10.1371/journal.pone.0080488] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 01/08/2014] [Indexed: 02/04/2023] Open
Abstract
Seizures are a common phenotype in many neurodevelopmental disorders including fragile X syndrome, Down syndrome and autism. We hypothesized that phytoestrogens in soy-based infant formula were contributing to lower seizure threshold in these disorders. Herein, we evaluated the dependence of seizure incidence on infant formula in a population of autistic children. Medical record data were obtained on 1,949 autistic children from the SFARI Simplex Collection. An autism diagnosis was determined by scores on the ADI-R and ADOS exams. The database included data on infant formula use, seizure incidence, the specific type of seizure exhibited and IQ. Soy-based formula was utilized in 17.5% of the study population. Females comprised 13.4% of the subjects. There was a 2.6-fold higher rate of febrile seizures [4.2% versus 1.6%, OR = 2.6, 95% CI = 1.3–5.3], a 2.1-fold higher rate of epilepsy comorbidity [3.6% versus 1.7%, OR = 2.2, 95% CI = 1.1–4.7] and a 4-fold higher rate of simple partial seizures [1.2% versus 0.3%, OR = 4.8, 95% CI = 1.0–23] in the autistic children fed soy-based formula. No statistically significant associations were found with other outcomes including: IQ, age of seizure onset, infantile spasms and atonic, generalized tonic clonic, absence and complex partial seizures. Limitations of the study included: infant formula and seizure data were based on parental recall, there were significantly less female subjects, and there was lack of data regarding critical confounders such as the reasons the subjects used soy formula, age at which soy formula was initiated and the length of time on soy formula. Despite these limitations, our results suggest that the use of soy-based infant formula may be associated with febrile seizures in both genders and with a diagnosis of epilepsy in males in autistic children. Given the lack of data on critical confounders and the retrospective nature of the study, a prospective study is required to confirm the association.
Collapse
Affiliation(s)
- Cara J Westmark
- Department of Neurology, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
28
|
Shi L, Ryan HH, Jones E, Moore Simas TA, Lichtenstein AH, Sun Q, Hayman LL. Urinary isoflavone concentrations are inversely associated with cardiometabolic risk markers in pregnant U.S. women. J Nutr 2014; 144:344-51. [PMID: 24381220 PMCID: PMC4083231 DOI: 10.3945/jn.113.184069] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Some evidence suggests that phytoestrogens, such as soy-derived isoflavones, may have beneficial effects on cardiovascular health and glycemic control. These data are mainly limited to postmenopausal women or individuals at elevated cardiometabolic risk. There is a lack of data for pregnant women who have elevated estrogen levels and physiologically altered glucose and lipid metabolism. We analyzed data from 299 pregnant women who participated in the NHANES 2001-2008 surveys. Multivariable linear regression analyses were used to examine the association between urinary concentrations of isoflavonoids and cardiometabolic risk markers, adjusted for body mass index, pregnancy trimester, total energy intake, dietary intake of protein, fiber, and cholesterol, and demographic and lifestyle factors. Cardiometabolic risk markers were log-transformed, and geometric means were calculated by quartiles of urinary concentrations of isoflavonoids. Comparing women in the highest vs. lowest quartiles of urine total isoflavone concentrations, we observed significant, inverse associations with circulating concentrations of fasting glucose (79 vs. 88 mg/dL, P-trend = 0.0009), insulin (8.2 vs. 12.8 μU/mL, P-trend = 0.03), and triglyceride (156 vs. 185 mg/dL, P-trend = 0.02), and the homeostasis model assessment of insulin resistance (1.6 vs. 2.8, P-trend = 0.01), but not for total, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol. The concentrations of individual isoflavonoids, daidzein, equol, and O-desmethylangolensin were inversely associated with some cardiometabolic risk markers, although no clear pattern emerged. These data suggest that there may be a relation between isoflavone intake and cardiometabolic risk markers in pregnant women.
Collapse
Affiliation(s)
- Ling Shi
- Department of Nursing, University of Massachusetts, Boston, MA,To whom correspondence should be addressed. E-mail:
| | | | - Emily Jones
- Department of Nursing, University of Massachusetts, Boston, MA
| | - Tiffany A. Moore Simas
- Department of Obstetrics and Gynecology, University of Massachusetts Medical School, Worcester, MA
| | - Alice H. Lichtenstein
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| | - Qi Sun
- Channing Division of Network Medicine, Department of Medicine, Harvard School of Medicine, Boston, MA; and,Department of Nutrition, Harvard School of Public Health, Boston, MA
| | - Laura L. Hayman
- Department of Nursing, University of Massachusetts, Boston, MA
| |
Collapse
|
29
|
Napier ID, Simon L, Perry D, Cooke PS, Stocco DM, Sepehr E, Doerge DR, Kemppainen BW, Morrison EE, Akingbemi BT. Testicular development in male rats is sensitive to a soy-based diet in the neonatal period. Biol Reprod 2014; 90:40. [PMID: 24451983 DOI: 10.1095/biolreprod.113.113787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Approximately 30% of infants in the United States are exposed to high doses of isoflavones resulting from soy infant formula consumption. Soybeans contain the isoflavones genistin and daidzin, which are hydrolyzed in the gastrointestinal tract to their genistein and daidzein aglycones. Both aglycones possess hormonal activity and may interfere with male reproductive development. Testosterone, which supports male fertility, is mainly produced by testicular Leydig cells. Our previous studies indicated that perinatal exposure of male rats to isoflavones induced proliferative activity in Leydig cells and increased testosterone concentrations into adulthood. However, the relevance of the neonatal period as part of the perinatal window of isoflavone exposure remains to be established. The present study examined the effects of exposure to isoflavones on male offspring of dams maintained on a casein-based control or whole soybean diet in the neonatal period, that is, Days 2 to 21 postpartum. The results showed that the soybean diet stimulated proliferative activity in developing Leydig cells while suppressing their steroidogenic capacity in adulthood. In addition, isoflavone exposure decreased production of anti-Müllerian hormone by Sertoli cells. Similar to our previous in vitro studies of genistein action in Leydig cells, daidzein induced proliferation and interfered with signaling pathways to suppress steroidogenic activity. Overall, the data showed that the neonatal period is a sensitive window of exposure to isoflavones and support the view that both genistein and daidzein are responsible for biological effects associated with soy-based diets.
Collapse
Affiliation(s)
- India D Napier
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, Alabama
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Legette L, Prasain J, King J, Arabshahi A, Barnes S, Weaver CM. Pharmacokinetics of equol, a soy isoflavone metabolite, changes with the form of equol (dietary versus intestinal production) in ovariectomized rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:1294-300. [PMID: 24446705 PMCID: PMC3983397 DOI: 10.1021/jf400097m] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Recent findings indicate that soy isoflavones and their metabolites may play a role in mitigating postmenopausal bone loss. Equol, a metabolite of the soy isoflavone daidzein produced by intestinal bacteria, has shown some potential, but only 30-50% of the U.S. population is capable of converting dietary daidzein to equol. There are limited data on the pharmacokinetics of dietary racemic equol and its metabolites. This study was conducted to assess the levels of equol and its conjugates in plasma for a 24 h period resulting from oral administration of dietary daidzein and racemic equol in ovariectomized Sprague-Dawley rats. Plasma samples were analyzed for conjugated and free forms of equol using LC-MS/MS. The maximum plasma concentration (C(max)) and time to reach it (t(max)) for total equol (conjugated and unconjugated) were 8815 ± 2988 nmol/L and 2.17 ± 2.91 h and 3682 ± 2675 nmol/L and 20.67 ± 4.67 h, for dietary equol and daidzein, respectively. Although the majority of equol metabolites present were glucuronide conjugates (≥99%), there were low levels of equol monosulfate present. The changes in equol metabolism, specifically equol conjugates, due to the form of equol may play a role in the potential health benefits of equol.
Collapse
Affiliation(s)
- LeeCole
L. Legette
- Department
of Nutrition Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeevan Prasain
- Department of Pharmacology and Toxicology and Targeted Metabolomics
and Proteomics
Laboratory, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Jennifer King
- Department of Pharmacology and Toxicology and Targeted Metabolomics
and Proteomics
Laboratory, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Ali Arabshahi
- Department of Pharmacology and Toxicology and Targeted Metabolomics
and Proteomics
Laboratory, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Stephen Barnes
- Department of Pharmacology and Toxicology and Targeted Metabolomics
and Proteomics
Laboratory, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Connie M. Weaver
- Department
of Nutrition Science, Purdue University, West Lafayette, Indiana 47907, United States
- (C.M.W.) Phone: (765) 494-8237. Fax: (765) 494-0674. E-mail:
| |
Collapse
|
31
|
Kirsch S, Schrezenmeier E, Klare S, Zaade D, Seidel K, Schmitz J, Bernhard S, Lauer D, Slack M, Goldin-Lang P, Unger T, Zollmann FS, Funke-Kaiser H. The (pro)renin receptor mediates constitutive PLZF-independent pro-proliferative effects which are inhibited by bafilomycin but not genistein. Int J Mol Med 2014; 33:795-808. [PMID: 24424509 PMCID: PMC3976126 DOI: 10.3892/ijmm.2014.1624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 12/23/2013] [Indexed: 12/27/2022] Open
Abstract
The (pro)renin receptor [(P)RR] is crucial for cardio-renal pathophysiology. The distinct molecular mechanisms of this receptor are still incompletely understood. The (P)RR is able to interact with different signalling proteins such as promyelocytic leukemia zinc finger protein (PLZF) and Wnt receptors. Moreover, domains of the (P)RR are essential for V-ATPase activity. V-ATPase- and Wnt-mediated effects imply constitutive, i.e., (pro)renin-independent functions of the (P)RR. Regarding ligand-dependent (P)RR signalling, the role of prorenin glycosylation is currently unknown. Therefore, the aim of this study was to analyse the contribution of constitutive (P)RR activity to its cellular effects and the relevance of prorenin glycosylation on its ligand activity. We were able to demonstrate that high glucose induces (P)RR signal transduction whereas deglycosylation of prorenin abolishes its intrinsic activity in neuronal and epithelial cells. By using siRNA against (P)RR or PLZF as well as the PLZF translocation blocker genistein and the specific V-ATPase inhibitor bafilomycin, we were able to dissect three distinct sub-pathways downstream of the (P)RR. The V-ATPase function is ligand-independently associated with strong pro-proliferative effects whereas prorenin causes moderate proliferation in vitro. In contrast, PLZF per se [i.e., in the absence of (pro)renin] does not interfere with cell number.
Collapse
Affiliation(s)
- Sebastian Kirsch
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eva Schrezenmeier
- Center for Cardiovascular Research (CCR)/Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sabrina Klare
- Center for Cardiovascular Research (CCR)/Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Daniela Zaade
- Center for Cardiovascular Research (CCR)/Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kerstin Seidel
- Center for Cardiovascular Research (CCR)/Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jennifer Schmitz
- Center for Cardiovascular Research (CCR)/Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sarah Bernhard
- Center for Cardiovascular Research (CCR)/Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dilyara Lauer
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Petra Goldin-Lang
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Unger
- School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Frank S Zollmann
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Heiko Funke-Kaiser
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
32
|
Westmark CJ, Westmark PR, Malter JS. Soy-based diet exacerbates seizures in mouse models of neurological disease. J Alzheimers Dis 2013; 33:797-805. [PMID: 23034522 DOI: 10.3233/jad-2012-121426] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Seizures are a common phenotype in many neurological disorders including Alzheimer's disease, Down syndrome, and fragile X syndrome. Mouse models of these disorders overexpress amyloid-β protein precursor (AβPP) and amyloid-β (Aβ) and are highly susceptible to audiogenic-induced seizures (AGS). We observed decreased AGS in these mice fed a casein-based, purified diet (D07030301) as opposed to a standard soy protein-containing, non-purified diet (Purina 5015). Our objective in this manuscript was to determine if soy protein, and in particular soy isoflavones, in the Purina 5015 were contributing to the seizure phenotype. Wild running, AGS, and death rates were assessed in juvenile mice fed Purina 5015, D07030301, D07030301 containing soy protein, or D07030301 supplemented with individual isoflavones (750 mg/kg daidzein or genistein). A short treatment (3 days) with Purina 5015 induced wild running and AGS in Alzheimer's disease mice. A 3-day treatment with daidzein-supplemented diet, but not genistein, induced wild running in wild type mice. To understand the mechanism underlying daidzein activity, we assessed dendritic AβPP expression in primary, cultured, wild type neurons treated with daidzein or genistein. In vitro, daidzein significantly increased dendritic AβPP. Thus, the soy isoflavone daidzein recapitulated seizure induction in vivo and altered AβPP expression in vitro. These results have important implications for individuals on soy-based diets as well as for rodent model research.
Collapse
Affiliation(s)
- Cara J Westmark
- Waisman Center for Developmental Disabilities, University of Wisconsin, Madison, WI 53705, USA.
| | | | | |
Collapse
|
33
|
Yang Z, Kulkarni K, Zhu W, Hu M. Bioavailability and pharmacokinetics of genistein: mechanistic studies on its ADME. Anticancer Agents Med Chem 2013; 12:1264-80. [PMID: 22583407 DOI: 10.2174/187152012803833107] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 02/20/2012] [Accepted: 02/20/2012] [Indexed: 12/11/2022]
Abstract
Genistein, one of the most active natural flavonoids, exerts various biological effects including chemoprevention, antioxidation, antiproliferation and anticancer. More than 30 clinical trials of genistein with various disease indications have been conducted to evaluate its clinical efficacy. Based on many animals and human pharmacokinetic studies, it is well known that the most challenge issue for developing genistein as a chemoprevention agent is the low oral bioavailability, which may be the major reason relating to its ambiguous therapeutic effects and large interindividual variations in clinical trials. In order to better correlate pharmacokinetic to pharmacodynamics results in animals and clinical studies, an in-depth understanding of pharmacokinetic behavior of genistein and its ADME properties are needed. Numerous in vitro/in vivo ADME studies had been conducted to reveal the main factors contributing to the low oral bioavailability of genistein. Therefore, this review focuses on summarizing the most recent progress on mechanistic studies of genistein ADME and provides a systemic view of these processes to explain genistein pharmacokinetic behaviors in vivo. The better understanding of genistein ADME property may lead to development of proper strategy to improve genistein oral bioavailability via mechanism-based approaches.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Pharmacological and Pharmaceutical Science, College of Pharmacy, University of Houston, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
34
|
Zaade D, Schmitz J, Benke E, Klare S, Seidel K, Kirsch S, Goldin-Lang P, Zollmann FS, Unger T, Funke-Kaiser H. Distinct signal transduction pathways downstream of the (P)RR revealed by microarray and ChIP-chip analyses. PLoS One 2013; 8:e57674. [PMID: 23469216 PMCID: PMC3587649 DOI: 10.1371/journal.pone.0057674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/23/2013] [Indexed: 12/23/2022] Open
Abstract
The (pro)renin receptor ((P)RR) signaling is involved in different pathophysiologies ranging from cardiorenal end-organ damage via diabetic retinopathy to tumorigenesis. We have previously shown that the transcription factor promyelocytic leukemia zinc finger (PLZF) is an adaptor protein of the (P)RR. Furthermore, recent publications suggest that major functions of the (P)RR are mediated ligand-independently by its transmembrane and intracellular part, which acts as an accessory protein of V-ATPases. The transcriptome and recruitmentome downstream of the V-ATPase function and PLZF in the context of the (P)RR are currently unknown. Therefore, we performed a set of microarray and chromatin-immunoprecipitation (ChIP)-chip experiments using siRNA against the (P)RR, stable overexpression of PLZF, the PLZF translocation inhibitor genistein and the specific V-ATPase inhibitor bafilomycin to dissect transcriptional pathways downstream of the (P)RR. We were able to identify distinct and overlapping genetic signatures as well as novel real-time PCR-validated target genes of the different molecular functions of the (P)RR. Moreover, bioinformatic analyses of our data confirm the role of (P)RŔs signal transduction pathways in cardiovascular disease and tumorigenesis.
Collapse
Affiliation(s)
- Daniela Zaade
- Center for Cardiovascular Research, CCR/Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zou P, Xing L, Tang Q, Liu R, Hao W. Comparative evaluation of the teratogenicity of genistein and genistin using rat whole embryo culture and limbud micromass culture methods. Food Chem Toxicol 2012; 50:2831-6. [PMID: 22617716 DOI: 10.1016/j.fct.2012.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 05/06/2012] [Accepted: 05/07/2012] [Indexed: 11/16/2022]
Abstract
Genistein (GEN) is one kind of phytoestrogen. Several studies have demonstrated the teratogenic potential of GEN in vitro by postimplantation rat whole embryo culture (WEC) assay, but GEN showed no teratogenic effects in vivo even at a dose up to 1000 mg/kg bw/day. The mechanism of such discrepancy is still unclear. Because more than 80% of total genistein (free plus glycoside form) in circulation is its glycoside metabolite, genistin (GIN), we thus hypothesize that genistin is non-teratogenic. To prove this hypothesis, rat whole embryo culture (WEC) and limbud micromass culture methods were applied to compare the teratogenic effects of GEN and GIN on developing embryos in vitro. In WEC assay, we found that the development of embryos was affected by GEN treatment dose-dependently, while GIN-treated embryos displayed slight developmental defects only at the highest dose (222 μM). In micromass culture assay, the IC50 of cell proliferation and differentiation for GEN were 15.6 and 37.2 μM, respectively, while neither was influenced by GIN treatment up to 111 μM. Collectively, our study indicated that GEN showed no teratogenic effects in vivo probably due to its transformation to the non-teratogenic metabolite, GIN.
Collapse
Affiliation(s)
- Peng Zou
- Department of Toxicology, School of Public Health, Peking University, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | | | | | | | | |
Collapse
|
36
|
Phytoestrogens in human pregnancy. Obstet Gynecol Int 2012; 2012:850313. [PMID: 22675365 PMCID: PMC3361295 DOI: 10.1155/2012/850313] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 02/24/2012] [Accepted: 03/09/2012] [Indexed: 12/17/2022] Open
Abstract
Background. The hormonal milieu associated with pregnancy has become a focus of interest owing to potential links with the developmental origins of health and disease. Phytoestrogens are hormonally active plant-derived chemicals that may have an impact on human reproductive processes. However, developmental exposure to phytoestrogens has not been well characterized and thus our objective was to quantify phytoestrogen exposure during pregnancy and lactation. Methods. Women in the second trimester of pregnancy entered the study during counseling for prenatal genetic information. Women who had an indication for a genetic amniocentesis on the basis of late maternal age were approached for inclusion. They completed an environmental questionnaire; a sample of amniotic fluid was collected for karyotype, blood was collected from women during pregnancy and at birth, from the umbilical cord and breast milk. Samples were tested for the presence of daidzein and genistein by GC Mass Spectroscopy. Findings. Phytoestrogens are commonly found in pregnant women's serum and amniotic fluid during pregnancy. There is a sex difference in the concentrations with higher levels in amniotic fluid containing female fetuses. This difference was not present in maternal serum. Soy ingestion increases amniotic fluid phytoestrogen concentrations in female and male fetuses. The presence and concentrations of phytoestrogens did not differ in relation to common pregnancy complications or preexisting infertility.
Collapse
|
37
|
Castro SB, Junior CO, Alves CC, Dias AT, Alves LL, Mazzoccoli L, Mesquita FP, Figueiredo NS, Juliano MA, Castañon MCM, Gameiro J, Almeida MV, Teixeira HC, Ferreira AP. Immunomodulatory effects and improved prognosis of experimental autoimmune encephalomyelitis after O-tetradecanoyl-genistein treatment. Int Immunopharmacol 2012; 12:465-70. [DOI: 10.1016/j.intimp.2011.12.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 12/29/2011] [Accepted: 12/30/2011] [Indexed: 10/14/2022]
|
38
|
Castro SBR, Junior COR, Alves CCS, Dias AT, Alves LL, Mazzoccoli L, Zoet MT, Fernandes SA, Teixeira HC, Almeida MV, Ferreira AP. Synthesis of Lipophilic Genistein Derivatives and Their Regulation of IL-12 and TNF-α in Activated J774A.1 Cells. Chem Biol Drug Des 2012; 79:347-52. [DOI: 10.1111/j.1747-0285.2011.01296.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Mahmood J, Jelveh S, Calveley V, Zaidi A, Doctrow SR, Hill RP. Mitigation of lung injury after accidental exposure to radiation. Radiat Res 2011; 176:770-80. [PMID: 22013884 DOI: 10.1667/rr2562.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
There is a serious need to develop effective mitigators against accidental radiation exposures. In radiation accidents, many people may receive nonuniform whole-body or partial-body irradiation. The lung is one of the more radiosensitive organs, demonstrating pneumonitis and fibrosis that are believed to develop at least partially because of radiation-induced chronic inflammation. Here we addressed the crucial questions of how damage to the lung can be mitigated and whether the response is affected by irradiation to the rest of the body. We examined the widely used dietary supplement genistein given at two dietary levels (750 or 3750 mg/kg) to Fischer rats irradiated with 12 Gy to the lung or 8 Gy to the lung + 4 Gy to the whole body excluding the head and tail (whole torso). We found that genistein had promising mitigating effects on oxidative damage, pneumonitis and fibrosis even at late times (36 weeks) when drug treatment was initiated 1 week after irradiation and stopped at 28 weeks postirradiation. The higher dose of genistein showed no greater beneficial effect. Combined lung and whole-torso irradiation caused more lung-related severe morbidity resulting in euthanasia of the animals than lung irradiation alone.
Collapse
Affiliation(s)
- J Mahmood
- Ontario Cancer Institute/Princess Margaret Hospital, University Health Network, and the Campbell Family Institute for Cancer Research, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
40
|
McCarver G, Bhatia J, Chambers C, Clarke R, Etzel R, Foster W, Hoyer P, Leeder JS, Peters JM, Rissman E, Rybak M, Sherman C, Toppari J, Turner K. NTP-CERHR expert panel report on the developmental toxicity of soy infant formula. ACTA ACUST UNITED AC 2011; 92:421-68. [PMID: 21948615 DOI: 10.1002/bdrb.20314] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 05/17/2011] [Indexed: 12/11/2022]
Abstract
Soy infant formula contains soy protein isolates and is fed to infants as a supplement to or replacement for human milk or cow milk. Soy protein isolates contains estrogenic isoflavones (phytoestrogens) that occur naturally in some legumes, especially soybeans. Phytoestrogens are nonsteroidal, estrogenic compounds. In plants, nearly all phytoestrogens are bound to sugar molecules and these phytoestrogen-sugar complexes are not generally considered hormonally active. Phytoestrogens are found in many food products in addition to soy infant formula, especially soy-based foods such as tofu, soy milk, and in some over-the-counter dietary supplements. Soy infant formula was selected for National Toxicology Program (NTP) evaluation because of (1) the availability of large number of developmental toxicity studies in laboratory animals exposed to the isoflavones found in soy infant formula (namely, genistein) or other soy products, as well as few studies on human infants fed soy infant formula, (2) the availability of information on exposures in infants fed soy infant formula, and (3) public concern for effects on infant or child development. On October 2, 2008 (73 FR 57360), the NTP Center for the Evaluation of Risks to Human Reproduction (CERHR) announced its intention to conduct an updated review of soy infant formula to complete a previous evaluation that was initiated in 2005. Both the current and previous evaluations relied on expert panels to assist the NTP in developing its conclusions on the potential developmental effects associated with the use of soy infant formula, presented in the NTP Brief on Soy Infant Formula. The initial expert panel met on March 15 to 17, 2006, to reach conclusions on the potential developmental and reproductive toxicities of soy infant formula and its predominant isoflavone constituent genistein. The expert panel reports were released for public comment on May 5, 2006 (71 FR 28368). On November 8, 2006 (71 FR 65537), CERHR staff released draft NTP Briefs on Genistein and Soy Formula that provided the NTP's interpretation of the potential for genistein and soy infant formula to cause adverse reproductive and/or developmental effects in exposed humans. However, CERHR did not complete these evaluations, finalize the briefs, or issue NTP Monographs on these substances based on this initial evaluation. Between 2006 and 2009, a substantial number of new publications related to human exposure or reproductive and/or developmental toxicity were published for these substances. Thus, CERHR determined that updated evaluations of genistein and soy infant formula were needed. However, the current evaluation focuses only on soy infant formula and the potential developmental toxicity of its major isoflavone components, e.g. genistein, daidzein (and estrogenic metabolite, equol), and glycitein. This updated evaluation does not include an assessment on the potential reproductive toxicity of genistein following exposures during adulthood as was carried out in the 2006 evaluation. CERHR narrowed the scope of the evaluation because the assessment of reproductive effects of genistein following exposure to adults was not considered relevant to the consideration of soy infant formula use in infants during the 2006 evaluation. To obtain updated information about soy infant formula for the CERHR evaluation, the PubMed (Medline) database was searched from February 2006 to August 2009 with genistein/genistin, daidzein/daidzin, glycitein/glycitin, equol, soy, and other relevant keywords. References were also identified from the bibliographies of published literature. The updated expert panel report represents the efforts of a 14-member panel of government and nongovernment scientists, and was prepared with assistance from NTP staff. The finalized report, released on January 15, 2010 (75 FR 2545), reflects consideration of public comments received on a draft report that was released on October 19, 2009, for public comment and discussions that occurred at a public meeting of the expert panel held December 16 to 18, 2009 (74 FR 53509). The finalized report presents conclusions on (1) the strength of scientific evidence that soy infant formula or its isoflavone constituents are developmental toxicants based on data from in vitro, animal, or human studies; (2) the extent of exposures in infants fed soy infant formula; (3) the assessment of the scientific evidence that adverse developmental health effects may be associated with such exposures; and (4) knowledge gaps that will help establish research and testing priorities to reduce uncertainties and increase confidence in future evaluations. The Expert Panel expressed minimal concern for adverse developmental effects in infants fed soy infant formula. This level of concern represents a "2" on the five-level scale of concern used by the NTP that ranges from negligible concern ("1") to serious concern ("5"). The Expert Panel Report on Soy Infant Formula was considered extensively by NTP staff in preparing the 2010 NTP Brief on Soy Infant Formula, which represents the NTP's opinion on the potential for exposure to soy infant formula to cause adverse developmental effects in humans. The NTP concurred with the expert panel that there is minimal concern for adverse effects on development in infants who consume soy infant formula. This conclusion was based on information about soy infant formula provided in the expert panel report, public comments received during the course of the expert panel evaluation, additional scientific information made available since the expert panel meeting, and peer reviewer critiques of the draft NTP Brief by the NTP Board of Scientific Counselors (BSC) on May 10, 2010 (Meeting materials are available at http://ntp.niehs.nih.gov/go/9741.). The BSC voted in favor of the minimal concern conclusion with 7 yes votes, 3 no votes, and 0 abstentions. One member thought that the conclusion should be negligible concern and two members thought that the level of concern should be higher than minimal concern. The NTP's response to the May 10, 2010 review ("peer-review report") is available on the NTP website at http://ntp.niehs.nih.gov/go/9741. The monograph includes the NTP Brief on Soy Infant Formula as well as the entire final Expert Panel Report on Soy Infant Formula. Public comments received as part of the NTP's evaluation of soy infant formula and other background materials are available at http://cerhr.niehs.nih.gov/evals/index.html.
Collapse
Affiliation(s)
- Gail McCarver
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mahmood J, Jelveh S, Calveley V, Zaidi A, Doctrow SR, Hill RP. Mitigation of radiation-induced lung injury by genistein and EUK-207. Int J Radiat Biol 2011; 87:889-901. [PMID: 21675818 DOI: 10.3109/09553002.2011.583315] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE We examined the effects of genistein and/or Eukarion (EUK)-207 on radiation-induced lung damage and investigated whether treatment for 0-14 weeks (wks) post-irradiation (PI) would mitigate late lung injury. MATERIALS AND METHODS The lungs of female Sprague-Dawley (SD) rats were irradiated with 10 Gy. EUK-207 was delivered by infusion and genistein was delivered as a dietary supplement starting immediately after irradiation (post irradiation [PI]) and continuing until 14 wks PI. Rats were sacrificed at 0, 4, 8, 14 and 28 wks PI. Breathing rate was monitored and lung fibrosis assessed by lung hydroxyproline content at 28 wks. DNA damage was assessed by micronucleus (MN) assay and 8-hydroxy-2-deoxyguanosine (8-OHdG) levels. The expression of the cytokines Interleukin (IL)-1α, IL-1β, IL-6, Tumor necrosis factor (TNF)-α and Transforming growth factor (TGF)-β1, and macrophage activation were analyzed by immunohistochemistry. RESULTS Increases in breathing rate observed in the irradiated rats were significantly reduced by both drug treatments during the pneumonitis phase and the later fibrosis phase. The drug treatments decreased micronuclei (MN) formation from 4-14 wks but by 28 wks the MN levels had increased again. The 8-OHdG levels were lower in the drug treated animals at all time points. Hydroxyproline content and levels of activated macrophages were decreased at 28 wks in all drug treated rats. The treatments had limited effects on the expression of the cytokines. CONCLUSION Genistein and EUK-207 can provide partial mitigation of radiation-induced lung damage out to at least 28 wks PI even after cessation of treatment at 14 wks PI.
Collapse
Affiliation(s)
- Javed Mahmood
- Ontario Cancer Institute/Princess Margaret Hospital, University Health Network, and the Campbell Family Institute for Cancer Research, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Bonacasa B, Siow RCM, Mann GE. Impact of dietary soy isoflavones in pregnancy on fetal programming of endothelial function in offspring. Microcirculation 2011; 18:270-85. [PMID: 21418378 DOI: 10.1111/j.1549-8719.2011.00088.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epidemiological evidence suggests that soy-based diets containing phytoestrogens (isoflavones) afford protection against cardiovascular diseases (CVDs); however, supplementation trials have largely reported only marginal health benefits. The molecular mechanisms by which the isoflavones genistein, daidzein, and equol afford protection against oxidative stress remain to be investigated in large scale clinical trials. Isoflavones are transferred across the placenta in both rodents and humans, yet there is limited information on their actions in pregnancy and the developmental origins of disease. Our studies established that feeding a soy isoflavone-rich diet during pregnancy, weaning, and postweaning affords cardiovascular protection in aged male rats. Notably, rats exposed to a soy isoflavone-deficient diet throughout pregnancy and adult life exhibited increased oxidative stress, diminished antioxidant enzyme and eNOS levels, endothelial dysfunction, and elevated blood pressure in vivo. The beneficial effects of refeeding isoflavones to isoflavone-deficient rats include an increased production of nitric oxide and EDHF, an upregulation of antioxidant defense enzymes and lowering of blood pressure in vivo. This review focuses on the role that isoflavones in the fetal circulation may play during fetal development in affording protection against CVD in the offspring via their ability to activate eNOS, EDHF, and redox-sensitive gene expression.
Collapse
Affiliation(s)
- Barbara Bonacasa
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, School of Medicine, King's College London, London, UK
| | | | | |
Collapse
|
43
|
Balakrishnan B, Thorstensen EB, Ponnampalam AP, Mitchell MD. Transplacental transfer and biotransformation of genistein in human placenta. Placenta 2010; 31:506-11. [PMID: 20413155 DOI: 10.1016/j.placenta.2010.03.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/26/2010] [Accepted: 03/16/2010] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To study transplacental transfer and biotransformation of genistein in the human placenta. STUDY DESIGN AND OUTCOMES: Human placentae obtained from healthy term singleton pregnancies were utilised in a dual re-circulating model of ex-vivo placental perfusion. Four placentae were perfused for 180min following addition of genistein (10ng/mL) to the maternal perfusate. Antipyrine and FITC dextran were used as positive and negative controls respectively to validate integrity of the circuits. Concentrations of genistein and its conjugates were determined by liquid chromatography-mass spectrometry (LC-MS). RESULTS The transfer percentage for antipyrine and genistein was 25.6+/-1.40% and 22.1+/-1.61% respectively and the transfer index for genistein was 0.90+/-0.04 after 180min of perfusion. 12.0+/-2.40% of genistein in the fetal compartment and 7.36+/-4.73% of genistein in the maternal compartment were in the conjugated form. CONCLUSIONS Genistein can transfer across the human placenta at environmentally relevant levels. Placental metabolizing enzymes conjugate a small fraction of genistein into the glucuronide/sulphate form, which is devoid of estrogenic action.
Collapse
Affiliation(s)
- B Balakrishnan
- The Liggins Institute, The University of Auckland, Grafton, Auckland, New Zealand.
| | | | | | | |
Collapse
|
44
|
Yang Z, Zhu W, Gao S, Xu H, Wu B, Kulkarni K, Singh R, Tang L, Hu M. Simultaneous determination of genistein and its four phase II metabolites in blood by a sensitive and robust UPLC-MS/MS method: Application to an oral bioavailability study of genistein in mice. J Pharm Biomed Anal 2010; 53:81-9. [PMID: 20378296 DOI: 10.1016/j.jpba.2010.03.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/07/2010] [Accepted: 03/08/2010] [Indexed: 11/26/2022]
Abstract
The purpose of this research was to develop a sensitive and reproducible UPLC-MS/MS method to simultaneously quantify genistein, genistein-7-O-glucuronide (G-7-G), genistein-4'-O-glucuronide (G-4'-G), genistein-4'-O-sulfate (G-4'-S) and genistein-7-O-sulfate (G-7-S) in mouse blood samples. After the method was fully validated over a wide linear range, it was applied to quantify the levels of genistein and its metabolites in a mouse bioavailability study. The linear response range was 19.5-10,000 nM for genistein, 12.5-3200 nM for G-7-G, 20-1280 nM for G-4'-G, 1.95-2000 nM for G-4'-S, and 1.56-3200 nM for G-7-S, respectively. The lower limit of quantification (LLOQ) was 4.88, 6.25, 5, 0.98 and 0.78 nM for genistein, G-7-G, G-4'-G, G-4'-S and G-7-S, respectively. Only 20 microl mouse blood sample from i.v. and p.o. administration were needed for analysis because of the high sensitivity of the method. The intra- and inter-day variance is less than 15% and accuracy is within 85-115%. The analysis was finished within 4.5 min. The applicability of this assay was demonstrated and successfully applied for bioavailability study in FVB mouse after i.v. and p.o. administration of 20mg/kg of genistein, and its oral bioavailability was approximately 23.4%.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Pharmacological and Pharmaceutical Science, College of Pharmacy, University of Houston, 1441 Moursund Street, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Speroni F, Rebolledo A, Salemme S, Roldán-Palomo R, Rimorini L, Añón MC, Spinillo A, Tanzi F, Milesi V. Genistein effects on Ca2+ handling in human umbilical artery: inhibition of sarcoplasmic reticulum Ca2+ release and of voltage-operated Ca2+ channels. J Physiol Biochem 2009; 65:113-24. [PMID: 19886390 DOI: 10.1007/bf03179062] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Isoflavones are a group of natural phytoestrogens including the compound genistein. Health beneficial effects have been attributed to the consumption of this compound, but the fact that it has estrogen-like activity has raised doubts regarding its potential risk in infants, newborns, or in the fetus and placenta during pregnancy. This work is aimed at studying genistein effects on Ca2+ handling by smooth muscle cells of the human umbilical artery (HUA). Using fluorometric techniques, we found that in these cells genistein reduces the intracellular Ca2+ peak produced by serotonin. The same result could be demonstrated in absence of extracellular Ca2+, suggesting that the isoflavone reduces Ca2+ release from the sarcoplasmic reticulum. Force measurement experiments strengthen these results, since genistein reduced the peak force attained by intact HUA rings stimulated by serotonin in a Ca2+-free solution. Moreover, genistein induced the relaxation of HUA rings precontracted either with serotonin or a depolarizing high-extracellular K+ solution, hinting at a reduction of extracellular Ca2+ entry to the cell. This was confirmed by whole-cell patch-clamp experiments where it was shown that the isoflavone inhibits ionic currents through voltage-operated Ca2+ channels. In summary, we show that genistein inhibits two mechanisms that could increase intracellular Ca2+ in human umbilical smooth muscle cells, behaving in this way as a potential vasorelaxing substance of fetal vessels. Taking into account that genistein is able to cross the placental barrier, these data show that isoflavones may have important implications in the regulation of feto-maternal blood flow in pregnant women who consume soy-derived products as part of their meals.
Collapse
Affiliation(s)
- F Speroni
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115, La Plata, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kgomotso T, Chiu F, Ng K. Genistein- and daidzein 7-O-β-D-glucuronic acid retain the ability to inhibit copper-mediated lipid oxidation of low density lipoprotein. Mol Nutr Food Res 2008; 52:1457-66. [DOI: 10.1002/mnfr.200800010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Kuzu N, Metin K, Dagli AF, Akdemir F, Orhan C, Yalniz M, Ozercan IH, Sahin K, Bahcecioglu IH. Protective role of genistein in acute liver damage induced by carbon tetrachloride. Mediators Inflamm 2008; 2007:36381. [PMID: 17597837 PMCID: PMC1892644 DOI: 10.1155/2007/36381] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2006] [Revised: 02/18/2007] [Accepted: 02/19/2007] [Indexed: 11/18/2022] Open
Abstract
Aim. In the present study, we investigated the protective effect of genistein in experimental acute liver damage induced by CCl4. Method. Forty rats were equally allocated to 5 groups. The first group was designated as the control group (group 1). The second group was injected with intraperitoneal CCl4 for 3 days (group 2). The third group was injected with subcutaneous 1 mg/kg genistein for 4 days starting one day before CCl4 injection. The fourth group was injected with intraperitoneal CCl4 for 7 days. The fifth group was injected with subcutaneous 1 mg/kg genistein for 8 days starting one day before CCl4 injection. Plasma and liver tissue malondialdehyde (MDA) and liver glutathione levels, as well as AST and ALT levels were studied. A histopathological examination was conducted. Results. Liver tissue MDA levels were found significantly lower in group 3, in comparison to group 2 (P < .05). Liver tissue MDA level in group 5 was significantly lower than that in group 4
(P < .001). Liver tissue glutathione levels were higher in group 5 and 3, relative to groups 4 and 2, respectively (P > .05 for each). Inflammation and focal necrosis decreased in group 3, in comparison to group 2 (P < .001 for each). Inflammation and focal necrosis in group 5 was lower than that in group 4
(P < .001). Actin expression decreased significantly in group 5, relative to group 4
(P < .05). Conclusion. Genistein has anti-inflammatory and antinecrotic effects on experimental liver damage caused by CCl4. Genistein reduces liver damage by preventing lipid peroxidation and strengthening antioxidant systems.
Collapse
Affiliation(s)
- Nalan Kuzu
- Department of Internal Medicine, School of Medicine, Firat University, 23119 Elazig, Turkey
| | - Kerem Metin
- Department of Biochemistry, School of Medicine, Firat University, 23119 Elazig, Turkey
| | - Adile Ferda Dagli
- Department of Biochemistry, School of Medicine, Firat University, 23119 Elazig, Turkey
| | - Fatih Akdemir
- Department of Animal Nutrition, School of Veterinary, Firat University, 23119 Elazig, Turkey
| | - Cemal Orhan
- Department of Animal Nutrition, School of Medicine, Firat University, 23119 Elazig, Turkey
| | - Mehmet Yalniz
- Divison of Gastroenterology, School of Medicine, Firat University, 23119 Elazig, Turkey
| | | | - Kazim Sahin
- Department of Animal Nutrition, School of Medicine, Firat University, 23119 Elazig, Turkey
| | - Ibrahim Halil Bahcecioglu
- Divison of Gastroenterology, School of Medicine, Firat University, 23119 Elazig, Turkey
- *Ibrahim Halil Bahcecioglu:
| |
Collapse
|
48
|
Clewell RA, Kremer JJ, Williams CC, Campbell JL, Andersen ME, Borghoff SJ. Tissue Exposures to Free and Glucuronidated Monobutylyphthalate in the Pregnant and Fetal Rat following Exposure to Di-n-butylphthalate: Evaluation with a PBPK Model. Toxicol Sci 2008; 103:241-59. [DOI: 10.1093/toxsci/kfn054] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
49
|
Prasain JK, Barnes S. Metabolism and bioavailability of flavonoids in chemoprevention: current analytical strategies and future prospectus. Mol Pharm 2008; 4:846-64. [PMID: 18052086 DOI: 10.1021/mp700116u] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Flavonoids are structurally diverse and among the most ubiquitous groups of dietary polyphenols distributed in various fruits and vegetables. Many have been proposed to be bioactive compounds in the diet that are responsible for lowering the risk of cancer and have been used in chemoprevention studies using animal models of this disease. As for any xenobiotic, to evaluate the potential risks and benefits of bioflavonoids to human health, an understanding of the physiological behavior of these compounds following oral ingestion is needed as well as their absorption, distribution, metabolism, and excretion (ADME). The study on metabolism and bioavailability is very important in defining the pharmacological and toxicological profile of these compounds. Due to great structural diversity among flavonoids, these profiles differ greatly from one compound to another, so that the most abundant polyphenols in our diet are not necessarily the ones that reach target tissues. Therefore, careful analysis of flavonoids and their metabolites in biological systems is critical. Mass spectrometry in various combinations with chromatographic methods has been a mainstay in applications that involve profiling and quantification of metabolites in complex biological samples. Because of its speed, sensitivity and specificity, liquid chromatography-tandem mass spectrometry (LC-MS/MS) has become the technology of choice for sample analysis. This review describes the chemistry of polyphenols and flavonoids, their ADME, and the various mass spectrometry-based strategies used in the analysis of flavonoids, including future trends in this field.
Collapse
Affiliation(s)
- Jeevan K Prasain
- Department of Pharmacology & Toxicology, Purdue--UAB Botanicals Center for Age-Related Disease, UAB Center for Nutrient-Gene Interaction in Cancer Prevention, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | |
Collapse
|
50
|
Akingbemi BT, Braden TD, Kemppainen BW, Hancock KD, Sherrill JD, Cook SJ, He X, Supko JG. Exposure to phytoestrogens in the perinatal period affects androgen secretion by testicular Leydig cells in the adult rat. Endocrinology 2007; 148:4475-88. [PMID: 17569756 DOI: 10.1210/en.2007-0327] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The use of soy-based products in the diet of infants has raised concerns regarding the reproductive toxicity of genistein and daidzein, the predominant isoflavones in soybeans with estrogenic activity. Time-bred Long-Evans dams were fed diets containing 0, 5, 50, 500, or 1000 ppm of soy isoflavones from gestational d 12 until weaning at d 21 postpartum. Male rats in all groups were fed soy-free diets from postnatal d 21 until 90 d of age. The mean +/- SD concentration of unconjugated (i.e. biologically active) genistein and daidzein in serum from the group of dams maintained on the diet containing the highest amount of isoflavones (1000 ppm) were 17 +/- 27 and 56 +/- 30 nM, respectively, at d 21 postpartum. The concentrations were considerably greater in male offspring (genistein: 73 +/- 46 nM; daidzein: 106 +/- 53 nM). Although steroidogenesis was decreased in individual Leydig cells, male rats from the highest exposure group (1000 ppm diet) exhibited elevated serum levels of the sex steroid hormones androsterone at 21 d (control: 15 +/- 1.5 vs.28 +/- 3.5 ng/ml; P < 0.05) and testosterone at 90 d of age (control: 7.5 +/- 1 vs.17 +/- 2 ng/ml; P < 0.05). Testosterone secretion by immature Leydig cells, isolated from 35-d-old male rats, decreased on exposure to 0.1 nm genistein in vitro (control: 175 +/- 5 vs. 117 +/- 3 ng/10(6) cells per 24 h; P < 0.05), indicative of direct phytoestrogen action. Thus, phytoestrogens have the ability to regulate Leydig cells, and additional studies to assess potential adverse effects of dietary soy-based products on reproductive tract development in neonates are warranted.
Collapse
Affiliation(s)
- Benson T Akingbemi
- Department of Anatomy, Physiology and Pharmacology, 109 Greene Hall, Auburn University, Auburn, Alabama 36849, USA.
| | | | | | | | | | | | | | | |
Collapse
|