1
|
Yao D, Yu W, Ma X, Tian J. A novel necroptosis-related genes signature to predict prognosis and treatment response in bladder cancer. Front Mol Biosci 2024; 11:1493411. [PMID: 39655212 PMCID: PMC11625674 DOI: 10.3389/fmolb.2024.1493411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Background Necroptosis, a form of programmed inflammatory cell death, plays a crucial role in tumor development, necrosis, metastasis, and immune response. This study aimed to explore the role of necroptosis in BLCA and construct a new prognostic model to guide clinical treatment and predict individualized treatment response. Methods The transcriptome profiling and the corresponding clinical data of BLCA patients were obtained from the Cancer Genome Atlas database (TCGA) and GEO databases. Univariate, multivariate and LASSO Cox regression analyses were used to identify and construct prognostic features associated with necroptosis. We constructed and validated a prognostic model associated with the patient's overall survival (OS). A nomogram was established to predict the survival rates of BLCA patients. Finally, the correlation between risk scores and tumor immune microenvironment, somatic mutations, immunotherapy, and chemotherapy was comprehensively analyzed. Results The study found two distinct NRG clusters and three gene subtypes, with significant differences in pathway enrichment and immune cell infiltration associated with different NRG clusters in the TME. In addition, we screened out six necroptosis prognosis-related genes (including PPP2R3A; CERCAM; PIK3IP1; CNTN1; CES1 and CD96) to construct a risk score prognostic model. Significant differences in overall survival rate, immune cell infiltration status, and somatic mutations existed between the high and low-risk scores in BLCA patients. Finally, drug sensitivity analysis showed that high-risk patients benefited more from immunotherapy and chemotherapy drugs. Conclusion This study explores the importance of necroptosis in the prognosis of patients with BLCA, and the prognostic features associated with necroptosis that we identified can serve as new biomarkers to help develop more precise treatment strategies.
Collapse
Affiliation(s)
- Dongnuan Yao
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, China
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Weitao Yu
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, China
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xueming Ma
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, China
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Junqiang Tian
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, China
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Casas-Rodríguez A, Medrano-Padial C, Jos A, Cameán AM, Campos A, Fonseca E. Characterization of NR1J1 Paralog Responses of Marine Mussels: Insights from Toxins and Natural Activators. Int J Mol Sci 2024; 25:6287. [PMID: 38928005 PMCID: PMC11204112 DOI: 10.3390/ijms25126287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The pregnane X receptor (PXR) is a nuclear hormone receptor that plays a pivotal role in regulating gene expression in response to various ligands, particularly xenobiotics. In this context, the aim of this study was to shed light on the ligand affinity and functions of four NR1J1 paralogs identified in the marine mussel Mytilus galloprovincialis, employing a dual-luciferase reporter assay. To achieve this, the activation patterns of these paralogs in response to various toxins, including freshwater cyanotoxins (Anatoxin-a, Cylindrospermopsin, and Microcystin-LR, -RR, and -YR) and marine algal toxins (Nodularin, Saxitoxin, and Tetrodotoxin), alongside natural compounds (Saint John's Wort, Ursolic Acid, and 8-Methoxypsoralene) and microalgal extracts (Tetraselmis, Isochrysis, LEGE 95046, and LEGE 91351 extracts), were studied. The investigation revealed nuanced differences in paralog response patterns, highlighting the remarkable sensitivity of MgaNR1J1γ and MgaNR1J1δ paralogs to several toxins. In conclusion, this study sheds light on the intricate mechanisms of xenobiotic metabolism and detoxification, particularly focusing on the role of marine mussel NR1J1 in responding to a diverse array of compounds. Furthermore, comparative analysis with human PXR revealed potential species-specific adaptations in detoxification mechanisms, suggesting evolutionary implications. These findings deepen our understanding of PXR-mediated metabolism mechanisms, offering insights into environmental monitoring and evolutionary biology research.
Collapse
Affiliation(s)
- Antonio Casas-Rodríguez
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n◦2, 41012 Seville, Spain; (A.C.-R.); (A.J.); (A.M.C.)
| | - Concepción Medrano-Padial
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n◦2, 41012 Seville, Spain; (A.C.-R.); (A.J.); (A.M.C.)
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Campus Universitario 25, Espinardo, 30100 Murcia, Spain
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n◦2, 41012 Seville, Spain; (A.C.-R.); (A.J.); (A.M.C.)
| | - Ana M. Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n◦2, 41012 Seville, Spain; (A.C.-R.); (A.J.); (A.M.C.)
| | - Alexandre Campos
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal;
| | - Elza Fonseca
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal;
| |
Collapse
|
3
|
Yao S, Zhang W, Xiao J, Zhang Z, Wang L, Ai H, Wu X, Chen A, Zhuang X. Simultaneous determination of HD56, a novel prodrug, and its active metabolite in cynomolgus monkey plasma using LC-MS/MS for elucidating its pharmacokinetic profile. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1235:124045. [PMID: 38367406 DOI: 10.1016/j.jchromb.2024.124045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024]
Abstract
An LC-MS/MS method was developed and validated for the simultaneous determination of the carboxylic acid ester precursor HD56 and the active product HD561 in cynomolgus monkey plasma. Then, the pharmacokinetic characteristics of both compounds following single and multiple i.g. administrations in cynomolgus monkeys were elucidated. In the method, chromatographic separation was achieved with a C18 reversed-phase column and the target quantification was carried out by an electrospray ionization (ESI) source coupled with triple quadrupole mess detector in positive ionization mode with multiple reaction monitoring (MRM) approach. Using the quantification method, the in vitro stability of HD56 in plasma and HD56 pharmacokinetic behavior after i.g. administration in cynomolgus monkey were investigated. It was approved that HD56 did convert into HD561 post-administration. The overall systemic exposure of HD561 post-conversion from HD56 accounted for only about 17% of HD56. After repeated administration at the same dose, there was no significant difference in exposure levels of both HD56 and HD561. However, after multiple dosing, the exposure of HD56 tended to decrease while that of HD561 tended to increase, resulting in a 30% in the exposure ratio. Remarkably, with a carboxylesterase (CES) activity profile akin to humans, the observed in vivo pharmacokinetic profile in cynomolgus monkeys holds promise for predicting HD56/HD561 PK profiles in humans.
Collapse
Affiliation(s)
- Shi Yao
- School of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang 050018 China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Wenpeng Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Junhai Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zhiwei Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Lingchao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Hengxiao Ai
- School of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang 050018 China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Xia Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Aibing Chen
- School of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang 050018 China.
| | - Xiaomei Zhuang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
4
|
Xu M, Zhang L, Lin L, Qiang Z, Liu W, Yang J. Cisplatin increases carboxylesterases through increasing PXR mediated by the decrease of DEC1. J Biomed Res 2023; 37:431-447. [PMID: 37990879 PMCID: PMC10687532 DOI: 10.7555/jbr.37.20230047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 11/23/2023] Open
Abstract
cis-Diamminedichloroplatinum (CDDP) is widely used for the treatment of various solid cancers. Here we reported that CDDP increased the expression and enzymatic activities of carboxylesterase 1 (CES1) and carboxylesterase 2 (CES2), along with the upregulation of pregnane X receptor (PXR) and the downregulation of differentiated embryonic chondrocyte-expressed gene 1 (DEC1) in human hepatoma cells, primary mouse hepatocytes, mouse liver and intestine. The overexpression or knockdown of PXR alone upregulated or downregulated the CES1 and CES2 expression, respectively. The increases in CES1 and CES2 expression levels induced by CDDP abolished or enhanced by PXR knockdown or overexpression, implying that CDDP induces carboxylesterases through the activation of PXR. Likewise, the overexpression or knockdown of DEC1 alone significantly decreased or increased PXR and its targets. Moreover, the increases of PXR and its targets induced by CDDP were abolished or alleviated by the overexpression or knockdown of DEC1. The overexpression or knockdown of DEC1 affected the response of PXR to CDDP, but not vice versa, suggesting that CDDP increases carboxylesterases by upregulating PXR mediated by the decrease of DEC1. In addition, CDDP did not increase DEC1 mRNA degradation but suppressed DEC1 promoter reporter activity, indicating that it suppresses DEC1 transcriptionally. The combined use of CDDP and irinotecan had a synergistic effect on two cell lines, especially when CDDP was used first.
Collapse
Affiliation(s)
- Minqin Xu
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Lihua Zhang
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Lan Lin
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhiyi Qiang
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wei Liu
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jian Yang
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
5
|
Liu S, Cheng R, He H, Ding K, Zhang R, Chai Y, Yu Q, Huang X, Zhang L, Jiang Z. 8-methoxypsoralen protects against acetaminophen-induced liver injury by antagonising Cyp2e1 in mice. Arch Biochem Biophys 2023; 741:109617. [PMID: 37121295 DOI: 10.1016/j.abb.2023.109617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/02/2023]
Abstract
This study aimed to investigate the effect and mechanism of 8-methoxypsoralen (8-MOP) on acetaminophen (APAP)-induced hepatotoxicity in mice. The study found that one hour after intraperitoneal injection of 300 mg/kg APAP, treatment with 40 mg/kg,80 mg/kg and 120 mg/kg 8-MOP could reduce serum transaminase level and histopathological liver necrosis area. Elevated mRNA expression of liver inflammatory mediators caused by excessive APAP was also reversed. 8-MOP significantly reduced APAP-induced hepatotoxicity dose-dependently, and the highest therapeutic dose of 8-MOP (120 mg/kg) had no harmful effects on the liver. Cocktail probe assay revealed that 8-MOP can inhibit Cyp2e1 enzymatic activities of mice, thereby reducing the production of acetaminophen-cysteine (APAP-CYS), a toxic metabolite of APAP. 8-MOP had no significant effect on the protein and gene expression of Cyp2e1. The three-dimensional structures of mouse Cyp2e1 were constructed by homologous modeling. Molecular docking showed that 8-MOP had a good binding effect on the enzyme activity site of Cyp2e1. In summary, 8-MOP dose-dependently attenuated APAP-induced hepatotoxicity by binding to Cyp2e1 and occupying the active center of the enzyme, thus competitively inhibiting the oxidative metabolism of APAP, and reducing the generation of toxic product APAP-CYS.
Collapse
Affiliation(s)
- Shasha Liu
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ruohan Cheng
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Hui He
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Kunming Ding
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Rongmi Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuanyuan Chai
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Qinwei Yu
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xin Huang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Luyong Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
6
|
Liu J, Yao B, Gao L, Zhang Y, Huang S, Wang X. Emerging role of carboxylesterases in nonalcoholic fatty liver disease. Biochem Pharmacol 2022; 205:115250. [PMID: 36130649 DOI: 10.1016/j.bcp.2022.115250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/02/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is increasingly recognized as a global public health problem. Carboxylesterases (CESs), as potential influencing factors of NAFLD, are very important to improve clinical outcomes. This review aims to deeply understand the role of CESs in the progression of NAFLD and proposes that CESs can be used as potential targets for NAFLD treatment. We first introduced CESs and analyzed the relationship between CESs and hepatic lipid metabolism and inflammation. Then, we further reviewed the regulation of nuclear receptors on CESs, including PXR, CAR, PPARα, HNF4α and FXR, which may influence the progression of NAFLD. Finally, we evaluated the advantages and disadvantages of existing NAFLD animal models and summarized the application of CES-related animal models in NAFLD research. In general, this review provides an overview of the relationship between CESs and NAFLD and discusses the role and potential value of CESs in the treatment and prevention of NAFLD.
Collapse
Affiliation(s)
- Jie Liu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Liangcai Gao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuanjin Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Shengbo Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China.
| |
Collapse
|
7
|
Zhou Y, Nie AQ, Chen S, Wang MM, Yin R, Tang BH, Wu YE, Yang F, Du B, Shi HY, Yang XM, Hao GX, Guo XL, Han QJ, Zheng Y, Zhao W. Downregulation of Renal MRPs Transporters in Acute Lymphoblastic Leukemia Mediated by the IL-6/STAT3/PXR Signaling Pathway. J Inflamm Res 2021; 14:2239-2252. [PMID: 34079330 PMCID: PMC8164703 DOI: 10.2147/jir.s310687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/06/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Considering prior investigations on reductions of renal multidrug resistance-associated protein (MRP) 2 and 4 transporters in mice with acute lymphoblastic leukemia (ALL), we sought to characterize the underlying mechanisms responsible for IL-6/STAT3/PXR-mediated changes in the expression of MRP2 and MRP4 in ALL. Subjects and Methods ALL xenograft models were established and intravenously injected with methotrexate (MTX) of MRPs substrate in NOD/SCID mice. Protein expression of MRPs and associated mechanisms were detected by Western blotting and immunocytochemistry. Plasma concentrations of MTX were determined using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Results Plasma IL-6 levels in patients with newly diagnosed ALL were increased compared to children with pneumonia. Similarly, plasma IL-6 levels in ALL, ALL-tocilizumab (TCZ, an IL-6 receptor inhibitor) and ALL-S3I-201 (a selective inhibitor of STAT3) mice were increased compared to the control group. The MRP2, MRP4, and PXR expression in HK-2 cells treated with IL-6 were decreased, whereas the p-STAT3 expression was significantly increased compared to the control group results. These results are consistent with clearance of MRPs-mediated MTX in the ALL group. These effects were attenuated by blocking IL-6/STAT3/PXR signaling pathway. Conclusion Inflammation-mediated changes in pharmacokinetics are thought to be executed through pathways IL-6-activated pathways, which can facilitate a better understanding of the potential for the use of IL-6 to predict the severity of adverse outcomes and the major implications on potential ALL treatments.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Ai-Qing Nie
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Shang Chen
- Institute of Biochemical and Biotechnological Drug, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Meng-Meng Wang
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Rui Yin
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Bo-Hao Tang
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yue-E Wu
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Fan Yang
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Bin Du
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Hai-Yan Shi
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China
| | - Xin-Mei Yang
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China
| | - Guo-Xiang Hao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xiu-Li Guo
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Qiu-Ju Han
- Institute of Immunopharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yi Zheng
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Wei Zhao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.,Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China
| |
Collapse
|
8
|
Ke CC, Chen LC, Yu CC, Cheng WC, Huang CY, Lin VC, Lu TL, Huang SP, Bao BY. Genetic Analysis Reveals a Significant Contribution of CES1 to Prostate Cancer Progression in Taiwanese Men. Cancers (Basel) 2020; 12:cancers12051346. [PMID: 32466188 PMCID: PMC7281132 DOI: 10.3390/cancers12051346] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 11/16/2022] Open
Abstract
The genes that influence prostate cancer progression remain largely unknown. Since the carboxylesterase gene family plays a crucial role in xenobiotic metabolism and lipid/cholesterol homeostasis, we hypothesize that genetic variants in carboxylesterase genes may influence clinical outcomes for prostate cancer patients. A total of 478 (36 genotyped and 442 imputed) single nucleotide polymorphisms (SNPs) in five genes of the carboxylesterase family were assessed in terms of their associations with biochemical recurrence (BCR)-free survival in 643 Taiwanese patients with prostate cancer who underwent radical prostatectomy. The strongest association signal was shown in CES1 (P = 9.64×10-4 for genotyped SNP rs8192935 and P = 8.96 × 10-5 for imputed SNP rs8192950). After multiple test correction and adjustment for clinical covariates, CES1 rs8192935 (P = 9.67 × 10-4) and rs8192950 (P = 9.34 × 10-5) remained significant. These SNPs were correlated with CES1 expression levels, which in turn were associated with prostate cancer aggressiveness. Furthermore, our meta-analysis, including eight studies, indicated that a high CES1 expression predicted better outcomes among prostate cancer patients (hazard ratio 0.82, 95% confidence interval 0.70-0.97, P = 0.02). In conclusion, our findings suggest that CES1 rs8192935 and rs8192950 are associated with BCR and that CES1 plays a tumor suppressive role in prostate cancer.
Collapse
Affiliation(s)
- Chien-Chih Ke
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Lih-Chyang Chen
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan;
| | - Chia-Cheng Yu
- Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
- Department of Urology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 907, Taiwan
| | - Wei-Chung Cheng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan;
- Research Center for Tumor Medical Science, China Medical University, Taichung 404, Taiwan
- Drug Development Center, China Medical University, Taichung 404, Taiwan
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - Victor C. Lin
- Department of Urology, E-Da Hospital, Kaohsiung 824, Taiwan;
- School of Medicine for International Students, I-Shou University, Kaohsiung 840, Taiwan
| | - Te-Ling Lu
- Department of Pharmacy, China Medical University, Taichung 404, Taiwan;
| | - Shu-Pin Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (S.-P.H.); (B.-Y.B.); Tel.: +886-7-3121101 (ext. 6694) (S.-P.H.); +886-4-22053366 (ext. 5126) (B.-Y.B.)
| | - Bo-Ying Bao
- Department of Pharmacy, China Medical University, Taichung 404, Taiwan;
- Sex Hormone Research Center, China Medical University Hospital, Taichung 404, Taiwan
- Department of Nursing, Asia University, Taichung 413, Taiwan
- Correspondence: (S.-P.H.); (B.-Y.B.); Tel.: +886-7-3121101 (ext. 6694) (S.-P.H.); +886-4-22053366 (ext. 5126) (B.-Y.B.)
| |
Collapse
|
9
|
Shen Y, Shi Z, Yan B. Carboxylesterases: Pharmacological Inhibition Regulated Expression and Transcriptional Involvement of Nuclear Receptors and other Transcription Factors. NUCLEAR RECEPTOR RESEARCH 2019. [DOI: 10.32527/2019/101435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Yuanjun Shen
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh Department of Medicine, Pittsburgh, PA 15261, USA
| | - Zhanquan Shi
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Bingfang Yan
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
10
|
Di L. The Impact of Carboxylesterases in Drug Metabolism and Pharmacokinetics. Curr Drug Metab 2019; 20:91-102. [PMID: 30129408 PMCID: PMC6635651 DOI: 10.2174/1389200219666180821094502] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Carboxylesterases (CES) play a critical role in catalyzing hydrolysis of esters, amides, carbamates and thioesters, as well as bioconverting prodrugs and soft drugs. The unique tissue distribution of CES enzymes provides great opportunities to design prodrugs or soft drugs for tissue targeting. Marked species differences in CES tissue distribution and catalytic activity are particularly challenging in human translation. METHODS Review and summarization of CES fundamentals and applications in drug discovery and development. RESULTS Human CES1 is one of the most highly expressed drug metabolizing enzymes in the liver, while human intestine only expresses CES2. CES enzymes have moderate to high inter-individual variability and exhibit low to no expression in the fetus, but increase substantially during the first few months of life. The CES genes are highly polymorphic and some CES genetic variants show significant influence on metabolism and clinical outcome of certain drugs. Monkeys appear to be more predictive of human pharmacokinetics for CES substrates than other species. Low risk of clinical drug-drug interaction is anticipated for CES, although they should not be overlooked, particularly interaction with alcohols. CES enzymes are moderately inducible through a number of transcription factors and can be repressed by inflammatory cytokines. CONCLUSION Although significant advances have been made in our understanding of CESs, in vitro - in vivo extrapolation of clearance is still in its infancy and further exploration is needed. In vitro and in vivo tools are continuously being developed to characterize CES substrates and inhibitors.
Collapse
Affiliation(s)
- Li Di
- Pfizer Inc., Eastern Point Road, Groton, Connecticut, CT 06354, United States
| |
Collapse
|
11
|
Yao H, Bai R, Ren T, Wang Y, Gu J, Guo Y. Enhanced Platelet Response to Clopidogrel in Zucker Diabetic Fatty Rats due to Impaired Clopidogrel Inactivation by Carboxylesterase 1 and Increased Exposure to Active Metabolite. Drug Metab Dispos 2019; 47:794-801. [PMID: 31092394 DOI: 10.1124/dmd.118.085126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/07/2019] [Indexed: 02/01/2023] Open
Abstract
Clopidogrel (Clop), a thienopyridine antiplatelet prodrug, is metabolized by cytochrome P450s (CYPs) to an active metabolite, Clop-AM, and hydrolyzed by carboxylesterase (CES)1 to the inactive Clop-acid. Patients with type 2 diabetes (T2DM) tend to have a poor response to Clop due to reduced generation of Clop-AM. Whether a similar response occurs in the Zucker diabetic fatty (ZDF) rat, a commonly used animal model of T2DM, has not been explored. In this work, we compared ZDF and control rats for hepatic CES1- and CYP-mediated Clop metabolism; pharmacokinetics of Clop, Clop-AM, and Clop-acid; and the antiplatelet efficacy of Clop. In contrast to clinical findings, Clop-treated ZDF rats displayed significantly less (50%) maximum platelet aggregation at 4 hours than control rats; the enhanced efficacy was accompanied by higher formation of Clop-AM and lower formation of Clop-acid. In vitro studies showed that hepatic levels of CES1 protein and activity and Ces1e mRNA were significantly lower in ZDF than in control rats, as were the mRNA levels of CYP2B1/2, CYP2C11, and CYP3A2, and levels of CYP2B6-, CYP2C19-, and CYP3A4-related proteins and enzymatic activities in liver microsomes of ZDF rats. Interestingly, liver microsomes of ZDF rats produced higher levels of Clop-AM than that of control rats despite their lower CYP levels, although the addition of fluoride ion, an esterase inhibitor, enhanced Clop-AM formation in control rats more than in ZDF rats. These results suggest that the reduction in CES1-based Clop inactivation indirectly enhances Clop efficacy in ZDF rats by making more Clop available for CYP-mediated Clop-AM formation.
Collapse
Affiliation(s)
- Hongwei Yao
- School of Life Sciences, Jilin University, Changchun, China
| | - Ruifeng Bai
- School of Life Sciences, Jilin University, Changchun, China
| | - Tianming Ren
- School of Life Sciences, Jilin University, Changchun, China
| | - Yani Wang
- School of Life Sciences, Jilin University, Changchun, China
| | - Jingkai Gu
- School of Life Sciences, Jilin University, Changchun, China
| | - Yingjie Guo
- School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
12
|
Mackowiak B, Li L, Lynch C, Ziman A, Heyward S, Xia M, Wang H. High-content analysis of constitutive androstane receptor (CAR) translocation identifies mosapride citrate as a CAR agonist that represses gluconeogenesis. Biochem Pharmacol 2019; 168:224-236. [PMID: 31306645 DOI: 10.1016/j.bcp.2019.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/10/2019] [Indexed: 12/31/2022]
Abstract
The constitutive androstane receptor (CAR) plays an important role in hepatic drug metabolism and detoxification but has recently been projected as a potential drug target for metabolic disorders due to its repression of lipogenesis and gluconeogenesis. Thus, identification of physiologically-relevant CAR modulators has garnered significant interest. Here, we adapted the previously characterized human CAR (hCAR) nuclear translocation assay in human primary hepatocytes (HPH) to a high-content format and screened an FDA-approved drug library containing 978 compounds. Comparison of hCAR nuclear translocation results with the Tox21 hCAR luciferase reporter assay database in 643 shared compounds revealed significant overlap between these two assays, with approximately half of hCAR agonists also mediating nuclear translocation. Further validation of these compounds in HPH and/or using published data from literature demonstrated that hCAR translocation exhibits a higher correlation with the induction of hCAR target genes, such as CYP2B6, than the luciferase assay. In addition, some CAR antagonists which repress CYP2B6 mRNA expression in HPH, such as sorafenib, rimonabant, and CINPA1, were found to translocate hCAR to the nucleus of HPH. Notably, both the translocation assay and the luciferase assay identified mosapride citrate (MOS), a gastroprokinetic agent that is known to reduce fasting blood glucose levels in humans, as a novel hCAR activator. Further studies with MOS in HPH uncovered that MOS can repress the expression of gluconeogenic genes and decrease glucose output from hepatocytes, providing a previously unidentified liver-specific mechanism by which MOS modulates blood glucose levels.
Collapse
Affiliation(s)
- Bryan Mackowiak
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, United States
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, United States
| | - Caitlin Lynch
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, United States
| | - Andrew Ziman
- Nikon Instruments Inc., 1300 Walt Whitman Road, Melville, NY 11747, United States
| | - Scott Heyward
- Bioreclamation In Vitro Technologies, 1450 S Rolling Rd, Halethorpe, MD 21227, United States
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, United States
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, United States.
| |
Collapse
|
13
|
Ning R, Zhan Y, He S, Hu J, Zhu Z, Hu G, Yan B, Yang J, Liu W. Interleukin-6 Induces DEC1, Promotes DEC1 Interaction with RXRα and Suppresses the Expression of PXR, CAR and Their Target Genes. Front Pharmacol 2017; 8:866. [PMID: 29234281 PMCID: PMC5712319 DOI: 10.3389/fphar.2017.00866] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/09/2017] [Indexed: 12/17/2022] Open
Abstract
Inflammatory burden is a primary cellular event in many liver diseases, and the overall capacity of drug elimination is decreased. PXR (pregnane X receptor) and CAR (constitutive androstane receptor) are two master regulators of genes encoding drug-metabolizing enzymes and transporters. DEC1 (differentiated embryonic chondrocyte-expressed gene 1) is a ligand-independent transcription factor and reportedly is induced by many inflammatory cytokines including IL-6. In this study, we used primary hepatocytes (human and mouse) as well as HepG2 cell line and demonstrated that IL-6 increased DEC1 expression and decreased the expressions of PXR, CAR, and their target genes. Overexpression of DEC1 had similar effect as IL-6 on the expression of these genes, and knockdown of DEC1 reversed their downregulation by IL-6. Interestingly, neither IL-6 nor DEC1 altered the expression of RXRα, a common dimerization partner for many nuclear receptors including PXR and CAR. Instead, DEC1 was found to interact with RXRα and IL-6 enhanced the interaction. These results conclude that DEC1 uses diverse mechanisms of action and supports IL-6 downregulation of drug-elimination genes and their regulators.
Collapse
Affiliation(s)
- Rui Ning
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Yunran Zhan
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Shuangcheng He
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Jinhua Hu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Zhu Zhu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Gang Hu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Bingfang Yan
- Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, University of Rhode Island, Kingston, RI, United States
| | - Jian Yang
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Wei Liu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Luo W, Xin Y, Zhao X, Zhang F, Liu C, Fan H, Xi T, Xiong J. Suppression of carboxylesterases by imatinib mediated by the down-regulation of pregnane X receptor. Br J Pharmacol 2017; 174:700-717. [PMID: 28128444 DOI: 10.1111/bph.13731] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND PURPOSE Imatinib mesylate (IM) is a first-line treatment for chronic myeloid leukaemia (CML) as a specific inhibitor of BCR-ABL tyrosine kinase. As IM is widely used in CML, in combination with other drugs, the effects of IM on drug-metabolizing enzymes (DMEs) are crucial to the design of rational drug administration. Carboxylesterases (CESs) are enzymes catalysing the hydrolytic biotransformation of several clinically useful drugs. Although IM is known to inhibit cytochromes P450 (CYPs), its effects on DMEs, and CESs in particular, are still largely undefined. EXPERIMENTAL APPROACH Hepatoma cell lines (HepG2 and Huh7) and primary mouse hepatocytes were used. mRNA and protein expression were evaluated by quantitative RT-PCR and Western blot analysis. Reporter luciferase activity was determined by transient co-transfection experiment. Pregnane X receptor (PXR) expression was regulated by overexpression and RNA interference. The activity of CESs was determined by enzymic and toxicological assays. Mice were treated with a range of doses of IM to analyse expression of CESs in mouse liver. KEY RESULTS The expression and activity of CESs were markedly repressed by IM, along with the down-regulation of PXR and inhibited expression and activity of CYP3A4 and P-gp. CONCLUSIONS AND IMPLICATIONS Down-regulation of PXR mediates IM-induced suppression of CESs. IM may inhibit expression of other genes targeted by PXR, thus inducing a wide range of potential drug-drug interactions during treatment of CML. The data deserve further elucidation including clinical trials.
Collapse
Affiliation(s)
- Wenjing Luo
- Department of Pharmacology, Nanjing Medical University, Nanjing, China.,Research Center of Biotechnology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yu Xin
- Department of Pharmacology, Nanjing Medical University, Nanjing, China.,Research Center of Biotechnology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xia Zhao
- Department of Pharmacy, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, China
| | - Feng Zhang
- Research Center of Biotechnology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Changqing Liu
- Clinical Pharmacology Laboratory, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Hongwei Fan
- Clinical Pharmacology Laboratory, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Tao Xi
- Research Center of Biotechnology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jing Xiong
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Vachirayonstien T, Yan B. MicroRNA-30c-1-3p is a silencer of the pregnane X receptor by targeting the 3'-untranslated region and alters the expression of its target gene cytochrome P450 3A4. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1238-1244. [PMID: 27085140 DOI: 10.1016/j.bbagrm.2016.03.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/17/2016] [Accepted: 03/30/2016] [Indexed: 01/07/2023]
Abstract
The pregnane X receptor (PXR) is a master regulator of genes involved in drug elimination. Recently, activation of PXR has also been linked to the development of many disease conditions such as metabolic disorders and malignancies. MicroRNAs (miRs) emerge as important molecular species involved in these conditions. This study was undertaken to test a large number of miRs for their ability to regulate PXR expression. As many as 58 miRs were tested and miR-30c-1-3p was identified to suppress PXR expression. The suppression was achieved by targeting the 3'-untranslated region, 438 nucleotides from the stop codon. The suppression was detected in multiple cell lines from different organ origins. In addition, miR-30c-1-3p altered basal and induced expression of cytochrome P450 3A4 (CYP3A4), a prototypical target gene of PXR. The alteration varied depending on the time and amounts of miR-30c-1-3p. CYP3A4 is responsible for the metabolism of more than 50% medicines. The interconnection between miR-30c-1-3p and PXR signifies a role of miRs in drug-drug interactions and chemosensitivity. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Thaveechai Vachirayonstien
- Department of Biomedical and Pharmaceutical Sciences, Center for Integrated Drug Development, University of Rhode Island, Kingston, RI 02881, United States
| | - Bingfang Yan
- Department of Biomedical and Pharmaceutical Sciences, Center for Integrated Drug Development, University of Rhode Island, Kingston, RI 02881, United States.
| |
Collapse
|
16
|
Shang W, Liu J, Chen R, Ning R, Xiong J, Liu W, Mao Z, Hu G, Yang J. Fluoxetine reduces CES1, CES2, and CYP3A4 expression through decreasing PXR and increasing DEC1 in HepG2 cells. Xenobiotica 2015; 46:393-405. [DOI: 10.3109/00498254.2015.1082209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
17
|
Xiao D, Yang D, Guo L, Lu W, Charpentier M, Yan B. Regulation of carboxylesterase-2 expression by p53 family proteins and enhanced anti-cancer activities among 5-fluorouracil, irinotecan and doxazolidine prodrug. Br J Pharmacol 2015; 168:1989-99. [PMID: 23373735 DOI: 10.1111/bph.12125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 11/05/2012] [Accepted: 12/10/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE For four decades, 5-fluorouracil (5-FU) has been a major anti-cancer medicine. This drug is increasingly used with other anti-cancer agents such as irinotecan. Irinotecan and many others such as PPD (pentyl carbamate of p-aminobenzyl carbamate of doxazolidine) require activation by carboxylesterase-2 (CES2). 5-FU, on the other hand, reportedly induces CES2 in colorectal tumour lines. The aims of this study were to determine the molecular basis for the induction and to ascertain interactive cell-killing activity between 5-FU and ester prodrugs. EXPERIMENTAL APPROACH Colorectal and non-colorectal lines and xenografts were treated with 5-FU and the expression of CES2 was determined. Cell-killing activity of irinotecan and PPD were determined in the presence or absence of CES2 inhibitor. Several molecular experiments were used to determine the molecular basis for the induction. KEY RESULTS Without exceptions, robust induction was detected in cell lines expressing functional p53. High-level induction was also detected in xenografts. 5-FU pretreatment significantly increased cell-killing activity of irinotecan and PPD. Molecular experiments established that the induction was achieved by both transactivation and increased mRNA stability through p53. Either p63 or p73, functionally related to p53, did not support the transactivation. CONCLUSIONS AND IMPLICATIONS The results in this study suggest that FOLFIRI, a common regimen combining irinotecan and 5-FU, should switch the dosing sequence, namely from 5-FU to irinotecan, to enhance hydrolytic activation of irinotecan. This modified order likely reduces the dose of anti-cancer agents, thus minimizing overall toxicity. The results also conclude that p53 family members act differently in regulating gene expression.
Collapse
Affiliation(s)
- Da Xiao
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, University of Rhode Island, Kingston, RI 02881, USA
| | | | | | | | | | | |
Collapse
|
18
|
Oda S, Fukami T, Yokoi T, Nakajima M. A comprehensive review of UDP-glucuronosyltransferase and esterases for drug development. Drug Metab Pharmacokinet 2015; 30:30-51. [DOI: 10.1016/j.dmpk.2014.12.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/24/2014] [Accepted: 12/02/2014] [Indexed: 01/24/2023]
|
19
|
Liu W, Ning R, Chen RN, Hu JH, Gui HY, Wang YW, Liu J, Hu G, Yang J, Guo QL. Gambogic acid suppresses cytochrome P450 3A4 by downregulating pregnane X receptor and up-regulating DEC1 in human hepatoma HepG2 cells. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00239c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gambogic acid suppresses cytochrome P450 3A4 by downregulating pregnane X receptor and up-regulating DEC1 in human hepatoma HepG2 cells.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pharmacology
- Nanjing Medical University
- Nanjing
- China
| | - Rui Ning
- Department of Pharmacology
- Nanjing Medical University
- Nanjing
- China
| | - Rui-Ni Chen
- Department of Pharmacology
- Nanjing Medical University
- Nanjing
- China
| | - Jin-Hua Hu
- Department of Pharmacology
- Nanjing Medical University
- Nanjing
- China
| | - Hai-Yan Gui
- Maternity and Child Care Center of Xinyu
- Jiangxi
- China
| | - Yu-Wen Wang
- Department of Pharmacology
- Nanjing Medical University
- Nanjing
- China
| | - Jie Liu
- Department of Pharmacology
- Nanjing Medical University
- Nanjing
- China
| | - Gang Hu
- Department of Pharmacology
- Nanjing Medical University
- Nanjing
- China
| | - Jian Yang
- Department of Pharmacology
- Nanjing Medical University
- Nanjing
- China
| | - Qing-Long Guo
- Jiangsu Key Laboratory of Carcinogenesis and Intervention
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|
20
|
Schmuth M, Moosbrugger-Martinz V, Blunder S, Dubrac S. Role of PPAR, LXR, and PXR in epidermal homeostasis and inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:463-73. [PMID: 24315978 DOI: 10.1016/j.bbalip.2013.11.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 11/18/2013] [Accepted: 11/23/2013] [Indexed: 12/19/2022]
Abstract
Epidermal lipid synthesis and metabolism are regulated by nuclear hormone receptors (NHR) and in turn epidermal lipid metabolites can serve as ligands to NHR. NHR form a large superfamily of receptors modulating gene transcription through DNA binding. A subgroup of these receptors is ligand-activated and heterodimerizes with the retinoid X receptor including peroxisome proliferator-activated receptor (PPAR), liver X receptor (LXR) and pregnane X receptor (PXR). Several isotypes of these receptors exist, all of which are expressed in skin. In keratinocytes, ligand activation of PPARs and LXRs stimulates differentiation, induces lipid accumulation, and accelerates epidermal barrier regeneration. In the cutaneous immune system, ligand activation of all three receptors, PPAR, LXR, and PXR, has inhibitory properties, partially mediated by downregulation of the NF-kappaB pathway. PXR also has antifibrotic effects in the skin correlating with TGF-beta inhibition. In summary, ligands of PPAR, LXR and PXR exert beneficial therapeutic effects in skin disease and represent promising targets for future therapeutic approaches in dermatology. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Matthias Schmuth
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria.
| | | | - Stefan Blunder
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria.
| |
Collapse
|
21
|
Yamashita F, Sasa Y, Yoshida S, Hisaka A, Asai Y, Kitano H, Hashida M, Suzuki H. Modeling of rifampicin-induced CYP3A4 activation dynamics for the prediction of clinical drug-drug interactions from in vitro data. PLoS One 2013; 8:e70330. [PMID: 24086247 PMCID: PMC3782498 DOI: 10.1371/journal.pone.0070330] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/17/2013] [Indexed: 01/23/2023] Open
Abstract
Induction of cytochrome P450 3A4 (CYP3A4) expression is often implicated in clinically relevant drug-drug interactions (DDI), as metabolism catalyzed by this enzyme is the dominant route of elimination for many drugs. Although several DDI models have been proposed, none have comprehensively considered the effects of enzyme transcription/translation dynamics on induction-based DDI. Rifampicin is a well-known CYP3A4 inducer, and is commonly used as a positive control for evaluating the CYP3A4 induction potential of test compounds. Herein, we report the compilation of in vitro induction data for CYP3A4 by rifampicin in human hepatocytes, and the transcription/translation model developed for this enzyme using an extended least squares method that can account for inherent inter-individual variability. We also developed physiologically based pharmacokinetic (PBPK) models for the CYP3A4 inducer and CYP3A4 substrates. Finally, we demonstrated that rifampicin-induced DDI can be predicted with reasonable accuracy, and that a static model can be used to simulate DDI once the blood concentration of the inducer reaches a steady state following repeated dosing. This dynamic PBPK-based DDI model was implemented on a new multi-hierarchical physiology simulation platform named PhysioDesigner.
Collapse
Affiliation(s)
- Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yukako Sasa
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shuya Yoshida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Akihiro Hisaka
- Department of Pharmacology and Pharmacokinetics, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshiyuki Asai
- Open Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Hiroaki Kitano
- Open Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Sony Computer Science Laboratories, Inc, Tokyo, Japan
| | - Mitsuru Hashida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
22
|
Xiao D, Shi D, Yang D, Barthel B, Koch TH, Yan B. Carboxylesterase-2 is a highly sensitive target of the antiobesity agent orlistat with profound implications in the activation of anticancer prodrugs. Biochem Pharmacol 2012; 85:439-47. [PMID: 23228697 DOI: 10.1016/j.bcp.2012.11.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 11/30/2012] [Accepted: 11/30/2012] [Indexed: 01/02/2023]
Abstract
Orlistat has been the most used anti-obesity drug and the mechanism of its action is to reduce lipid absorption by inhibiting gastrointestinal lipases. These enzymes, like carboxylesterases (CESs), structurally belong to the α/β hydrolase fold superfamily. Lipases and CESs are functionally related as well. Some CESs (e.g., human CES1) have been shown to hydrolyze lipids. This study was designed to test the hypothesis that orlistat inhibits CESs with higher potency toward CES1 than CES2, a carboxylesterase with little lipase activity. Liver microsomes and recombinant CESs were tested for the inhibition of the hydrolysis of standard substrates and the anticancer prodrugs pentyl carbamate of p-aminobenzyl carbamate of doxazolidine (PPD) and irinotecan. Contrary to the hypothesis, orlistat at 1 nM inhibited CES2 activity by 75% but no inhibition on CES1, placing CES2 one of the most sensitive targets of orlistat. The inhibition varied among some CES2 polymorphic variants. Pretreatment with orlistat reduced the cell killing activity of PPD. Certain mouse but not rat CESs were also highly sensitive. CES2 is responsible for the hydrolysis of many common drugs and abundantly expressed in the gastrointestinal track and liver. Inhibition of this carboxylesterase probably presents a major source for altered therapeutic activity of these medicines if co-administered with orlistat. In addition, orlistat has been linked to various types of organ toxicities, and this study provides an alternative target potentially involved in these toxicological responses.
Collapse
Affiliation(s)
- Da Xiao
- Department of Biomedical Sciences, Center for Pharmacogenomics and Molecular Therapy, University of Rhode Island, Kingston, RI 02881, USA
| | | | | | | | | | | |
Collapse
|
23
|
Tippisetty S, Goudi D, Mohammed AW, Jahan P. Repair efficiency and PUVA therapeutic response variation in patients with vitiligo. Toxicol In Vitro 2012; 27:438-40. [PMID: 22921987 DOI: 10.1016/j.tiv.2012.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 07/04/2012] [Accepted: 08/02/2012] [Indexed: 11/17/2022]
Abstract
Vitiligo is an acquired depigmentation disorder affecting 0.1% to >8.8% in Indian population. Psoralen and ultraviolet A radiation (PUVA) is a gold standard treatment for vitiligo, however, response is still empirical. In order to investigate whether drug response variation is influenced by the repair ability of PUVA treated vitiligo subjects, single cell gel electrophoresis (SCGE) for genotoxicity and serum malonaldehyde (MDA) for cytotoxicity were performed on 107 subjects (77 cases and 30 healthy controls) in South Indian population. In vitro repair ability was assessed by considering the residual damage. A significant difference was observed between the patients and controls with regard to their mean values of DNA damage and MDA levels (p<0.05). On categorization to fast and slow responders based on the time of response, patients exhibited a significant deviation in residual DNA damage, suggestive of variation with respect to DNA repair efficiency (p<0.05). This is the first study to our knowledge with respect to PUVA drug response variation in vitiligo in relation to DNA repair. Large systematic studies on DNA repair may help in a better understanding of the mechanisms involved in the PUVA drug response variation.
Collapse
|
24
|
Lo WS, Lim YP, Chen CC, Hsu CC, Souček P, Yun CH, Xie W, Ueng YF. A dual function of the furanocoumarin chalepensin in inhibiting Cyp2a and inducing Cyp2b in mice: the protein stabilization and receptor-mediated activation. Arch Toxicol 2012; 86:1927-38. [PMID: 22790670 DOI: 10.1007/s00204-012-0902-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/02/2012] [Indexed: 10/28/2022]
Abstract
Chalepensin, a furanocoumarin, is present in several medicinal Rutaceae plants and causes a mechanism-based inhibition of human and mouse cytochrome P450 (P450, CYP) 2A in vitro. To address the in vivo effect, we investigated the effects of chalepensin on multiple hepatic P450 enzymes in C57BL/6JNarl mice. Oral administration of 10 mg/kg chalepensin to mice for 7 days significantly decreased hepatic coumarin 7-hydroxylation (Cyp2a) and increased 7-pentoxyresorufin O-dealkylation (Cyp2b) activities, whereas activities of Cyp1a, Cyp2c, Cyp2e1, and Cyp3a were not affected. Without affecting its mRNA level, the decreased Cyp2a activity was accompanied by an increase in the immunodetected Cyp2a5 protein level. In chalepensin-treated mice, microsomal Cyp2a5 was less susceptible to ATP-fortified cytosolic degradation than that in control mice, resulting in the elevated protein level. The in vitro inactivation through NADPH-fortified pre-incubation with chalepensin also protected microsomal Cyp2a5 against protein degradation. Using cell-based reporter systems, chalepensin at a concentration near unbound plasma concentration activated mouse constitutive androstane receptor (CAR), in agreement with the observed induction of Cyp2b. These findings revealed that suicidal inhibition of Cyp2a5 and the CAR-mediated Cyp2b9/10 induction concurrently occurred in chalepensin-treated mice.
Collapse
Affiliation(s)
- Wei-Sheng Lo
- National Research Institute of Chinese Medicine, No. 155-1, Li-Nong Street, Sec. 2, Taipei, 112, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
25
|
DEC1 binding to the proximal promoter of CYP3A4 ascribes to the downregulation of CYP3A4 expression by IL-6 in primary human hepatocytes. Biochem Pharmacol 2012; 84:701-711. [PMID: 22728071 DOI: 10.1016/j.bcp.2012.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/13/2012] [Accepted: 06/13/2012] [Indexed: 12/16/2022]
Abstract
In this study, we provided molecular evidences that interleukin-6 (IL-6) contributed to the decreased capacity of oxidative biotransformation in human liver by suppressing the expression of cytochrome P450 3A4 (CYP3A4). After human hepatocytes were treated with IL-6, differentially expressed in chondrocytes 1 (DEC1) expression rapidly increased, and subsequently, the CYP3A4 expression decreased continuously. Furthermore, the repression of CYP3A4 by IL-6 occurred after the increase of DEC1 in primary human hepatocytes. In HepG2 cells, knockdown of DEC1 increased the CYP3A4 expression and its enzymatic activity. In addition, it partially abolished the decreased CYP3A4 expression as well as its enzymatic activity induced by IL-6. Consistent with this, overexpression of DEC1 markedly reduced the CYP3A4 promoter activity and the CYP3A4 expression as well as its enzymatic activity. Using sequential truncation and site directed mutagenesis of CYP3A4 proximal promoter with DEC1 construct, we showed that DEC1 specifically bound to CCCTGC sequence in the proximal promoter of CYP3A4, which was validated by EMSA and ChIP assay. These findings suggest that the repression of CYP3A4 by IL-6 is achieved through increasing the DEC1 expression in human hepatocytes, the increased DEC1 binds to the CCCTGC sequence in the promoter of CYP3A4 to form CCCTGC-DEC1 complex, and the complex downregulates the CYP3A4 expression and its enzymatic activity.
Collapse
|
26
|
Cheng J, Shah YM, Gonzalez FJ. Pregnane X receptor as a target for treatment of inflammatory bowel disorders. Trends Pharmacol Sci 2012; 33:323-30. [PMID: 22609277 PMCID: PMC3368991 DOI: 10.1016/j.tips.2012.03.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 02/27/2012] [Accepted: 03/06/2012] [Indexed: 02/07/2023]
Abstract
Pregnane X receptor (PXR; NR1I2), a member of the nuclear receptor superfamily, has a major role in the induction of genes involved in drug transport and metabolism. Recent studies in mice have provided insight into a novel function for PXR in inflammatory bowel disease (IBD). The mechanism of the protective effect of PXR activation on IBD is not fully established, but is due in part to the attenuation of nuclear factor (NF)-κB signaling that results in lower expression of proinflammatory cytokines. Recent clinical trials with the antibiotic rifaximin, a PXR agonist in the gastrointestinal system, have revealed its potential therapeutic value in the treatment of intestinal inflammation in humans. Thus, PXR may be a novel target for IBD therapy.
Collapse
Affiliation(s)
- Jie Cheng
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
27
|
Zhang Y, Cheng X, Aleksunes L, Klaassen CD. Transcription factor-mediated regulation of carboxylesterase enzymes in livers of mice. Drug Metab Dispos 2012; 40:1191-7. [PMID: 22429928 PMCID: PMC3362786 DOI: 10.1124/dmd.111.043877] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 03/19/2012] [Indexed: 11/22/2022] Open
Abstract
The induction of drug-metabolizing enzymes by chemicals is one of the major reasons for drug-drug interactions. In the present study, the regulation of mRNA expression of one arylacetamide deacetylase (Aadac) and 11 carboxylesterases (Cess) by 15 microsomal enzyme inducers (MEIs) was examined in livers of male C57BL/6 mice. The data demonstrated that Aadac mRNA expression was suppressed by three aryl hydrocarbon receptor (AhR) ligands, two constitutive androstane receptor (CAR) activators, two pregnane X receptor (PXR) ligands, and one nuclear factor erythroid 2-related factor 2 (Nrf2) activator. Ces1 subfamily mRNA expression was not altered by most of the MEIs, whereas Ces2 subfamily mRNA was readily induced by the activators of CAR, PXR, and Nrf2 but not by peroxisome proliferator-activated receptor α activators. Studies using null mice demonstrated that 1) AhR was required for the 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated suppression of Aadac and Ces3a; 2) CAR was involved in the 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene-mediated induction of Aadac, Ces2c, Ces2a, and Ces3a; 3) PXR was required for the pregnenolone-16α-carbonitrile-mediated induction of Aadac, Ces2c, and Ces2a; 4) Nrf2 was required for the oltipraz-mediated induction of Ces1g and Ces2c; and 5) PXR was not required for the DEX-mediated suppression of Cess in livers of mice. In conclusion, the present study systematically investigated the regulation of Cess by MEIs in livers of mice and demonstrated that MEIs modulated mRNA expression of mouse hepatic Cess through the activation of AhR, CAR, PXR, and/or Nrf2 transcriptional pathways.
Collapse
Affiliation(s)
- Youcai Zhang
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Interindividual differences in drug transporter expression can result in variability in drug response. This variation in gene expression is determined, in part, by the actions of nuclear hormone receptors that act as xenobiotic- and endobiotic-sensing transcription factors. Among the ligand-activated nuclear receptors, signaling through the pregnane X receptor (PXR), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), and vitamin D receptor (VDR) constitute major pathways regulating drug transporter expression in tissues. Hence, these endobiotic- and xenobiotic-sensing nuclear receptors are intrinsically involved in environmental influences of drug response. Moreover, because nuclear receptor genes are polymorphic, these transcription factors are also thought to contribute to heritability of variable drug action. In this chapter, the molecular aspects of drug transporter gene regulation by ligand-activated nuclear receptors will be reviewed including their clinical relevance.
Collapse
|
29
|
Lipopolysaccharide down-regulates carbolesterases 1 and 2 and reduces hydrolysis activity in vitro and in vivo via p38MAPK-NF-κB pathway. Toxicol Lett 2011; 201:213-20. [PMID: 21237253 DOI: 10.1016/j.toxlet.2011.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 12/24/2010] [Accepted: 01/06/2011] [Indexed: 12/31/2022]
Abstract
Carboxylesterases constitute a class of enzymes that hydrolyze drugs containing such functional groups as carboxylic acid ester, amide, and thioester. Hydrolysis of many drugs is reduced in liver diseases such as hepatitis and cirrhosis. In this study, we have demonstrated, in vitro and in vivo, treatment with LPS decreased the expression of HCE1 and HCE2 and the capacity of hydrolytic activity. In HepG2 cells, the decreased expression by LPS occurred at both mRNA and protein levels. Both HCE1 and HCE2 promoters were significantly repressed by LPS, and the repression was comparable with the decrease in HCE1 and HCE2 mRNA, suggesting the transrepression is responsible for suppressed expression. Further study showed that both PDTC, a NF-κB inhibitor, and SB203580, a p38MAPK inhibitor, could abolish the repression of HCE1 and HCE2 mediated by LPS, but U0126, a selective ERK1/2 inhibitor, could not do so, suggesting the repression of HCE1 and HCE2 by LPS through the p38MAPK-NF-κB pathway. In addition, being pretreated with LPS, HepG2 cells altered the cellular responsiveness to ester therapeutic agents, including clopidogrel (hydrolyzed by HCE1) and irinotecan (hydrolyzed by HCE2). The altered cellular responsiveness occurred at low micromolar concentrations, suggesting that suppressed expression of carboxylesterases by LPS has profound pharmacological and toxicological consequences, particularly with those that are hydrolyzed in an isoform-specific manner. This study provides new insight into the understanding of the pharmacological and toxicological effects and the mechanisms for repressing drug metabolism enzymes in inflammation.
Collapse
|
30
|
Yang J, Luan X, Gui H, Yan P, Yang D, Song X, Liu W, Hu G, Yan B. Byakangelicin induces cytochrome P450 3A4 expression via transactivation of pregnane X receptors in human hepatocytes. Br J Pharmacol 2011; 162:441-51. [PMID: 20942813 PMCID: PMC3031064 DOI: 10.1111/j.1476-5381.2010.01069.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 08/05/2010] [Accepted: 08/27/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Byakangelicin is found in extracts of the root of Angelica dahurica, used in Korea and China as a traditional medicine to treat colds, headache and toothache. As byakangelicin can inhibit the effects of sex hormones, it may increase the catabolism of endogenous hormones. Therefore, this study investigated the effects of byakangelicin on the cytochrome P450 isoform cytochrome (CY) P3A4 in human hepatocytes. EXPERIMENTAL APPROACH Cultures of human hepatocytes and a hepatoma cell line (Huh7 cells) were used. mRNA and protein levels were measured by quantitative reverse transcription-polymerase chain reaction and Western blot. Plasmid constructs and mutants were prepared by cloning and site-directed mutagenesis. Reporter (luciferase) activity was determined by transient co-transfection experiments. KEY RESULTS In human primary hepatocytes, byakangelicin markedly induced the expression of CYP3A4 both at the mRNA level (approximately fivefold) and the protein level (approximately threefold) but did not affect expression of human pregnane X receptor (hPXR). In reporter assays, byakangelicin activated CYP3A4 promoter in a concentration-dependent manner (EC₅₀ = 5 µM), and this activation was enhanced by co-transfection with hPXR. Further reporter assays demonstrated that the eNR4 binding element in the CYP3A4 promoter was required for the transcriptional activation of CYP3A4 by byakangelicin. CONCLUSIONS AND IMPLICATIONS Byakangelicin induced expression and activity of CYP3A4 in human hepatocytes. This induction was achieved by the transactivation of PXR and not by increased expression of PXR. Therefore, byakangelicin is likely to increase the expression of all PXR target genes (such as MDR1) and induce a wide range of drug-drug interactions.
Collapse
Affiliation(s)
- Jian Yang
- Department of Pharmacology, Nanjing Medical University, Jiangsu, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Shi D, Yang D, Yan B. Dexamethasone transcriptionally increases the expression of the pregnane X receptor and synergistically enhances pyrethroid esfenvalerate in the induction of cytochrome P450 3A23. Biochem Pharmacol 2010; 80:1274-83. [PMID: 20599767 DOI: 10.1016/j.bcp.2010.06.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 06/22/2010] [Accepted: 06/23/2010] [Indexed: 11/26/2022]
Abstract
The pregnane X receptor (PXR) is recognized as a key regulator for the induction of a large number of genes in drug metabolism and transport. The transactivation of PXR is enhanced by the glucocorticoid dexamethasone and the enhancement is linked to the induction of PXR in humans and rats. The present study was undertaken to determine the mechanism for the induction and ascertain the synergistic effect on the expression of CYP3A23, a rat PXR target. In primary hepatocytes, significant induction of PXR was detected as early as 2h after the treatment and the maximal induction occurred at 1 microM dexamethasone. Similar induction kinetics was observed in the hepatoma line H4-II-E-C3. The induction was abolished by actinomycin D and dexamethasone efficaciously stimulated the rat PXR promoter. In addition, dexamethasone synergized esfenvalerate (an insecticide and a PXR activator) in inducing CYP3A23 and stimulating the CYP3A23 promoter. The full promoter of CYP3A23 (-1445/+74) was activated in a similar pattern as the changes in PXR mRNA in response to dexamethasone, esfenvalerate and co-treatment. In contrast, different responding patterns were detected on the stimulation of the CYP3A23 proximal promoter. Synergistic stimulation was also observed on the CYP3A4-DP-Luc reporter, the human counterpart of CYP3A23. These findings establish that transactivation is responsible for the induction of rat PXR and the induction presents potential interactions with insecticides in a species-conserved manner. The different responding patterns among CYP3A23 reporters point to an involvement of multiple transcriptional events in the regulation of CYP3A23 expression by dexamethasone, esfenvalerate and both.
Collapse
Affiliation(s)
- Deshi Shi
- Department of Biomedical Sciences, Center for Pharmacogenomics and Molecular Therapy, University of Rhode Island, 41 Lower College Road, Kingston, RI 02881, USA
| | | | | |
Collapse
|
32
|
Pregnane X receptor is required for interleukin-6-mediated down-regulation of cytochrome P450 3A4 in human hepatocytes. Toxicol Lett 2010; 197:219-26. [PMID: 20538049 DOI: 10.1016/j.toxlet.2010.06.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 05/30/2010] [Accepted: 06/01/2010] [Indexed: 12/31/2022]
Abstract
Cytochrome P450 3A4 (CYP3A4) is the most abundant cytochrome P450 enzyme in human liver and metabolizes more than 60% of prescribed drugs in human body. Patients with liver conditions such as cirrhosis show increased secretion of cytokines (e.g., interleukin-6) and decreased capacity of oxidation of many drugs. In this study, we provided molecular evidence that cytokine secretion directly contributed to the decreased capacity of oxidative biotransformation in human liver. After human hepatocytes were treated with IL-6, the expression of CYP3A4 decreased at both mRNA and protein levels, so did the CYP3A4 enzymatic activity. Meanwhile, the repression of CYP3A4 by IL-6 occurred after the decrease of pregnane X receptor (PXR) in human hepatocytes. The PXR-overexpressed cells (transfected with human PXR) increased the CYP3A4 mRNA level, and the repression of CYP3A4 by IL-6 was greater in the PXR-overexpressed cells than in the control cells. Further, PXR knockdown (transfected with siPXR construct) decreased the CYP3A4 mRNA level with less repression by IL-6 than in the control cells transfected with corresponding vector. Collectively, our study suggests that PXR is necessary for IL-6-mediated repression of the CYP3A4 expression in human hepatocytes.
Collapse
|
33
|
Williams ET, Wang H, Wrighton SA, Qian YW, Perkins EJ. Genomic analysis of the carboxylesterases: identification and classification of novel forms. Mol Phylogenet Evol 2010; 57:23-34. [PMID: 20510380 DOI: 10.1016/j.ympev.2010.05.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 05/11/2010] [Accepted: 05/18/2010] [Indexed: 10/19/2022]
Abstract
Large species differences in the expression of carboxylesterases (CE) have been described, but the interrelationships of CEs across species are not well characterized. In the current analyses, sequences with genomic structures similar to human CEs were found in piscine, avian, and mammalian genomes. Analyses of these genes suggest that four CE groups existed prior to mammalian divergence, with another form occurring after eutherian-marsupial divergence, yielding five distinct mammalian CE groups. The CE1 and CE2 groupings appear to have undergone extensive gene duplication in species with herbivorous and omnivorous diets underscoring the potential importance of these two groups in xenobiotic metabolism. However, CE3, CE4, and CE5 have remained at one gene per species in almost all observed cases. In avian and piscine genomes, only two CE groupings each were observed in the currently available sequence data. Finally, this study presents considerations for a broader phylogenetic-based nomenclature that could encompass other serine hydrolases in addition to the CEs.
Collapse
Affiliation(s)
- Eric T Williams
- Department of Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA.
| | | | | | | | | |
Collapse
|
34
|
Xu C, Wang X, Staudinger JL. Regulation of tissue-specific carboxylesterase expression by pregnane x receptor and constitutive androstane receptor. Drug Metab Dispos 2009; 37:1539-47. [PMID: 19359405 PMCID: PMC2698945 DOI: 10.1124/dmd.109.026989] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 04/08/2009] [Indexed: 12/19/2022] Open
Abstract
The liver- and intestine-enriched carboxylesterase 2 (CES2) enzyme catalyzes the hydrolysis of several clinically important anticancer agents administered as prodrugs. For example, irinotecan, a carbamate prodrug used in the treatment of colorectal cancer, is biotransformed in vivo by CES2 in intestine and liver, thereby producing a potent topoisomerase I inhibitor. Pregnane X receptor (PXR) and constitutive androstane receptor (CAR), two members of the nuclear receptor superfamily of ligand-activated transcription factors, mediate gene activation in response to xenobiotic stress. Together, these receptors comprise a protective response in mammals that coordinately regulate hepatic transport, metabolism, and elimination of numerous xenobiotic compounds. In the present study, microarray analysis was used to identify PXR target genes in duodenum in mice. Here, we show that a gene encoding a member of the CES2 subtype of liver- and intestine-enriched CES enzymes, called Ces6, is induced after treatment with pregnenolone 16alpha-carbonitrile in a PXR-dependent manner in duodenum and liver in mice. Treatment of mice with the CAR activator 1,4-bis[2-(3,5-dichloropyridyloxy)] benzene also induced expression of Ces6 in duodenum and liver in a CAR-dependent manner, whereas treatment with phenobarbital produced induction of Ces6 exclusively in liver. These data identify a key role for PXR and CAR in regulating the drug-inducible expression and activity of an important CES enzyme in vivo. Future studies should focus on determining whether these signaling pathways governing drug-inducible CES expression in intestine and liver are conserved in humans.
Collapse
Affiliation(s)
- Chenshu Xu
- Pharmacology and Toxicology, University of Kansas, 1251 Wescoe Hall Drive, 5038a Malott Hall, Lawrence, KS 66045, USA
| | | | | |
Collapse
|
35
|
Yang D, Wang X, Chen YT, Deng R, Yan B. Pyrethroid insecticides: isoform-dependent hydrolysis, induction of cytochrome P450 3A4 and evidence on the involvement of the pregnane X receptor. Toxicol Appl Pharmacol 2009; 237:49-58. [PMID: 19249324 DOI: 10.1016/j.taap.2009.02.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 01/23/2009] [Accepted: 02/13/2009] [Indexed: 11/29/2022]
Abstract
Pyrethroids account for more than one-third of the insecticides currently marketed in the world. In mammals, these insecticides undergo extensive metabolism by carboxylesterases and cytochrome P450s (CYPs). In addition, some pyrethroids are found to induce the expression of CYPs. The aim of this study was to determine whether pyrethroids induce carboxylesterases and CYP3A4, and whether the induction is correlated inversely with their hydrolysis. Human liver microsomes were pooled and tested for the hydrolysis of 11 pyrethroids. All pyrethroids were hydrolyzed by the pooled microsomes, but the hydrolytic rates varied by as many as 14 fold. Some pyrethroids such as bioresmethrin were preferably hydrolyzed by carboxylesterase HCE1, whereas others such as bifenthrin preferably by HCE2. In primary human hepatocytes, all pyrethroids except tetramethrin significantly induced CYP3A4. In contrast, insignificant changes were detected on the expression of carboxylesterases. The induction of CYP3A4 was confirmed in multiple cell lines including HepG2, Hop92 and LS180. Overall, the magnitude of the induction was correlated inversely with the rates of hydrolysis, but positively with the activation of the pregnane X receptor (PXR). Transfection of a carboxylesterase markedly decreased the activation of PXR, and the decrease was in agreement with carboxylesterase-based preference for hydrolysis. In addition, human PXR variants as well as rat PXR differed from human PXR (wild-type) in responding to certain pyrethroids (e.g., lambda-cyhalothrin), suggesting that induction of PXR target genes by these pyrethroids varies depending on polymorphic variants and the PXR species identity.
Collapse
Affiliation(s)
- Dongfang Yang
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, University of Rhode Island Kingston, RI 02881, USA
| | | | | | | | | |
Collapse
|
36
|
Máñez S. A Fresh Insight into the Interaction of Natural Products with Pregnane X Receptor. Nat Prod Commun 2008. [DOI: 10.1177/1934578x0800301233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The discovery that various drugs (e.g., phenobarbital) stimulate their own metabolism through a mechanism coined as enzymatic induction opened up a fascinating road that eventually led to the accurate biochemical characterization of the pregnane X receptor. After numerous studies, researchers have concluded that this receptor is activated by different endogenous steroids and a number of foreign lipophile ligands. Once activated, it induces the synthesis of oxygenases and conjugating enzymes. The activating ligands identified to date include many synthetic drugs, along with a number of natural products. The present review summarizes the data relating to the origin, chemistry, and pharmacological activity of the newest natural products that have been found to interact with the pregnane X receptor.
Collapse
Affiliation(s)
- Salvador Máñez
- Departament de Farmacologia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| |
Collapse
|
37
|
Effects of naturally occurring coumarins on hepatic drug-metabolizing enzymes in mice. Toxicol Appl Pharmacol 2008; 232:337-50. [PMID: 18692084 DOI: 10.1016/j.taap.2008.07.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/03/2008] [Accepted: 07/08/2008] [Indexed: 01/17/2023]
Abstract
Cytochromes P450 (P450s) and glutathione S-transferases (GSTs) constitute two important enzyme families involved in carcinogen metabolism. Generally, P450s play activation or detoxifying roles while GSTs act primarily as detoxifying enzymes. We previously demonstrated that oral administration of the linear furanocoumarins, isopimpinellin and imperatorin, modulated P450 and GST activities in various tissues of mice. The purpose of the present study was to compare a broader range of naturally occurring coumarins (simple coumarins, and furanocoumarins of the linear and angular type) for their abilities to modulate hepatic drug-metabolizing enzymes when administered orally to mice. We now report that all of the different coumarins tested (coumarin, limettin, auraptene, angelicin, bergamottin, imperatorin and isopimpinellin) induced hepatic GST activities, whereas the linear furanocoumarins possessed the greatest abilities to induce hepatic P450 activities, in particular P450 2B and 3A. In both cases, this corresponded to an increase in protein expression of the enzymes. Induction of P4502B10, 3A11, and 2C9 by xenobiotics often is a result of activation of the pregnane X receptor (PXR) and/or constitutive androstane receptor (CAR). Using a pregnane X receptor reporter system, our results demonstrated that isopimpinellin activated both PXR and its human ortholog SXR by recruiting coactivator SRC-1 in transfected cells. In CAR transfection assays, isopimpinellin counteracted the inhibitory effect of androstanol on full-length mCAR, a Gal4-mCAR ligand-binding domain fusion, and restored coactivator binding. Orally administered isopimpinellin induced hepatic mRNA expression of Cyp2b10, Cyp3a11, and GSTain CAR(+/+) wild-type mice. In contrast, the induction of Cyp2b10 mRNA by isopimpinellin was attenuated in the CAR(-/-) mice, suggesting that isopimpinellin induces Cyp2b10 via the CAR receptor. Overall, the current data indicate that naturally occurring coumarins have diverse activities in terms of inducing various xenobiotic metabolizing enzymes based on their chemical structure.
Collapse
|
38
|
Liu FJ, Song X, Yang D, Deng R, Yan B. The far and distal enhancers in the CYP3A4 gene co-ordinate the proximal promoter in responding similarly to the pregnane X receptor but differentially to hepatocyte nuclear factor-4alpha. Biochem J 2008; 409:243-50. [PMID: 17764444 PMCID: PMC4114763 DOI: 10.1042/bj20070613] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CYP3A4 (cytochrome P450 3A4) is involved in the metabolism of more than 50% of drugs and other xenobiotics. The expression of CYP3A4 is induced by many structurally dissimilar compounds. The PXR (pregnane X receptor) is recognized as a key regulator for the induction, and the PXR-directed transactivation of the CYP3A4 gene is achieved through a co-ordinated mechanism of the distal module with the proximal promoter. Recently, a far module was found to support constitutive expression of CYP3A4. The far module, like the distal module, is structurally clustered by a PXR response element (F-ER6) and elements recognized by HNF-4alpha (hepatocyte nuclear receptor-4alpha). We hypothesized that the far module supports PXR transactivation of the CYP3A4 gene. Consistent with the hypothesis, fusion of the far module to the proximal promoter of CYP3A4 markedly increased rifampicin-induced reporter activity. The increase was synergistically enhanced when both the far and distal modules were fused to the proximal promoter. The increase, however, was significantly reduced when the F-ER6 was disrupted. Chromatin immunoprecipitation detected the presence of PXR in the far module. Interestingly, HNF-4alpha increased the activity of the distal-proximal fused promoter, but decreased the activity of the far-proximal fused promoter. Given the fact that induction of CYP3A4 represents an important detoxification mechanism, the functional redundancy and synergistic interaction in supporting PXR transactivation suggest that the far and distal modules ensure the induction of CYP3A4 during chemical insults. The difference in responding to HNF-4alpha suggests that the magnitude of the induction is under control through various transcriptional networks.
Collapse
|
39
|
Callahan SM, Wonganan P, Obenauer-Kutner LJ, Sutjipto S, Dekker JD, Croyle MA. Controlled inactivation of recombinant viruses with vitamin B2. J Virol Methods 2007; 148:132-45. [PMID: 18160141 DOI: 10.1016/j.jviromet.2007.10.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 10/24/2007] [Accepted: 10/26/2007] [Indexed: 01/10/2023]
Abstract
Inactivated viruses are important tools for vaccine development and gene transfer. 8-Methoxypsoralen (8-MOP) and long-wavelength ultraviolet irradiation (LWUVI) inactivates many viruses. Toxicity limits its use in animals and humans. Toxicological and photosensitizing properties of riboflavin make it suitable for virus inactivation in preparations for biological use. Viruses expressing beta-galactosidase were mixed with either 8-MOP (1.5mM) or riboflavin (50 microM) and exposed to LWUVI (365 nm) for 2 h. Virus activity was determined by limiting dilution. The half-life of the adenovirus preparation treated with 8-MOP was 8.28 ns(-1) and 36.5 ns(-1) after treatment with riboflavin. Despite the difference in half-life, both preparations were completely inactivated within 45 min. In contrast, the half-lives for adeno-associated virus (AAV) preparations were similar (63 ns(-1) 8-MOP vs. 67 ns(-1) riboflavin). Each AAV preparation was fully inactivated within 90 min. The half-life of lentivirus was 193.4 ns(-1) after treatment with 8-MOP and 208 ns(-1) after exposure to riboflavin. Virus treated with riboflavin was inactivated within 20 min. Virus exposed to 8-MOP was inactivated in 90 min. DNA and RNA viruses can be inactivated by riboflavin and LWUVI and used in physiological systems sensitive to other photochemicals.
Collapse
Affiliation(s)
- Shellie M Callahan
- The University of Texas at Austin, College of Pharmacy, Division of Pharmaceutics, Austin, TX 78712-1074, USA
| | | | | | | | | | | |
Collapse
|
40
|
Yang J, Shi D, Yang D, Song X, Yan B. Interleukin-6 alters the cellular responsiveness to clopidogrel, irinotecan, and oseltamivir by suppressing the expression of carboxylesterases HCE1 and HCE2. Mol Pharmacol 2007; 72:686-94. [PMID: 17537833 DOI: 10.1124/mol.107.036889] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carboxylesterases constitute a class of enzymes that play important roles in the hydrolytic metabolism of drugs and other xenobiotics. Patients with liver conditions such as cirrhosis show increased secretion of proinflammatory cytokines [e.g., interleukin-6 (IL-6)] and decreased capacity of hydrolysis. In this study, we provide a molecular explanation linking cytokine secretion directly to the decreased capacity of hydrolytic biotransformation. In both primary hepatocytes and HepG2 cells, treatment with IL-6 decreased the expression of human carboxyl-esterases HCE1 and HCE2 by as much as 60%. The decreased expression occurred at both mRNA and protein levels, and it was confirmed by enzymatic assay. In cotransfection experiments, both HCE1 and HCE2 promoters were significantly repressed, and the repression was comparable with the decrease in HCE1 and HCE2 mRNA, suggesting that transrepression is responsible for the suppressed expression. In addition, pretreatment with IL-6 altered the cellular responsiveness in an opposite manner of overexpression of HCE1 and HCE2 toward various ester therapeutic agents (e.g., clopidogrel). Transfection of HCE1, for example, decreased the cytotoxicity induced by antithrombogenic agent clopidogrel, whereas pretreatment with IL-6 increased the cytotoxicity. Such a reversal was observed with other ester drugs, including anticancer agent irinotecan and anti-influenza agent oseltamivir. The altered cellular responsiveness was observed when drugs were assayed at sub- and low-micromolar concentrations, suggesting that suppressed expression of carboxylesterases by IL-6 has profound pharmacological consequences, particularly with those that are hydrolyzed in an isoform-specific manner.
Collapse
Affiliation(s)
- Jian Yang
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | | | | |
Collapse
|