1
|
Pipes SE, Lovell CR, Kathrein KL. In vivo examination of pathogenicity and virulence in environmentally isolated Vibrio vulnificus. Microbiologyopen 2024; 13:e1427. [PMID: 39041461 PMCID: PMC11264103 DOI: 10.1002/mbo3.1427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
Human exposure to Vibrio vulnificus, a gram-negative, halophilic environmental pathogen, is increasing. Despite this, the mechanisms of its pathogenicity and virulence remain largely unknown. Each year, hundreds of infections related to V. vulnificus occur, leading to hospitalization in 92% of cases and a mortality rate of 35%. The infection is severe, typically contracted through the consumption of contaminated food or exposure of an open wound to contaminated water. This can result in necrotizing fasciitis and the need for amputation of the infected tissue. Although several genes (rtxA1, vvpE, and vvhA) have been implicated in the pathogenicity of this organism, a defined mechanism has not been discovered. In this study, we examine environmentally isolated V. vulnificus strains using a zebrafish model (Danio rerio) to investigate their virulence capabilities. We found significant variation in virulence between individual strains. The commonly used marker gene of disease-causing strains, vcgC, did not accurately predict the more virulent strains. Notably, the least virulent strain in the study, V. vulnificus Sept WR1-BW6, which tested positive for vcgC, vvhA, and rtxA1, did not cause severe disease in the fish and was the only strain that did not result in any mortality. Our study demonstrates that virulence varies greatly among different environmental strains and cannot be accurately predicted based solely on genotype.
Collapse
Affiliation(s)
- Shannon E. Pipes
- Department of Biological SciencesUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Charles R. Lovell
- Department of Biological SciencesUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Katie L. Kathrein
- Department of Biological SciencesUniversity of South CarolinaColumbiaSouth CarolinaUSA
| |
Collapse
|
2
|
Pinto A, Botelho MJ, Churro C, Asselman J, Pereira P, Pereira JL. A review on aquatic toxins - Do we really know it all regarding the environmental risk posed by phytoplankton neurotoxins? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118769. [PMID: 37597370 DOI: 10.1016/j.jenvman.2023.118769] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Aquatic toxins are potent natural toxins produced by certain cyanobacteria and marine algae species during harmful cyanobacterial and algal blooms (CyanoHABs and HABs, respectively). These harmful bloom events and the toxins produced during these events are a human and environmental health concern worldwide, with occurrence, frequency and severity of CyanoHABs and HABs being predicted to keep increasing due to ongoing climate change scenarios. These contexts, as well as human health consequences of some toxins produced during bloom events have been thoroughly reviewed before. Conversely, the wider picture that includes the non-human biota in the assessment of noxious effects of toxins is much less covered in the literature and barely covered by review works. Despite direct human exposure to aquatic toxins and related deleterious effects being responsible for the majority of the public attention to the blooms' problematic, it constitutes a very limited fraction of the real environmental risk posed by these toxins. The disruption of ecological and trophic interactions caused by these toxins in the aquatic biota building on deleterious effects they may induce in different species is paramount as a modulator of the overall magnitude of the environmental risk potentially involved, thus necessarily constraining the quality and efficiency of the management strategies that should be placed. In this way, this review aims at updating and consolidating current knowledge regarding the adverse effects of aquatic toxins, attempting to going beyond their main toxicity pathways in human and related models' health, i.e., also focusing on ecologically relevant model organisms. For conciseness and considering the severity in terms of documented human health risks as a reference, we restricted the detailed revision work to neurotoxic cyanotoxins and marine toxins. This comprehensive revision of the systemic effects of aquatic neurotoxins provides a broad overview of the exposure and the hazard that these compounds pose to human and environmental health. Regulatory approaches they are given worldwide, as well as (eco)toxicity data available were hence thoroughly reviewed. Critical research gaps were identified particularly regarding (i) the toxic effects other than those typical of the recognized disease/disorder each toxin causes following acute exposure in humans and also in other biota; and (ii) alternative detection tools capable of being early-warning signals for aquatic toxins occurrence and therefore provide better human and environmental safety insurance. Future directions on aquatic toxins research are discussed in face of the existent knowledge, with particular emphasis on the much-needed development and implementation of effective alternative (eco)toxicological biomarkers for these toxins. The wide-spanning approach followed herein will hopefully stimulate future research more broadly addressing the environmental hazardous potential of aquatic toxins.
Collapse
Affiliation(s)
- Albano Pinto
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal.
| | - Maria João Botelho
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Catarina Churro
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, 8400, Ostend, Belgium
| | - Patrícia Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| | - Joana Luísa Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| |
Collapse
|
3
|
Chitolina R, Gallas-Lopes M, Reis CG, Benvenutti R, Stahlhofer-Buss T, Calcagnotto ME, Herrmann AP, Piato A. Chemically-induced epileptic seizures in zebrafish: A systematic review. Epilepsy Res 2023; 197:107236. [PMID: 37801749 DOI: 10.1016/j.eplepsyres.2023.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
The use of zebrafish as a model organism is gaining evidence in the field of epilepsy as it may help to understand the mechanisms underlying epileptic seizures. As zebrafish assays became popular, the heterogeneity between protocols increased, making it hard to choose a standard protocol to conduct research while also impairing the comparison of results between studies. We conducted a systematic review to comprehensively profile the chemically-induced seizure models in zebrafish. Literature searches were performed in PubMed, Scopus, and Web of Science, followed by a two-step screening process based on inclusion/exclusion criteria. Qualitative data were extracted, and a sample of 100 studies was randomly selected for risk of bias assessment. Out of the 1058 studies identified after removing duplicates, 201 met the inclusion criteria. We found that the most common chemoconvulsants used in the reviewed studies were pentylenetetrazole (n = 180), kainic acid (n = 11), and pilocarpine (n = 10), which increase seizure severity in a dose-dependent manner. The main outcomes assessed were seizure scores and locomotion. Significant variability between the protocols was observed for administration route, duration of exposure, and dose/concentration. Of the studies subjected to risk of bias assessment, most were rated as low risk of bias for selective reporting (94%), baseline characteristics of the animals (67%), and blinded outcome assessment (54%). Randomization procedures and incomplete data were rated unclear in 81% and 68% of the studies, respectively. None of the studies reported the sample size calculation. Overall, these findings underscore the need for improved methodological and reporting practices to enhance the reproducibility and reliability of zebrafish models for studying epilepsy. Our study offers a comprehensive overview of the current state of chemically-induced seizure models in zebrafish, highlighting the common chemoconvulsants used and the variability in protocol parameters. This may be particularly valuable to researchers interested in understanding the underlying mechanisms of epileptic seizures and screening potential drug candidates in zebrafish models.
Collapse
Affiliation(s)
- Rafael Chitolina
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Matheus Gallas-Lopes
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and meta-Analysis (BRISA) Collaboration, Brazil; Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos G Reis
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Radharani Benvenutti
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Thailana Stahlhofer-Buss
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Neurobiologia e Neuroquímica da Excitabilidade Neuronal e Plasticidade Sináptica (NNNESP Lab), Departamento de bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana P Herrmann
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and meta-Analysis (BRISA) Collaboration, Brazil; Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angelo Piato
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Demin KA, Zabegalov KA, Kolesnikova TO, Galstyan DS, Kositsyn YMHB, Costa FV, de Abreu MS, Kalueff AV. Animal Inflammation-Based Models of Neuropsychiatric Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:91-104. [PMID: 36949307 DOI: 10.1007/978-981-19-7376-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Mounting evidence links psychiatric disorders to central and systemic inflammation. Experimental (animal) models of psychiatric disorders are important tools for translational biopsychiatry research and CNS drug discovery. Current experimental models, most typically involving rodents, continue to reveal shared fundamental pathological pathways and biomarkers underlying the pathogenetic link between brain illnesses and neuroinflammation. Recent data also show that various proinflammatory factors can alter brain neurochemistry, modulating the levels of neurohormones and neurotrophins in neurons and microglia. The role of "active" glia in releasing a wide range of proinflammatory cytokines also implicates glial cells in various psychiatric disorders. Here, we discuss recent animal inflammation-related models of psychiatric disorders, focusing on their translational perspectives and the use of some novel promising model organisms (zebrafish), to better understand the evolutionally conservative role of inflammation in neuropsychiatric conditions.
Collapse
Affiliation(s)
- Konstantin A Demin
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | | | | | - David S Galstyan
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Yuriy M H B Kositsyn
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Fabiano V Costa
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Murilo S de Abreu
- Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Allan V Kalueff
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
- Laboratory of Translational Biopsychiatry, Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
- Ural Federal University, Ekaterinburg, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
5
|
Hidayat AS, Lefebvre KA, MacDonald J, Bammler T, Aluru N. Symptomatic and asymptomatic domoic acid exposure in zebrafish (Danio rerio) revealed distinct non-overlapping gene expression patterns in the brain. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 252:106310. [PMID: 36198224 PMCID: PMC9701550 DOI: 10.1016/j.aquatox.2022.106310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Domoic acid (DA) is a naturally produced neurotoxin synthesized by marine diatoms in the genus Pseudo-nitzschia. DA accumulates in filter-feeders such as shellfish, and can cause severe neurotoxicity when contaminated seafood is ingested, resulting in Amnesic Shellfish Poisoning (ASP) in humans. Overt clinical signs of neurotoxicity include seizures and disorientation. ASP is a significant public health concern, and though seafood regulations have effectively minimized the human risk of severe acute DA poisoning, the effects of exposure at asymptomatic levels are poorly understood. The objective of this study was to determine the effects of exposure to symptomatic and asymptomatic doses of DA on gene expression patterns in the zebrafish brain. We exposed adult zebrafish to either a symptomatic (1.1 ± 0.2 μg DA/g fish) or an asymptomatic (0.31 ± 0.03 µg DA/g fish) dose of DA by intracelomic injection and sampled at 24, 48 and 168 h post-injection. Transcriptional profiling was done using Agilent and Affymetrix microarrays. Our analysis revealed distinct, non-overlapping changes in gene expression between the two doses. We found that the majority of transcriptional changes were observed at 24 h post-injection with both doses. Interestingly, asymptomatic exposure produced more persistent transcriptional effects - in response to symptomatic dose exposure, we observed only one differentially expressed gene one week after exposure, compared to 26 in the asymptomatic dose at the same time (FDR <0.05). GO term analysis revealed that symptomatic DA exposure affected genes associated with peptidyl proline modification and retinoic acid metabolism. Asymptomatic exposure caused differential expression of genes that were associated with GO terms including circadian rhythms and visual system, and also the neuroactive ligand-receptor signaling KEGG pathway. Overall, these results suggest that transcriptional responses are specific to the DA dose and that asymptomatic exposure can cause long-term changes. Further studies are needed to characterize the potential downstream neurobehavioral impacts of DA exposure.
Collapse
Affiliation(s)
- Alia S Hidayat
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science & Engineering, Cambridge and Woods Hole, MA, USA; Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - Kathi A Lefebvre
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA, USA
| | - James MacDonald
- Department of Environmental and Occupational Health, University of Washington, Seattle, WA, USA
| | - Theo Bammler
- Department of Environmental and Occupational Health, University of Washington, Seattle, WA, USA
| | - Neelakanteswar Aluru
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
6
|
Grattan LM. Invited Perspective: The Relevance of Animal Models of Domoic Acid Neurotoxicity to Human Health. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:91302. [PMID: 36102794 PMCID: PMC9472781 DOI: 10.1289/ehp11774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Lynn M. Grattan
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Petroff RL, Williams C, Li JL, MacDonald JW, Bammler TK, Richards T, English CN, Baldessari A, Shum S, Jing J, Isoherranen N, Crouthamel B, McKain N, Grant KS, Burbacher TM, Harry GJ. Prolonged, Low-Level Exposure to the Marine Toxin, Domoic Acid, and Measures of Neurotoxicity in Nonhuman Primates. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:97003. [PMID: 36102641 PMCID: PMC9472675 DOI: 10.1289/ehp10923] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The excitotoxic molecule, domoic acid (DA), is a marine algal toxin known to induce overt hippocampal neurotoxicity. Recent experimental and epidemiological studies suggest adverse neurological effects at exposure levels near the current regulatory limit (20 ppm, ∼0.075-0.1mg/kg). At these levels, cognitive effects occur in the absence of acute symptoms or evidence of neuronal death. OBJECTIVES This study aimed to identify adverse effects on the nervous system from prolonged, dietary DA exposure in adult, female Macaca fascicularis monkeys. METHODS Monkeys were orally exposed to 0, 0.075, and 0.15mg/kg per day for an average of 14 months. Clinical blood counts, chemistry, and cytokine levels were analyzed in the blood. In-life magnetic resonance (MR) imaging assessed volumetric and tractography differences in and between the hippocampus and thalamus. Histology of neurons and glia in the fornix, fimbria, internal capsule, thalamus, and hippocampus was evaluated. Hippocampal RNA sequencing was used to identify differentially expressed genes. Enrichment of gene networks for neuronal health, excitotoxicity, inflammation/glia, and myelin were assessed with Gene Set Enrichment Analysis. RESULTS Clinical blood counts, chemistry, and cytokine levels were not altered with DA exposure in nonhuman primates. Transcriptome analysis of the hippocampus yielded 748 differentially expressed genes (fold change≥1.5; p≤0.05), reflecting differences in a broad molecular profile of intermediate early genes (e.g., FOS, EGR) and genes related to myelin networks in DA animals. Between exposed and control animals, MR imaging showed comparable connectivity of the hippocampus and thalamus and histology showed no evidence of hypomyelination. Histological examination of the thalamus showed a larger microglia soma size and an extension of cell processes, but suggestions of a GFAP+astrocyte response showed no indication of astrocyte hypertrophy. DISCUSSION In the absence of overt hippocampal excitotoxicity, chronic exposure of Macaca fascicularis monkeys to environmentally relevant levels of DA suggested a subtle shift in the molecular profile of the hippocampus and the microglia phenotype in the thalamus that was possibly reflective of an adaptive response due to prolonged DA exposure. https://doi.org/10.1289/EHP10923.
Collapse
Affiliation(s)
- Rebekah L. Petroff
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Christopher Williams
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Jian-Liang Li
- Epigenetics & Stem Cell Biology Laboratory, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - James W. MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Todd Richards
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | | | - Audrey Baldessari
- Washington National Primate Research Center, Seattle, Washington, USA
| | - Sara Shum
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Jing Jing
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
- Center on Human Development and Disability, University of Washington, Seattle, Washington, USA
| | - Brenda Crouthamel
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Noelle McKain
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Kimberly S. Grant
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Washington National Primate Research Center, Seattle, Washington, USA
| | - Thomas M. Burbacher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Washington National Primate Research Center, Seattle, Washington, USA
- Center on Human Development and Disability, University of Washington, Seattle, Washington, USA
| | - G. Jean Harry
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| |
Collapse
|
8
|
Marine Neurotoxins' Effects on Environmental and Human Health: An OMICS Overview. Mar Drugs 2021; 20:md20010018. [PMID: 35049872 PMCID: PMC8778346 DOI: 10.3390/md20010018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/27/2022] Open
Abstract
Harmful algal blooms (HAB), and the consequent release of toxic metabolites, can be responsible for seafood poisoning outbreaks. Marine wildlife can accumulate these toxins throughout the food chain, which presents a threat to consumers’ health. Some of these toxins, such as saxitoxin (STX), domoic acid (DA), ciguatoxin (CTX), brevetoxin (BTX), tetrodotoxin (TTX), and β-N-methylamino-L-alanine (BMAA), cause severe neurological symptoms in humans. Considerable information is missing, however, notably the consequences of toxin exposures on changes in gene expression, protein profile, and metabolic pathways. This information could lead to understanding the consequence of marine neurotoxin exposure in aquatic organisms and humans. Nevertheless, recent contributions to the knowledge of neurotoxins arise from OMICS-based research, such as genomics, transcriptomics, proteomics, and metabolomics. This review presents a comprehensive overview of the most recent research and of the available solutions to explore OMICS datasets in order to identify new features in terms of ecotoxicology, food safety, and human health. In addition, future perspectives in OMICS studies are discussed.
Collapse
|
9
|
Loughery JR, Crowley E, Kidd KA, Martyniuk CJ. Behavioral and hypothalamic transcriptome analyses reveal sex-specific responses to phenanthrene exposure in the fathead minnow (Pimephales promelas). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100905. [PMID: 34500131 DOI: 10.1016/j.cbd.2021.100905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/19/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Environmental concentrations of the polycyclic aromatic hydrocarbon phenanthrene can become elevated with petroleum processing, industrial activities, and urban run-off into waterbodies. However, mechanisms related to its neurotoxicity in fish are not fully described. Here, we exposed adult fathead minnows (FHM) to an average measured concentration of 202 μg phenanthrene/L over a 47-d period. Behaviors of male and female FHM were assessed using a novel aquarium test. Phenanthrene exposed females displayed equilibrium loss, while phenanthrene exposed males spent less time in the aquarium bottom, suggesting phenanthrene reduced anxiety-related behavior. To elucidate putative mechanisms underlying behaviors, we determined the hypothalamic transcriptome profile, a critical integration centre for the regulation of behaviors. There were 1075 hypothalamic transcripts differentially expressed between males and females (sex-specific) while 15 transcripts were phenanthrene-specific. Thus, sex of the animal was more pervasive at influencing the transcriptome compared to phenanthrene and this may partially explain the divergent behavioral responses between sexes. Transcripts altered by phenanthrene included palmitoylated 3 membrane protein, plectin 1,ATP synthase membrane subunit c, and mitochondrial ribosomal protein S11. Gene set enrichment analysis revealed less than 5% of the gene networks perturbed by phenanthrene were shared between males and females, thus phenanthrene altered the hypothalamic transcriptome in a sex-specific manner. Gene networks shared between both sexes and associated with phenanthrene-induced neurotoxicity included processes related to mitochondrial respiratory chain dysfunction, epinephrine/norepinephrine release, and glutamate biosynthesis pathways. Such energy deficits and neurotransmitter disruptions are hypothesized to lead to behavioral deficits in fish. This study provides mechanistic insights into phenanthrene-induced neurotoxicity and how it may relate to changes in fish behaviors.
Collapse
Affiliation(s)
- Jennifer R Loughery
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - E Crowley
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - Karen A Kidd
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - Christopher J Martyniuk
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada.
| |
Collapse
|
10
|
Capriello T, Monteiro SM, Félix LM, Donizetti A, Aliperti V, Ferrandino I. Apoptosis, oxidative stress and genotoxicity in developing zebrafish after aluminium exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 236:105872. [PMID: 34052719 DOI: 10.1016/j.aquatox.2021.105872] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/08/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Aluminium is a non-essential metal and potentially toxic to organisms whose environmental concentration increases due to pollution. In our previous studies, the behavioral changes induced by aluminium were already shown on zebrafish, a model organism widely used for ecotoxicology screening. To examine in depth the knowledge about the toxicity mechanism induced by this metal, zebrafish embryos, at 6 hpf, have been exposed to 50, 100 and 200 µM of AlCl3 for 72 h. Phenotypic alterations, apoptosis and oxidative stress responses have been assessed by evaluations of antioxidant defence and changes in metabolism at the end of treatment. The mRNA expression level of c-fos, appa and appb as marker genes of neural development and function were analyzed by qPCR for the highest used concentration. The data showed that aluminium significantly affected the development of zebrafish inducing morphological alterations and cell death. The oxidative state of larvae was altered, although the formation of reactive oxygen species and the levels of metallothioneins, and the activity of some antioxidant enzymes, decreased at the maximum concentration tested. In addition, at this concentration, the expression of the evaluated genes increased. The comprehensive information obtained gives a realistic snapshot of the aluminium toxicity and provides new information on the mechanism of action of this metal.
Collapse
Affiliation(s)
- Teresa Capriello
- Department of Biology, University of Naples "Federico II", Naples, Italy.
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB); Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
| | - Luis M Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB); Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Laboratory Animal Science (LAS), Institute for Research and Innovation in Health (i3S), University of Porto (UP), Porto, Portugal.
| | - Aldo Donizetti
- Department of Biology, University of Naples "Federico II", Naples, Italy.
| | - Vincenza Aliperti
- Department of Biology, University of Naples "Federico II", Naples, Italy.
| | - Ida Ferrandino
- Department of Biology, University of Naples "Federico II", Naples, Italy; BAT Center - Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, Portici, Italy.
| |
Collapse
|
11
|
Ventoso P, Pazos AJ, Blanco J, Pérez-Parallé ML, Triviño JC, Sánchez JL. Transcriptional Response in the Digestive Gland of the King Scallop ( Pecten maximus) After the Injection of Domoic Acid. Toxins (Basel) 2021; 13:toxins13050339. [PMID: 34067146 PMCID: PMC8150855 DOI: 10.3390/toxins13050339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 01/18/2023] Open
Abstract
Some diatom species of the genus Pseudo-nitzschia produce the toxin domoic acid. The depuration rate of domoic acid in Pecten maximus is very low; for this reason, king scallops generally contain high levels of domoic acid in their tissues. A transcriptomic approach was used to identify the genes differentially expressed in the P. maximus digestive gland after the injection of domoic acid. The differential expression analysis found 535 differentially expressed genes (226 up-regulated and 309 down-regulated). Protein–protein interaction networks obtained with the up-regulated genes were enriched in gene ontology terms, such as vesicle-mediated transport, response to stress, signal transduction, immune system process, RNA metabolic process, and autophagy, while networks obtained with the down-regulated genes were enriched in gene ontology terms, such as response to stress, immune system process, ribosome biogenesis, signal transduction, and mRNA processing. Genes that code for cytochrome P450 enzymes, glutathione S-transferase theta-1, glutamine synthase, pyrroline-5-carboxylate reductase 2, and sodium- and chloride-dependent glycine transporter 1 were among the up-regulated genes. Therefore, a stress response at the level of gene expression, that could be caused by the domoic acid injection, was evidenced by the alteration of several biological, cellular, and molecular processes.
Collapse
Affiliation(s)
- Pablo Ventoso
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.V.); (M.L.P.-P.); (J.L.S.)
| | - Antonio J. Pazos
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.V.); (M.L.P.-P.); (J.L.S.)
- Correspondence:
| | - Juan Blanco
- Centro de Investigacións Mariñas, Xunta de Galicia, Pedras de Corón s/n Apdo. 13, 36620 Vilanova de Arousa, Spain;
| | - M. Luz Pérez-Parallé
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.V.); (M.L.P.-P.); (J.L.S.)
| | - Juan C. Triviño
- Sistemas Genómicos, Ronda G. Marconi 6, Paterna, 46980 Valencia, Spain;
| | - José L. Sánchez
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.V.); (M.L.P.-P.); (J.L.S.)
| |
Collapse
|
12
|
Petroff R, Hendrix A, Shum S, Grant KS, Lefebvre KA, Burbacher TM. Public health risks associated with chronic, low-level domoic acid exposure: A review of the evidence. Pharmacol Ther 2021; 227:107865. [PMID: 33930455 DOI: 10.1016/j.pharmthera.2021.107865] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/13/2022]
Abstract
Domoic acid (DA), the causative agent for the human syndrome Amnesic Shellfish Poisoning (ASP), is a potent, naturally occurring neurotoxin produced by common marine algae. DA accumulates in seafood, and humans and wildlife alike can subsequently be exposed when consuming DA-contaminated shellfish or finfish. While strong regulatory limits protect people from the acute effects associated with ASP, DA is an increasingly significant public health concern, particularly for coastal dwelling populations, and there is a growing body of evidence suggesting that there are significant health consequences following repeated exposures to levels of the toxin below current safety guidelines. However, gaps in scientific knowledge make it difficult to precisely determine the risks of contemporary low-level exposure scenarios. The present review characterizes the toxicokinetics and neurotoxicology of DA, discussing results from clinical and preclinical studies after both adult and developmental DA exposure. The review also highlights crucial areas for future DA research and makes the case that DA safety limits need to be reassessed to best protect public health from deleterious effects of this widespread marine toxin.
Collapse
Affiliation(s)
- Rebekah Petroff
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Alicia Hendrix
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Sara Shum
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Kimberly S Grant
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Kathi A Lefebvre
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd. East, Seattle, WA, USA
| | - Thomas M Burbacher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA; Infant Primate Research Laboratory, Washington National Primate Research Center, Seattle,WA, USA.
| |
Collapse
|
13
|
Gajski G, Gerić M, Domijan AM, Golubović I, Žegura B. Marine toxin domoic acid induces in vitro genomic alterations in human peripheral blood cells. Toxicon 2020; 187:93-100. [PMID: 32891664 DOI: 10.1016/j.toxicon.2020.08.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/29/2020] [Accepted: 08/30/2020] [Indexed: 12/01/2022]
Abstract
Domoic acid (DA) is an excitatory marine neurotoxin produced by diatoms Pseudo-nitzschia spp. as a defence compound that accumulates in the food web and is associated with amnesic shellfish poisoning in humans. Although its toxicity has been well established in marine species, there is limited data on DA cytogenotoxicity in human non-target cells. Therefore, we aimed to investigate the cytogenotoxic potential of DA (0.01-10 μg/mL) in human peripheral blood cells (HPBCs) using a battery of bioassays in vitro. In addition, the influence of DA on oxidative stress parameters as a possible mechanism of action was assessed. Results revealed that DA induced dose- and time-dependent cytotoxic effects. DA significantly affected genomic instability by increasing the frequency of micronuclei and nuclear buds. Furthermore, a slight induction of primary DNA strand breaks was detected after 24 h of exposure accompanied by a significant increase in the number of abnormal size tailed nuclei. No induction of hOGG1 (human 8-oxoguanine DNA glycosylase) sensitive sites was determined upon exposure to DA. Additionally, DA induced oxidative stress by increased production of reactive oxygen species accompanied by changes in glutathione, superoxide dismutase, malondialdehyde and protein carbonyl levels. Overall, the obtained results showed adverse genotoxic effects of DA in non-target HPBCs.
Collapse
Affiliation(s)
- Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000, Zagreb, Croatia.
| | - Marko Gerić
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000, Zagreb, Croatia.
| | - Ana-Marija Domijan
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Botany, 10000, Zagreb, Croatia.
| | - Ivana Golubović
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Botany, 10000, Zagreb, Croatia
| | - Bojana Žegura
- National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, 1000, Ljubljana, Slovenia.
| |
Collapse
|
14
|
Neuropeptide Y deficiency induces anxiety-like behaviours in zebrafish (Danio rerio). Sci Rep 2020; 10:5913. [PMID: 32246073 PMCID: PMC7125123 DOI: 10.1038/s41598-020-62699-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/11/2020] [Indexed: 01/01/2023] Open
Abstract
Neuropeptide Y (NPY) controls energy homeostasis including orexigenic actions in mammalians and non-mammalians. Recently, NPY has attracted attention as a mediator of emotional behaviour and psychosomatic diseases. However, its functions are not fully understood. We established npy gene-deficient (NPY-KO) zebrafish (Danio rerio) to assess the relationship between NPY and emotional behaviours. The NPY-KO zebrafish exhibited similar growth, but pomc and avp mRNA levels in the brain were higher as compared to wild-type fish. NPY-KO zebrafish exhibited several anxiety-like behaviours, such as a decrease in social interaction in mirror test and decreased locomotion in black-white test. The acute cold stress-treated NPY-KO zebrafish exhibited anxiety-like behaviours such as remaining stationary and swimming along the side of the tank in the mirror test. Moreover, expression levels of anxiety-associated genes (orx and cck) and catecholamine production (gr, mr, th1 and th2) were significantly higher in NPY-KO zebrafish than in wild-type fish. We demonstrated that NPY-KO zebrafish have an anxiety phenotype and a stress-vulnerability like NPY-KO mice, whereby orx and/or catecholamine signalling may be involved in the mechanism actions.
Collapse
|
15
|
Effects of Marine Toxin Domoic Acid on Innate Immune Responses in Bay Scallop Argopecten irradians. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2019. [DOI: 10.3390/jmse7110407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Domoic acid (DA) is an amnesic shellfish poisoning toxin produced by some species of the genera Pseudo-nitzschia and Nitzschia. This toxin has harmful effects on various species, especially scallops. This study aimed to investigate the effects of DA exposure on the immune and physical responses of bay scallop, Argopecten irradians. Various immunological and physical parameters were assessed (acid phosphatase (ACP), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), lipid peroxide (LPO), nitric oxide (NO), and the total protein content) in the haemolymph of scallops at 3, 6, 12, 24, and 48 h post-exposure to DA at different concentrations (10, 50, and 100 ng/mL). Moreover, the expression of immune-related genes (CLT-6, FREP, HSP90, MT, PGRP, and PrxV) was assessed. The activities of ACP, ALP, and LDH and the total protein content and LPO increased upon exposure to DA at different concentrations, while NO levels were decreased. Furthermore, immune-related genes were assessed upon DA exposure. Our results showed that exposure to DA negatively impacts immune function and disrupts physiological activities in bay scallops.
Collapse
|
16
|
Wu CQ, Zhang T, Zhang W, Shi M, Tu F, Yu A, Li M, Yang M. Two DsbA Proteins Are Important for Vibrio parahaemolyticus Pathogenesis. Front Microbiol 2019; 10:1103. [PMID: 31156607 PMCID: PMC6531988 DOI: 10.3389/fmicb.2019.01103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/30/2019] [Indexed: 01/05/2023] Open
Abstract
Bacterial pathogens maintain disulfide bonds for protein stability and functions that are required for pathogenesis. Vibrio parahaemolyticus is a Gram-negative pathogen that causes food-borne gastroenteritis and is also an important opportunistic pathogen of aquatic animals. Two genes encoding the disulfide bond formation protein A, DsbA, are predicted to be encoded in the V. parahaemolyticus genome. DsbA plays an important role in Vibrio cholerae virulence but its role in V. parahaemolyticus is largely unknown. In this study, the activities and functions of the two V. parahaemolyticus DsbA proteins were characterized. The DsbAs affected virulence factor expression at the post-translational level. The protein levels of adhesion factor VpadF (VP1767) and the thermostable direct hemolysin (TDH) were significantly reduced in the dsbA deletion mutants. V. parahaemolyticus lacking dsbA also showed reduced attachment to Caco-2 cells, decreased β-hemolytic activity, and less toxicity to both zebrafish and HeLa cells. Our findings demonstrate that DsbAs contribute to V. parahaemolyticus pathogenesis.
Collapse
Affiliation(s)
- Chun-Qin Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China.,Department of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Ting Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China
| | - Wenwen Zhang
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Mengting Shi
- College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Fei Tu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China
| | - Ai Yu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China
| | - Manman Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China
| | - Menghua Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
17
|
RNA-Seq Transcriptome Profiling of the Queen Scallop (Aequipecten opercularis) Digestive Gland after Exposure to Domoic Acid-Producing Pseudo-nitzschia. Toxins (Basel) 2019; 11:toxins11020097. [PMID: 30736356 PMCID: PMC6410316 DOI: 10.3390/toxins11020097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/28/2019] [Accepted: 02/03/2019] [Indexed: 12/18/2022] Open
Abstract
Some species of the genus Pseudo-nitzschia produce the toxin domoic acid, which causes amnesic shellfish poisoning (ASP). Given that bivalve mollusks are filter feeders, they can accumulate these toxins in their tissues. To elucidate the transcriptional response of the queen scallop Aequipecten opercularis after exposure to domoic acid-producing Pseudo-nitzschia, the digestive gland transcriptome was de novo assembled using an Illumina HiSeq 2000 platform. Then, a differential gene expression analysis was performed. After the assembly, 142,137 unigenes were obtained, and a total of 10,144 genes were differentially expressed in the groups exposed to the toxin. Functional enrichment analysis found that 374 Pfam (protein families database) domains were significantly enriched. The C1q domain, the C-type lectin, the major facilitator superfamily, the immunoglobulin domain, and the cytochrome P450 were among the most enriched Pfam domains. Protein network analysis showed a small number of highly connected nodes involved in specific functions: proteasome components, mitochondrial ribosomal proteins, protein translocases of mitochondrial membranes, cytochromes P450, and glutathione S-transferases. The results suggest that exposure to domoic acid-producing organisms causes oxidative stress and mitochondrial dysfunction. The transcriptional response counteracts these effects with the up-regulation of genes coding for some mitochondrial proteins, proteasome components, and antioxidant enzymes (glutathione S-transferases, thioredoxins, glutaredoxins, and copper/zinc superoxide dismutases).
Collapse
|
18
|
Jin M, Sheng W, Han L, He Q, Ji X, Liu K. Activation of BDNF-TrkB signaling pathway-regulated brain inflammation in pentylenetetrazole-induced seizures in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2018; 83:26-36. [PMID: 30195910 DOI: 10.1016/j.fsi.2018.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/24/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
Seizures are sustained neuronal hyperexcitability in brain that result in loss of consciousness and injury. Understanding how the brain responds to seizures is critical to help developing new therapeutic strategies for epilepsy, a neurological disorder characterized by recurrent and unprovoked seizures. However, the mechanisms underlying seizure-dependent alterations of biological properties are poorly understood. In this study, we analyzed gene expression profiles of the zebrafish heads that were undergoing seizures and identified 1776 differentially expressed genes. Gene-regulatory network analysis revealed that BDNF-TrkB signaling pathway positively regulated brain inflammation in zebrafish during seizures. Using K252a, a TrkB inhibitor to block BDNF-TrkB signaling pathway, attenuated pentylenetetrazole (PTZ)-induced seizures, which also confirmed BDNF-TrkB mediated inflammatory responses including regulation of il1β and nfκb, and neutrophil and macrophage infiltration of brain. Our results have provided novel insights into seizure-induced brain inflammation in zebrafish and anti-inflammatory related therapy for epilepsy.
Collapse
Affiliation(s)
- Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China
| | - Liwen Han
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China
| | - Qiuxia He
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China
| | - Xiuna Ji
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China.
| |
Collapse
|
19
|
Pazos AJ, Ventoso P, Martínez-Escauriaza R, Pérez-Parallé ML, Blanco J, Triviño JC, Sánchez JL. Transcriptional response after exposure to domoic acid-producing Pseudo-nitzschia in the digestive gland of the mussel Mytilus galloprovincialis. Toxicon 2017; 140:60-71. [PMID: 29031804 DOI: 10.1016/j.toxicon.2017.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/28/2017] [Accepted: 10/08/2017] [Indexed: 01/19/2023]
Abstract
Bivalve molluscs are filter feeding species that can accumulate biotoxins in their body tissues during harmful algal blooms. Amnesic Shellfish Poisoning (ASP) is caused by species of the diatom genus Pseudo-nitzschia, which produces the toxin domoic acid. The Mytilus galloprovincialis digestive gland transcriptome was de novo assembled based on the sequencing of 12 cDNA libraries, six obtained from control mussels and six from mussels naturally exposed to domoic acid-producing diatom Pseudo-nitzschia australis. After de novo assembly 94,727 transcripts were obtained, with an average length of 1015 bp and a N50 length of 761 bp. The assembled transcripts were clustered (homology > 90%) into 69,294 unigenes. Differential gene expression analysis was performed (DESeq2 algorithm) in the digestive gland following exposure to the toxic algae. A total of 1158 differentially expressed unigenes (absolute fold change > 1.5 and p-value < 0.05) were detected: 686 up-regulated and 472 down-regulated. Several membrane transporters belonging to the family of the SLC (solute carriers) were over-expressed in exposed mussels. Functional enrichment was performed using Pfam annotations obtained from the genes differentially expressed, 37 Pfam families were found to be significantly (FDR adjusted p-value < 0.1) enriched. Some of these families (sulfotransferases, aldo/keto reductases, carboxylesterases, C1q domain and fibrinogen C-terminal globular domain) could be putatively involved in detoxification processes, in the response against of the oxidative stress and in immunological processes. Protein network analysis with STRING algorithm found alteration of the Notch signaling pathway under the action of domoic acid-producing Pseudo-nitzschia. In conclusion, this study provides a high quality reference transcriptome of M. galloprovincialis digestive gland and identifies potential genes involved in the response to domoic acid.
Collapse
Affiliation(s)
- Antonio J Pazos
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain.
| | - Pablo Ventoso
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Roi Martínez-Escauriaza
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - M Luz Pérez-Parallé
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Juan Blanco
- Centro de Investigacións Mariñas, Xunta de Galicia, Pedras de Corón s/n Apdo 13, Vilanova de Arousa, 36620, Spain
| | - Juan C Triviño
- Sistemas Genómicos, Ronda G. Marconi 6, Paterna, Valencia, 46980, Spain
| | - José L Sánchez
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| |
Collapse
|
20
|
Kumar G, Denslow ND. Gene Expression Profiling in Fish Toxicology: A Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 241:1-38. [PMID: 27464848 DOI: 10.1007/398_2016_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this review, we present an overview of transcriptomic responses to chemical exposures in a variety of fish species. We have discussed the use of several molecular approaches such as northern blotting, differential display reverse transcription-polymerase chain reaction (DDRT-PCR), suppression subtractive hybridization (SSH), real time quantitative PCR (RT-qPCR), microarrays, and next-generation sequencing (NGS) for measuring gene expression. These techniques have been mainly used to measure the toxic effects of single compounds or simple mixtures in laboratory conditions. In addition, only few studies have been conducted to examine the biological significance of differentially expressed gene sets following chemical exposure. Therefore, future studies should focus more under field conditions using a multidisciplinary approach (genomics, proteomics and metabolomics) to understand the synergetic effects of multiple environmental stressors and to determine the functional significance of differentially expressed genes. Nevertheless, recent developments in NGS technologies and decreasing costs of sequencing holds the promise to uncover the complexity of anthropogenic impacts and biological effects in wild fish populations.
Collapse
Affiliation(s)
- Girish Kumar
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
21
|
Nicolas J, Bovee TF, Kamelia L, Rietjens IM, Hendriksen PJ. Exploration of new functional endpoints in neuro-2a cells for the detection of the marine biotoxins saxitoxin, palytoxin and tetrodotoxin. Toxicol In Vitro 2015; 30:341-7. [DOI: 10.1016/j.tiv.2015.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/28/2015] [Accepted: 10/01/2015] [Indexed: 11/28/2022]
|
22
|
Neely BA, Soper JL, Gulland FMD, Bell PD, Kindy M, Arthur JM, Janech MG. Proteomic analysis of cerebrospinal fluid in California sea lions (Zalophus californianus) with domoic acid toxicosis identifies proteins associated with neurodegeneration. Proteomics 2015; 15:4051-63. [DOI: 10.1002/pmic.201500167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/10/2015] [Accepted: 09/09/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Benjamin A. Neely
- Department of Medicine; Division of Nephrology; Medical University of South Carolina; Charleston SC USA
| | | | | | - P. Darwin Bell
- Department of Medicine; Division of Nephrology; Medical University of South Carolina; Charleston SC USA
| | - Mark Kindy
- Marine Biomedicine and Environmental Sciences Center; Medical University of South Carolina; Charleston SC USA
- Department of Regenerative Medicine and Cell Biology; Medical University of South Carolina; Charleston SC USA
- Department of Veterans’ Affairs; Research Service; Charleston SC USA
| | - John M. Arthur
- Department of Internal Medicine; Division of Nephrology; University of Arkansas for Medical Sciences; Little Rock AR USA
| | - Michael G. Janech
- Department of Medicine; Division of Nephrology; Medical University of South Carolina; Charleston SC USA
- Marine Biomedicine and Environmental Sciences Center; Medical University of South Carolina; Charleston SC USA
| |
Collapse
|
23
|
Hong Z, Zhang Y, Zuo Z, Zhu R, Gao Y. Influences of Domoic Acid Exposure on Cardiac Development and the Expression of Cardiovascular Relative Genes in Zebrafish (Daniorerio) Embryos. J Biochem Mol Toxicol 2015; 29:254-60. [DOI: 10.1002/jbt.21692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 01/31/2023]
Affiliation(s)
- Zhuan Hong
- School of Life Sciences and The State Key Laboratory of Marine Environmental Science; Xiamen University; South Xiangan Road Xiamen 361102 People's Republic of China
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, The Third Institute of Oceanography (TIO); State Oceanic Administration (SOA); 184 Daxue Road Xiamen 361005 China
| | - Youyu Zhang
- School of Life Sciences and The State Key Laboratory of Marine Environmental Science; Xiamen University; South Xiangan Road Xiamen 361102 People's Republic of China
| | - Zhenghong Zuo
- School of Life Sciences and The State Key Laboratory of Marine Environmental Science; Xiamen University; South Xiangan Road Xiamen 361102 People's Republic of China
| | - Ruilin Zhu
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, The Third Institute of Oceanography (TIO); State Oceanic Administration (SOA); 184 Daxue Road Xiamen 361005 China
| | - Yahui Gao
- School of Life Sciences and The State Key Laboratory of Marine Environmental Science; Xiamen University; South Xiangan Road Xiamen 361102 People's Republic of China
| |
Collapse
|
24
|
Hiolski EM, Kendrick PS, Frame ER, Myers MS, Bammler TK, Beyer RP, Farin FM, Wilkerson HW, Smith DR, Marcinek DJ, Lefebvre KA. Chronic low-level domoic acid exposure alters gene transcription and impairs mitochondrial function in the CNS. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 155:151-9. [PMID: 25033243 PMCID: PMC4139102 DOI: 10.1016/j.aquatox.2014.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/09/2014] [Accepted: 06/13/2014] [Indexed: 05/10/2023]
Abstract
Domoic acid is an algal-derived seafood toxin that functions as a glutamate agonist and exerts excitotoxicity via overstimulation of glutamate receptors (AMPA, NMDA) in the central nervous system (CNS). At high (symptomatic) doses, domoic acid is well-known to cause seizures, brain lesions and memory loss; however, a significant knowledge gap exists regarding the health impacts of repeated low-level (asymptomatic) exposure. Here, we investigated the impacts of low-level repetitive domoic acid exposure on gene transcription and mitochondrial function in the vertebrate CNS using a zebrafish model in order to: (1) identify transcriptional biomarkers of exposure; and (2) examine potential pathophysiology that may occur in the absence of overt excitotoxic symptoms. We found that transcription of genes related to neurological function and development were significantly altered, and that asymptomatic exposure impaired mitochondrial function. Interestingly, the transcriptome response was highly variable across the exposure duration (36 weeks), with little to no overlap of specific genes across the six exposure time points (2, 6, 12, 18, 24, and 36 weeks). Moreover, there were no apparent similarities at any time point with the gene transcriptome profile exhibited by the glud1 mouse model of chronic moderate excess glutamate release. These results suggest that although the fundamental mechanisms of toxicity may be similar, gene transcriptome responses to domoic acid exposure do not extrapolate well between different exposure durations. However, the observed impairment of mitochondrial function based on respiration rates and mitochondrial protein content suggests that repetitive low-level exposure does have fundamental cellular level impacts that could contribute to chronic health consequences.
Collapse
Affiliation(s)
- Emma M Hiolski
- University of California, Santa Cruz, CA 95064, United States.
| | | | - Elizabeth R Frame
- NOAA Northwest Fisheries Science Center, Seattle, WA 98112, United States.
| | - Mark S Myers
- University of Washington, Seattle, WA 98112, United States.
| | - Theo K Bammler
- University of Washington, Seattle, WA 98112, United States.
| | | | | | | | - Donald R Smith
- University of California, Santa Cruz, CA 95064, United States.
| | | | - Kathi A Lefebvre
- NOAA Northwest Fisheries Science Center, Seattle, WA 98112, United States.
| |
Collapse
|
25
|
Funk JA, Janech MG, Dillon JC, Bissler JJ, Siroky BJ, Bell PD. Characterization of renal toxicity in mice administered the marine biotoxin domoic Acid. J Am Soc Nephrol 2014; 25:1187-97. [PMID: 24511141 PMCID: PMC4033377 DOI: 10.1681/asn.2013080836] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/24/2013] [Indexed: 11/03/2022] Open
Abstract
Domoic acid (DA), an excitatory amino acid produced by diatoms belonging to the genus Pseudo-nitzschia, is a glutamate analog responsible for the neurologic condition referred to as amnesic shellfish poisoning. To date, the renal effects of DA have been underappreciated, although renal filtration is the primary route of systemic elimination and the kidney expresses ionotropic glutamate receptors. To characterize the renal effects of DA, we administered either a neurotoxic dose of DA or doses below the recognized limit of toxicity to adult Sv128/Black Swiss mice. DA preferentially accumulated in the kidney and elicited marked renal vascular and tubular damage consistent with acute tubular necrosis, apoptosis, and renal tubular cell desquamation, with toxic vacuolization and mitochondrial swelling as hallmarks of the cellular damage. Doses≥0.1 mg/kg DA elevated the renal injury biomarkers kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin, and doses≥0.005 mg/kg induced the early response genes c-fos and junb. Coadministration of DA with the broad spectrum excitatory amino acid antagonist kynurenic acid inhibited induction of c-fos, junb, and neutrophil gelatinase-associated lipocalin. These findings suggest that the kidney may be susceptible to excitotoxic agonists, and renal effects should be considered when examining glutamate receptor activation. Additionally, these results indicate that DA is a potent nephrotoxicant, and potential renal toxicity may require consideration when determining safe levels for human exposure.
Collapse
Affiliation(s)
- Jason A Funk
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Michael G Janech
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Joshua C Dillon
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - John J Bissler
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; and
| | - Brian J Siroky
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; and
| | - P Darwin Bell
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| |
Collapse
|
26
|
Zhang NS, Li HY, Liu JS, Yang WD. Gene expression profiles in zebrafish (Danio rerio) liver after acute exposure to okadaic acid. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:791-802. [PMID: 24637248 DOI: 10.1016/j.etap.2014.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 06/03/2023]
Abstract
Okadaic acid (OA), a main component of diarrheic shellfish poisoning (DSP) toxins, is a strong and specific inhibitor of the serine/threonine protein phosphatases PP1 and PP2A. However, not all of the OA-induced effects can be explained by this phosphatase inhibition, and controversial results on OA are increasing. To provide clues on potential mechanisms of OA other than phosphatase inhibition, here, acute toxicity of OA was evaluated in zebrafish, and changes in gene expression in zebrafish liver tissues upon exposure to OA were observed by microarray. The i.p. ED50 (6 h) of OA on zebrafish was 1.54 μg OA/g body weight (bw). Among the genes analyzed on the zebrafish array, 55 genes were significantly up-regulated and 36 down-regulated in the fish liver tissue upon exposure to 0.176 μg OA/g bw (low-dose group, LD) compared with the low ethanol control (LE). However, there were no obvious functional clusters for them. On the contrary, fish exposure to 1.760 μg OA/g bw (high-dose group, HD) yielded a great number of differential expressed genes (700 up and 285 down) compared with high ethanol control (HE), which clustered in several functional terms such as p53 signaling pathway, Wnt signaling pathway, glutathione metabolism and protein processing in endoplasmic reticulum, etc. These genes were involved in protein phosphatase activity, translation factor activity, heat shock protein binding, as well as transmembrane transporter activity. Our findings may give some useful information on the pathways of OA-induced injury in fish.
Collapse
Affiliation(s)
- Nai-sheng Zhang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China; Wageningen University and Research Centre, Centre for Water and Climate, Alterra, PO Box 47, 6700AA Wageningen, The Netherlands
| | - Hong-ye Li
- College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, P. R. China
| | - Jie-sheng Liu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, P. R. China
| | - Wei-dong Yang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, P. R. China.
| |
Collapse
|
27
|
Williams TD, Mirbahai L, Chipman JK. The toxicological application of transcriptomics and epigenomics in zebrafish and other teleosts. Brief Funct Genomics 2014; 13:157-71. [DOI: 10.1093/bfgp/elt053] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
28
|
Paranjpye RN, Myers MS, Yount EC, Thompson JL. Zebrafish as a model for Vibrio parahaemolyticus virulence. MICROBIOLOGY-SGM 2013; 159:2605-2615. [PMID: 24056807 DOI: 10.1099/mic.0.067637-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vibrio parahaemolyticus is a Gram-negative, naturally occurring marine bacterium. Subpopulations of strains belonging to this species cause an acute self-limiting gastroenteritis in humans and, less commonly, wound infections. In vivo models to differentiate avirulent and virulent strains and evaluate the pathogenic potential of strains of this species have been largely focused on the presence of known virulence factors such as the thermostable direct haemolysin (TDH), the TDH-related haemolysin (TRH) or the contributions of the type 3 secretion systems. However, virulence is likely to be multifactorial, and additional, yet to be identified factors probably contribute to virulence in this bacterium. In this study, we investigated an adult zebrafish model to assess the overall virulence of V. parahaemolyticus strains. The model could detect differences in the virulence potential of strains when animals were challenged intraperitoneally, based on survival time. Differences in survival were noted irrespective of the source of isolation of the strain (environmental or clinical) and regardless of the presence or absence of the known virulence factors TDH and TRH, suggesting the influence of additional virulence factors. The model was also effective in comparing differences in virulence between the wild-type V. parahaemolyticus strain RIMD2210633 and isogenic pilin mutants ΔpilA and ΔmshA, a double mutant ΔpilA : ΔmshA, as well as a putative chitin-binding protein mutant, ΔgbpA.
Collapse
Affiliation(s)
- Rohinee N Paranjpye
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard E, Seattle, WA 98112, USA
| | - Mark S Myers
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard E, Seattle, WA 98112, USA
| | - Evan C Yount
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard E, Seattle, WA 98112, USA
| | - Jessica L Thompson
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard E, Seattle, WA 98112, USA
| |
Collapse
|
29
|
Lin YS, Chu CC, Tsui PH, Chang CC. Evaluation of zebrafish brain development using optical coherence tomography. JOURNAL OF BIOPHOTONICS 2013; 6:668-678. [PMID: 22961725 DOI: 10.1002/jbio.201200069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/28/2012] [Accepted: 08/13/2012] [Indexed: 06/01/2023]
Abstract
The zebrafish is a well-established model system used to study and understand various human biological processes. The present study used OCT to investigate growth of the adult zebrafish brain. Twenty zebrafish were studied, using their standard lengths as indicators of their age. Zebrafish brain aging was evaluated by analyzing signal attenuation rates and texture features in regions of interest (ROIs). Optical scattering originates from light interaction with biological structures. During development, the zebrafish brain gains cells. Signal attenuation rate, therefore, increases with increasing zebrafish brain age. This study's analyses of texture features could not identify aging in zebrafish brain. These results, therefore, indicated that the OCT signal attenuation rate can indicate zebrafish brain aging, and its analysis provides a more effective means of observing zebrafish brain aging than texture features analysis. Using OCT system could further increase the technique's potential for recognition and monitoring of zebrafish brain development.
Collapse
Affiliation(s)
- Yu-Sheng Lin
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
30
|
Lefebvre KA, Frame ER, Gulland F, Hansen JD, Kendrick PS, Beyer RP, Bammler TK, Farin FM, Hiolski EM, Smith DR, Marcinek DJ. A novel antibody-based biomarker for chronic algal toxin exposure and sub-acute neurotoxicity. PLoS One 2012; 7:e36213. [PMID: 22567140 PMCID: PMC3342169 DOI: 10.1371/journal.pone.0036213] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/28/2012] [Indexed: 11/23/2022] Open
Abstract
The neurotoxic amino acid, domoic acid (DA), is naturally produced by marine phytoplankton and presents a significant threat to the health of marine mammals, seabirds and humans via transfer of the toxin through the foodweb. In humans, acute exposure causes a neurotoxic illness known as amnesic shellfish poisoning characterized by seizures, memory loss, coma and death. Regular monitoring for high DA levels in edible shellfish tissues has been effective in protecting human consumers from acute DA exposure. However, chronic low-level DA exposure remains a concern, particularly in coastal and tribal communities that subsistence harvest shellfish known to contain low levels of the toxin. Domoic acid exposure via consumption of planktivorous fish also has a profound health impact on California sea lions (Zalophus californianus) affecting hundreds of animals yearly. Due to increasing algal toxin exposure threats globally, there is a critical need for reliable diagnostic tests for assessing chronic DA exposure in humans and wildlife. Here we report the discovery of a novel DA-specific antibody response that is a signature of chronic low-level exposure identified initially in a zebrafish exposure model and confirmed in naturally exposed wild sea lions. Additionally, we found that chronic exposure in zebrafish caused increased neurologic sensitivity to DA, revealing that repetitive exposure to DA well below the threshold for acute behavioral toxicity has underlying neurotoxic consequences. The discovery that chronic exposure to low levels of a small, water-soluble single amino acid triggers a detectable antibody response is surprising and has profound implications for the development of diagnostic tests for exposure to other pervasive environmental toxins.
Collapse
Affiliation(s)
- Kathi A Lefebvre
- Exposure Assessment and Biomedical Models, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, Washington, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Behavioral and physiological effects of acute ketamine exposure in adult zebrafish. Neurotoxicol Teratol 2011; 33:658-67. [DOI: 10.1016/j.ntt.2011.05.011] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/16/2011] [Accepted: 05/27/2011] [Indexed: 01/27/2023]
|
32
|
Concurrent exposure of bottlenose dolphins (Tursiops truncatus) to multiple algal toxins in Sarasota Bay, Florida, USA. PLoS One 2011; 6:e17394. [PMID: 21423740 PMCID: PMC3053359 DOI: 10.1371/journal.pone.0017394] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Accepted: 02/02/2011] [Indexed: 11/19/2022] Open
Abstract
Sentinel species such as bottlenose dolphins (Tursiops truncatus) can be impacted by large-scale mortality events due to exposure to marine algal toxins. In the Sarasota Bay region (Gulf of Mexico, Florida, USA), the bottlenose dolphin population is frequently exposed to harmful algal blooms (HABs) of Karenia brevis and the neurotoxic brevetoxins (PbTx; BTX) produced by this dinoflagellate. Live dolphins sampled during capture-release health assessments performed in this region tested positive for two HAB toxins; brevetoxin and domoic acid (DA). Over a ten-year study period (2000–2009) we have determined that bottlenose dolphins are exposed to brevetoxin and/or DA on a nearly annual basis (i.e., DA: 2004, 2005, 2006, 2008, 2009; brevetoxin: 2000, 2004, 2005, 2008, 2009) with 36% of all animals testing positive for brevetoxin (n = 118) and 53% positive for DA (n = 83) with several individuals (14%) testing positive for both neurotoxins in at least one tissue/fluid. To date there have been no previously published reports of DA in southwestern Florida marine mammals, however the May 2008 health assessment coincided with a Pseudo-nitzschia pseudodelicatissima bloom that was the likely source of DA observed in seawater and live dolphin samples. Concurrently, both DA and brevetoxin were observed in common prey fish. Although no Pseudo-nitzschia bloom was identified the following year, DA was identified in seawater, fish, sediment, snails, and dolphins. DA concentrations in feces were positively correlated with hematologic parameters including an increase in total white blood cell (p = 0.001) and eosinophil (p<0.001) counts. Our findings demonstrate that dolphins within Sarasota Bay are commonly exposed to two algal toxins, and provide the impetus to further explore the potential long-term impacts on bottlenose dolphin health.
Collapse
|
33
|
Watanabe KH, Andersen ME, Basu N, Carvan MJ, Crofton KM, King KA, Suñol C, Tiffany-Castiglioni E, Schultz IR. Defining and modeling known adverse outcome pathways: Domoic acid and neuronal signaling as a case study. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:9-21. [PMID: 20963854 DOI: 10.1002/etc.373] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
An adverse outcome pathway (AOP) is a sequence of key events from a molecular-level initiating event and an ensuing cascade of steps to an adverse outcome with population-level significance. To implement a predictive strategy for ecotoxicology, the multiscale nature of an AOP requires computational models to link salient processes (e.g., in chemical uptake, toxicokinetics, toxicodynamics, and population dynamics). A case study with domoic acid was used to demonstrate strategies and enable generic recommendations for developing computational models in an effort to move toward a toxicity testing paradigm focused on toxicity pathway perturbations applicable to ecological risk assessment. Domoic acid, an algal toxin with adverse effects on both wildlife and humans, is a potent agonist for kainate receptors (ionotropic glutamate receptors whose activation leads to the influx of Na(+) and Ca²(+)). Increased Ca²(+) concentrations result in neuronal excitotoxicity and cell death, primarily in the hippocampus, which produces seizures, impairs learning and memory, and alters behavior in some species. Altered neuronal Ca²(+) is a key process in domoic acid toxicity, which can be evaluated in vitro. Furthermore, results of these assays would be amenable to mechanistic modeling for identifying domoic acid concentrations and Ca²(+) perturbations that are normal, adaptive, or clearly toxic. In vitro assays with outputs amenable to measurement in exposed populations can link in vitro to in vivo conditions, and toxicokinetic information will aid in linking in vitro results to the individual organism. Development of an AOP required an iterative process with three important outcomes: a critically reviewed, stressor-specific AOP; identification of key processes suitable for evaluation with in vitro assays; and strategies for model development.
Collapse
|
34
|
Costa LG, Giordano G, Faustman EM. Domoic acid as a developmental neurotoxin. Neurotoxicology 2010; 31:409-23. [PMID: 20471419 PMCID: PMC2934754 DOI: 10.1016/j.neuro.2010.05.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 05/04/2010] [Accepted: 05/05/2010] [Indexed: 11/21/2022]
Abstract
Domoic acid (DomA) is an excitatory amino acid which can accumulate in shellfish and finfish under certain environmental conditions. DomA is a potent neurotoxin. In humans and in non-human primates, oral exposure to a few mg/kg DomA elicits gastrointestinal effects, while slightly higher doses cause neurological symptoms, seizures, memory impairment, and limbic system degeneration. In rodents, which appear to be less sensitive than humans or non-human primates, oral doses cause behavioral abnormalities (e.g. hindlimb scratching), followed by seizures and hippocampal degeneration. Similar effects are also seen in other species (from sea lions to zebrafish), indicating that DomA exerts similar neurotoxic effects across species. The neurotoxicity of DomA is ascribed to its ability to interact and activate the AMPA/KA receptors, a subfamily of receptors for the neuroexcitatory neurotransmitter glutamate. Studies exploring the neurotoxic effects of DomA on the developing nervous system indicate that DomA elicits similar behavioral, biochemical and morphological effects as in adult animals. However, most importantly, developmental neurotoxicity is seen at doses of DomA that are one to two orders of magnitude lower than those exerting neurotoxicity in adults. This difference may be due to toxicokinetic and/or toxicodynamic differences. Estimated safe doses may be exceeded in adults by high consumption of shellfish contaminated with DomA at the current limit of 20 microg/g. Given the potential higher susceptibility of the young to DomA neurotoxicity, additional studies investigating exposure to, and effects of this neurotoxin during brain development are warranted.
Collapse
Affiliation(s)
- Lucio G Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA.
| | | | | |
Collapse
|
35
|
Lefebvre KA, Robertson A. Domoic acid and human exposure risks: A review. Toxicon 2010; 56:218-30. [DOI: 10.1016/j.toxicon.2009.05.034] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 05/06/2009] [Accepted: 05/13/2009] [Indexed: 01/20/2023]
|
36
|
Stegeman JJ, Goldstone JV, Hahn ME. Perspectives on zebrafish as a model in environmental toxicology. FISH PHYSIOLOGY 2010. [DOI: 10.1016/s1546-5098(10)02910-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|