1
|
Karlsson M, Simonsson C, Dahlström N, Cedersund G, Lundberg P. Mathematical models for biomarker calculation of drug-induced liver injury in humans and experimental models based on gadoxetate enhanced magnetic resonance imaging. PLoS One 2023; 18:e0279168. [PMID: 36608050 PMCID: PMC9821424 DOI: 10.1371/journal.pone.0279168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/01/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Drug induced liver injury (DILI) is a major concern when developing new drugs. A promising biomarker for DILI is the hepatic uptake rate of the contrast agent gadoxetate. This rate can be estimated using a novel approach combining magnetic resonance imaging and mathematical modeling. However, previous work has used different mathematical models to describe liver function in humans or rats, and no comparative study has assessed which model is most optimal to use, or focused on possible translatability between the two species. AIMS Our aim was therefore to do a comparison and assessment of models for DILI biomarker assessment, and to develop a conceptual basis for a translational framework between the species. METHODS AND RESULTS We first established which of the available pharmacokinetic models to use by identifying the most simple and identifiable model that can describe data from both human and rats. We then developed an extension of this model for how to estimate the effects of a hepatotoxic drug in rats. Finally, we illustrated how such a framework could be useful for drug dosage selection, and how it potentially can be applied in personalized treatments designed to avoid DILI. CONCLUSION Our analysis provides clear guidelines of which mathematical model to use for model-based assessment of biomarkers for liver function, and it also suggests a hypothetical path to a translational framework for DILI.
Collapse
Affiliation(s)
- Markus Karlsson
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| | - Christian Simonsson
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Nils Dahlström
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
- Department of Radiology, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Gunnar Cedersund
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Peter Lundberg
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
- Department of Radiation Physics, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
2
|
Deguchi S, Takayama K. State-of-the-art liver disease research using liver-on-a-chip. Inflamm Regen 2022; 42:62. [PMID: 36494740 PMCID: PMC9733013 DOI: 10.1186/s41232-022-00248-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
To understand disease pathophysiologies, models that recapitulate human functions are necessary. In vitro models that consist of human cells are preferred to ones using animal cells, because organ functions can vary from species to species. However, conventional in vitro models do not recapitulate human organ functions well. Organ-on-a-chip technology provides a reliable in vitro model of the functional units of human organs. Organ-on-a-chip technology uses microfluidic devices and their accessories to impart organ functions to human cells. Using microfluidic devices, we can co-culture multiple cell types that compose human organs. Moreover, we can culture human cells under physiologically relevant stresses, such as mechanical and shear stresses. Current organ-on-a-chip technology can reproduce the functions of several organs including the liver. Because it is difficult to maintain the function of human hepatocytes, which are the gold standard of in vitro liver models, under conventional culture conditions, the application of liver-on-a-chips to liver disease research is expected. This review introduces the current status and future prospects of liver-on-a-chips in liver disease research.
Collapse
Affiliation(s)
- Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507 Japan
- Department of Medical Science, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507 Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507 Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, 100-0004 Japan
| |
Collapse
|
3
|
Llabjani V, Siddique MR, Macos A, Abouzid A, Hoti V, Martin FL, Patel II, Raza A. Introducing CELLBLOKS ®: a novel organ-on-a-chip platform allowing a plug-and-play approach towards building organotypic models. IN VITRO MODELS 2022; 1:423-435. [PMID: 39872618 PMCID: PMC11756440 DOI: 10.1007/s44164-022-00027-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 01/30/2025]
Abstract
Human organs are structurally and functionally complex systems. Their function is driven by the interactions between many specialised cell types, which is difficult to unravel on a standard Petri dish format. Conventional "Petri dish" approaches to culturing cells are static and self-limiting. However, current organ-on-a-chip technologies are difficult to use, have a limited throughput and lack compatibility with standard workflow conditions. We developed CELLBLOKS® as a novel "plug-and-play" organ-on-a-chip platform that enables straightforward creation of multiple cell-type organ-specific microenvironments. Herein, we demonstrate its advantages by building a liver model representative of live tissue function. CELLBLOKS® allows one to systematically test and identify various cell combinations that replicate optimal hepatic relevance. The combined interactions of fibroblasts, endothelial cells and hepatocytes were analysed using hepatic biochemistry (CYP3A4 and urea), cellular proliferation indices and transporter activities (albumin). The results demonstrate that optimal liver function can be achieved by exploiting crosstalk in co-culture combinations compared to conventional mono-culture. The optimised CELLBLOKS® liver model was tested to analyse drug-induced liver toxicity using tamoxifen. The data suggests that our CELLBLOKS® liver model is highly sensitive to toxic insult compared to mono-culture liver models. In summary, CELLBLOKS® provides a novel cell culture technology for creating human-relevant organotypic models that are easy and straightforward to establish in laboratory settings. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-022-00027-8.
Collapse
Affiliation(s)
- Valon Llabjani
- REVIVOCELL Limited, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Warrington, WA4 4AD UK
| | - M. R. Siddique
- REVIVOCELL Limited, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Warrington, WA4 4AD UK
| | - Anaïs Macos
- REVIVOCELL Limited, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Warrington, WA4 4AD UK
| | - Afaf Abouzid
- REVIVOCELL Limited, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Warrington, WA4 4AD UK
| | - Valmira Hoti
- REVIVOCELL Limited, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Warrington, WA4 4AD UK
| | - Francis L. Martin
- REVIVOCELL Limited, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Warrington, WA4 4AD UK
| | - Imran I. Patel
- REVIVOCELL Limited, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Warrington, WA4 4AD UK
| | - Ahtasham Raza
- REVIVOCELL Limited, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Warrington, WA4 4AD UK
| |
Collapse
|
4
|
Polonchuk L, Gentile C. Current state and future of 3D bioprinted models for cardiovascular research and drug development. ADMET AND DMPK 2022; 9:231-242. [PMID: 35300373 PMCID: PMC8920100 DOI: 10.5599/admet.951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/16/2021] [Indexed: 11/18/2022] Open
Abstract
In the last decade, 3D bioprinting technology has emerged as an innovative tissue engineering approach for regenerative medicine and drug development. This article aims at providing an overview about the most commonly used bioengineered tissues, focusing on 3D bioprinted cardiac cells and how they have been utilized for drug discovery and development. The review describes that, while this field is still developing, cardiovascular research may benefit from laboratory-engineered heart tissues built of specific cell types with precise 3D architecture mimicking the native cardiac microenvironment. It also describes the role played by regulatory agencies and potential commercialization pathways for direct translation from the bench to the bedside of studies using 3D bioprinted cardiac tissues.
Collapse
Affiliation(s)
- Liudmila Polonchuk
- Pharmaceutical Sciences, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Carmine Gentile
- Sydney Medical School, The University of Sydney, Australia.,School of Biomedical Engineering, University of Technology Sydney, Australia
| |
Collapse
|
5
|
Predictive Model for Drug-Induced Liver Injury Using Deep Neural Networks Based on Substructure Space. Molecules 2021; 26:molecules26247548. [PMID: 34946636 PMCID: PMC8707960 DOI: 10.3390/molecules26247548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 01/22/2023] Open
Abstract
Drug-induced liver injury (DILI) is a major concern for drug developers, regulators, and clinicians. However, there is no adequate model system to assess drug-associated DILI risk in humans. In the big data era, computational models are expected to play a revolutionary role in this field. This study aimed to develop a deep neural network (DNN)-based model using extended connectivity fingerprints of diameter 4 (ECFP4) to predict DILI risk. Each data set for the predictive model was retrieved and curated from DILIrank, LiverTox, and other literature. The best model was constructed through ten iterations of stratified 10-fold cross-validation, and the applicability domain was defined based on integer ECFP4 bits of the training set which represented substructures. For the robustness test, we employed the concept of the endurance level. The best model showed an accuracy of 0.731, a sensitivity of 0.714, and a specificity of 0.750 on the validation data set in the complete applicability domain. The model was further evaluated with four external data sets and attained an accuracy of 0.867 on 15 drugs with DILI cases reported since 2019. Overall, the results suggested that the ECFP4-based DNN model represents a new tool to identify DILI risk for the evaluation of drug safety.
Collapse
|
6
|
Primary Human Hepatocyte Spheroids as Tools to Study the Hepatotoxic Potential of Non-Pharmaceutical Chemicals. Int J Mol Sci 2021; 22:ijms222011005. [PMID: 34681664 PMCID: PMC8537720 DOI: 10.3390/ijms222011005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Abstract
Drug-induced liver injury, including cholestasis, is an important clinical issue and economic burden for pharmaceutical industry and healthcare systems. However, human-relevant in vitro information on the ability of other types of chemicals to induce cholestatic hepatotoxicity is lacking. This work aimed at investigating the cholestatic potential of non-pharmaceutical chemicals using primary human hepatocytes cultured in 3D spheroids. Spheroid cultures were repeatedly (co-) exposed to drugs (cyclosporine-A, bosentan, macitentan) or non-pharmaceutical chemicals (paraquat, tartrazine, triclosan) and a concentrated mixture of bile acids for 4 weeks. Cell viability (adenosine triphosphate content) was checked every week and used to calculate the cholestatic index, an indicator of cholestatic liability. Microarray analysis was performed at specific time-points to verify the deregulation of genes related to cholestasis, steatosis and fibrosis. Despite the evident inter-donor variability, shorter exposures to cyclosporine-A consistently produced cholestatic index values below 0.80 with transcriptomic data partially supporting its cholestatic burden. Bosentan confirmed to be hepatotoxic, while macitentan was not toxic in the tested concentrations. Prolonged exposure to paraquat suggested fibrotic potential, while triclosan markedly deregulated genes involved in different types of hepatotoxicity. These results support the applicability of primary human hepatocyte spheroids to study hepatotoxicity of non-pharmaceutical chemicals in vitro.
Collapse
|
7
|
Ziegler R, Häusermann F, Kirchner S, Polonchuk L. Cardiac Safety of Kinase Inhibitors - Improving Understanding and Prediction of Liabilities in Drug Discovery Using Human Stem Cell-Derived Models. Front Cardiovasc Med 2021; 8:639824. [PMID: 34222360 PMCID: PMC8242589 DOI: 10.3389/fcvm.2021.639824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
Many small molecule kinase inhibitors (SMKIs) used to fight cancer have been associated with cardiotoxicity in the clinic. Therefore, preventing their failure in clinical development is a priority for preclinical discovery. Our study focused on the integration and concurrent measurement of ATP, apoptosis dynamics and functional cardiac indexes in human stem cell-derived cardiomyocytes (hSC-CMs) to provide further insights into molecular determinants of compromised cardiac function. Ten out of the fourteen tested SMKIs resulted in a biologically relevant decrease in either beating rate or base impedance (cell number index), illustrating cardiotoxicity as one of the major safety liabilities of SMKIs, in particular of those involved in the PI3K–AKT pathway. Pearson's correlation analysis indicated a good correlation between the different read-outs of functional importance. Therefore, measurement of ATP concentrations and apoptosis in vitro could provide important insight into mechanisms of cardiotoxicity. Detailed investigation of the cellular signals facilitated multi-parameter evaluation allowing integrative assessment of cardiomyocyte behavior. The resulting correlation can be used as a tool to highlight changes in cardiac function and potentially to categorize drugs based on their mechanisms of action.
Collapse
Affiliation(s)
- Ricarda Ziegler
- Pharmaceutical Sciences, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Fabian Häusermann
- Pharmaceutical Sciences, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Stephan Kirchner
- Pharmaceutical Sciences, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Liudmila Polonchuk
- Pharmaceutical Sciences, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| |
Collapse
|
8
|
Lee G, Kim H, Park JY, Kim G, Han J, Chung S, Yang JH, Jeon JS, Woo DH, Han C, Kim SK, Park HJ, Kim JH. Generation of uniform liver spheroids from human pluripotent stem cells for imaging-based drug toxicity analysis. Biomaterials 2020; 269:120529. [PMID: 33257114 DOI: 10.1016/j.biomaterials.2020.120529] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Abstract
Recent advances in pluripotent stem cell technology provide an alternative source of human hepatocytes to overcome the limitations of current toxicity tests. However, this approach requires optimization and standardization before it can be used as a fast and reliable toxicity screening system. Here, we designed and tested microwell culture platforms with various diameters. We found that large quantities of uniformly-sized hepatocyte-like cell (HLC) spheroids (3D-uniHLC-Ss) could be efficiently and reproducibly generated in a short period time from a small number of differentiating human pluripotent stem cells (hPSCs). The hPSC-3D-uniHLC-Ss that were produced in 500-μm diameter microwells consistently exhibited high expressions of hepatic marker genes and had no significant signs of cell death. Importantly, a hepatic master gene hepatocyte nuclear factor 4α (HNF4α) was maintained at high levels, and the epithelial-mesenchymal transition was significantly attenuated in hPSC-3D-uniHLC-Ss. Additionally, when compared with 3D-HLC-Ss that were produced in other 3D platforms, hPSC-3D-uniHLC-Ss showed significantly higher hepatic gene expressions and drug-metabolizing activity of the enzyme, CYP3A4. Imaging-based drug toxicity studies demonstrated that hPSC-3D-uniHLC-Ss exhibited enhanced sensitivity to various hepatotoxicants, compared to HLCs, which were differentiated under 2D conditions. Precise prediction of drug-induced hepatotoxicity is a crucial step in the early phases of drug discovery. Thus, the hPSC-3D-uniHLC-Ss produced using our microwell platform could be used as an imaging-based toxicity screening system to predict drug hepatotoxicity.
Collapse
Affiliation(s)
- Gyunggyu Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Hyemin Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea
| | - Ji Young Park
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Gyeongmin Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jiyou Han
- Department of Biological Sciences, Hyupsung University, Hwasung-si, 18330, South Korea
| | - Seok Chung
- School of Mechanical Engineering, Korea University, Seoul, 20841, South Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
| | - Ji Hun Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
| | - Jang Su Jeon
- Chungnam National University, Daejeon, 34134, South Korea
| | - Dong-Hun Woo
- Laboratory of Stem Cells, NEXEL Co., Ltd., Seoul, 02580, South Korea
| | - Choongseong Han
- Laboratory of Stem Cells, NEXEL Co., Ltd., Seoul, 02580, South Korea
| | - Sang Kyum Kim
- Chungnam National University, Daejeon, 34134, South Korea.
| | - Han-Jin Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea.
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
9
|
Mitani S. [Generation of Zone-specific Hepatocyte-like Cells from Human Induced Pluripotent Stem Cells for Accurate Prediction of Drug-induced Hepatotoxicity]. YAKUGAKU ZASSHI 2019; 139:1509-1512. [PMID: 31787637 DOI: 10.1248/yakushi.19-00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human induced pluripotent stem (iPS) cell-derived hepatocyte-like cells (iPS-HLCs) are expected to be applicable to large-scale in vitro hepatotoxicity screening systems. Accordingly, methods for generating HLCs from human iPS cells have been improved over the past decade. However, although human hepatocytes have zone-specific characteristics in vivo, there is currently no technique to generate zone-specific HLCs from human iPS cells. Therefore, to generate HLCs with zone-specific properties from human iPS cells, we cultured iPS-HLCs using a parenchymal or nonparenchymal cell-conditioned medium (CM). The results showed that urea production and gluconeogenesis capacity in iPS-HLCs were increased by culturing with cholangiocyte-CM, and glutamine production and drug metabolism capacity in iPS-HLCs were increased by culturing with hepatocyte-CM. It was thus clarified that iPS-HLCs acquire zone 1 hepatocyte-like properties by culturing with cholangiocyte-CM and that iPS-HLCs acquire zone 3 hepatocyte-like properties by culturing with hepatocyte-CM. In addition, we found that WNT inhibitory factor-1 secreted from cholangiocytes, and WNT7B and WNT8B secreted from hepatocytes play important roles in the zone-specific conversion of iPS-HLCs. We hope that our findings will facilitate the application of iPS-HLCs to drug discovery research.
Collapse
Affiliation(s)
- Seiji Mitani
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
10
|
Ma Z, Liu H, Yu H. Triclosan Affects Ca 2+ Regulatory Module and Musculature Development in Skeletal Myocyte during Early Life Stages of Zebrafish ( Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11988-11998. [PMID: 31532625 DOI: 10.1021/acs.est.9b03231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Advanced technologies for toxicity tests are designed to identify biomarkers with superior predictive power or end points of the complex web of biological pathways. However, the data obtained need to be fully characterized for dose-response, physiological systems, and relevance to a system or (sub) population before biological interpretation and decision making. In this study, the toxicity of triclosan (TCS) on zebrafish was selected as a case study to correlate the observed morphological effects with existing data and identify the critical events by receptor activity sensitivity analysis. Triclosan exhibited weak acute toxicity against zebrafish and significantly affected the development of trunk muscles at 0.52, 1.04, and 1.73 μM. Through receptor-mediated screening, we found that the adverse effects of TCS induce Ryanodine receptor 1 (RyR1) activity and distort Ca2+ signaling. The trunk skeletal muscle abnormalities occurred only when the dihydropyridine receptor (DHPR) was blocked, demonstrating that TCS mainly influenced the Ca2+ regulatory module associated with signaling between DHPRs and RyR1; DHPRs mainly regulated the orthograde and retrograde signaling in skeletal muscles. This unexpected result could integrate the mode of action of TCS and provide insight for high-throughput screening and toxicity prediction using zebrafish.
Collapse
Affiliation(s)
- Zhiyuan Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
11
|
Forsgren MF, Karlsson M, Dahlqvist Leinhard O, Dahlström N, Norén B, Romu T, Ignatova S, Ekstedt M, Kechagias S, Lundberg P, Cedersund G. Model-inferred mechanisms of liver function from magnetic resonance imaging data: Validation and variation across a clinically relevant cohort. PLoS Comput Biol 2019; 15:e1007157. [PMID: 31237870 PMCID: PMC6613709 DOI: 10.1371/journal.pcbi.1007157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 07/08/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Estimation of liver function is important to monitor progression of chronic liver disease (CLD). A promising method is magnetic resonance imaging (MRI) combined with gadoxetate, a liver-specific contrast agent. For this method, we have previously developed a model for an average healthy human. Herein, we extended this model, by combining it with a patient-specific non-linear mixed-effects modeling framework. We validated the model by recruiting 100 patients with CLD of varying severity and etiologies. The model explained all MRI data and adequately predicted both timepoints saved for validation and gadoxetate concentrations in both plasma and biopsies. The validated model provides a new and deeper look into how the mechanisms of liver function vary across a wide variety of liver diseases. The basic mechanisms remain the same, but increasing fibrosis reduces uptake and increases excretion of gadoxetate. These mechanisms are shared across many liver functions and can now be estimated from standard clinical images. Being able to accurately and reliably estimate liver function is important when monitoring the progression of patients with liver disease, as well as when identifying drug-induced liver injury during drug development. A promising method for quantifying liver function is to use magnetic resonance imaging combined with gadoxetate. Gadoxetate is a liver-specific contrast agent, which is taken up by the hepatocytes and excreted into the bile. We have previously developed a mechanistic model for gadoxetate dynamics using averaged data from healthy volunteers. In this work, we extended our model with a non-linear mixed-effects modeling framework to give patient-specific estimates of the gadoxetate transport-rates. We validated the model by recruiting 100 patients with liver disease, covering a range of severity and etiologies. All patients underwent an MRI-examination and provided both blood and liver biopsies. Our validated model provides a new and deeper look into how the mechanisms of liver function varies across a wide variety of liver diseases. The basic mechanisms remain the same, but increasing fibrosis reduces uptake and increases excretion of gadoxetate.
Collapse
Affiliation(s)
- Mikael F. Forsgren
- Wolfram MathCore AB and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Markus Karlsson
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Olof Dahlqvist Leinhard
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Nils Dahlström
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Radiology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Bengt Norén
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Thobias Romu
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Simone Ignatova
- Department of Clinical Pathology and Clinical Genetics, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Mattias Ekstedt
- Department of Gastroenterology and Hepatology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Stergios Kechagias
- Department of Gastroenterology and Hepatology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Peter Lundberg
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Radiation Physics, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- * E-mail: (PL); (GC)
| | - Gunnar Cedersund
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- * E-mail: (PL); (GC)
| |
Collapse
|
12
|
Deguchi S, Yamashita T, Igai K, Harada K, Toba Y, Hirata K, Takayama K, Mizuguchi H. Modeling of Hepatic Drug Metabolism and Responses in CYP2C19 Poor Metabolizer Using Genetically Manipulated Human iPS cells. Drug Metab Dispos 2019; 47:632-638. [DOI: 10.1124/dmd.119.086322] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
13
|
Keung W, Chan PKW, Backeris PC, Lee EK, Wong N, Wong AOT, Wong GKY, Chan CWY, Fermini B, Costa KD, Li RA. Human Cardiac Ventricular-Like Organoid Chambers and Tissue Strips From Pluripotent Stem Cells as a Two-Tiered Assay for Inotropic Responses. Clin Pharmacol Ther 2019; 106:402-414. [PMID: 30723889 DOI: 10.1002/cpt.1385] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/18/2019] [Indexed: 12/14/2022]
Abstract
Traditional drug discovery is an inefficient process. Human pluripotent stem cell-derived cardiomyocytes can potentially fill the gap between animal and clinical studies, but conventional two-dimensional cultures inadequately recapitulate the human cardiac phenotype. Here, we systematically examined the pharmacological responses of engineered human ventricular-like cardiac tissue strips (hvCTS) and organoid chambers (hvCOC) to 25 cardioactive compounds covering various drug classes. While hvCTS effectively detected negative and null inotropic effects, the sensitivity to positive inotropes was modest. We further quantified the predictive capacity of hvCTS in a blinded screening, with accuracies for negative, positive, and null inotropic effects at 100%, 86%, and 80%, respectively. Interestingly, hvCOC, with a pro-maturation milieu that yields physiologically complex parameters, displayed enhanced positive inotropy. Based on these results, we propose a two-tiered screening system for avoiding false positives and negatives. Such an approach would facilitate drug discovery by leading to better overall success.
Collapse
Affiliation(s)
- Wendy Keung
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Shatin, Hong Kong.,Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong
| | - Patrick K W Chan
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Shatin, Hong Kong
| | - Peter C Backeris
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York,, USA
| | | | - Nicodemus Wong
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Shatin, Hong Kong
| | | | | | | | - Bernard Fermini
- Global Safety Pharmacology, Pfizer Worldwide Research and Development, Groton, Connecticut, USA
| | - Kevin D Costa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York,, USA.,Novoheart, Vancouver, British Columbia, Canada
| | - Ronald A Li
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Shatin, Hong Kong.,Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong.,Novoheart, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Rusyn I, Greene N. The Impact of Novel Assessment Methodologies in Toxicology on Green Chemistry and Chemical Alternatives. Toxicol Sci 2019; 161:276-284. [PMID: 29378069 DOI: 10.1093/toxsci/kfx196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The field of experimental toxicology is rapidly advancing by incorporating novel techniques and methods that provide a much more granular view into the mechanisms of potential adverse effects of chemical exposures on human health. The data from various in vitro assays and computational models are useful not only for increasing confidence in hazard and risk decisions, but also are enabling better, faster and cheaper assessment of a greater number of compounds, mixtures, and complex products. This is of special value to the field of green chemistry where design of new materials or alternative uses of existing ones is driven, at least in part, by considerations of safety. This article reviews the state of the science and decision-making in scenarios when little to no data may be available to draw conclusions about which choice in green chemistry is "safer." It is clear that there is no "one size fits all" solution and multiple data streams need to be weighed in making a decision. Moreover, the overall level of familiarity of the decision-makers and scientists alike with new assessment methodologies, their validity, value and limitations is evolving. Thus, while the "impact" of the new developments in toxicology on the field of green chemistry is great already, it is premature to conclude that the data from new assessment methodologies have been widely accepted yet.
Collapse
Affiliation(s)
- Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843
| | - Nigel Greene
- Predictive Compound Safety and ADME, AstraZeneca Pharmaceuticals LP, Waltham, Massachusetts 02451
| |
Collapse
|
15
|
Evolving the Role of Discovery-focused Pathologists and Comparative Scientists in the Pharmaceutical Industry. Toxicol Pathol 2019; 47:121-128. [DOI: 10.1177/0192623318821333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
GlaxoSmithKline has recently made significant organizational changes to its nonclinical safety, drug metabolism and pharmacokinetic, and laboratory animal science/veterinary functions, with the goal to increase our focus on scientific partnership with the discovery part of the organization. One specific change was bringing together pathologists and comparative medicine veterinarians and scientists into a single functional unit. We describe our early activities (assessing our capabilities and gaps, external benchmarking, listening to our discovery partners, redesigning some of our working practices) aimed at implementing these changes. In addition, early on we held a Discovery Engagement Workshop attended by all pathologists and comparative medicine veterinarians and scientists, as well as selected discovery scientists. The purpose of this workshop was to share learnings from the above activities and devise plans aimed at achieving our overall goal of functional integration: driving pathobiology expertise into drug discovery and increasing the human (translational) relevance of experimental data. This review describes the new organizational structure, the workshop activities, and implementation plans; updates our progress; and considers the opportunity for a pan-industry network of discovery-focused pathologists and comparative medicine veterinarians and scientists.
Collapse
|
16
|
Nihira K, Nan-ya KI, Kakuni M, Ono Y, Yoshikawa Y, Ota T, Hiura M, Yoshinari K. Chimeric Mice With Humanized Livers Demonstrate Human-Specific Hepatotoxicity Caused by a Therapeutic Antibody Against TRAIL-Receptor 2/Death Receptor 5. Toxicol Sci 2018; 167:190-201. [DOI: 10.1093/toxsci/kfy228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Kaito Nihira
- Translational Research Unit, Kyowa Hakko Kirin Co., Ltd., Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ken-ichiro Nan-ya
- Translational Research Unit, Kyowa Hakko Kirin Co., Ltd., Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Masakazu Kakuni
- PhoenixBio Co., Ltd., Higashihiroshima, Hiroshima 739-0046, Japan
| | - Yoko Ono
- Translational Research Unit, Kyowa Hakko Kirin Co., Ltd., Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Yukitaka Yoshikawa
- Translational Research Unit, Kyowa Hakko Kirin Co., Ltd., Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Toshio Ota
- Translational Research Unit, Kyowa Hakko Kirin Co., Ltd., Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Masanori Hiura
- Translational Research Unit, Kyowa Hakko Kirin Co., Ltd., Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
17
|
Oppelt A, Kaschek D, Huppelschoten S, Sison-Young R, Zhang F, Buck-Wiese M, Herrmann F, Malkusch S, Krüger CL, Meub M, Merkt B, Zimmermann L, Schofield A, Jones RP, Malik H, Schilling M, Heilemann M, van de Water B, Goldring CE, Park BK, Timmer J, Klingmüller U. Model-based identification of TNFα-induced IKKβ-mediated and IκBα-mediated regulation of NFκB signal transduction as a tool to quantify the impact of drug-induced liver injury compounds. NPJ Syst Biol Appl 2018; 4:23. [PMID: 29900006 PMCID: PMC5995845 DOI: 10.1038/s41540-018-0058-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 04/16/2018] [Accepted: 05/04/2018] [Indexed: 02/07/2023] Open
Abstract
Drug-induced liver injury (DILI) has become a major problem for patients and for clinicians, academics and the pharmaceutical industry. To date, existing hepatotoxicity test systems are only poorly predictive and the underlying mechanisms are still unclear. One of the factors known to amplify hepatotoxicity is the tumor necrosis factor alpha (TNFα), especially due to its synergy with commonly used drugs such as diclofenac. However, the exact mechanism of how diclofenac in combination with TNFα induces liver injury remains elusive. Here, we combined time-resolved immunoblotting and live-cell imaging data of HepG2 cells and primary human hepatocytes (PHH) with dynamic pathway modeling using ordinary differential equations (ODEs) to describe the complex structure of TNFα-induced NFκB signal transduction and integrated the perturbations of the pathway caused by diclofenac. The resulting mathematical model was used to systematically identify parameters affected by diclofenac. These analyses showed that more than one regulatory module of TNFα-induced NFκB signal transduction is affected by diclofenac, suggesting that hepatotoxicity is the integrated consequence of multiple changes in hepatocytes and that multiple factors define toxicity thresholds. Applying our mathematical modeling approach to other DILI-causing compounds representing different putative DILI mechanism classes enabled us to quantify their impact on pathway activation, highlighting the potential of the dynamic pathway model as a quantitative tool for the analysis of DILI compounds.
Collapse
Affiliation(s)
- Angela Oppelt
- 1Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Kaschek
- 2Institute of Physics, University of Freiburg, Freiburg, Germany
| | - Suzanna Huppelschoten
- 3Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Rowena Sison-Young
- 4MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Fang Zhang
- 4MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Marie Buck-Wiese
- 1Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Franziska Herrmann
- 1Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Malkusch
- 5Institute of Physical and Theoretical Chemistry, Single Molecule Biophysics, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Carmen L Krüger
- 5Institute of Physical and Theoretical Chemistry, Single Molecule Biophysics, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Mara Meub
- 5Institute of Physical and Theoretical Chemistry, Single Molecule Biophysics, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Benjamin Merkt
- 2Institute of Physics, University of Freiburg, Freiburg, Germany
| | - Lea Zimmermann
- 1Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Amy Schofield
- 4MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Robert P Jones
- 4MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK.,6North Western Hepatobiliary Unit, Aintree University Hospital NHS Foundation Trust, Liverpool, UK
| | - Hassan Malik
- 6North Western Hepatobiliary Unit, Aintree University Hospital NHS Foundation Trust, Liverpool, UK
| | - Marcel Schilling
- 1Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mike Heilemann
- 5Institute of Physical and Theoretical Chemistry, Single Molecule Biophysics, Johann Wolfgang Goethe-University, Frankfurt, Germany.,7Bioquant, University of Heidelberg, Heidelberg, Germany
| | - Bob van de Water
- 3Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Christopher E Goldring
- 4MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - B Kevin Park
- 4MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Jens Timmer
- 2Institute of Physics, University of Freiburg, Freiburg, Germany.,8BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Ursula Klingmüller
- 1Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
18
|
Geng L, Kong CW, Wong AOT, Shum AMY, Chow MZY, Che H, Zhang C, Yau KL, Chan CW, Keung W, Li RA. Probing flecainide block of I Na using human pluripotent stem cell-derived ventricular cardiomyocytes adapted to automated patch-clamping and 2D monolayers. Toxicol Lett 2018; 294:61-72. [PMID: 29758359 DOI: 10.1016/j.toxlet.2018.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/23/2018] [Accepted: 05/07/2018] [Indexed: 11/19/2022]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are emerging tools for applications such as drug discovery and screening for pro-arrhythmogenicity and cardiotoxicity as leading causes for drug attrition. Understanding the electrophysiology (EP) of hPSC-CMs is essential but conventional manual patch-clamping is highly laborious and low-throughput. Here we adapted hPSC-CMs derived from two human embryonic stem cell (hESC) lines, HES2 and H7, for a 16-channel automated planar-recording approach for single-cell EP characterization. Automated current- and voltage-clamping, with an overall success rate of 55.0 ± 11.3%, indicated that 90% of hPSC-CMs displayed ventricular-like action potential (AP) and the ventricular cardiomyocytes (VCMs) derived from the two hESC lines expressed similar levels of INa, ICaL, Ikr and If and similarly lacked Ito and IK1. These well-characterized hPSC-VCMs could also be readily adapted for automated assays of pro-arrhythmic drug screening. As an example, we showed that flecainide (FLE) induced INa blockade, leftward steady-state inactivation shift, slowed recovery from inactivation in our hPSC-VCMs. Since single-cell EP assay is insufficient to predict drug-induced reentrant arrhythmias, hPSC-VCMs were further reassembled into 2D human ventricular cardiac monolayers (hvCMLs) for multi-cellular electrophysiological assessments. Indeed, FLE significantly slowed the conduction velocity while causing AP prolongation. Our RNA-seq data suggested that cell-cell interaction enhanced the maturity of hPSC-VCMs. Taken collectively, a combinatorial approach using single-cell EP and hvCMLs is needed to comprehensively assess drug-induced arrhythmogenicity.
Collapse
Affiliation(s)
- Lin Geng
- Stem Cell & Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong
| | - Chi-Wing Kong
- Stem Cell & Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Andy O T Wong
- Stem Cell & Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Angie Man-Yee Shum
- Stem Cell & Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Maggie Z Y Chow
- Stem Cell & Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Hui Che
- Stem Cell & Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Chenzi Zhang
- Stem Cell & Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Ka-Long Yau
- Stem Cell & Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Camie W Chan
- Stem Cell & Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Wendy Keung
- Stem Cell & Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong
| | - Ronald A Li
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong; Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong.
| |
Collapse
|
19
|
Karageorgis A, Lenhard SC, Yerby B, Forsgren MF, Liachenko S, Johansson E, Pilling MA, Peterson RA, Yang X, Williams DP, Ungersma SE, Morgan RE, Brouwer KLR, Jucker BM, Hockings PD. A multi-center preclinical study of gadoxetate DCE-MRI in rats as a biomarker of drug induced inhibition of liver transporter function. PLoS One 2018; 13:e0197213. [PMID: 29771932 PMCID: PMC5957399 DOI: 10.1371/journal.pone.0197213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/28/2018] [Indexed: 12/12/2022] Open
Abstract
Drug-induced liver injury (DILI) is a leading cause of acute liver failure and transplantation. DILI can be the result of impaired hepatobiliary transporters, with altered bile formation, flow, and subsequent cholestasis. We used gadoxetate dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), combined with pharmacokinetic modelling, to measure hepatobiliary transporter function in vivo in rats. The sensitivity and robustness of the method was tested by evaluating the effect of a clinical dose of the antibiotic rifampicin in four different preclinical imaging centers. The mean gadoxetate uptake rate constant for the vehicle groups at all centers was 39.3 +/- 3.4 s-1 (n = 23) and 11.7 +/- 1.3 s-1 (n = 20) for the rifampicin groups. The mean gadoxetate efflux rate constant for the vehicle groups was 1.53 +/- 0.08 s-1 (n = 23) and for the rifampicin treated groups was 0.94 +/- 0.08 s-1 (n = 20). Both the uptake and excretion transporters of gadoxetate were statistically significantly inhibited by the clinical dose of rifampicin at all centers and the size of this treatment group effect was consistent across the centers. Gadoxetate is a clinically approved MRI contrast agent, so this method is readily transferable to the clinic. Conclusion: Rate constants of gadoxetate uptake and excretion are sensitive and robust biomarkers to detect early changes in hepatobiliary transporter function in vivo in rats prior to established biomarkers of liver toxicity.
Collapse
Affiliation(s)
- Anastassia Karageorgis
- Safety and ADME Translational Sciences, Drug Safety and Metabolism, AstraZeneca, Gothenburg, Sweden
- * E-mail:
| | - Stephen C. Lenhard
- Bioimaging, Platform Technology and Sciences, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Brittany Yerby
- Research Imaging Sciences, Amgen, Thousand Oaks, California, United States of America
| | - Mikael F. Forsgren
- Center for Medical Image Science and Visualization (CMIV), Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- Wolfram MathCore, Linköping, Sweden
| | - Serguei Liachenko
- National Center for Toxicological Research, Division of Neurotoxicology, United States Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Edvin Johansson
- Personalised Healthcare and Biomarkers, Imaging group, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Mark A. Pilling
- Biostatistics, Quantitative Biology, Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca R&D, Cambridge, United Kingdom
| | - Richard A. Peterson
- Safety Assessment, GlaxoSmithKline, Research Triangle Park, Durham, North Carolina, United States of America
| | - Xi Yang
- National Center for Toxicological Research, Division of Systems Biology, United States Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Dominic P. Williams
- Safety and ADME Translational Sciences, Drug Safety and Metabolism, AstraZeneca, Cambridge, United Kingdom
| | - Sharon E. Ungersma
- Research Imaging Sciences, Amgen, Thousand Oaks, California, United States of America
| | - Ryan E. Morgan
- Department of Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, California, United States of America
| | - Kim L. R. Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of N orth Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Beat M. Jucker
- Bioimaging, Platform Technology and Sciences, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Paul D. Hockings
- Antaros Medical, BioVenture Hub, Mölndal, Sweden
- MedTech West, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
20
|
Asthana A, White CM, Douglass M, Kisaalita WS. Evaluation of cellular adhesion and organization in different microporous polymeric scaffolds. Biotechnol Prog 2018; 34:505-514. [DOI: 10.1002/btpr.2627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/18/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Amish Asthana
- School of Chemical, Materials, and Biomedical Engineering, Cellular Bioengineering Laboratory, College of Engineering, Driftmier Engineering Center; University of Georgia; Athens GA 30602
| | - Charles McRae White
- School of Chemical, Materials, and Biomedical Engineering, Cellular Bioengineering Laboratory, College of Engineering, Driftmier Engineering Center; University of Georgia; Athens GA 30602
| | - Megan Douglass
- School of Chemical, Materials, and Biomedical Engineering, Cellular Bioengineering Laboratory, College of Engineering, Driftmier Engineering Center; University of Georgia; Athens GA 30602
| | - William S. Kisaalita
- School of Chemical, Materials, and Biomedical Engineering, Cellular Bioengineering Laboratory, College of Engineering, Driftmier Engineering Center; University of Georgia; Athens GA 30602
| |
Collapse
|
21
|
|
22
|
Key Challenges and Opportunities Associated with the Use of In Vitro Models to Detect Human DILI: Integrated Risk Assessment and Mitigation Plans. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9737920. [PMID: 27689095 PMCID: PMC5027328 DOI: 10.1155/2016/9737920] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/22/2016] [Indexed: 01/10/2023]
Abstract
Drug-induced liver injury (DILI) is a major cause of late-stage clinical drug attrition, market withdrawal, black-box warnings, and acute liver failure. Consequently, it has been an area of focus for toxicologists and clinicians for several decades. In spite of considerable efforts, limited improvements in DILI prediction have been made and efforts to improve existing preclinical models or develop new test systems remain a high priority. While prediction of intrinsic DILI has improved, identifying compounds with a risk for idiosyncratic DILI (iDILI) remains extremely challenging because of the lack of a clear mechanistic understanding and the multifactorial pathogenesis of idiosyncratic drug reactions. Well-defined clinical diagnostic criteria and risk factors are also missing. This paper summarizes key data interpretation challenges, practical considerations, model limitations, and the need for an integrated risk assessment. As demonstrated through selected initiatives to address other types of toxicities, opportunities exist however for improvement, especially through better concerted efforts at harmonization of current, emerging and novel in vitro systems or through the establishment of strategies for implementation of preclinical DILI models across the pharmaceutical industry. Perspectives on the incorporation of newer technologies and the value of precompetitive consortia to identify useful practices are also discussed.
Collapse
|
23
|
Takayama K. [Establishment of a Method of Hepatocyte Differentiation from Human Pluripotent Stem Cells for Innovative Drug Development]. YAKUGAKU ZASSHI 2016; 135:1141-6. [PMID: 26423870 DOI: 10.1248/yakushi.15-00194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatocyte-like cells differentiated from human pluripotent stem cells (such as human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells) are expected to be utilized in drug screening. However, the hepatocyte differentiation efficiency and hepatic functions of hepatocyte-like cells were not sufficient to perform ES/iPS cell-based drug discovery. Therefore, we decided to improve the method of hepatocyte differentiation from human ES/iPS cells. To enhance this hepatocyte differentiation efficiency, hepatocyte-related transcription factors, such as forkhead box protein A2 (FOXA2) and hepatocyte nuclear factor 1 alpha (HNF1α), were overexpressed during the hepatocyte differentiation process. In addition, to enhance the functions of hepatocyte-like cells, these cells were cultured in three dimensional (3D) conditions using a Nanopillar plate. By FOXA2 and HNF1α overexpression, human ES/iPS cells could efficiently (more than 80%) differentiate into albumin-positive hepatocyte-like cells. Various hepatic functions, including albumin secretion and drug metabolism capacities, of the hepatocyte-like cells were significantly enhanced by performing 3D cell culture. These results suggest that the method of hepatocyte differentiation could be improved by using gene transfer and 3D cell culture technologies. We believe that these new hepatocyte-like cells would be useful tools in drug development.
Collapse
Affiliation(s)
- Kazuo Takayama
- iPS Cell-based Research Project on Hepatic Toxicity and Metabolism, Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
24
|
Kim MT, Huang R, Sedykh A, Wang W, Xia M, Zhu H. Mechanism Profiling of Hepatotoxicity Caused by Oxidative Stress Using Antioxidant Response Element Reporter Gene Assay Models and Big Data. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:634-41. [PMID: 26383846 PMCID: PMC4858396 DOI: 10.1289/ehp.1509763] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 09/16/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Hepatotoxicity accounts for a substantial number of drugs being withdrawn from the market. Using traditional animal models to detect hepatotoxicity is expensive and time-consuming. Alternative in vitro methods, in particular cell-based high-throughput screening (HTS) studies, have provided the research community with a large amount of data from toxicity assays. Among the various assays used to screen potential toxicants is the antioxidant response element beta lactamase reporter gene assay (ARE-bla), which identifies chemicals that have the potential to induce oxidative stress and was used to test > 10,000 compounds from the Tox21 program. OBJECTIVE The ARE-bla computational model and HTS data from a big data source (PubChem) were used to profile environmental and pharmaceutical compounds with hepatotoxicity data. METHODS Quantitative structure-activity relationship (QSAR) models were developed based on ARE-bla data. The models predicted the potential oxidative stress response for known liver toxicants when no ARE-bla data were available. Liver toxicants were used as probe compounds to search PubChem Bioassay and generate a response profile, which contained thousands of bioassays (> 10 million data points). By ranking the in vitro-in vivo correlations (IVIVCs), the most relevant bioassay(s) related to hepatotoxicity were identified. RESULTS The liver toxicants profile contained the ARE-bla and relevant PubChem assays. Potential toxicophores for well-known toxicants were created by identifying chemical features that existed only in compounds with high IVIVCs. CONCLUSION Profiling chemical IVIVCs created an opportunity to fully explore the source-to-outcome continuum of modern experimental toxicology using cheminformatics approaches and big data sources. CITATION Kim MT, Huang R, Sedykh A, Wang W, Xia M, Zhu H. 2016. Mechanism profiling of hepatotoxicity caused by oxidative stress using antioxidant response element reporter gene assay models and big data. Environ Health Perspect 124:634-641; http://dx.doi.org/10.1289/ehp.1509763.
Collapse
Affiliation(s)
- Marlene Thai Kim
- Department of Chemistry, Rutgers University, Camden, New Jersey, USA
- Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Alexander Sedykh
- Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, USA
- Multicase Inc., Beachwood, Ohio, USA
| | - Wenyi Wang
- Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Hao Zhu
- Department of Chemistry, Rutgers University, Camden, New Jersey, USA
- Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, USA
- Address correspondence to H. Zhu, 315 Penn St., Rutgers University, Camden, NJ 08102 USA. Telephone: (856) 225-6781. E-mail:
| |
Collapse
|
25
|
Sachinidis A. Highlight report: Cardiotoxicity screening. EXCLI JOURNAL 2016; 15:163-5. [PMID: 27047323 PMCID: PMC4817422 DOI: 10.17179/excli2016-180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/16/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Agapios Sachinidis
- Institute of Neurophysiology and Centre for Molecular Medicine Cologne (CMMC), Robert-Koch-Str. 39, 50931 Cologne, Germany
| |
Collapse
|
26
|
Klaper R. In response: Academic perspective. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:268-270. [PMID: 26808911 DOI: 10.1002/etc.3211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/01/2015] [Accepted: 08/12/2015] [Indexed: 06/05/2023]
Affiliation(s)
- Rebecca Klaper
- Great Lakes Genomics Center, School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
27
|
Preininger MK, Singh M, Xu C. Cryopreservation of Human Pluripotent Stem Cell-Derived Cardiomyocytes: Strategies, Challenges, and Future Directions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 951:123-135. [PMID: 27837559 PMCID: PMC5328614 DOI: 10.1007/978-3-319-45457-3_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent years, human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have emerged as a vital cell source for in vitro modeling of genetic cardiovascular disorders, drug screening, and in vivo cardiac regeneration research. Looking forward, the ability to efficiently cryopreserve hPSC-CMs without compromising their normal biochemical and physiologic functions will dramatically facilitate their various biomedical applications. Although working protocols for freezing, storing, and thawing hPSC-CMs have been established, the question remains as to whether they are optimal. In this chapter, we discuss our current understanding of cryopreservation appertaining to hPSC-CMs, and proffer key questions regarding the mechanical, contractile, and regenerative properties of cryopreserved hPSC-CMs.
Collapse
Affiliation(s)
- Marcela K Preininger
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA, 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Monalisa Singh
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA, 30322, USA
| | - Chunhui Xu
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA, 30322, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
28
|
Cardiotoxicity screening: a review of rapid-throughput in vitro approaches. Arch Toxicol 2015; 90:1803-16. [PMID: 26676948 DOI: 10.1007/s00204-015-1651-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/18/2015] [Indexed: 01/07/2023]
Abstract
Cardiac toxicity represents one of the leading causes of drug failure along different stages of drug development. Multiple very successful pharmaceuticals had to be pulled from the market or labeled with strict usage warnings due to adverse cardiac effects. In order to protect clinical trial participants and patients, the International Conference on Harmonization published guidelines to recommend that all new drugs to be tested preclinically for hERG (Kv11.1) channel sensitivity before submitting for regulatory reviews. However, extensive studies have demonstrated that measurement of hERG activity has limitations due to the multiple molecular targets of drug compound through which it may mitigate or abolish a potential arrhythmia, and therefore, a model measuring multiple ion channel effects is likely to be more predictive. Several phenotypic rapid-throughput methods have been developed to predict the potential cardiac toxic compounds in the early stages of drug development using embryonic stem cells- or human induced pluripotent stem cell-derived cardiomyocytes. These rapid-throughput methods include microelectrode array-based field potential assay, impedance-based or Ca(2+) dynamics-based cardiomyocytes contractility assays. This review aims to discuss advantages and limitations of these phenotypic assays for cardiac toxicity assessment.
Collapse
|
29
|
Doherty KR, Talbert DR, Trusk PB, Moran DM, Shell SA, Bacus S. Structural and functional screening in human induced-pluripotent stem cell-derived cardiomyocytes accurately identifies cardiotoxicity of multiple drug types. Toxicol Appl Pharmacol 2015; 285:51-60. [PMID: 25841593 DOI: 10.1016/j.taap.2015.03.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/31/2022]
Abstract
Safety pharmacology studies that evaluate new drug entities for potential cardiac liability remain a critical component of drug development. Current studies have shown that in vitro tests utilizing human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM) may be beneficial for preclinical risk evaluation. We recently demonstrated that an in vitro multi-parameter test panel assessing overall cardiac health and function could accurately reflect the associated clinical cardiotoxicity of 4 FDA-approved targeted oncology agents using hiPS-CM. The present studies expand upon this initial observation to assess whether this in vitro screen could detect cardiotoxicity across multiple drug classes with known clinical cardiac risks. Thus, 24 drugs were examined for their effect on both structural (viability, reactive oxygen species generation, lipid formation, troponin secretion) and functional (beating activity) endpoints in hiPS-CM. Using this screen, the cardiac-safe drugs showed no effects on any of the tests in our panel. However, 16 of 18 compounds with known clinical cardiac risk showed drug-induced changes in hiPS-CM by at least one method. Moreover, when taking into account the Cmax values, these 16 compounds could be further classified depending on whether the effects were structural, functional, or both. Overall, the most sensitive test assessed cardiac beating using the xCELLigence platform (88.9%) while the structural endpoints provided additional insight into the mechanism of cardiotoxicity for several drugs. These studies show that a multi-parameter approach examining both cardiac cell health and function in hiPS-CM provides a comprehensive and robust assessment that can aid in the determination of potential cardiac liability.
Collapse
Affiliation(s)
| | | | | | | | - Scott A Shell
- Quintiles, 777 Oakmont Lane Suite 100, Westmont, IL 60559,USA
| | - Sarah Bacus
- Quintiles, 777 Oakmont Lane Suite 100, Westmont, IL 60559,USA
| |
Collapse
|
30
|
Mesens N, Crawford AD, Menke A, Hung PD, Van Goethem F, Nuyts R, Hansen E, Wolterbeek A, Van Gompel J, De Witte P, Esguerra CV. Are zebrafish larvae suitable for assessing the hepatotoxicity potential of drug candidates? J Appl Toxicol 2015; 35:1017-29. [PMID: 25663337 DOI: 10.1002/jat.3091] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/21/2014] [Accepted: 10/21/2014] [Indexed: 11/11/2022]
Abstract
Drug-induced liver injury (DILI) is poorly predicted by single-cell-based assays, probably because of the lack of physiological interactions with other cells within the liver. An intact whole liver system such as one present in zebrafish larvae could provide added value in a screening strategy for DILI; however, the possible occurrence of other organ toxicities and the immature larval stage of the zebrafish might complicate accurate and fast analysis. We investigated whether expression analysis of liver-specific fatty acid binding protein 10a (lfabp10a) was an appropriate endpoint for assessing hepatotoxic effects in zebrafish larvae. It was found that expression analysis of lfabp10a was a valid marker, as after treatment with hepatotoxicants, dose-response curves could be obtained and statistically significant abnormal lfabp10 expression levels correlated with hepatocellular histopathological changes in the liver. However, toxicity in other vital organs such as the heart could impact liver outgrowth and thus had to be assessed concurrently. Whether zebrafish larvae were suitable for assessing human relevant drug-induced hepatotoxicity was assessed with hepatotoxicants and non-hepatotoxicants that have been marketed for human use and classified according to their mechanism of toxicity. The zebrafish larva showed promising predictivity towards a number of mechanisms and was capable of distinguishing between hepatotoxic and non-hepatotoxic chemical analogues, thus implying its applicability as a potential screening model for DILI.
Collapse
Affiliation(s)
- Natalie Mesens
- Discovery Support and Investigative Toxicology group EU, Preclinical Development and Safety, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Alexander D Crawford
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven Campus Gasthuisberg, O&N 2, 08.4226 Herestraat 49, PB 824, 3000, Leuven, Belgium
| | - Aswin Menke
- TNO, Utrechtseweg 48, 3704HE, Zeist, The Netherlands
| | - Pham Duc Hung
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven Campus Gasthuisberg, O&N 2, 08.4226 Herestraat 49, PB 824, 3000, Leuven, Belgium
| | - Freddy Van Goethem
- Discovery Support and Investigative Toxicology group EU, Preclinical Development and Safety, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Rik Nuyts
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven Campus Gasthuisberg, O&N 2, 08.4226 Herestraat 49, PB 824, 3000, Leuven, Belgium
| | - Erik Hansen
- Discovery Support and Investigative Toxicology group EU, Preclinical Development and Safety, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | | | - Jacky Van Gompel
- Discovery Support and Investigative Toxicology group EU, Preclinical Development and Safety, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Peter De Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven Campus Gasthuisberg, O&N 2, 08.4226 Herestraat 49, PB 824, 3000, Leuven, Belgium
| | - Camila V Esguerra
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven Campus Gasthuisberg, O&N 2, 08.4226 Herestraat 49, PB 824, 3000, Leuven, Belgium
| |
Collapse
|
31
|
Knudsen TB, Keller DA, Sander M, Carney EW, Doerrer NG, Eaton DL, Fitzpatrick SC, Hastings KL, Mendrick DL, Tice RR, Watkins PB, Whelan M. FutureTox II: in vitro data and in silico models for predictive toxicology. Toxicol Sci 2015; 143:256-67. [PMID: 25628403 PMCID: PMC4318934 DOI: 10.1093/toxsci/kfu234] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
FutureTox II, a Society of Toxicology Contemporary Concepts in Toxicology workshop, was held in January, 2014. The meeting goals were to review and discuss the state of the science in toxicology in the context of implementing the NRC 21st century vision of predicting in vivo responses from in vitro and in silico data, and to define the goals for the future. Presentations and discussions were held on priority concerns such as predicting and modeling of metabolism, cell growth and differentiation, effects on sensitive subpopulations, and integrating data into risk assessment. Emerging trends in technologies such as stem cell-derived human cells, 3D organotypic culture models, mathematical modeling of cellular processes and morphogenesis, adverse outcome pathway development, and high-content imaging of in vivo systems were discussed. Although advances in moving towards an in vitro/in silico based risk assessment paradigm were apparent, knowledge gaps in these areas and limitations of technologies were identified. Specific recommendations were made for future directions and research needs in the areas of hepatotoxicity, cancer prediction, developmental toxicity, and regulatory toxicology.
Collapse
Affiliation(s)
- Thomas B Knudsen
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| | - Douglas A Keller
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| | - Miriam Sander
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| | - Edward W Carney
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| | - Nancy G Doerrer
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| | - David L Eaton
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| | - Suzanne Compton Fitzpatrick
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| | - Kenneth L Hastings
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| | - Donna L Mendrick
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| | - Raymond R Tice
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| | - Paul B Watkins
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| | - Maurice Whelan
- United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, Sanofi, Bridgewater, New Jersey 08807, Page One Editorial Services, Boulder, Colorado 80304, Dow Chemical Company, Midland, Michigan 48674, Health and Environmental Sciences Institute, Washington, District of Columbia 20005, University of Washington, Seattle, Washington 98105, United States Food and Drug Administration, Silver Spring, Maryland 20993, Sanofi, Bethesda, Maryland 20814, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, University of North Carolina, Chapel Hill, North Carolina 27599, The Hamner Institutes, Research Triangle Park, North Carolina 27709, and European Commission Joint Research Centre, I-21027 Ispra, Italy
| |
Collapse
|
32
|
Van den Hof WFPM, Ruiz-Aracama A, Van Summeren A, Jennen DGJ, Gaj S, Coonen MLJ, Brauers K, Wodzig WKWH, van Delft JHM, Kleinjans JCS. Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro 2015; 29:489-501. [PMID: 25562108 DOI: 10.1016/j.tiv.2014.12.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 12/08/2014] [Accepted: 12/24/2014] [Indexed: 02/01/2023]
Abstract
In order to improve attrition rates of candidate-drugs there is a need for a better understanding of the mechanisms underlying drug-induced hepatotoxicity. We aim to further unravel the toxicological response of hepatocytes to a prototypical cholestatic compound by integrating transcriptomic and metabonomic profiling of HepG2 cells exposed to Cyclosporin A. Cyclosporin A exposure induced intracellular cholesterol accumulation and diminished intracellular bile acid levels. Performing pathway analyses of significant mRNAs and metabolites separately and integrated, resulted in more relevant pathways for the latter. Integrated analyses showed pathways involved in cell cycle and cellular metabolism to be significantly changed. Moreover, pathways involved in protein processing of the endoplasmic reticulum, bile acid biosynthesis and cholesterol metabolism were significantly affected. Our findings indicate that an integrated approach combining metabonomics and transcriptomics data derived from representative in vitro models, with bioinformatics can improve our understanding of the mechanisms of action underlying drug-induced hepatotoxicity. Furthermore, we showed that integrating multiple omics and thereby analyzing genes, microRNAs and metabolites of the opposed model for drug-induced cholestasis can give valuable information about mechanisms of drug-induced cholestasis in vitro and therefore could be used in toxicity screening of new drug candidates at an early stage of drug discovery.
Collapse
Affiliation(s)
- Wim F P M Van den Hof
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands; Netherlands Toxicogenomics Centre, Maastricht, The Netherlands.
| | - Ainhoa Ruiz-Aracama
- RIKILT, Institute of Food Safety, Wageningen University and Research Centre, Wageningen, The Netherlands; Netherlands Toxicogenomics Centre, Maastricht, The Netherlands.
| | - Anke Van Summeren
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands; Netherlands Toxicogenomics Centre, Maastricht, The Netherlands.
| | - Danyel G J Jennen
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands; Netherlands Toxicogenomics Centre, Maastricht, The Netherlands.
| | - Stan Gaj
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands; Netherlands Toxicogenomics Centre, Maastricht, The Netherlands.
| | - Maarten L J Coonen
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands; Netherlands Toxicogenomics Centre, Maastricht, The Netherlands.
| | - Karen Brauers
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands.
| | - Will K W H Wodzig
- Department of Clinical Chemistry, Maastricht University Medical Center, Maastricht, The Netherlands; Netherlands Toxicogenomics Centre, Maastricht, The Netherlands.
| | - Joost H M van Delft
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands; Netherlands Toxicogenomics Centre, Maastricht, The Netherlands.
| | - Jos C S Kleinjans
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands; Netherlands Toxicogenomics Centre, Maastricht, The Netherlands.
| |
Collapse
|
33
|
Khan JM, Lyon AR, Harding SE. The case for induced pluripotent stem cell-derived cardiomyocytes in pharmacological screening. Br J Pharmacol 2014; 169:304-17. [PMID: 22845396 DOI: 10.1111/j.1476-5381.2012.02118.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The current drug screening models are deficient, particularly in detecting cardiac side effects. Human stem cell-derived cardiomyocytes could aid both early cardiotoxicity detection and novel drug discovery. Work over the last decade has generated human embryonic stem cells as potentially accurate sources of human cardiomyocytes, but ethical constraints and poor efficacy in establishing cell lines limit their use. Induced pluripotent stem cells do not require the use of human embryos and have the added advantage of producing patient-specific cardiomyocytes, allowing both generic and disease- and patient-specific pharmacological screening, as well as drug development through disease modelling. A critical question is whether sufficient standards have been achieved in the reliable and reproducible generation of 'adult-like' cardiomyocytes from human fibroblast tissue to progress from validation to safe use in practice and drug discovery. This review will highlight the need for a new experimental system, assess the validity of human induced pluripotent stem cell-derived cardiomyocytes and explore what the future may hold for their use in pharmacology.
Collapse
Affiliation(s)
- Jaffar M Khan
- Royal Brompton and Harefield NHS Trust, London, UK National Heart and Lung Institute, Imperial College, London, UK
| | | | | |
Collapse
|
34
|
Cami A, Reis BY. Concordance and predictive value of two adverse drug event data sets. BMC Med Inform Decis Mak 2014; 14:74. [PMID: 25149292 PMCID: PMC4150549 DOI: 10.1186/1472-6947-14-74] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/18/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accurate prediction of adverse drug events (ADEs) is an important means of controlling and reducing drug-related morbidity and mortality. Since no single "gold standard" ADE data set exists, a range of different drug safety data sets are currently used for developing ADE prediction models. There is a critical need to assess the degree of concordance between these various ADE data sets and to validate ADE prediction models against multiple reference standards. METHODS We systematically evaluated the concordance of two widely used ADE data sets - Lexi-comp from 2010 and SIDER from 2012. The strength of the association between ADE (drug) counts in Lexi-comp and SIDER was assessed using Spearman rank correlation, while the differences between the two data sets were characterized in terms of drug categories, ADE categories and ADE frequencies. We also performed a comparative validation of the Predictive Pharmacosafety Networks (PPN) model using both ADE data sets. The predictive power of PPN using each of the two validation sets was assessed using the area under Receiver Operating Characteristic curve (AUROC). RESULTS The correlations between the counts of ADEs and drugs in the two data sets were 0.84 (95% CI: 0.82-0.86) and 0.92 (95% CI: 0.91-0.93), respectively. Relative to an earlier snapshot of Lexi-comp from 2005, Lexi-comp 2010 and SIDER 2012 introduced a mean of 1,973 and 4,810 new drug-ADE associations per year, respectively. The difference between these two data sets was most pronounced for Nervous System and Anti-infective drugs, Gastrointestinal and Nervous System ADEs, and postmarketing ADEs. A minor difference of 1.1% was found in the AUROC of PPN when SIDER 2012 was used for validation instead of Lexi-comp 2010. CONCLUSIONS In conclusion, the ADE and drug counts in Lexi-comp and SIDER data sets were highly correlated and the choice of validation set did not greatly affect the overall prediction performance of PPN. Our results also suggest that it is important to be aware of the differences that exist among ADE data sets, especially in modeling applications focused on specific drug and ADE categories.
Collapse
Affiliation(s)
- Aurel Cami
- Division of Emergency Medicine, Boston Children's Hospital, 1 Autumn Street, 5th Floor, Boston, MA 02215, USA.
| | | |
Collapse
|
35
|
Maglich JM, Kuhn M, Chapin RE, Pletcher MT. More than just hormones: H295R cells as predictors of reproductive toxicity. Reprod Toxicol 2014; 45:77-86. [DOI: 10.1016/j.reprotox.2013.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/20/2013] [Accepted: 12/18/2013] [Indexed: 01/31/2023]
|
36
|
McGill MR, Jaeschke H. Mechanistic biomarkers in acetaminophen-induced hepatotoxicity and acute liver failure: from preclinical models to patients. Expert Opin Drug Metab Toxicol 2014; 10:1005-17. [PMID: 24836926 DOI: 10.1517/17425255.2014.920823] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Drug hepatotoxicity is a major clinical issue. Acetaminophen (APAP) overdose is especially common. Serum biomarkers used to follow patient progress reflect either liver injury or function, but focus on biomarkers that can provide insight into the basic mechanisms of hepatotoxicity is increasing and enabling us to translate mechanisms of toxicity from animal models into humans. AREAS COVERED We review recent advances in mechanistic serum biomarker research in drug hepatotoxicity. Specifically, biomarkers for reactive drug intermediates, mitochondrial dysfunction, nuclear DNA damage, mode of cell death and inflammation are discussed, as well as microRNAs. Emphasis is placed on APAP-induced liver injury. EXPERT OPINION Several serum biomarkers of reactive drug intermediates, mitochondrial damage, nuclear DNA damage, apoptosis and necrosis and inflammation have been described. These studies have provided evidence that mitochondrial damage is critical in APAP hepatotoxicity in humans, while apoptosis has only a minor role, and inflammation is important for recovery and regeneration after APAP overdose. Additionally, mechanistic serum biomarkers have been shown to predict outcome as well as, or better than, some clinical scores. In the future, such biomarkers will help determine the need for liver transplantation and, with improved understanding of the human pathophysiology, identify novel therapeutic targets.
Collapse
Affiliation(s)
- Mitchell R McGill
- University of Kansas Medical Center, Department of Pharmacology, Toxicology and Therapeutics , 3901 Rainbow Blvd, MS 1018, Kansas City, KS 66160 , USA +1 913 588 7969 ; +1 913 588 7501 ;
| | | |
Collapse
|
37
|
Ramaiahgari SC, den Braver MW, Herpers B, Terpstra V, Commandeur JNM, van de Water B, Price LS. A 3D in vitro model of differentiated HepG2 cell spheroids with improved liver-like properties for repeated dose high-throughput toxicity studies. Arch Toxicol 2014; 88:1083-95. [PMID: 24599296 DOI: 10.1007/s00204-014-1215-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 02/11/2014] [Indexed: 12/15/2022]
Abstract
Immortalized hepatocyte cell lines show only a weak resemblance to primary hepatocytes in terms of gene expression and function, limiting their value in predicting drug-induced liver injury (DILI). Furthermore, primary hepatocytes cultured on two-dimensional tissue culture plastic surfaces rapidly dedifferentiate losing their hepatocyte functions and metabolic competence. We have developed a three-dimensional in vitro model using extracellular matrix-based hydrogel for long-term culture of the human hepatoma cell line HepG2. HepG2 cells cultured in this model stop proliferating, self-organize and differentiate to form multiple polarized spheroids. These spheroids re-acquire lost hepatocyte functions such as storage of glycogen, transport of bile salts and the formation of structures resembling bile canaliculi. HepG2 spheroids also show increased expression of albumin, urea, xenobiotic transcription factors, phase I and II drug metabolism enzymes and transporters. Consistent with this, cytochrome P450-mediated metabolism is significantly higher in HepG2 spheroids compared to monolayer cultures. This highly differentiated phenotype can be maintained in 384-well microtiter plates for at least 28 days. Toxicity assessment studies with this model showed an increased sensitivity in identifying hepatotoxic compounds with repeated dosing regimens. This simple and robust high-throughput-compatible methodology may have potential for use in toxicity screening assays and mechanistic studies and may represent an alternative to animal models for studying DILI.
Collapse
Affiliation(s)
- Sreenivasa C Ramaiahgari
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
38
|
Garcia SC, Guterres SS, Bubols GB, Bulcão RP, Charão MF, Pohlmann AR. Polymeric Nanoparticles: In Vivo Toxicological Evaluation, Cardiotoxicity, and Hepatotoxicity. Nanotoxicology 2014. [DOI: 10.1007/978-1-4614-8993-1_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Hornberg JJ, Laursen M, Brenden N, Persson M, Thougaard AV, Toft DB, Mow T. Exploratory toxicology as an integrated part of drug discovery. Part I: Why and how. Drug Discov Today 2013; 19:1131-6. [PMID: 24368175 DOI: 10.1016/j.drudis.2013.12.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/18/2013] [Accepted: 12/16/2013] [Indexed: 12/11/2022]
Abstract
Toxicity and clinical safety have major impact on drug development success. Moving toxicological studies into earlier phases of the R&D chain prevents drug candidates with a safety risk from entering clinical development. However, to identify candidates without such risk, safety has to be designed actively. Therefore, we argue that toxicology should be fully integrated into the discovery process. We describe our strategy, including safety assessment of novel targets, selection of chemical series without inherent liabilities, designing out risk factors and profiling of candidates, and we discuss considerations regarding what to screen for. We aim to provide timely go/no-go decisions (fail early) and direction to the discovery teams, by steering away from safety risk (showing what will not fail).
Collapse
Affiliation(s)
- Jorrit J Hornberg
- Department of Exploratory Toxicology, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
| | - Morten Laursen
- Department of Exploratory Toxicology, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
| | - Nina Brenden
- Department of Exploratory Toxicology, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
| | - Mikael Persson
- Department of Exploratory Toxicology, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
| | - Annemette V Thougaard
- Department of Exploratory Toxicology, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
| | - Dorthe B Toft
- Department of Exploratory Toxicology, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
| | - Tomas Mow
- Department of Exploratory Toxicology, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark.
| |
Collapse
|
40
|
Atienzar FA, Novik EI, Gerets HH, Parekh A, Delatour C, Cardenas A, MacDonald J, Yarmush ML, Dhalluin S. Predictivity of dog co-culture model, primary human hepatocytes and HepG2 cells for the detection of hepatotoxic drugs in humans. Toxicol Appl Pharmacol 2013; 275:44-61. [PMID: 24333257 DOI: 10.1016/j.taap.2013.11.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/20/2013] [Accepted: 11/27/2013] [Indexed: 12/19/2022]
Abstract
Drug induced liver injury (DILI) is a major cause of attrition during early and late stage drug development. Consequently, there is a need to develop better in vitro primary hepatocyte models from different species for predicting hepatotoxicity in both animals and humans early in drug development. Dog is often chosen as the non-rodent species for toxicology studies. Unfortunately, dog in vitro models allowing long term cultures are not available. The objective of the present manuscript is to describe the development of a co-culture dog model for predicting hepatotoxic drugs in humans and to compare the predictivity of the canine model along with primary human hepatocytes and HepG2 cells. After rigorous optimization, the dog co-culture model displayed metabolic capacities that were maintained up to 2 weeks which indicates that such model could be also used for long term metabolism studies. Most of the human hepatotoxic drugs were detected with a sensitivity of approximately 80% (n=40) for the three cellular models. Nevertheless, the specificity was low approximately 40% for the HepG2 cells and hepatocytes compared to 72.7% for the canine model (n=11). Furthermore, the dog co-culture model showed a higher superiority for the classification of 5 pairs of close structural analogs with different DILI concerns in comparison to both human cellular models. Finally, the reproducibility of the canine system was also satisfactory with a coefficient of correlation of 75.2% (n=14). Overall, the present manuscript indicates that the dog co-culture model may represent a relevant tool to perform chronic hepatotoxicity and metabolism studies.
Collapse
Affiliation(s)
- Franck A Atienzar
- UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium.
| | - Eric I Novik
- Hμrel Corporation, 675 U.S. Highway 1, North Brunswick, NJ 08902, USA
| | - Helga H Gerets
- UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| | - Amit Parekh
- Hμrel Corporation, 675 U.S. Highway 1, North Brunswick, NJ 08902, USA
| | - Claude Delatour
- UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| | - Alvaro Cardenas
- UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| | - James MacDonald
- Chrysalis Pharma Consulting, LLC, 385 Route 24, Suite 1G, Chester, NJ 07930, USA
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Stéphane Dhalluin
- UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| |
Collapse
|
41
|
Ahuja V, Sharma S. Drug safety testing paradigm, current progress and future challenges: an overview. J Appl Toxicol 2013; 34:576-94. [PMID: 24777877 DOI: 10.1002/jat.2935] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/08/2013] [Accepted: 08/22/2013] [Indexed: 12/29/2022]
Abstract
Early assessment of the toxicity potential of new molecules in pharmaceutical industry is a multi-dimensional task involving predictive systems and screening approaches to aid in the optimization of lead compounds prior to their entry into development phase. Due to the high attrition rate in the pharma industry in last few years, it has become imperative for the nonclinical toxicologist to focus on novel approaches which could be helpful for early screening of drug candidates. The need is that the toxicologists should change their classical approach to a more investigative approach. This review discusses the developments that allow toxicologists to anticipate safety problems and plan ways to address them earlier than ever before. This includes progress in the field of in vitro models, surrogate models, molecular toxicology, 'omics' technologies, translational safety biomarkers, stem-cell based assays and preclinical imaging. The traditional boundaries between teams focusing on efficacy/ safety and preclinical/ clinical aspects in the pharma industry are disappearing, and translational research-centric organizations with a focused vision of bringing drugs forward safely and rapidly are emerging. Today's toxicologist should collaborate with medicinal chemists, pharmacologists, and clinicians and these value-adding contributions will change traditional toxicologists from side-effect identifiers to drug development enablers.
Collapse
Affiliation(s)
- Varun Ahuja
- Drug Safety Assessment, Novel Drug Discovery and Development, Lupin Limited (Research Park), 46A/47A, Nande Village, MulshiTaluka, Pune, 412 115, India
| | | |
Collapse
|
42
|
Johnson DE. Fusion of nonclinical and clinical data to predict human drug safety. Expert Rev Clin Pharmacol 2013; 6:185-95. [PMID: 23473595 DOI: 10.1586/ecp.13.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Adverse drug reactions continue to be a major cause of morbidity in both patients receiving therapeutics and in drug R&D programs. Predicting and possibly eliminating these adverse events remains a high priority in industry, government agencies and healthcare systems. With small molecule candidates, the fusion of nonclinical and clinical data is essential in establishing an overall system that creates a true translational science approach. Several new advances are taking place that attempt to create a 'patient context' mechanism early in drug research and development and ultimately into the marketplace. This 'life-cycle' approach has as its core the development of human-oriented, nonclinical end points and the incorporation of clinical knowledge at the drug design stage. The next 5 years should witness an explosion of what the author views as druggable and safe chemical space, pharmacosafety molecular targets and the most important aspect, an understanding of unique susceptibilities in patients developing adverse drug reactions. Our current knowledge of clinical safety relies completely on pharmacovigilance data from approved and marketed drugs, with a few exceptions of drugs failing in clinical trials. Massive data repositories now and soon to be available via cloud computing should stimulate a major effort in expanding our view of clinical drug safety and its incorporation into early drug research and development.
Collapse
Affiliation(s)
- Dale E Johnson
- University of Michigan and University of California, Berkeley Morgan Hall, Berkeley, CA 94720-3104, USA.
| |
Collapse
|
43
|
Wojcikowski K, Gobe G. Animal studies on medicinal herbs: predictability, dose conversion and potential value. Phytother Res 2013; 28:22-7. [PMID: 23553964 DOI: 10.1002/ptr.4966] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 02/08/2013] [Accepted: 02/13/2013] [Indexed: 01/28/2023]
Abstract
Animal studies testing medicinal herbs are often misinterpreted by both translational researchers and clinicians due to a lack of information regarding their predictability, human dose equivalent and potential value. The most common mistake is to design or translate an animal study on a milligram per kilogram basis. This can lead to underestimation of the toxicity and/or overestimation of the amount needed for human therapy. Instead, allometric scaling, which involves body surface area, should be used. While the differences in the pharmacokinetic and pharmacodynamic phases between species will inevitably lead to some degree of error in extrapolation of results regardless of the conversion method used, correct design and interpretation of animal studies can provide information that is not able to be provided by in vitro studies, computer modeling or even traditional use.
Collapse
Affiliation(s)
- Ken Wojcikowski
- School of Health and Human Sciences, Southern Cross University, Lismore, NSW, Australia
| | | |
Collapse
|
44
|
Comparison of human hepatoma HepaRG cells with human and rat hepatocytes in uptake transport assays in order to predict a risk of drug induced hepatotoxicity. PLoS One 2013; 8:e59432. [PMID: 23516635 PMCID: PMC3597610 DOI: 10.1371/journal.pone.0059432] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/11/2013] [Indexed: 12/02/2022] Open
Abstract
Human hepatocytes are the gold standard for toxicological studies but they have several drawbacks, like scarce availability, high inter-individual variability, a short lifetime, which limits their applicability. The aim of our investigations was to determine, whether HepaRG cells could replace human hepatocytes in uptake experiments for toxicity studies. HepaRG is a hepatoma cell line with most hepatic functions, including a considerable expression of uptake transporters in contrast to other hepatic immortalized cell lines. We compared the effect of cholestatic drugs (bosentan, cyclosporinA, troglitazone,) and bromosulfophthalein on the uptake of taurocholate and estrone-3-sulfate in human and rat hepatocytes and HepaRG cells. The substrate uptake was significantly slower in HepaRG cells than in human hepatocytes, still, in the presence of drugs we observed a concentration dependent decrease in uptake. In all cell types, the culture time had a significant impact not only on the uptake process but on the inhibitory effect of drugs too. The most significant drug effect was measured at 4 h after seeding. Our report is among the first concerning interactions of the uptake transporters in the HepaRG, at the functional level. Results of the present study clearly show that concerning the inhibition of taurocholate uptake by cholestatic drugs, HepaRG cells are closer to human hepatocytes than rat hepatocytes. In conclusion, we demonstrated that HepaRG cells may provide a suitable tool for hepatic uptake studies.
Collapse
|
45
|
Davis M, Boekelheide K, Boverhof DR, Eichenbaum G, Hartung T, Holsapple MP, Jones TW, Richard AM, Watkins PB. The new revolution in toxicology: The good, the bad, and the ugly. Ann N Y Acad Sci 2013; 1278:11-24. [DOI: 10.1111/nyas.12086] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Myrtle Davis
- Toxicology and Pharmacology Branch, Developmental Therapeutics Program Division of Cancer Treatment and Diagnosis; The National Cancer Institute, National Institutes of Health; Bethesda; Maryland
| | - Kim Boekelheide
- Deparment of Pathology and Laboratory Medicine; Brown University; Providence; Rhode Island
| | - Darrell R. Boverhof
- Toxicology and Environmental Research and Consulting; The Dow Chemical Company; Midland; Michigan
| | - Gary Eichenbaum
- Department of Drug Safety Science; Johnson & Johnson Pharmaceutical R&D, LLC; Raritan; NJ
| | - Thomas Hartung
- Department of Environmental Health Sciences. Johns Hopkins Bloomberg School of Public Health; Baltimore; Maryland
| | | | - Thomas W. Jones
- Department of Toxicology and Pathology; Elil Lilly and Company; Indianapolis; Indiana
| | - Ann M. Richard
- National Center for Computational Toxicology; Environmental Protection Agency, Research Triangle Park; North Carolina
| | - Paul B. Watkins
- Institute for Drug Safety Sciences; Hamner University of North Carolina, Research Triangle Park; North Carolina
| |
Collapse
|
46
|
The automated micronucleus assay for early assessment of genotoxicity in drug discovery. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 751:1-11. [DOI: 10.1016/j.mrgentox.2012.10.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 09/24/2012] [Accepted: 10/14/2012] [Indexed: 01/22/2023]
|
47
|
Peck Y, Wang DA. Three-dimensionally engineered biomimetic tissue models forin vitrodrug evaluation: delivery, efficacy and toxicity. Expert Opin Drug Deliv 2013; 10:369-83. [DOI: 10.1517/17425247.2013.751096] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
Redfern WS, Ewart LC, Lainée P, Pinches M, Robinson S, Valentin JP. Functional assessments in repeat-dose toxicity studies: the art of the possible. Toxicol Res (Camb) 2013. [DOI: 10.1039/c3tx20093k] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
49
|
Tamaki C, Nagayama T, Hashiba M, Fujiyoshi M, Hizue M, Kodaira H, Nishida M, Suzuki K, Takashima Y, Ogino Y, Yasugi D, Yoneta Y, Hisada S, Ohkura T, Nakamura K. Potentials and limitations of nonclinical safety assessment for predicting clinical adverse drug reactions: correlation analysis of 142 approved drugs in Japan. J Toxicol Sci 2013; 38:581-98. [DOI: 10.2131/jts.38.581] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Chihiro Tamaki
- Non-Clinical Evaluation Expert Committee, Drug Evaluation Committee, Japan Pharmaceutical Manufacturers Association
- Preclinical, Japan Regulatory Affairs, Drug Development, Eli Lilly Japan K.K
| | - Takashi Nagayama
- Non-Clinical Evaluation Expert Committee, Drug Evaluation Committee, Japan Pharmaceutical Manufacturers Association
- Non-Clinical Development, UCB Japan Co., Ltd
| | - Masamichi Hashiba
- Non-Clinical Evaluation Expert Committee, Drug Evaluation Committee, Japan Pharmaceutical Manufacturers Association
- Development Research, Mochida Pharmaceutical Co., Ltd
| | - Masato Fujiyoshi
- Non-Clinical Evaluation Expert Committee, Drug Evaluation Committee, Japan Pharmaceutical Manufacturers Association
| | - Masanori Hizue
- Non-Clinical Evaluation Expert Committee, Drug Evaluation Committee, Japan Pharmaceutical Manufacturers Association
- DSRD-Tokyo, Pfizer Japan Inc
| | - Hiroshi Kodaira
- Non-Clinical Evaluation Expert Committee, Drug Evaluation Committee, Japan Pharmaceutical Manufacturers Association
- Development Planning and Coordination, Pharmaceutical Research & Development, Yakult Honsha Co., Ltd
| | - Minoru Nishida
- Non-Clinical Evaluation Expert Committee, Drug Evaluation Committee, Japan Pharmaceutical Manufacturers Association
- Research & Development Center, Fuso Pharmaceutical Industries, Ltd
| | - Kazuhiko Suzuki
- Non-Clinical Evaluation Expert Committee, Drug Evaluation Committee, Japan Pharmaceutical Manufacturers Association
- Translational Sciences, Novartis Pharma K.K
| | - Yoshiharu Takashima
- Non-Clinical Evaluation Expert Committee, Drug Evaluation Committee, Japan Pharmaceutical Manufacturers Association
- Preclinical Experts, Regulatory Affairs, Product Development Department, Bayer Yakuhin, Ltd
| | - Yamato Ogino
- Non-Clinical Evaluation Expert Committee, Drug Evaluation Committee, Japan Pharmaceutical Manufacturers Association
- Drug Research Department, Toa Eiyo Ltd
| | - Daisaku Yasugi
- Non-Clinical Evaluation Expert Committee, Drug Evaluation Committee, Japan Pharmaceutical Manufacturers Association
- Research & Development Center, Fuso Pharmaceutical Industries, Ltd
| | - Yasuo Yoneta
- Non-Clinical Evaluation Expert Committee, Drug Evaluation Committee, Japan Pharmaceutical Manufacturers Association
- Pharmacokinetics and Safety Research Department, Kaken Pharmaceutical Co., Ltd
| | - Shigeru Hisada
- Non-Clinical Evaluation Expert Committee, Drug Evaluation Committee, Japan Pharmaceutical Manufacturers Association
- Developmental Research Center, ASKA Pharmaceutical Co., Ltd
| | - Takako Ohkura
- Non-Clinical Evaluation Expert Committee, Drug Evaluation Committee, Japan Pharmaceutical Manufacturers Association
- Department of Clinical Development, Maruishi Pharmaceutical Co., Ltd
| | - Kazuichi Nakamura
- Non-Clinical Evaluation Expert Committee, Drug Evaluation Committee, Japan Pharmaceutical Manufacturers Association
- Global Regulatory Affairs Department, Shionogi & Co., Ltd
| |
Collapse
|
50
|
Benigni R, Bossa C, Tcheremenskaia O. In vitro cell transformation assays for an integrated, alternative assessment of carcinogenicity: a data-based analysis. Mutagenesis 2012; 28:107-16. [DOI: 10.1093/mutage/ges059] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|