1
|
Li W, Li Z, Ma J, Xu X, Wang B, Long P, Jiang Q, You Y, Qu J, Wang Y, Wang Y, He M, Chen W, Yuan Y, Wu T. Circulating MicroRNAs in association with urinary arsenic: A community-based multi-center study in China. ENVIRONMENTAL RESEARCH 2025; 274:121354. [PMID: 40058551 DOI: 10.1016/j.envres.2025.121354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
The profile of plasma miRNAs in association with arsenic exposure remains largely unclear. We aim to identify plasma miRNAs assoicated with urinary arsenic using a two-stage design in Chinese population. The discovery group, Shimen panel, consists of 19 high vs. low arsenic-exposed pairs selected from 1095 residents in an arsenic-contaminated area. The validation group, Wuhan-Zhuhai panel, consists of 53 community-dwelling participants with moderate arsenic exposure. Plasma miRNAs were measured by microarray in the Shimen panel and by sequencing in the Wuhan-Zhuhai panel. Arsenic levels in urine and plasma were quantified using inductively coupled plasma mass spectrometry. During the discovery stage, 16 miRNAs were found to be differentially expressed between high and low urinary arsenic groups in the Shimen panel (fold change >2, P < 0.05). Seven miRNAs (miR-101-3p, miR-142-3p, miR-148a-3p, miR-15a-5p, miR-199a-3p, miR-27b-3p, and miR-340-5p) were validated to have a positive association with log-transformed urinary arsenic levels in the Wuhan-Zhuhai panel (P < 0.05). Furthermore, five of the seven miRNAs were also associated with arsenic in plasma. The identified miRNAs were primarily associated with cancer-related pathways. These identified miRNAs would serve as crucial biomarkers for arsenic exposure, elucidating the epigenetic mechanisms underlying arsenic-induced toxicity and carcinogenesis.
Collapse
Affiliation(s)
- Wending Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Zhaoyang Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jixuan Ma
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuedan Xu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pinpin Long
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qin Jiang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yutong You
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingli Qu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yufei Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yaxin Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meian He
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Yuan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Tangchun Wu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Du K, Shu J, Wu J, Liu N, Ma H, Jiang J, He Y, Wu X. Inorganic arsenic modulates cell apoptosis by regulating Argonaute 2 expression via the p53 pathway. Toxicol Res (Camb) 2025; 14:tfae231. [PMID: 39802611 PMCID: PMC11711588 DOI: 10.1093/toxres/tfae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/13/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025] Open
Abstract
This study explores the role of Argonaute 2 (AGO2) in the induction of apoptosis by arsenic in 16HBE cells and investigates the association between AGO2 expression and arsenic exposure in a human population. By silencing AGO2 with siRNA, we examined its impact on cell viability and apoptosis using CCK-8, HO-PI, and JC-1 assays, complemented by qRT-PCR and Western blot analyses for gene and protein expressions. Our findings revealed a significant correlation between AGO2 expression and levels of exposure to inorganic arsenic (iAs), which was more pronounced than with other arsenic forms such as monomethylarsonic (MMA) and dimethylarsinic acids (DMA). The results showed that silencing AGO2 not only reduced cell viability but also intensified apoptosis, highlighting its role in activating the p53 pathway. This was further supported by increased phosphorylation of p53 at Ser392 and Thr55, reinforcing AGO2's involvement in apoptotic processes. The study underscores the potential of AGO2 as a therapeutic target in arsenic-related pathologies and highlights the critical need for managing occupational exposure to arsenic.
Collapse
Affiliation(s)
- Kunyu Du
- Yunnan Provincial Key Laboratory of Public Health and Biosafety and School of Public Health, Kunming Medical University, No. 1168 Chunrongxi Road, Chenggong, Kunming, Yunnan 650500, China
- The 1 Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, Yunnan 650032, China
| | - Jingkui Shu
- Yunnan Provincial Key Laboratory of Public Health and Biosafety and School of Public Health, Kunming Medical University, No. 1168 Chunrongxi Road, Chenggong, Kunming, Yunnan 650500, China
- The 1 Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, Yunnan 650032, China
| | - Jintao Wu
- The 1 Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, Yunnan 650032, China
| | - Na Liu
- Yunnan Provincial Key Laboratory of Public Health and Biosafety and School of Public Health, Kunming Medical University, No. 1168 Chunrongxi Road, Chenggong, Kunming, Yunnan 650500, China
| | - He Ma
- Yunnan Provincial Key Laboratory of Public Health and Biosafety and School of Public Health, Kunming Medical University, No. 1168 Chunrongxi Road, Chenggong, Kunming, Yunnan 650500, China
| | - Jinyun Jiang
- Yunnan Provincial Key Laboratory of Public Health and Biosafety and School of Public Health, Kunming Medical University, No. 1168 Chunrongxi Road, Chenggong, Kunming, Yunnan 650500, China
| | - Yuefeng He
- Yunnan Provincial Key Laboratory of Public Health and Biosafety and School of Public Health, Kunming Medical University, No. 1168 Chunrongxi Road, Chenggong, Kunming, Yunnan 650500, China
| | - Xinan Wu
- Yunnan Provincial Key Laboratory of Public Health and Biosafety and School of Public Health, Kunming Medical University, No. 1168 Chunrongxi Road, Chenggong, Kunming, Yunnan 650500, China
| |
Collapse
|
3
|
Zhao Y, Bhatnagar S. Epigenetic Modulations by Microbiome in Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1465:55-69. [PMID: 39586993 DOI: 10.1007/978-3-031-66686-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Recent studies have identified a critical role of the diverse and dynamic microbiome in modulating various aspects of host physiology and intrinsic processes. However, the altered microbiome has also become a hallmark of cancer, which could influence the tumor microenvironment. Aberrations in epigenetic regulation of tumor suppressors, apoptotic genes, and oncogenes can accentuate breast cancer onset and progression. Interestingly, recent studies have established that the microbiota modulates the epigenetic mechanisms at global and gene-specific levels. While the mechanistic basis is unclear, the cross-talk between the microbiome and epigenetics influences breast cancer trajectory. Here, we review different epigenetic mechanisms of mammalian gene expression and summarize the host-associated microbiota distributed across the human body and their influence on cancer and other disease-related genes. Understanding this complex relationship between epigenetics and the microbiome holds promise for new insights into effective therapeutic strategies for breast cancer patients.
Collapse
Affiliation(s)
- Yuanji Zhao
- Department of Medical Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA, USA
| | - Sanchita Bhatnagar
- Department of Medical Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA, USA.
| |
Collapse
|
4
|
Ghafouri-Fard S, Shoorei H, Dabiri Oskuei S, Hussen BM, Rasool Abdullah S, Taheri M, Jamali E. The interaction between miRNAs and hazardous materials. Noncoding RNA Res 2023; 8:507-519. [PMID: 37497124 PMCID: PMC10365984 DOI: 10.1016/j.ncrna.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
Toxic agents are broadly present in the environment, households, and workplaces. Contamination of food and drinking water with these agents results in entry of these materials to the body. The crosstalk between these agents and microRNAs (miRNAs) affects pathoetiology of several disorders. These agents can influence the redox status, release of inflammatory cytokines and mitochondrial function. Altered expression of miRNA is involved in the dysregulation of several pathophysiological conditions and signaling pathways. These molecules are also implicated in the adaption to environmental stimuli. Thus, the interactions between miRNAs and toxic materials might participate in the hazardous effects of these materials in the body. This review describes the effects of the toxic materials on miRNAs and the consequences of these interactions on the human health.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Dabiri Oskuei
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elena Jamali
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Liu Q, Lei Z. The Role of microRNAs in Arsenic-Induced Human Diseases: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37930083 DOI: 10.1021/acs.jafc.3c03721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
MicroRNAs (miRNAs) are noncoding RNAs with 20-22 nucleotides, which are encoded by endogenous genes and are capable of targeting the majority of human mRNAs. Arsenic is regarded as a human carcinogen, which can lead to many adverse health effects including diabetes, skin lesions, kidney disease, neurological impairment, male reproductive injury, and cardiovascular disease (CVD) such as cardiac arrhythmias, ischemic heart failure, and endothelial dysfunction. miRNAs can act as tumor suppressors and oncogenes via directly targeting oncogenes or tumor suppressors. Recently, miRNA dysregulation was considered to be an important mechanism of arsenic-induced human diseases and a potential biomarker to predict the diseases caused by arsenic exposure. Endogenic miRNAs such as miR-21, the miR-200 family, miR-155, and the let-7 family are involved in arsenic-induced human disease by inducing translational repression or RNA degradation and influencing multiple pathways, including mTOR/Arg 1, HIF-1α/VEGF, AKT, c-Myc, MAPK, Wnt, and PI3K pathways. Additionally, exogenous miRNAs derived from plants, such as miR-34a, miR-159, miR-2911, miR-159a, miR-156c, miR-168, etc., among others, can be transported from blood to specific tissue/organ systems in vivo. These exogenous miRNAs might be critical players in the treatment of human diseases by regulating host gene expression. This review summarizes the regulatory mechanisms of miRNAs in arsenic-induced human diseases, including cancers, CVD, and other human diseases. These special miRNAs could serve as potential biomarkers in the management and treatment of human diseases linked to arsenic exposure. Finally, the protective action of exogenous miRNAs, including antitumor, anti-inflammatory, anti-CVD, antioxidant stress, and antivirus are described.
Collapse
Affiliation(s)
- Qianying Liu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiqun Lei
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
6
|
Xia X, Pi W, Chen M, Wang W, Cai D, Wang X, Lan Y, Yang H. Emerging roles of PHLPP phosphatases in lung cancer. Front Oncol 2023; 13:1216131. [PMID: 37576883 PMCID: PMC10414793 DOI: 10.3389/fonc.2023.1216131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Pleckstrin homologous domain leucine-rich repeating protein phosphatases (PHLPPs) were originally identified as protein kinase B (Akt) kinase hydrophobic motif specific phosphatases to maintain the cellular homeostasis. With the continuous expansion of PHLPPs research, imbalanced-PHLPPs were mainly found as a tumor suppressor gene of a variety of solid tumors. In this review, we simply described the history and structures of PHLPPs and summarized the recent achievements in emerging roles of PHLPPs in lung cancer by 1) the signaling pathways affected by PHLPPs including Phosphoinositide 3-kinase (PI3K)/AKT, RAS/RAF/mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) and Protein kinase C (PKC) signaling cascades. 2) function of PHLPPs regulatory factor USP46 and miR-190/miR-215, 3) the potential roles of PHLPPs in disease prognosis, Epidermal growth factor receptors (EGFR)- tyrosine kinase inhibitor (TKI) resistance and DNA damage, 4) and the possible function of PHLPPs in radiotherapy, ferroptosis and inflammation response. Therefore, PHLPPs can be considered as either biomarker or prognostic marker for lung cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Haihua Yang
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| |
Collapse
|
7
|
Wen W, Zha S, Cheng H, Qi J, Chen Q, Gu Y. As3MT is related to relative RNAs and base modifications of p53 in workers exposed to arsenic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62094-62103. [PMID: 36940027 DOI: 10.1007/s11356-023-26457-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/10/2023] [Indexed: 05/10/2023]
Abstract
As3MT is the key enzyme involved in the methylation metabolism of arsenic. It is associated with DNA methylation closely also. This study is to explore the relationships between As3MT and epigenetic changes, and how p53 and relative ncRNAs and mRNAs play roles in the process. In this study, workers from four arsenic plants and individuals who resided in villages far away from the four plants were recruited. Arsenic compounds, relative indices, 28 relative RNAs, and base modifications of exons 5-8 of p53 were detected separately. Several methods were used to analyze the associations between them. Results shown that As3MT RNA was closely associated with all selected lncRNAs, miRNAs, and mRNAs related to miRNA production and maturation, tumorigenesis, and base modifications of p53. There probably exists causal relationship. Base modifications of exons 7 and 8 of p53 had significant synergistic effects on the expression of As3MT RNA and a series of genetic indices. But miR-190, miR-548, and base modifications of exon 5 of p53 had substantial inhibitory effects. Arsenic compounds and relative indices of metabolic transformation may have limited roles. The main novel finding in the present study is that As3MT play special and significant roles in the genotoxicity and carcinogenesis which could be coordinated operation with p53, and influenced by epigenetic factors largely, such as lncRNAs and miRNAs. P53 and relative ncRNAs and mRNAs may regulate the process by interacting with As3MT. The changes may initiate by arsenic, but probability through indirect relationship.
Collapse
Affiliation(s)
- Weihua Wen
- Yunnan Center for Disease Control and Prevention, No.158, Dongsi Street, Kunming, 650022, Yunnan, China.
| | - Shun Zha
- Yunnan Center for Disease Control and Prevention, No.158, Dongsi Street, Kunming, 650022, Yunnan, China
| | - Huirong Cheng
- Yunnan Center for Disease Control and Prevention, No.158, Dongsi Street, Kunming, 650022, Yunnan, China
| | - Jun Qi
- Yunnan Center for Disease Control and Prevention, No.158, Dongsi Street, Kunming, 650022, Yunnan, China
| | - Qian Chen
- Public Health College, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yun Gu
- Public Health College, Kunming Medical University, Kunming, 650500, Yunnan, China
| |
Collapse
|
8
|
Zhang Y, Han D, Yu X, Shao X, Zong C, Zhang M, Wang J, Liang J, Ge P. MiRNA-190a-5p promotes primordial follicle hyperactivation by targeting PHLPP1 in premature ovarian failure. Front Genet 2022; 13:1034832. [PMID: 36406123 PMCID: PMC9669437 DOI: 10.3389/fgene.2022.1034832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/21/2022] [Indexed: 12/11/2023] Open
Abstract
We previously screened 6 differentially expressed miRNAs in ovarian tissues of 4-vinylcyclohexene diepoxide (VCD)-treated premature ovarian failure (POF) model in SD rats, including miRNA-190a-5p, miRNA-98-5p, miRNA-29a-3p, miRNA-144-5p, miRNA-27b-3p, miRNA-151-5p. In this study, to investigate the mechanisms causing the onset of POF, we first identified miRNAs with earlier differential expression at consecutive time points in the VCD-treated rat POF model and explored the mechanisms by which the target miRNAs promote POF. The SD rats were injected with VCD for 15 days to induce POF. Additionally, we collected rat blood and ovaries at the same time every day for 15 consecutive days, and luteinizing hormone (LH), follicle-stimulating hormone (FSH), Anti-Mullerian hormone (AMH), and estradiol (E2) serum levels were detected by ELISA. Six miRNAs expression were measured in rat ovaries by qRT-PCR. Dual-luciferase reporter gene assays were employed to predict and verify the target gene (PHLPP1) of target miRNAs (miRNA-190a-5p). Western blot was examined to detect the expression levels of PHLPP1, AKT, p-AKT, FOXO3a, p-FOXO3a, and LHR proteins on the target gene PHLPP1 and its participation in the primordial follicular hyperactivation-related pathways (AKT-FOXO3a and AKT-LH/LHR). During the VCD modeling POF rat ovaries, miRNA-190a-5p was the first to show significant differential expression, i.e., 6th of VCD treating, and PHLPP1 was verified to be a direct downstream target of it. Starting from the 6th of VCD treatment, the more significant the up-regulation trend of miRNA-190a-5p expression, the more obvious the down-regulation trend of PHLPP1 and LHR mRNA and protein expression, accompanied by the more severe phosphorylation of AKT and FOXO3a proteins, thus continuously over-activating the rat primordial follicle to promote the development of POF. In conclusion, miRNA-190a-5p may become a potential biomarker for early screening of POF, and it can continuously activate primordial follicles in rats by targeting the expression of PHLPP1 and key proteins in the AKT-FOXO3a and AKT-LH/LHR pathways.
Collapse
Affiliation(s)
- Yuchi Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Neurology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Dongwei Han
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoyan Yu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinyu Shao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Chuju Zong
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
- Heilongjiang Institute for Drug Control, Harbin, China
| | - Manyu Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Junzhi Wang
- Department of Dermatology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jingwen Liang
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Pengling Ge
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
9
|
Aalami AH, Hoseinzadeh M, Hosseini Manesh P, Jiryai Sharahi A, Kargar Aliabadi E. Carcinogenic effects of heavy metals by inducing dysregulation of microRNAs: A review. Mol Biol Rep 2022; 49:12227-12238. [PMID: 36269534 DOI: 10.1007/s11033-022-07897-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022]
Abstract
Heavy metal exposure has soared due to the twentieth century's industrial activity. The most common heavy metals that lead to human poisoning are mercury, cadmium, and arsenic. Acute or chronic poisoning may develop following exposure to water, air, or food, so the bioaccumulation of these heavy metals causes harmful consequences in various human tissues and organs. Heavy metals interfere with biological functions such as growth, proliferation, differentiation, damage repair, and apoptosis. The mechanisms of action for these metals to cause toxicity are similar, including forming reactive oxygen species (ROS), weakening antioxidant defenses, enzyme inactivation, and oxidative stress. Heavy metal exposure is mainly associated with skin, liver, prostate, lung, urinary bladder, thyroid, and kidney cancers, as well as causing gastrointestinal malignancies. Several microRNAs (miRNAs or miRs) have been involved in various human cancers due to the dysregulation of miRNA function. Recent investigations have confirmed that microRNA dysregulation plays a role in the carcinogenesis of many tissues. This review presents the data concerning arsenic, cadmium, and mercury metals and their contamination sources, human exposure, toxicity, and inducing malignant transformations such as carcinogenicity in in-vitro or in-vivo specimens or dysregulated expression of microRNAs.
Collapse
Affiliation(s)
- Amir Hossein Aalami
- Department of Biology, Mashhad Branch, Islamic Azad University, P.O. Box: 91871-47578, Mashhad, Iran.
| | - Mohammadsaleh Hoseinzadeh
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Parsa Hosseini Manesh
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Jiryai Sharahi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ehsan Kargar Aliabadi
- Biochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
10
|
Balamurugan K, Chandra K, Sai Latha S, Swathi M, Joshi MB, Misra P, Parsa KVL. PHLPPs: Emerging players in metabolic disorders. Drug Discov Today 2022; 27:103317. [PMID: 35835313 DOI: 10.1016/j.drudis.2022.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/21/2022] [Accepted: 07/07/2022] [Indexed: 12/15/2022]
Abstract
That reversible protein phosphorylation by kinases and phosphatases occurs in metabolic disorders is well known. Various studies have revealed that a multi-faceted and tightly regulated phosphatase, pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP)-1/2 displays robust effects in cardioprotection, ischaemia/reperfusion (I/R), and vascular remodelling. PHLPP1 promotes foamy macrophage development through ChREBP/AMPK-dependent pathways. Adipocyte-specific loss of PHLPP2 reduces adiposity, improves glucose tolerance,and attenuates fatty liver via the PHLPP2-HSL-PPARα axis. Discoveries of PHLPP1-mediated insulin resistance and pancreatic β cell death via the PHLPP1/2-Mst1-mTORC1 triangular loop have shed light on its significance in diabetology. PHLPP1 downregulation attenuates diabetic cardiomyopathy (DCM) by restoring PI3K-Akt-mTOR signalling. In this review, we summarise the functional role of, and cellular signalling mediated by, PHLPPs in metabolic tissues and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Keerthana Balamurugan
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad 500046, Telangana, India; Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Kanika Chandra
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad 500046, Telangana, India; Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - S Sai Latha
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad 500046, Telangana, India
| | - M Swathi
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad 500046, Telangana, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Parimal Misra
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad 500046, Telangana, India
| | - Kishore V L Parsa
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad 500046, Telangana, India.
| |
Collapse
|
11
|
Islam R, Zhao L, Wang Y, Lu-Yao G, Liu LZ. Epigenetic Dysregulations in Arsenic-Induced Carcinogenesis. Cancers (Basel) 2022; 14:4502. [PMID: 36139662 PMCID: PMC9496897 DOI: 10.3390/cancers14184502] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Arsenic is a crucial environmental metalloid whose high toxicity levels negatively impact human health. It poses significant health concerns to millions of people in developed and developing countries such as the USA, Canada, Bangladesh, India, China, and Mexico by enhancing sensitivity to various types of diseases, including cancers. However, how arsenic causes changes in gene expression that results in heinous conditions remains elusive. One of the proposed essential mechanisms that still has seen limited research with regard to causing disease upon arsenic exposure is the dysregulation of epigenetic components. In this review, we have extensively summarized current discoveries in arsenic-induced epigenetic modifications in carcinogenesis and angiogenesis. Importantly, we highlight the possible mechanisms underlying epigenetic reprogramming through arsenic exposure that cause changes in cell signaling and dysfunctions of different epigenetic elements.
Collapse
Affiliation(s)
| | | | | | | | - Ling-Zhi Liu
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
12
|
Wang L, Liu LZ, Jiang BH. Dysregulation of microRNAs in metal-induced angiogenesis and carcinogenesis. Semin Cancer Biol 2021; 76:279-286. [PMID: 34428550 DOI: 10.1016/j.semcancer.2021.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small endogenous non-coding RNAs that regulate cancer initiation, development, angiogenesis, and therapeutic resistance. Metal exposure widely occurs through air, water, soil, food, and industrial contaminants. Hundreds of millions of people may have metal exposure associated with toxicity, serious health problems, and cancer occurrence. Metal exposure is found to induce oxidative stress, DNA damage and repair, and activation of multiple signaling pathways. However, molecular mechanisms of metal-induced carcinogenesis remain to be elucidated. Recent studies demonstrated that the exposure of metals such as arsenic, hexavalent chromium, cadmium, and nickel caused dysregulation of microRNAs that are implicated to play an important role in cell transformation, tumor growth and angiogenesis. This review focuses on the recent studies that show metal-induced miRNA dysregulation and underlined mechanisms in cell malignant transformation, angiogenesis and tumor growth.
Collapse
Affiliation(s)
- Lin Wang
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China; Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, United States
| | - Ling-Zhi Liu
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, United States.
| | - Bing-Hua Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, United States.
| |
Collapse
|
13
|
Huang S, Hua X, Kuang M, Zhu J, Mu H, Tian Z, Zheng X, Xie Q. miR-190 promotes malignant transformation and progression of human urothelial cells through CDKN1B/p27 inhibition. Cancer Cell Int 2021; 21:241. [PMID: 33926470 PMCID: PMC8082649 DOI: 10.1186/s12935-021-01937-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
Background Although miR-190 has been reported to be related to human diseases, especially in the development and progression of cancer, its expression in human bladder cancer (BC) and potential contribution to BC remain unexplored. Methods RT-qPCR was used to verify the expression level of miR-190 and CDKN1B. Flow cytometry (FCM) assays were performed to detect cell cycle. Soft agar assay was used to measure anchorage-independent growth ability. Methylation-Specific PCR, Dual-luciferase reporter assay and Western blotting were used to elucidate the potential mechanisms involved. Results Our studies revealed that downregulation of the p27 (encoded by CDKN1B gene) protein is an important event related to miR-190, promoting the malignant transformation of bladder epithelial cells. miR-190 binds directly to CDKN1B 3’-UTR and destabilizes CDKN1B mRNA. Moreover, miR-190 downregulates TET1 by binding to the TET1 CDS region, which mediates hypermethylation of the CDKN1B promoter, thereby resulting in the downregulation of CDKN1B mRNA. These two aspects led to miR-190 inhibition of p27 protein expression in human BC cells. A more in-depth mechanistic study showed that c-Jun promotes the transcription of Talin2, the host gene of miR-190, thus upregulating the expression of miR-190 in human BC cells. Conclusions In this study, we found that miR-190 plays an important role in the development of BC. Taken together, these findings indicate that miR-190 may promote the malignant transformation of human urothelial cells by downregulating CDKN1B, which strengthens our understanding of miR-190 in regulating BC cell transformation.
Collapse
Affiliation(s)
- Shirui Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaohui Hua
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Mengjiao Kuang
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Junlan Zhu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Haiqi Mu
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zhongxian Tian
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaoqun Zheng
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Qipeng Xie
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
14
|
Kabir R, Sinha P, Mishra S, Ebenebe OV, Taube N, Oeing CU, Keceli G, Chen R, Paolocci N, Rule A, Kohr MJ. Inorganic arsenic induces sex-dependent pathological hypertrophy in the heart. Am J Physiol Heart Circ Physiol 2021; 320:H1321-H1336. [PMID: 33481702 PMCID: PMC8260381 DOI: 10.1152/ajpheart.00435.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 01/17/2023]
Abstract
Arsenic exposure though drinking water is widespread and well associated with adverse cardiovascular outcomes, yet the pathophysiological mechanisms by which iAS induces these effects are largely unknown. Recently, an epidemiological study in an American population with a low burden of cardiovascular risk factors found that iAS exposure was associated with altered left ventricular geometry. Considering the possibility that iAS directly induces cardiac remodeling independently of hypertension, we investigated the impact of an environmentally relevant iAS exposure on the structure and function of male and female hearts. Adult male and female C56BL/6J mice were exposed to 615 μg/L iAS for 8 wk. Males exhibited increased systolic blood pressure via tail cuff photoplethysmography, left ventricular wall thickening via transthoracic echocardiography, and increased plasma atrial natriuretic peptide via enzyme immunoassay. RT-qPCR revealed increased myocardial RNA transcripts of Acta1, Myh7, and Nppa and decreased Myh6, providing evidence of pathological hypertrophy in the male heart. Similar changes were not detected in females, and nitric oxide-dependent mechanisms of cardioprotection in the heart appeared to remain intact. Further investigation found that Rcan1 was upregulated in male hearts and that iAS activated NFAT in HEK-293 cells via luciferase assay. Interestingly, iAS induced similar hypertrophic gene expression changes in neonatal rat ventricular myocytes, which were blocked by calcineurin inhibition, suggesting that iAS may induce pathological cardiac hypertrophy in part by targeting the calcineurin-NFAT pathway. As such, these results highlight iAS exposure as an independent cardiovascular risk factor and provide biological impetus for its removal from human consumption.NEW & NOTEWORTHY This investigation provides the first mechanistic link between an environmentally relevant dose of inorganic arsenic (iAS) and pathological hypertrophy in the heart. By demonstrating that iAS exposure may cause pathological cardiac hypertrophy not only by increasing systolic blood pressure but also by potentially activating calcineurin-nuclear factor of activated T cells and inducing fetal gene expression, these results provide novel mechanistic insight into the theat of iAS exposure to the heart, which is necessary to identify targets for medical and public health intervention.
Collapse
MESH Headings
- Animals
- Arsenites/toxicity
- Calcineurin/metabolism
- Female
- Gene Expression Regulation
- HEK293 Cells
- Humans
- Hypertrophy, Left Ventricular/chemically induced
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Isolated Heart Preparation
- Male
- Mice, Inbred C57BL
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- NFATC Transcription Factors/metabolism
- Sex Factors
- Signal Transduction
- Sodium Compounds/toxicity
- Time Factors
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
- Water Pollutants, Chemical/toxicity
- Mice
Collapse
Affiliation(s)
- Raihan Kabir
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Prithvi Sinha
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Sumita Mishra
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Obialunanma V Ebenebe
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Nicole Taube
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Chistian U Oeing
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gizem Keceli
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rui Chen
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Ana Rule
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Mark J Kohr
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
15
|
Farahani M, Rezaei-Tavirani M, Arjmand B. A systematic review of microRNA expression studies with exposure to bisphenol A. J Appl Toxicol 2020; 41:4-19. [PMID: 32662106 DOI: 10.1002/jat.4025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022]
Abstract
Bisphenol A (BPA), as a common industrial component, is generally consumed in the synthesis of polymeric materials. To gain a deeper understanding of the detrimental effects of BPA, BPA-induced microRNA (miRNA) alterations were investigated. A systematic search was performed in the PubMed, SCOPUS and Web of Science databases to evoke relevant published data up to August 10, 2019. We identified altered miRNAs that have been repeated in at least three studies. Moreover, miRNA homology analysis between human and nonhuman species was performed to determine the toxicity signatures of BPA in human exposure. In addition, to reflect the effects of environmental exposure levels of BPA, the study designs were categorized into two groups, including low and high doses according to the previous definitions. In total, 28 studies encountered our criteria and 17 miRNAs were identified that were differentially expressed in at least three independent studies. Upregulating miR-146a and downregulating miR-192, miR-134, miR-27b and miR-324 were found in three studies. MiR-122 and miR-29a were upregulated in four studies after BPA exposure, and miR-21 was upregulated in six studies. The results indicate that BPA at low-level exposures can also alter miRNA expression in response to toxicity. Finally, the miRNA-related pathways showed that BPA seriously can affect human health through various cell signaling pathways, which were predictable and consistent with existing studies. Overall, our findings suggest that further studies should be conducted to examine the role of miRNA level changes in human BPA exposure.
Collapse
Affiliation(s)
- Masoumeh Farahani
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Ghalali A, Ye ZW, Högberg J, Stenius U. PTEN and PHLPP crosstalk in cancer cells and in TGFβ-activated stem cells. Biomed Pharmacother 2020; 127:110112. [PMID: 32294598 DOI: 10.1016/j.biopha.2020.110112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/20/2022] Open
Abstract
Akt kinase regulates several cellular processes, among them growth, proliferation and survival, and has been correlated to neoplastic disease. We report here crosstalk between several Akt regulatory phosphatases that controls the level of the activated form (phosphorylated) of Akt and affects tumor cell aggressiveness. In prostate cancer cell lines, we observed that transient transfection of PTEN decreased the endogenous level of PHLPPs and in contrast, the transient transfection of PHLPPs decreased the endogenous level of PTEN. Furthermore, silencing of PTEN by siRNA resulted in increased PHLPP levels. This phenomenon was not seen in non-transformed cells or in prostate stem cells. This crosstalk promoted cancer cell invasion and was controlled by epigenetically regulated processes where activation of miRs (miR-190 and miR214), the polycomb group of proteins and DNA methylation were involved. The purinergic P2X4 receptor, which has been shown to have a role in wound healing, was identified to be the mediator of this crosstalk. We also studied prostate stem cells and found this crosstalk in the TGFβ1-activated epithelial-mesenchymal transition (EMT). The crosstalk seemed to be a natural part of EMT. In summary, we identify a crosstalk between Akt phosphatases which is not present in non-transformed prostate cells but occurs in cancer cells and stem cells transformed by TGFβ-1. This crosstalk is important for cellular invasion. BACKGROUND Phosphatases regulate the Akt oncogene. RESULTS Crosstalk between Akt phosphatases in prostate cancer cells and in TGF-β1 activated stem cells but not in non-transformed cells. CONCLUSION This back-up mechanism facilitates invasive migration of prostate stem and cancer cells. SIGNIFICANCE Characterization of Akt regulation may lead to a better understanding of tumor development and to novel strategies for treatment.
Collapse
Affiliation(s)
- Aram Ghalali
- Institute of Environmental Medicine, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | - Zhi-Wei Ye
- Institute of Environmental Medicine, Karolinska Institutet, S-171 77 Stockholm, Sweden; Department of Pharmacology, Medical University of South Carolina, United States
| | - Johan Högberg
- Institute of Environmental Medicine, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Ulla Stenius
- Institute of Environmental Medicine, Karolinska Institutet, S-171 77 Stockholm, Sweden
| |
Collapse
|
17
|
Arsenic exposure: A public health problem leading to several cancers. Regul Toxicol Pharmacol 2019; 110:104539. [PMID: 31765675 DOI: 10.1016/j.yrtph.2019.104539] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/23/2022]
Abstract
Arsenic, a metalloid and naturally occurring element, is one of the most abundant elements in the earth's crust. Water is contaminated by arsenic through natural sources (underground water, minerals and geothermal processes) and anthropogenic sources such as mining, industrial processes, and the production and use of pesticides. Humans are exposed to arsenic mainly by drinking contaminated water, and secondarily through inhalation and skin contact. Arsenic exposure is associated with the development of vascular disease, including stroke, ischemic heart disease and peripheral vascular disease. Also, arsenic increases the risk of tumors of bladder, lungs, kidneys and liver, according to the International Agency for Research on Cancer and the Food and Drug Administration. Once ingested, an estimated 70-90% of inorganic arsenic is absorbed by the gastrointestinal tract and widely distributed through the blood to different organs, primarily to the liver, kidneys, lungs and bladder and secondarily to muscle and nerve tissue. Arsenic accumulates in the organs, especially in the liver. Its excretion mostly takes place through urination. The toxicokinetics of arsenic depends on the duration of exposure, pathway of ingestion, physicochemical characteristics of the compound, and affected biological species. The present review outlines of arsenic toxic effects focusing on different cancer types whit highest prevalence's by exposure to this metalloid and signaling pathways of carcinogenesis.
Collapse
|
18
|
Abstract
miRNAs, a major class of small noncoding RNAs approximately 18-25 nucleotides in length, function by repressing the expression of target genes through binding to complementary sequences in the 3'-UTRs of target genes. Emerging evidence has highlighted their important roles in numerous diseases, including human cancers. Recently, miR-190 has been shown to be dysregulated in various types of human cancers that participates in cancer-related biological processes, including proliferation, apoptosis, metastasis, drug resistance, by regulating associated target genes, and to predict cancer diagnosis and prognosis. In this review, we summarized the roles of miR-190-5p in human diseases, especially in human cancers. Then we classified its target genes in tumorigenesis and progression, which might provide evidence for cancer diagnosis and prognosis, promising tools for cancer treatment, or leads for further investigation.
Collapse
Affiliation(s)
- Yue Yu
- 1The First Department of Breast Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, Hexi District, Tianjin, 300060 China.,2Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060 China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060 China.,4Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060 China
| | - Xu-Chen Cao
- 1The First Department of Breast Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, Hexi District, Tianjin, 300060 China.,2Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060 China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060 China.,4Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060 China
| |
Collapse
|
19
|
Wu J, Ferragut Cardoso AP, States VAR, Al-Eryani L, Doll M, Wise SS, Rai SN, States JC. Overexpression of hsa-miR-186 induces chromosomal instability in arsenic-exposed human keratinocytes. Toxicol Appl Pharmacol 2019; 378:114614. [PMID: 31176655 PMCID: PMC6746570 DOI: 10.1016/j.taap.2019.114614] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 01/04/2023]
Abstract
The mechanism of arsenic-induced skin carcinogenesis is not yet fully understood. Chromosomal instability contributes to aneuploidy and is a driving force in carcinogenesis. Arsenic causes mitotic arrest and induces aneuploidy. hsa-miR-186 overexpression is associated with metastatic cancers as well as arsenic-induced squamous cell carcinoma and is reported to target several mitotic regulators. Decreased levels of these proteins can dysregulate chromatid segregation contributing to aneuploidy. This work investigates the potential aneuploidogenic role of hsa-miR-186 in arsenic carcinogenesis. Clones of immortalized human keratinocytes (HaCaT) stably transfected with a hsa-miR-186 expression or empty vector were isolated. Three clones with high and low hsa-miR-186 expression determined by RT-qPCR were selected for further analysis and cultured with 0 or 100 nM NaAsO2 for 8 weeks. Analysis of mitoses revealed that chromosome number and structural abnormalities increased in cells overexpressing hsa-miR-186 and were further increased by arsenite exposure. Double minutes were the dominant structural aberrations. The peak number of chromosomes also increased. Cells with >220 to >270 chromosomes appeared after 2 months in hsa-miR-186 overexpressing cells, indicating multiple rounds of endomitosis had occurred. The fraction of cells with increased chromosome number or structural abnormalities did not increase in passage matched control cells. Levels of selected target proteins were determined by western blot. Expression of BUB1, a predicted hsa-miR-186 target was suppressed in hsa-miR-186 overexpressing clones, but increased with arsenite exposure. CDC27 remained constant under all conditions. These results suggest that overexpression of miR-186 in arsenic exposed tissues likely induces aneuploidy contributing to arsenic-induced carcinogenesis.
Collapse
Affiliation(s)
- Jiguo Wu
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA; Department of Environmental Health Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Ana P Ferragut Cardoso
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA
| | - Vanessa A R States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA
| | - Laila Al-Eryani
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA
| | - Mark Doll
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA
| | - Sandra S Wise
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA
| | - Shesh N Rai
- Biostatisitcs and Bioinformatics Shared Facility, JGB Cancer Center and Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY 40292, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
20
|
Li L, Bi Z, Wadgaonkar P, Lu Y, Zhang Q, Fu Y, Thakur C, Wang L, Chen F. Metabolic and epigenetic reprogramming in the arsenic-induced cancer stem cells. Semin Cancer Biol 2019; 57:10-18. [PMID: 31009762 PMCID: PMC6690805 DOI: 10.1016/j.semcancer.2019.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 04/18/2019] [Indexed: 12/19/2022]
Abstract
At present, the belief that genetic mutations control every aspect of tumorigenesis is still very popular. Even for the highly debated "bad luck" theory of cancers, it ascertained that random mutation of genes during the self-renewal of somatic stem cells is responsible for cancer initiation. Logically, most of the new therapeutic strategies so far, from molecular targeting to precision medicine or personalized medicine, are genome-obsessed and focused on identifying and targeting these mutated genes. Accordingly, a rather simplified therapeutic regimen was formulated: cancers with the same mutations, e.g., lung cancer, pancreatic cancer, breast cancer, ovarian cancer, etc, were managed with the same chemo or targeting medicine, whereas for a particular cancer, such as breast cancer or lung cancer, with different mutational spectrums was treated with different, so-called personalized medicine. The outcomes of this strategy, however, are mixed with encouraging and disappointing findings. In this review article, we will address the importance of non-genetic factors, the metabolic and epigenetic reprogramming, during the induction of cancer stem cells in response to arsenic, a major environmental human carcinogen. The information provided may not only advance our understanding of carcinogenic mechanism to a new level but also help in designing new strategies through targeting the metabolic and epigenetic signaling pathways for cancer therapy.
Collapse
Affiliation(s)
- Lingzhi Li
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA; Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Zhuoyue Bi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA; School of Health Sciences, Wuhan University, No. 115, Donghu Road, Wuhan, 430071, Hubei, China; Hubei Provincial Key Laboratory of Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, 8 Zhuodaoquanbei Road, Wuhan, 430079, Hubei, China
| | - Priya Wadgaonkar
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Yongju Lu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Qian Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Yao Fu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Chitra Thakur
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Li Wang
- Department of Physiology and Neurobiology and Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA.
| |
Collapse
|
21
|
Bertacchini J, Mediani L, Beretti F, Guida M, Ghalali A, Brugnoli F, Bertagnolo V, Petricoin E, Poti F, Arioli J, Anselmi L, Bari A, McCubrey J, Martelli AM, Cocco L, Capitani S, Marmiroli S. Clusterin enhances AKT2-mediated motility of normal and cancer prostate cells through a PTEN and PHLPP1 circuit. J Cell Physiol 2019; 234:11188-11199. [PMID: 30565691 DOI: 10.1002/jcp.27768] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 10/30/2018] [Indexed: 07/23/2024]
Abstract
Clusterin (CLU) is a chaperone-like protein with multiple functions. sCLU is frequently upregulated in prostate tumor cells after chemo- or radiotherapy and after surgical or pharmacological castration. Moreover, CLU has been documented to modulate the cellular homolog of murine thymoma virus akt8 oncogene (AKT) activity. Here, we investigated how CLU overexpression influences phosphatidylinositol 3'-kinase (PI3K)/AKT signaling in human normal and cancer epithelial prostate cells. Human prostate cells stably transfected with CLU were broadly profiled by reverse phase protein array (RPPA), with particular emphasis on the PI3K/AKT pathway. The effect of CLU overexpression on normal and cancer cell motility was also tested. Our results clearly indicate that CLU overexpression enhances phosphorylation of AKT restricted to isoform 2. Mechanistically, this can be explained by the finding that the phosphatase PH domain leucine-rich repeat-containing protein phosphatase 1 (PHLPP1), known to dephosphorylate AKT2 at S474, is markedly downregulated by CLU, whereas miR-190, a negative regulator of PHLPP1, is upregulated. Moreover, we found that phosphatase and tensin homolog (PTEN) was heavily phosphorylated at the inhibitory site S380, contributing to the hyperactivation of AKT signaling. By keeping AKT2 phosphorylation high, CLU dramatically enhances the migratory behavior of prostate epithelial cell lines with different migratory and invasive phenotypes, namely prostate normal epithelial 1A (PNT1A) and prostatic carcinoma 3 (PC3) cells. Altogether, our results unravel for the first time a circuit by which CLU can switch a low migration phenotype toward a high migration phenotype, through miR-190-dependent downmodulation of PHLPP1 expression and, in turn, stabilization of AKT2 phosphorylation.
Collapse
Affiliation(s)
- Jessika Bertacchini
- Department of Biomedical, Metabolic, and Neural Sciences, Section of Morphology, Signal Transduction Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Mediani
- Department of Biomedical, Metabolic, and Neural Sciences, Section of Morphology, Signal Transduction Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Beretti
- Department of Medicine, Surgery, Dentistry, and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Marianna Guida
- Department of Biomedical, Metabolic, and Neural Sciences, Section of Morphology, Signal Transduction Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Aram Ghalali
- Institute of Environment Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Federica Brugnoli
- Department of Morphology, Surgery, and Experimental Medicine, Section of Anatomy and Histology and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Valeria Bertagnolo
- Department of Morphology, Surgery, and Experimental Medicine, Section of Anatomy and Histology and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Emanuel Petricoin
- Center for Applied Proteomics & Molecular Medicine, GMU, Fairfax, Virginia
| | - Francesco Poti
- Department of Medicine and Surgery-Unit of Neurosciences, University of Parma, Parma, Italy
| | - Jessica Arioli
- Department of Biomedical, Metabolic, and Neural Sciences, Section of Morphology, Signal Transduction Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Anselmi
- Department of Biomedical, Metabolic, and Neural Sciences, Section of Morphology, Signal Transduction Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessia Bari
- Department of Diagnostic, Clinical Medicine and Public Health, Program of Innovative Therapy in Oncology and Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - James McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Alberto M Martelli
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Silvano Capitani
- Department of Morphology, Surgery, and Experimental Medicine, Section of Anatomy and Histology and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Sandra Marmiroli
- Department of Biomedical, Metabolic, and Neural Sciences, Section of Morphology, Signal Transduction Unit, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
22
|
Li M, Huo X, Davuljigari CB, Dai Q, Xu X. MicroRNAs and their role in environmental chemical carcinogenesis. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:225-247. [PMID: 30171477 DOI: 10.1007/s10653-018-0179-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 08/23/2018] [Indexed: 02/05/2023]
Abstract
MicroRNAs (miRNAs) are a class of small, noncoding RNA species that play crucial roles across many biological processes and in the pathogenesis of major diseases, including cancer. Recent studies suggest that the expression of miRNA is altered by certain environmental chemicals, including metals, organic pollutants, cigarette smoke, pesticides and carcinogenic drugs. In addition, extensive studies have indicated the existence and importance of miRNA in different cancers, suggesting that cancer-related miRNAs could serve as potential markers for chemically induced cancers. The altered expression of miRNA was considered to be a vital pathogenic role in xenobiotic-induced cancer development. However, the significance of miRNA in the etiology of cancer and the exact mechanisms by which environmental factors alter miRNA expression remain relatively unexplored. Hence, understanding the interaction of miRNAs with environmental chemicals will provide important information on mechanisms underlying the pathogenesis of chemically induced cancers, and effectively diagnose and treat human cancers resulting from chronic or acute carcinogen exposure. This study presents the current evidence that the miRNA deregulation induced by various chemical carcinogens, different cancers caused by environmental carcinogens and the potentially related genes in the onset or progression of cancer. For each carcinogen, the specifically expressed miRNA may be considered as the early biomarkers of the cancer process. In this review, we also summarize various target genes of the altered miRNA, oncogenes or anti-oncogenes, and the existing evidence regarding the gene regulation mechanisms of cancer caused by environmentally induced miRNA alteration. The future perspective of miRNA may become attractive targets for the diagnosis and treatment of carcinogen-induced cancer.
Collapse
Affiliation(s)
- Minghui Li
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511486, Guangdong, China
| | - Chand Basha Davuljigari
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Qingyuan Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511486, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China.
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
23
|
Soza-Ried C, Bustamante E, Caglevic C, Rolfo C, Sirera R, Marsiglia H. Oncogenic role of arsenic exposure in lung cancer: A forgotten risk factor. Crit Rev Oncol Hematol 2019; 139:128-133. [PMID: 30878179 DOI: 10.1016/j.critrevonc.2019.01.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 01/11/2019] [Accepted: 01/17/2019] [Indexed: 12/14/2022] Open
Abstract
Several drinkable water sources worldwide have been highly contaminated with arsenic, which means that an estimated 160 million people have been exposed to this chemical agent. If we analyse exposure by region, we will find a high correlation between arsenic contamination and the incidence of lung cancer (among other malignancies). In order to determine what the risks of these exposures are, we need to understand how this chemical is processed in our body and how it is linked to cancer. In this article we reviewed how biotransformation of ingested arsenic may lead to cancer by modulating the activation of several essential signalling pathways such as EGFR, PI3K/AKT, RTK/Ras/PI3K, JNK/STAT3 and Nrf2-KEAP1; by producing epigenetics modifications and by disrupting normal expression of miRNAs. In order to design effective health policies, educational strategies, decontaminations plans and effective medical treatments are necessary to understand the impact of arsenic pollution and the relevance of the environment in our health.
Collapse
Affiliation(s)
- Cristian Soza-Ried
- Escuela de Bioquímica, Facultad de Ciencia, Universidad San Sebastián, Santiago, Chile; Fundación Oncoloop, Santiago, Chile
| | - Eva Bustamante
- Instituto Oncológico Fundación Arturo López, Santiago, Chile.
| | - Christian Caglevic
- Departamento Oncología Médica, Clínica Alemana, Santiago, Chile; Instituto Oncológico Fundación Arturo López, Santiago, Chile
| | - Christian Rolfo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, USA
| | - Rafael Sirera
- Departamento de Biotecnología, Universitat Politenica de Valencia, España
| | - Hugo Marsiglia
- Instituto Oncológico Fundación Arturo López, Santiago, Chile
| |
Collapse
|
24
|
Expression of the miR-190 family is increased under DDT exposure in vivo and in vitro. Mol Biol Rep 2018; 45:1937-1945. [DOI: 10.1007/s11033-018-4343-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 08/29/2018] [Indexed: 12/14/2022]
|
25
|
Colon Epithelial MicroRNA Network in Fatty Liver. Can J Gastroenterol Hepatol 2018; 2018:8246103. [PMID: 30345259 PMCID: PMC6174781 DOI: 10.1155/2018/8246103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND & AIMS Intestinal barrier alterations are associated with fatty liver (FL) and metabolic syndrome (MetS), but microRNA (miR) signaling pathways in MetS-FL pathogenesis remain unclear. This study investigates an epithelial-focused miR network in colorectal cell models based on the previously reported MetS-FL miR trio of hsa-miR-142-3p, hsa-miR-18b, and hsa-miR-890. METHODS Each miR mimic construct of MetS-FL miR trio was transfected into human colorectal cells, CRL-1790 or Caco-2. Global miRNome changes posttransfection were profiled (nCounter® Human v3 miRNA, NanoString Technologies). Changes in barrier (transepithelial electrical resistance, TEER) and epithelial cell junction structure (Occludin and Zona Occludens-1/ZO-1 immunofluorescence staining-confocal microscopy) were examined pre- and posttransfection in Caco-2 cell monolayers. A signaling network was constructed from the MetS-FL miR trio, MetS-FL miR-induced colorectal miRNome changes, ZO-1, and Occludin. RESULTS Transfection of CRL-1790 cells with each MetS-FL miR mimic led to global changes in the cellular miRNome profile, with 288 miRs being altered in expression by more than twofold. Eleven miRs with known cytoskeletal and metabolic roles were commonly altered in expression by all three miR mimics. Transfection of Caco-2 cell monolayers with each MetS-FL miR mimic induced barrier-associated TEER variations and led to structural modifications of ZO-1 and Occludin within epithelial cell junctions. Pathway analysis incorporating the MetS-FL miR trio, eleven common target miRs, ZO-1, and Occludin revealed a signaling network centered on TNF and AKT2, which highlights injury, inflammation, and hyperplasia. CONCLUSIONS Colon-specific changes in epithelial barriers, cell junction structure, and a miRNome signaling network are described from functional studies of a MetS-FL miR trio signature.
Collapse
|
26
|
Becerra CC, Mattson AM, Molstad DHH, Lorang IM, Westendorf JJ, Bradley EW. DNA methylation and FoxO3a regulate PHLPP1 expression in chondrocytes. J Cell Biochem 2018; 119:7470-7478. [PMID: 29775231 PMCID: PMC6150803 DOI: 10.1002/jcb.27056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 04/23/2018] [Indexed: 12/17/2022]
Abstract
The protein phosphatase Phlpp1 is an essential enzyme for proper chondrocyte function. Altered Phlpp1 levels are associated with cancer and degenerative diseases such as osteoarthritis. While much is known about the post-transcriptional mechanisms controlling Phlpp1 levels, transcriptional regulation of the Phlpp1 gene locus is underexplored. We previously showed that CpG methylation of the PHLPP1 promoter is lower in osteoarthritic cartilage than in normal cartilage, and indirectly correlates with gene expression. Here we further defined the effects of DNA methylation on PHLPP1 promoter activity in chondrocytes. We cloned a 1791 bp fragment of the PHLPP1 promoter (-1589:+202) and found that the first 500 bp were required for maximal promoter activity. General methylation of CpG sites within this fragment significantly blunts transcriptional activity, whereas site-specific methyltransferases HhaI or HpaII decrease transcriptional activation by approximately 50%. We located putative FoxO consensus sites within the PHLPP1 promoter region. Inhibition of DNA methylation by incorporation of 5-azacytidine increases Phlpp1 mRNA levels, but FoxO inhibition abolishes this induction. To determine which FoxO transcription factor mediates Phlpp1 expression, we performed overexpression and siRNA-mediated knock down experiments. Overexpression of FoxO3a, but not FoxO1, increases Phlpp1 levels. Likewise, siRNAs targeting FoxO3a, but not FoxO1, diminished Phlpp1 levels. Last, FoxO inhibition increases glycosaminoglycan staining of cultured chondrocytes and leads to concomitant increases in FGF18 and HAS2 expression. Together, these data demonstrate that CpG methylation and FoxO3a regulate PHLPP1 expression.
Collapse
Affiliation(s)
| | - Anna M. Mattson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | | | - Ian M. Lorang
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | - Jennifer J. Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| | - Elizabeth W. Bradley
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| |
Collapse
|
27
|
Huang T, Wang G, Yang L, Peng B, Wen Y, Ding G, Wang Z. MiR-186 inhibits proliferation, migration, and invasion of non-small cell lung cancer cells by downregulating Yin Yang 1. Cancer Biomark 2018; 21:221-228. [PMID: 29060934 DOI: 10.3233/cbm-170670] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the main type of lung cancer. While miR-186 is significantly reduced in lung cancer tissues and cells, its role in NSCLC has not been completely elucidated. MATERIAL AND METHODS We used qRT-PCR and western blot methods to investigate the levels of miR-186 and YY1 in 21 pairs of NSCLC tissues. Dual luciferase reporter gene assays were performed to detect whether miR-186 directly targets YY1. Next, the roles of miR-186 and its target gene (YY1) in determining the proliferation, apoptosis and migration capabilities of selected cell lines (A549 and HCC827) were investigated by using miR-186 mimics or YY1 siRNA. RESULTS Our results showed that miR-186 was downregulated and YYI was upregulated in NSCLC tissue, and miR-186 expression was negatively associated with YY1. Similarly, miR-186 was also downregulated and YY1 expression also was upregulated in both A549 and HCC827 cells; furthermore, miR-186 was found to directly target YY1. Cell proliferation, invasion, and migration, as well as apoptosis induction were more strongly inhibited by YY1 siRNA than by miR-186. CONCLUSION Our results suggest that miR-186 and its target gene (YY1) could possibly serve as new prognostic biomarkers and therapeutic targets for treating NSCLC in humans.
Collapse
|
28
|
Xiong Y, Wu S, Yu H, Wu J, Wang Y, Li H, Huang H, Zhang H. miR-190 promotes HCC proliferation and metastasis by targeting PHLPP1. Exp Cell Res 2018; 371:185-195. [PMID: 30092222 DOI: 10.1016/j.yexcr.2018.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 01/10/2023]
Abstract
miRNAs regulate gene expression and enable clinicians to distinguish between benign and malignant tissues in cancers. PH domain leucine-rich repeat-containing protein phosphatase 1 (PHLPP1) is known to be a tumour suppressor. A lentiviral overexpression system was used to stably express miR-190, leading to the enhancement of hepatocellular carcinoma (HCC) proliferation and metastasis as a result of inhibited PHLPP1 expression. The results showed that stable miR-190 expression increased the expression of EMT-related proteins (Snail and TCF8/ZEB1) as well as the phosphorylation of Akt at Ser473 and the expression of a disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1). However, restoring PHLPP1 expression counteracted the effects of miR-190 on HCC proliferation, migration and invasion. The results of the animal experiments showed that miR-190 improved the HepG2 cell tumour formation and lung metastasis ability. Stable miR-190 overexpression leads to the downregulation of PHLPP1 protein expression. miR-190 has potential as a target in the treatment and diagnosis of HCC.
Collapse
Affiliation(s)
- Yuzhen Xiong
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Shang Wu
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Huajun Yu
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Jun Wu
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Yajun Wang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Huimin Li
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Hui Huang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Haitao Zhang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
29
|
Chen QY, Costa M. PI3K/Akt/mTOR Signaling Pathway and the Biphasic Effect of Arsenic in Carcinogenesis. Mol Pharmacol 2018; 94:784-792. [PMID: 29769245 PMCID: PMC5994485 DOI: 10.1124/mol.118.112268] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/30/2018] [Indexed: 12/22/2022] Open
Abstract
Arsenic is a naturally occurring, ubiquitous metalloid found in the Earth's crust. In its inorganic form, arsenic is highly toxic and carcinogenic and is widely found across the globe and throughout the environment. As an International Agency for Research on Cancer-defined class 1 human carcinogen, arsenic can cause multiple human cancers, including liver, lung, urinary bladder, skin, kidney, and prostate. Mechanisms of arsenic-induced carcinogenesis remain elusive, and this review focuses specifically on the role of the PI3K/AKT/mTOR pathway in promoting cancer development. In addition to exerting potent carcinogenic responses, arsenic is also known for its therapeutic effects against acute promyelocytic leukemia. Current literature suggests that arsenic can achieve both therapeutic as well as carcinogenic effects, and this review serves to examine the paradoxical effects of arsenic, specifically through the PI3K/AKT/mTOR pathway. Furthermore, a comprehensive review of current literature reveals an imperative need for future studies to establish and pinpoint the exact conditions for which arsenic can, and through what mechanisms it is able to, differentially regulate the PI3K/AKT/mTOR pathway to maximize the therapeutic and minimize the carcinogenic properties of arsenic.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| |
Collapse
|
30
|
Angrish MM, Allard P, McCullough SD, Druwe IL, Helbling Chadwick L, Hines E, Chorley BN. Epigenetic Applications in Adverse Outcome Pathways and Environmental Risk Evaluation. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:045001. [PMID: 29669403 PMCID: PMC6071815 DOI: 10.1289/ehp2322] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 02/15/2018] [Accepted: 03/01/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND The epigenome may be an important interface between environmental chemical exposures and human health. However, the links between epigenetic modifications and health outcomes are often correlative and do not distinguish between cause and effect or common-cause relationships. The Adverse Outcome Pathway (AOP) framework has the potential to demonstrate, by way of an inference- and science-based analysis, the causal relationship between chemical exposures, epigenome, and adverse health outcomes. OBJECTIVE The objective of this work is to discuss the epigenome as a modifier of exposure effects and risk, perspectives for integrating toxicoepigenetic data into an AOP framework, tools for the exploration of epigenetic toxicity, and integration of AOP-guided epigenetic information into science and risk-assessment processes. DISCUSSION Organizing epigenetic information into the topology of a qualitative AOP network may help describe how a system will respond to epigenetic modifications caused by environmental chemical exposures. However, understanding the biological plausibility, linking epigenetic effects to short- and long-term health outcomes, and including epigenetic studies in the risk assessment process is met by substantive challenges. These obstacles include understanding the complex range of epigenetic modifications and their combinatorial effects, the large number of environmental chemicals to be tested, and the lack of data that quantitatively evaluate the epigenetic effects of environmental exposure. CONCLUSION We anticipate that epigenetic information organized into AOP frameworks can be consistently used to support biological plausibility and to identify data gaps that will accelerate the pace at which epigenetic information is applied in chemical evaluation and risk-assessment paradigms. https://doi.org/10.1289/EHP2322.
Collapse
Affiliation(s)
- Michelle M Angrish
- National Center for Environmental Assessment, Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Patrick Allard
- University of California Los Angeles Institute for Society and Genetics, Los Angeles, California, USA
| | - Shaun D McCullough
- National Health and Environmental Effects Research Laboratory, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Ingrid L Druwe
- National Center for Environmental Assessment, Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Lisa Helbling Chadwick
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Erin Hines
- National Center for Environmental Assessment, Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Brian N Chorley
- University of California Los Angeles Institute for Society and Genetics, Los Angeles, California, USA
| |
Collapse
|
31
|
Gao X, Wu Y, Yu W, Li H. Identification of a seven-miRNA signature as prognostic biomarker for lung squamous cell carcinoma. Oncotarget 2018; 7:81670-81679. [PMID: 27835574 PMCID: PMC5348421 DOI: 10.18632/oncotarget.13164] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/19/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Specific biomarkers for outcome prediction of lung squamous cell carcinoma (LUSC) are still lacking. This study assessed the prognostic value of differentially expressed miRNAs of LUSC patients. RESULTS Twelve of the 133 most significantly altered miRNAs were associated with overall survival (OS) across different clinical subclasses of the Cancer Genome Atlas (TCGA) LUSC cohort. A linear prognostic model of seven miRNAs was developed to divide patients into high- and low-risk groups. Patients assigned to the high-risk group exhibited poor OS compared with patients in the low-risk group, which was further validated in the validation cohort and entire LUSC cohort. METHODS MiRNA expression profiles with clinical information of 447 LUSC patients were obtained from TCGA. Most significantly altered miRNAs were identified between tumor and normal samples. Using survival analysis and supervised principal components method, a seven-miRNA signature for prediction of OS of LUSC patients was established. Survival receiver operating characteristic (ROC) analysis was used to assess the performance of survival prediction. The biological relevance of predicted miRNA targets was also analyzed using bioinformatics method. CONCLUSIONS The current study suggests that seven-miRNA signature may have clinical implications in the outcome prediction of LUSC.
Collapse
Affiliation(s)
- Xujie Gao
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Yupeng Wu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Wenwen Yu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Hui Li
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
32
|
Mirra P, Nigro C, Prevenzano I, Leone A, Raciti GA, Formisano P, Beguinot F, Miele C. The Destiny of Glucose from a MicroRNA Perspective. Front Endocrinol (Lausanne) 2018; 9:46. [PMID: 29535681 PMCID: PMC5834423 DOI: 10.3389/fendo.2018.00046] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glucose serves as a primary, and for some tissues the unique, fuel source in order to generate and maintain the biological functions. Hyperglycemia is a hallmark of type 2 diabetes and is the direct consequence of perturbations in the glucose homeostasis. Insulin resistance, referred to as a reduced response of target tissues to the hormone, contributes to the development of hyperglycemia. The molecular mechanisms responsible for the altered glucose homeostasis are numerous and not completely understood. MicroRNAs (miRNAs) are now recognized as regulators of the lipid and glucose metabolism and are involved in the onset of metabolic diseases. Indeed, these small non-coding RNA molecules operate in the RNA silencing and posttranscriptional regulation of gene expression and may modulate the levels of kinases and enzymes in the glucose metabolism. Therefore, a better characterization of the function of miRNAs and a deeper understanding of their role in disease may represent a fundamental step toward innovative treatments addressing the causes, not only the symptoms, of hyperglycemia, using approaches aimed at restoring either miRNAs or their specific targets. In this review, we outline the current understanding regarding the impact of miRNAs in the glucose metabolism and highlight the need for further research focused on altered key kinases and enzymes in metabolic diseases.
Collapse
Affiliation(s)
- Paola Mirra
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Cecilia Nigro
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Immacolata Prevenzano
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Alessia Leone
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Gregory Alexander Raciti
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Pietro Formisano
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Francesco Beguinot
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Claudia Miele
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- *Correspondence: Claudia Miele,
| |
Collapse
|
33
|
Herrero MJ, Gitton Y. The untold stories of the speech gene, the FOXP2 cancer gene. Genes Cancer 2018; 9:11-38. [PMID: 29725501 PMCID: PMC5931254 DOI: 10.18632/genesandcancer.169] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/02/2018] [Indexed: 12/11/2022] Open
Abstract
FOXP2 encodes a transcription factor involved in speech and language acquisition. Growing evidence now suggests that dysregulated FOXP2 activity may also be instrumental in human oncogenesis, along the lines of other cardinal developmental transcription factors such as DLX5 and DLX6 [1-4]. Several FOXP familymembers are directly involved during cancer initiation, maintenance and progression in the adult [5-8]. This may comprise either a pro-oncogenic activity or a deficient tumor-suppressor role, depending upon cell types and associated signaling pathways. While FOXP2 is expressed in numerous cell types, its expression has been found to be down-regulated in breast cancer [9], hepatocellular carcinoma [8] and gastric cancer biopsies [10]. Conversely, overexpressed FOXP2 has been reported in multiple myelomas, MGUS (Monoclonal Gammopathy of Undetermined Significance), several subtypes of lymphomas [5,11], as well as in neuroblastomas [12] and ERG fusion-negative prostate cancers [13]. According to functional evidences reported in breast cancer [9] and survey of recent transcriptomic and proteomic analyses of different tumor biopsies, we postulate that FOXP2 dysregulation may play a main role throughout cancer initiation and progression. In some cancer conditions, FOXP2 levels are now considered as a critical diagnostic marker of neoplastic cells, and in many situations, they even bear strong prognostic value [5]. Whether FOXP2 may further become a therapeutic target is an actively explored lead. Knowledge reviewed here may help improve our understanding of FOXP2 roles during oncogenesis and provide cues for diagnostic, prognostic and therapeutic analyses.
Collapse
Affiliation(s)
- Maria Jesus Herrero
- Center for Neuroscience Research, Children's National Medical Center, NW, Washington, DC, USA
| | - Yorick Gitton
- Sorbonne University, INSERM, CNRS, Vision Institute Research Center, Paris, France
| |
Collapse
|
34
|
Shu Z, Huang YC, Palmer WH, Tamori Y, Xie G, Wang H, Liu N, Deng WM. Systematic analysis reveals tumor-enhancing and -suppressing microRNAs in Drosophila epithelial tumors. Oncotarget 2017; 8:108825-108839. [PMID: 29312571 PMCID: PMC5752484 DOI: 10.18632/oncotarget.22226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/13/2017] [Indexed: 12/19/2022] Open
Abstract
Despite their emergence as an important class of noncoding RNAs involved in cancer cell transformation, invasion, and migration, the precise role of microRNAs (miRNAs) in tumorigenesis remains elusive. To gain insights into how miRNAs contribute to primary tumor formation, we conducted an RNA sequencing (RNA-Seq) analysis of Drosophila wing disc epithelial tumors induced by knockdown of a neoplastic tumor-suppressor gene (nTSG) lethal giant larvae (lgl), combined with overexpression of an active form of oncogene Ras (RasV12 ), and identified 51 mature miRNAs that changed significantly in tumorous discs. Followed by in vivo tumor enhancer and suppressor screens in sensitized genetic backgrounds, we identified 10 tumor-enhancing (TE) miRNAs and 11 tumor-suppressing (TS) miRNAs that contributed to the nTSG defect-induced tumorigenesis. Among these, four TE and three TS miRNAs have human homologs. From this study, we also identified 29 miRNAs that individually had no obvious role in enhancing or alleviating tumorigenesis despite their changed expression levels in nTSG tumors. This systematic analysis, which includes both RNA-Seq and in vivo functional studies, helps to categorize miRNAs into different groups based on their expression profile and functional relevance in epithelial tumorigenesis, whereas the evolutionarily conserved TE and TS miRNAs provide potential therapeutic targets for epithelial tumor treatment.
Collapse
Affiliation(s)
- Zhiqiang Shu
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Yi-Chun Huang
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - William H Palmer
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA.,Current/Present address: Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Yoichiro Tamori
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA.,Current/Present address: Structural Biology Center, National Institute of Genetics and Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Japan
| | - Gengqiang Xie
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Hui Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Nan Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
35
|
Gu S, Sun D, Li X, Zhang Z. Alterations of miRNAs and Their Potential Roles in Arsenite-Induced Transformation of Human Bronchial Epithelial Cells. Genes (Basel) 2017; 8:genes8100254. [PMID: 28972549 PMCID: PMC5664104 DOI: 10.3390/genes8100254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/24/2017] [Accepted: 09/28/2017] [Indexed: 01/09/2023] Open
Abstract
The alterations of micro RNAs (miRNAs) and their potential roles in arsenite-induced tumorigenesis are still poorly understood. In this study, miRNA Array was used to detect the expression level of miRNAs in human bronchial epithelial (HBE) cells that were transformed by 2.5 μM arsenite for 13 weeks. These cells exhibited a neoplastic phenotype manifested by increased levels of cellular proliferation and migration and clone formation. Subsequently, 191 dysregulated miRNAs were identified to be associated with arsenite-induced transformation by miRNA Array. Among them, six miRNAs were validated by their expression levels with quantitative real-time polymerase chain reaction (qPCR), and 17 miRNAs were further explored via their target genes as well as regulatory network. Three databases, TargetMiner, miRDB, and TarBase, were used to predict the target genes of the 17 miRNAs, and a total of 954 common genes were sorted. Results of Gene Ontology (GO) analyses showed that the 954 genes were involved in diverse terms of GO categories, such as positive regulation of macroautophagy, epithelial cell maturation, and synaptic vesicle clustering. Moreover, results of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses demonstrated that most of these target genes were enriched in various cancer-related pathways, including non-small cell lung cancer, Wnt signaling pathway, cell cycle, and p53 signaling pathway. The miRNA-gene regulatory network, which was constructed by cytoscape software with miRNAs and their target genes, showed that miR-15b-5p, miR-106b-5p, and miR-320d were the core hubs. Collectively, our results provide new insights into miRNA-mediated mechanisms underlying arsenite-induced transformation, although more experimental verification is still needed to prove these predictions.
Collapse
Affiliation(s)
- Shiyan Gu
- Department of Environmental and Occupational Health, West China School of Public Health, Sichuan University, Chengdu 610041, China.
| | - Donglei Sun
- Department of Environmental and Occupational Health, West China School of Public Health, Sichuan University, Chengdu 610041, China.
| | - Xinyang Li
- Department of Environmental and Occupational Health, West China School of Public Health, Sichuan University, Chengdu 610041, China.
| | - Zunzhen Zhang
- Department of Environmental and Occupational Health, West China School of Public Health, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
36
|
PHLPPing through history: a decade in the life of PHLPP phosphatases. Biochem Soc Trans 2017; 44:1675-1682. [PMID: 27913677 DOI: 10.1042/bst20160170] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/12/2016] [Accepted: 08/16/2016] [Indexed: 01/30/2023]
Abstract
In the decade since their discovery, the PH domain leucine-rich repeat protein phosphatases (PHLPP) have emerged as critical regulators of cellular homeostasis, and their dysregulation is associated with various pathophysiologies, ranging from cancer to degenerative diseases, such as diabetes and heart disease. The two PHLPP isozymes, PHLPP1 and PHLPP2, were identified in a search for phosphatases that dephosphorylate Akt, and thus suppress growth factor signaling. However, given that there are over 200 000 phosphorylated residues in a single cell, and fewer than 50 Ser/Thr protein phosphatases, it is not surprising that PHLPP has many other cellular functions yet to be discovered, including a recently identified role in regulating the epigenome. Both PHLPP1 and PHLPP2 are commonly deleted in human cancers, supporting a tumor suppressive role. Conversely, the levels of one isozyme, PHLPP1, are elevated in diabetes. Thus, mechanisms to correctly control PHLPP activity in cells are critical for normal cellular homeostasis. This review summarizes the known functions of PHLPP and its role in disease.
Collapse
|
37
|
Mathur A, Pandey VK, Kakkar P. PHLPP: a putative cellular target during insulin resistance and type 2 diabetes. J Endocrinol 2017; 233:R185-R198. [PMID: 28428363 DOI: 10.1530/joe-17-0081] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/20/2017] [Indexed: 12/29/2022]
Abstract
Progressive research in the past decade converges to the impact of PHLPP in regulating the cellular metabolism through PI3K/AKT inhibition. Aberrations in PKB/AKT signaling coordinates with impaired insulin secretion and insulin resistance, identified during T2D, obesity and cardiovascular disorders which brings in the relevance of PHLPPs in the metabolic paradigm. In this review, we discuss the impact of PHLPP isoforms in insulin signaling and its associated cellular events including mitochondrial dysfunction, DNA damage, autophagy and cell death. The article highlights the plausible molecular targets that share the role during insulin-resistant states, whose understanding can be extended into treatment responses to facilitate targeted drug discovery for T2D and allied metabolic syndromes.
Collapse
Affiliation(s)
- Alpana Mathur
- Herbal Research LaboratoryCSIR-Indian Institute of Toxicology Research, Lucknow, India
- Babu Banarasi Das UniversityBBD City, Lucknow, India
| | - Vivek Kumar Pandey
- Herbal Research LaboratoryCSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative ResearchCSIR-IITR, Lucknow, India
| | - Poonam Kakkar
- Herbal Research LaboratoryCSIR-Indian Institute of Toxicology Research, Lucknow, India
- Babu Banarasi Das UniversityBBD City, Lucknow, India
- Academy of Scientific and Innovative ResearchCSIR-IITR, Lucknow, India
| |
Collapse
|
38
|
Luo K, Li Y, Yin Y, Li L, Wu C, Chen Y, Nowsheen S, Hu Q, Zhang L, Lou Z, Yuan J. USP49 negatively regulates tumorigenesis and chemoresistance through FKBP51-AKT signaling. EMBO J 2017; 36:1434-1446. [PMID: 28363942 DOI: 10.15252/embj.201695669] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 02/24/2017] [Accepted: 03/08/2017] [Indexed: 12/21/2022] Open
Abstract
The AKT pathway is a fundamental signaling pathway that mediates multiple cellular processes, such as cell proliferation and survival, angiogenesis, and glucose metabolism. We recently reported that the immunophilin FKBP51 is a scaffolding protein that can enhance PHLPP-AKT interaction and facilitate PHLPP-mediated dephosphorylation of AKT at Ser473, negatively regulating AKT activation. However, the regulation of FKBP51-PHLPP-AKT pathway remains unclear. Here we report that a deubiquitinase, USP49, is a new regulator of the AKT pathway. Mechanistically, USP49 deubiquitinates and stabilizes FKBP51, which in turn enhances PHLPP's capability to dephosphorylate AKT Furthermore, USP49 inhibited pancreatic cancer cell proliferation and enhanced cellular response to gemcitabine in a FKBP51-AKT-dependent manner. Clinically, decreased expression of USP49 in patients with pancreatic cancer was associated with decreased FKBP51 expression and increased AKT phosphorylation. Overall, our findings establish USP49 as a novel regulator of AKT pathway with a critical role in tumorigenesis and chemo-response in pancreatic cancer.
Collapse
Affiliation(s)
- Kuntian Luo
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Yunhui Li
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yujiao Yin
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lei Li
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chenming Wu
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuping Chen
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Somaira Nowsheen
- Medical Scientist Training Program, Mayo Clinic School of Medicine, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Qi Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Lizhi Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Jian Yuan
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China .,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW The goal of this review is to delineate the following: (1) the primary means of inorganic arsenic (iAs) exposure for human populations, (2) the adverse public health outcomes associated with chronic iAs exposure, (3) the pathophysiological connection between arsenic and type 2 diabetes (T2D), and (4) the incipient evidence for microRNAs as candidate mechanistic links between iAs exposure and T2D. RECENT FINDINGS Exposure to iAs in animal models has been associated with the dysfunction of several different cell types and tissues, including liver and pancreatic islets. Many microRNAs that have been identified as responsive to iAs exposure under in vitro and/or in vivo conditions have also been shown in independent studies to regulate processes that underlie T2D etiology, such as glucose-stimulated insulin secretion from pancreatic beta cells. Defects in insulin secretion could be, in part, associated with aberrant microRNA expression and activity. Additional in vivo studies need to be performed with standardized concentrations and durations of arsenic exposure in order to evaluate rigorously microRNAs as molecular drivers of iAs-associated diabetes.
Collapse
Affiliation(s)
- Rowan Beck
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Miroslav Styblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Praveen Sethupathy
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
40
|
Sun B, Xue J, Li J, Luo F, Chen X, Liu Y, Wang Q, Qi C, Zou Z, Zhang A, Liu Q. Circulating miRNAs and their target genes associated with arsenism caused by coal-burning. Toxicol Res (Camb) 2017; 6:162-172. [PMID: 30090486 PMCID: PMC6062399 DOI: 10.1039/c6tx00428h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/20/2017] [Indexed: 12/26/2022] Open
Abstract
Endemic arsenism, caused by burning coal containing high levels of arsenic, is found only in the Guizhou and Shanxi Provinces of China. Dysregulated microRNAs (miRNAs), detected in the blood, are emerging as promising biomarkers. At present, little is known about the change and clinical efficacy of circulating miRNAs in patients with endemic arsenism produced by burning of coal. Here, we determined, by using TaqMan Human miRNA Array Chips, the differential expression of plasma miRNAs between patients with arsenism caused by coal-burning and a control group. Four increased miRNAs (miR-21, miR-145, miR-155, and miR-191) were verified in a larger sample by quantitative real-time PCR. Furthermore, bioinformatics and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were used to associate changes in plasma levels of the miRNAs with their functions and their effects on various pathways. The results of chip array assays show that the levels of miR-21, miR-141, miR-148a, miR-145, miR-155, miR-191, miR-218, and miR-491 were most prominently increased and that the levels of miR-200b, miR-200c, miR-26, and miR-34c were decreased. The qRT-PCR results confirm that the circulating levels of miR-21, miR-145, miR-155, and miR-191 are increased in patients with arsenism caused by coal-burning. KEGG analyses show that these miRNAs inhibit the target genes of pathways related to immune inflammation, oxidative stress, and DNA damage repair. Therefore, the four miRNAs may be biomarkers of endemic arsenism caused by coal-burning. Further studies with larger samples should be performed to confirm these findings and to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Baofei Sun
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang 550025 , Guizhou , China .
| | - Junchao Xue
- Institute of Toxicology , School of Public Health , Nanjing Medical University , Nanjing 211166 , Jiangsu , China . ; ; Tel: +86-25-8686-8424
| | - Jun Li
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang 550025 , Guizhou , China .
| | - Fei Luo
- Institute of Toxicology , School of Public Health , Nanjing Medical University , Nanjing 211166 , Jiangsu , China . ; ; Tel: +86-25-8686-8424
| | - Xiong Chen
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang 550025 , Guizhou , China .
| | - Yonglian Liu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang 550025 , Guizhou , China .
| | - Qingling Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang 550025 , Guizhou , China .
| | - Caihua Qi
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang 550025 , Guizhou , China .
| | - Zhonglan Zou
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang 550025 , Guizhou , China .
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , Department of Toxicology , School of Public Health , Guizhou Medical University , Guiyang 550025 , Guizhou , China .
| | - Qizhan Liu
- Institute of Toxicology , School of Public Health , Nanjing Medical University , Nanjing 211166 , Jiangsu , China . ; ; Tel: +86-25-8686-8424
| |
Collapse
|
41
|
Regulation of PI3K effector signalling in cancer by the phosphoinositide phosphatases. Biosci Rep 2017; 37:BSR20160432. [PMID: 28082369 PMCID: PMC5301276 DOI: 10.1042/bsr20160432] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 12/24/2022] Open
Abstract
Class I phosphoinositide 3-kinase (PI3K) generates phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) at the plasma membrane in response to growth factors, activating a signalling cascade that regulates many cellular functions including cell growth, proliferation, survival, migration and metabolism. The PI3K pathway is commonly dysregulated in human cancer, and drives tumorigenesis by promoting aberrant cell growth and transformation. PtdIns(3,4,5)P3 facilitates the activation of many pleckstrin homology (PH) domain-containing proteins including the serine/threonine kinase AKT. There are three AKT isoforms that are frequently hyperactivated in cancer through mutation, amplification or dysregulation of upstream regulatory proteins. AKT isoforms have converging and opposing functions in tumorigenesis. PtdIns(3,4,5)P3 signalling is degraded and terminated by phosphoinositide phosphatases such as phosphatase and tensin homologue (PTEN), proline-rich inositol polyphosphate 5-phosphatase (PIPP) (INPP5J) and inositol polyphosphate 4-phosphatase type II (INPP4B). PtdIns(3,4,5)P3 is rapidly hydrolysed by PIPP to generate phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2), which is further hydrolysed by INPP4B to form phosphatidylinositol 3-phosphate (PtdIns3P). PtdIns(3,4)P2 and PtdIns3P are also important signalling molecules; PtdIns(3,4)P2 together with PtdIns(3,4,5)P3 are required for maximal AKT activation and PtdIns3P activates PI3K-dependent serum and glucocorticoid-regulated kinase (SGK3) signalling. Loss of Pten, Pipp or Inpp4b expression or function promotes tumour growth in murine cancer models through enhanced AKT isoform-specific signalling. INPP4B inhibits PtdIns(3,4)P2-mediated AKT activation in breast and prostate cancer; however, INPP4B expression is increased in acute myeloid leukaemia (AML), melanoma and colon cancer where it paradoxically promotes cell proliferation, transformation and/or drug resistance. This review will discuss how PTEN, PIPP and INPP4B distinctly regulate PtdIns(3,4,5)P3 signalling downstream of PI3K and how dysregulation of these phosphatases affects cancer outcomes.
Collapse
|
42
|
Beezhold K, Klei LR, Barchowsky A. Regulation of cyclin D1 by arsenic and microRNA inhibits adipogenesis. Toxicol Lett 2016; 265:147-155. [PMID: 27932253 DOI: 10.1016/j.toxlet.2016.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/22/2016] [Accepted: 12/04/2016] [Indexed: 12/19/2022]
Abstract
Low-dose chronic exposure to arsenic in drinking water represents a global public health concern with established risks for metabolic and cardiovascular disease, as well as cancer. While the linkage between arsenic and disease is strong, further understanding of the molecular mechanisms of its pathogenicity is required. Previous reports demonstrated the ability of arsenic to interfere with adipogenesis, which may mediate its effects in promoting metabolic disease. We hypothesized that microRNA are important regulators of most if not all mesenchymal stem cell processes that are dysregulated by arsenic exposure to impair lipogenesis. Arsenic increased the expression of miR-29b in white adipose tissue, as well as human mesenchymal stem cells (hMSCs) isolated from adipose tissue. Exposing hMSCs to arsenic increased abundance of miR-29b and cyclin D1 to promote proliferation over differentiation. Paradoxically, inhibition of miR-29b enhanced the inhibitory effect of arsenic on differentiation. This paradox was attributed to a requirement for miR-29 in regulating cyclin D1 expression as stable inhibition of miR-29b eliminated the cyclic pattern of cyclin D1 expression. Temporal regulation of cyclin D1 is critical for adipogenic differentiation, and the data suggest a paradigm where arsenic disruption of miR-29b regulatory pathways impairs adipogenic differentiation and ultimately adipose metabolic homeostasis.
Collapse
Affiliation(s)
- Kevin Beezhold
- Department of Environmental and Occupational Health, Graduate School of Public Health, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Linda R Klei
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, Graduate School of Public Health, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
43
|
Pogribny IP, Beland FA, Rusyn I. The role of microRNAs in the development and progression of chemical-associated cancers. Toxicol Appl Pharmacol 2016; 312:3-10. [DOI: 10.1016/j.taap.2015.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/16/2015] [Accepted: 11/23/2015] [Indexed: 01/07/2023]
|
44
|
Pratheeshkumar P, Son YO, Divya SP, Wang L, Zhang Z, Shi X. Oncogenic transformation of human lung bronchial epithelial cells induced by arsenic involves ROS-dependent activation of STAT3-miR-21-PDCD4 mechanism. Sci Rep 2016; 6:37227. [PMID: 27876813 PMCID: PMC5120334 DOI: 10.1038/srep37227] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/26/2016] [Indexed: 12/28/2022] Open
Abstract
Arsenic is a well-documented human carcinogen. The present study explored the role of the onco-miR, miR-21 and its target protein, programmed cell death 4 (PDCD4) in arsenic induced malignant cell transformation and tumorigenesis. Our results showed that treatment of human bronchial epithelial (BEAS-2B) cells with arsenic induces ROS through p47phox, one of the NOX subunits that is the key source of arsenic-induced ROS. Arsenic exposure induced an upregulation of miR-21 expression associated with inhibition of PDCD4, and caused malignant cell transformation and tumorigenesis of BEAS-2B cells. Indispensably, STAT3 transcriptional activation by IL-6 is crucial for the arsenic induced miR-21 increase. Upregulated miR-21 levels and suppressed PDCD4 expression was also observed in xenograft tumors generated with chronic arsenic exposed BEAS-2B cells. Stable shut down of miR-21, p47phox or STAT3 and overexpression of PDCD4 or catalase in BEAS-2B cells markedly inhibited the arsenic induced malignant transformation and tumorigenesis. Similarly, silencing of miR-21 or STAT3 and forced expression of PDCD4 in arsenic transformed cells (AsT) also inhibited cell proliferation and tumorigenesis. Furthermore, arsenic suppressed the downstream protein E-cadherin expression and induced β-catenin/TCF-dependent transcription of uPAR and c-Myc. These results indicate that the ROS-STAT3-miR-21-PDCD4 signaling axis plays an important role in arsenic -induced carcinogenesis.
Collapse
Affiliation(s)
- Poyil Pratheeshkumar
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Young-Ok Son
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Sasidharan Padmaja Divya
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Lei Wang
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Zhuo Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Xianglin Shi
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| |
Collapse
|
45
|
Mirra P, Nigro C, Prevenzano I, Procopio T, Leone A, Raciti GA, Andreozzi F, Longo M, Fiory F, Beguinot F, Miele C. The role of miR-190a in methylglyoxal-induced insulin resistance in endothelial cells. Biochim Biophys Acta Mol Basis Dis 2016; 1863:440-449. [PMID: 27864140 DOI: 10.1016/j.bbadis.2016.11.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/17/2016] [Accepted: 11/14/2016] [Indexed: 01/08/2023]
Abstract
Methylglyoxal (MGO) is a reactive dicarbonyl produced as by-product of glycolysis, and its formation is heightened in hyperglycaemia. MGO plasma levels are two-fold to five-fold increased in diabetics and its accumulation promotes the progression of vascular complications. Impairment of endothelium-derived nitric oxide represents a common feature of endothelial dysfunction in diabetics. We previously demonstrated that MGO induces endothelial insulin resistance. Increasing evidence shows that high glucose and MGO modify vascular expression of several microRNAs (miRNAs), suggesting their potential role in the impairment of endothelial insulin sensitivity. The aim of the study is to investigate whether miRNAs may be involved in MGO-induced endothelial insulin resistance in endothelial cells. MGO reduces the expression of miR-190a both in mouse aortic endothelial cells (MAECs) and in aortae from mice knocked-down for glyoxalase-1. miR-190a inhibition impairs insulin sensitivity, whereas its overexpression prevents the MGO-induced insulin resistance in MAECs. miR-190a levels are not affected by the inhibition of ERK1/2 phosphorylation. Conversely, ERK1/2 activation is sustained by miR-190a inhibitor and the MGO-induced ERK1/2 hyper-activation is reduced by miR-190a mimic transfection. Similarly, protein levels of the upstream KRAS are increased by both MGO and miR-190a inhibitor, and these levels are reduced by miR-190a mimic transfection. Interestingly, silencing of KRAS is able to rescue the MGO-impaired activation of IRS1/Akt/eNOS pathway in response to insulin. In conclusion, miR-190a down-regulation plays a role in MGO-induced endothelial insulin resistance by increasing KRAS. This study highlights miR-190a as new candidate for the identification of strategies aiming at ameliorating vascular function in diabetes.
Collapse
Affiliation(s)
- Paola Mirra
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Cecilia Nigro
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Immacolata Prevenzano
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Teresa Procopio
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Alessia Leone
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Gregory Alexander Raciti
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna-Graecia, Catanzaro, Italy
| | - Michele Longo
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Francesca Fiory
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Francesco Beguinot
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Claudia Miele
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
46
|
Nath Roy D, Goswami R, Pal A. Nanomaterial and toxicity: what can proteomics tell us about the nanotoxicology? Xenobiotica 2016; 47:632-643. [PMID: 27414072 DOI: 10.1080/00498254.2016.1205762] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
1. In the last few years, a substantial scientific work is focused to identify the potential toxicity of nanomaterials by studying the cellular pathways under in vitro and in vivo conditions. Owing to high surface area to volume ratio nanoparticles (NPs) can pass through cell membranes which might be responsible for creating adverse interactions in biological systems. Simultaneously, researchers are also interested to assess the fate of NP inside the living system, which may lead to altered protein expression as well as protein corona formation. 2. According to published reports, NP-mediated toxicity involves altered cellular system including cell morphology, cell differentiation, cell metabolism, cell mobility, cellular immunity, which is derived from the side effects of nanoformulation and leading to apoptosis and necrosis. These results indicate the existence of potential toxic effect of these particles to human health. 3. The advent of proteomics with sophisticated technical improvement coupled with advanced bioinformatics has led to identify altered proteins due to nanomaterial exposure that could provide a new avenue to biomarker discovery. 4. This review aims to provide the current status of safe production and use of nanomaterials.
Collapse
Affiliation(s)
- Dijendra Nath Roy
- a Department of Bioengineering , National Institute of Technology , Agartala , Tripura , India
| | - Ritobrata Goswami
- b Division of Biological & Life Sciences , School of Arts & Sciences, Ahmedabad University , Ahmedabad , Gujarat , India , and
| | - Ayantika Pal
- c Department of Human Physiology , Tripura University , Suryamaninagar , Tripura , India
| |
Collapse
|
47
|
Jia WZ, Yu T, An Q, Yang H, Zhang Z, Liu X, Xiao G. MicroRNA-190 regulates FOXP2 genes in human gastric cancer. Onco Targets Ther 2016; 9:3643-51. [PMID: 27382302 PMCID: PMC4920243 DOI: 10.2147/ott.s103682] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Objective To investigate how microRNA-190 (miR-190) regulates FOXP2 genes in gastric cancer (GC) cell line SGC7901. Methods We identified that miR-190 could target FOXP2 genes by using dual luciferase enzyme assay. Precursor fragment transfection of miR-190 was performed with GC cell line SGC7901 and human gastric mucosal cell line GES-1. miR-190 expression was detected by reverse transcription-polymerase chain reaction (RT-PCR) and FOXP2 protein expression was measured by Western blotting. Results FOXP2-3′-untranslated region (UTR) in miR-190 transfection group was significantly decreased as compared with other groups. There were no significant differences in fluorescence signals of FOXP2mut-3′-UTR in each group. Therefore, it was assumed that miR-190 can target FOXP2 genes. Through RT-PCR verification, it was observed that the expression level of miR-190 was significantly higher in GC cell line SGC7901 than in human gastric mucosa cell line GES-1 after transfection with miR-190 mimics. The expression level of miR-190 was significantly higher in GES-1 cells than in SGC7901 cells after transfection with miR-190 inhibitors. Western blotting results showed the expression level of FOXP2 was significantly lower in GC cell line SGC7901 than in GES-1 cells. Compared with blank, mimics control, and inhibitors control groups, the miR-190 mimics group showed significantly enhanced proliferation, migration, and invasion abilities, while miR-190 inhibitors group showed decreased abilities toward proliferation, migration, and invasion (P<0.05). The transcription level of miR-190 and the expression level of FOXP2 in tumor tissues and adjacent normal tissues in GC patients were verified to be consistent with those of cell line experiments. Conclusion Upregulation of miR-190 can lead to downregulation of FOXP2 protein expression. miR-190 may serve as a potential target for GC diagnosis.
Collapse
Affiliation(s)
| | - Tao Yu
- Department of General Surgery
| | - Qi An
- Department of General Surgery
| | | | - Zhu Zhang
- Department of Gastroenterology, Beijing Hospital, Beijing, People's Republic of China
| | - Xiao Liu
- Department of Gastroenterology, Beijing Hospital, Beijing, People's Republic of China
| | | |
Collapse
|
48
|
miR-190 Enhances HIF-Dependent Responses to Hypoxia in Drosophila by Inhibiting the Prolyl-4-hydroxylase Fatiga. PLoS Genet 2016; 12:e1006073. [PMID: 27223464 PMCID: PMC4880290 DOI: 10.1371/journal.pgen.1006073] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/30/2016] [Indexed: 02/07/2023] Open
Abstract
Cellular and systemic responses to low oxygen levels are principally mediated by Hypoxia Inducible Factors (HIFs), a family of evolutionary conserved heterodimeric transcription factors, whose alpha- and beta-subunits belong to the bHLH-PAS family. In normoxia, HIFα is hydroxylated by specific prolyl-4-hydroxylases, targeting it for proteasomal degradation, while in hypoxia the activity of these hydroxylases decreases due to low oxygen availability, leading to HIFα accumulation and expression of HIF target genes. To identify microRNAs required for maximal HIF activity, we conducted an overexpression screen in Drosophila melanogaster, evaluating the induction of a HIF transcriptional reporter. miR-190 overexpression enhanced HIF-dependent biological responses, including terminal sprouting of the tracheal system, while in miR-190 loss of function embryos the hypoxic response was impaired. In hypoxic conditions, miR-190 expression was upregulated and required for induction of HIF target genes by directly inhibiting the HIF prolyl-4-hydroxylase Fatiga. Thus, miR-190 is a novel regulator of the hypoxia response that represses the oxygen sensor Fatiga, leading to HIFα stabilization and enhancement of hypoxic responses.
Collapse
|
49
|
Wang M, Ge X, Zheng J, Li D, Liu X, Wang L, Jiang C, Shi Z, Qin L, Liu J, Yang H, Liu LZ, He J, Zhen L, Jiang BH. Role and mechanism of miR-222 in arsenic-transformed cells for inducing tumor growth. Oncotarget 2016; 7:17805-14. [PMID: 26909602 PMCID: PMC4951251 DOI: 10.18632/oncotarget.7525] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 01/14/2016] [Indexed: 12/26/2022] Open
Abstract
High levels of arsenic in drinking water, soil, and air are associated with the higher incidences of several kinds of cancers worldwide, but the mechanism is yet to be fully discovered. Recently, a number of evidences show that dysregulation of microRNAs (miRNAs) induces carcinogenesis. In this study, we found miR-222 was upregulated in arsenic-transformed human lung epithelial BEAS-2B cells (As-T cells). Anti-miR-222 inhibitor treatment decreased cell proliferation, migration, tube formation, and induced apoptosis. In addition, anti-miR-222 inhibitor expression decreased tumor growth in vivo. We also found that inhibition of miR-222 induced the expression of its direct targets ARID1A and phosphatase and tensin homolog deleted on chromosome 10 (PTEN), and activated apoptosis of As-T cells in part through ARID1A downregulation. These results indicate that miR-222 plays an important role in arsenic-induced tumor growth.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Reproductive Medicine, Department of Pathology, and Collaborative Innovation Center for Cancer Personalized Medicine, Cancer Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Ge
- State Key Laboratory of Reproductive Medicine, Department of Pathology, and Collaborative Innovation Center for Cancer Personalized Medicine, Cancer Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jitai Zheng
- State Key Laboratory of Reproductive Medicine, Department of Pathology, and Collaborative Innovation Center for Cancer Personalized Medicine, Cancer Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dongmei Li
- State Key Laboratory of Reproductive Medicine, Department of Pathology, and Collaborative Innovation Center for Cancer Personalized Medicine, Cancer Center, Nanjing Medical University, Nanjing, Jiangsu, China
- Ninggao Personalized Medicine and Technology Innovation Center, Nanjing, Jiangsu, China
| | - Xue Liu
- State Key Laboratory of Reproductive Medicine, Department of Pathology, and Collaborative Innovation Center for Cancer Personalized Medicine, Cancer Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lin Wang
- State Key Laboratory of Reproductive Medicine, Department of Pathology, and Collaborative Innovation Center for Cancer Personalized Medicine, Cancer Center, Nanjing Medical University, Nanjing, Jiangsu, China
- Ninggao Personalized Medicine and Technology Innovation Center, Nanjing, Jiangsu, China
| | - Chengfei Jiang
- State Key Laboratory of Reproductive Medicine, Department of Pathology, and Collaborative Innovation Center for Cancer Personalized Medicine, Cancer Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhumei Shi
- State Key Laboratory of Reproductive Medicine, Department of Pathology, and Collaborative Innovation Center for Cancer Personalized Medicine, Cancer Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lianju Qin
- Center of Clinical Reproductive Medicine, Jiangsu Province Hospital, Nanjing, Jiangsu, China
| | - Jiayin Liu
- Center of Clinical Reproductive Medicine, Jiangsu Province Hospital, Nanjing, Jiangsu, China
| | - Hushan Yang
- Division of Population Science, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ling-Zhi Liu
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jun He
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Linlin Zhen
- Department of Breast and Thyroid Surgery, Huai'an First People's Hospital, Huai'an, Jiangsu, China
| | - Bing-Hua Jiang
- State Key Laboratory of Reproductive Medicine, Department of Pathology, and Collaborative Innovation Center for Cancer Personalized Medicine, Cancer Center, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
50
|
Li L, Lu Y, Stemmer PM, Chen F. Filamin A phosphorylation by Akt promotes cell migration in response to arsenic. Oncotarget 2016; 6:12009-19. [PMID: 25944616 PMCID: PMC4494919 DOI: 10.18632/oncotarget.3617] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/14/2015] [Indexed: 12/19/2022] Open
Abstract
We had previously reported that trivalent arsenic (As3+), a well-known environmental carcinogen, induces phosphorylation of several putative Akt substrates. In the present report, we characterized one of these substrates by immunoprecipitation and proteomics analysis. The results indicate that a cytoskeleton remodeling protein, filamin A, with a molecular weight around 280 kDa, is phosphorylated by Akt in HEK-293 cells treated with As3+, which was also confirmed in human bronchial epithelial cell line, BEAS-2B cells. Additional biochemical and biological studies revealed that serine 2152 (S2152) of filamin A is phosphorylated by activated Akt in the cells treated with As3+. To further confirm the importance of Akt-dependent filamin A S2152 phosphorylation in As3+-induced cell migration, we over-expressed either wild type filamin A or the mutated filamin A in which the S2152 was substituted with alanine (S2152A). The capability of cell migration was reduced significantly in the cells expressing the mutated filamin A (S2152A). Clinically, we found that increased expression of filamin A predicts poorer overall survival of the lung cancer patients with adenocarcinoma. Thus, these data suggest that Akt dependent filamin A phosphorylation is one of the key events in mediating As3+-induced carcinogenesis. Antagonizing Akt signaling can ameliorate As3+-induced filamin A phosphorylation and cell migration, which may serve as a molecular targeting strategy for malignancies associated with environmental As3+ exposure.
Collapse
Affiliation(s)
- Lingzhi Li
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Yongju Lu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Paul M Stemmer
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.,The Proteomics Core and Institute of Environmental Health Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|