1
|
Lonstein JS, Vitale EM, Olekanma D, McLocklin A, Pence N, Bredewold R, Veenema AH, Johnson AW, Burt SA. Anxiety, aggression, reward sensitivity, and forebrain dopamine receptor expression in a laboratory rat model of early-life disadvantage. Dev Psychobiol 2023; 65:e22421. [PMID: 37860907 DOI: 10.1002/dev.22421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/24/2023] [Accepted: 08/17/2023] [Indexed: 10/21/2023]
Abstract
Despite early-life disadvantage (ELD) in humans being a highly heterogenous construct, it consistently predicts negative neurobehavioral outcomes. The numerous environmental contributors and neural mechanisms underlying ELD remain unclear, though. We used a laboratory rat model to evaluate the effects of limited resources and/or heavy metal exposure on mothers and their adult male and female offspring. Dams and litters were chronically exposed to restricted (1-cm deep) or ample (4-cm deep) home cage bedding postpartum, with or without lead acetate (0.1%) in their drinking water from insemination through 1-week postweaning. Restricted-bedding mothers showed more pup-directed behaviors and behavioral fragmentation, while lead-exposed mothers showed more nestbuilding. Restricted bedding-raised male offspring showed higher anxiety and aggression. Either restricted bedding or lead exposure impaired goal-directed performance in a reinforcer devaluation task in females, whereas restricted bedding alone disrupted it in males. Lead exposure, but not limited bedding, also reduced sucrose reward sensitivity in a progressive ratio task in females. D1 and D2 receptor mRNA in the medial prefrontal cortex and nucleus accumbens (NAc) were each affected by the early-life treatments and differently between the sexes. Most notably, adult males (but not females) exposed to both early-life treatments had greatly increased D1 receptor mRNA in the NAc core. These results illuminate neural mechanisms through which ELD threatens neurobehavioral development and highlight forebrain dopamine as a factor.
Collapse
Affiliation(s)
- Joseph S Lonstein
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Erika M Vitale
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Doris Olekanma
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Andrew McLocklin
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Nathan Pence
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Remco Bredewold
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Alexa H Veenema
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Alexander W Johnson
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - S Alexandra Burt
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Eckard ML, Welle K, Sobolewski M, Cory-Slechta DA. A behavioral timing intervention upregulates striatal serotonergic markers and reduces impulsive action in adult male mice. Behav Brain Res 2023; 440:114267. [PMID: 36539165 PMCID: PMC9839656 DOI: 10.1016/j.bbr.2022.114267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Many studies support the hypothesis that time-based interventions reduce impulsive behavior in rodents. However, few studies have directly assessed 1) how such interventions affect impulsive action rather than impulsive choice, 2) if intervention effects differ by sex, and 3) how time-based interventions affect neurochemistry in regions mediating decision-making and reward. Thus, we assessed how a fixed-interval (FI) intervention initiated during late adolescence and extending into adulthood affected dopaminergic and serotonergic analytes in the frontal cortex and striatum and subsequent impulsive action in adult male and female mice. Beginning on postnatal day (PND) 45, mice were either trained on a progressive series of FI schedules (FI 20, 40, & 60 s) or remained in the home cage. Following the intervention, increases in striatal serotonergic analytes were found in FI-exposed males and females (n = 8/sex/group) with few changes found in the frontal cortex. Impulsive action was assessed in the remaining mice (n = 10/sex/group) using a fixed-ratio waiting-for-reward (FR-wait) task in which completion of an FR-25 component initiated a "free" pellet component in which pellets were delivered at increasing intervals according to a fixed delay increment that varied across sessions. Responses reset the additive delay and initiated a new FR-25 component. FI-exposed males, but not females, showed fewer delay resets and no-wait resets relative to control mice. Importantly, FI-exposure did not affect discrimination reversal performance in either sex. These data suggest that time-based interventions may reduce impulsive action in addition to impulsive choice perhaps with increased male sensitivity. Additionally, time-based interventions appear to operate through striatal serotonergic augmentation.
Collapse
Affiliation(s)
- M L Eckard
- Department of Psychology, Radford University, Radford, VA, USA; Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - K Welle
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, NY, USA
| | - M Sobolewski
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - D A Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
3
|
Clougherty JE. Invited Perspective: Temporality and Recursive Dynamics in Stress-Pollution Interactions. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:121302. [PMID: 36542477 PMCID: PMC9770040 DOI: 10.1289/ehp12416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Jane E. Clougherty
- Dornsife School of Public Health, Drexel University, Philadelphia, Pennsylvania, USA
- Urban Health Collaborative (UHC), Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Clougherty JE, Humphrey JL, Kinnee EJ, Robinson LF, McClure LA, Kubzansky LD, Reid CE. Social Susceptibility to Multiple Air Pollutants in Cardiovascular Disease. Res Rep Health Eff Inst 2021; 2021:1-71. [PMID: 36004603 PMCID: PMC9403800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Abstract
INTRODUCTION Cardiovascular disease (CVD) is the leading cause of death in the United States, and substantial research has linked ambient air pollution to elevated rates of CVD etiology and events. Much of this research identified increased effects of air pollution in lower socioeconomic position (SEP) communities, where pollution exposures are also often higher. The complex spatial confounding between air pollution and SEP makes it very challenging, however, to disentangle the impacts of these very different exposure types and to accurately assess their interactions. The specific causal components (i.e., specific social stressors) underlying this SEP-related susceptibility remain unknown, because there are myriad pathways through which poverty and/or lower-SEP conditions may influence pollution susceptibility - including diet, smoking, coexposures in the home and occupational environments, health behaviors, and healthcare access. Growing evidence suggests that a substantial portion of SEP-related susceptibility may be due to chronic psychosocial stress - given the known wide-ranging impacts of chronic stress on immune, endocrine, and metabolic function - and to a higher prevalence of unpredictable chronic stressors in many lower-SEP communities, including violence, job insecurity, and housing instability. As such, elucidating susceptibility to pollution in the etiology of CVD, and in the risk of CVD events, has been identified as a research priority. This interplay among social and environmental conditions may be particularly relevant for CVD, because pollution and chronic stress both impact inflammation, metabolic function, oxidative stress, hypertension, atherosclerosis, and other processes relevant to CVD etiology. Because pollution exposures are often spatially patterned by SEP, disentangling their effects - and quantifying any interplay - is especially challenging. Doing so, however, would help to improve our ability to identify and characterize susceptible populations and to improve our understanding of how community stressors may alter responses to multiple air pollutants. More clearly characterizing susceptible populations will improve our ability to design and target interventions more effectively (and cost-effectively) and may reveal greater benefits of pollution reduction in susceptible communities, strengthening cost-benefit and accountability analyses, ultimately reducing the disproportionate burden of CVD and reducing health disparities. METHODS In the current study, we aimed to quantify combined effects of multiple pollutants and stressor exposures on CVD events, using a number of unique datasets we have compiled and verified, including the following. 1. Poverty metrics, violent crime rates, a composite socioeconomic deprivation index (SDI), an index of racial and economic segregation, noise disturbance metrics, and three composite spatial factors produced from a factor analysis of 27 community stressors. All indicators have citywide coverage and were verified against individual reports of stress and stressor exposure, in citywide focus groups and surveys. 2. Spatial surfaces for multiple pollutants from the New York City (NYC) Community Air Survey (NYCCAS), which monitored multiple pollutants year-round at 150 sites and used land use regression (LUR) modeling to estimate fine-scale (100-m) intra-urban spatial variance in fine particles (PM2.5), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3). 3. Daily data and time-trends derived from all U.S. Environmental Protection Agency (EPA) Air Quality System (AQS) monitors in NYC for 2005-2011, which we combined with NYCCAS surfaces to create residence- and day-specific spatiotemporal exposure estimates. 4. Complete data on in- and out-patient unscheduled CVD events presented in NYC hospitals for 2005-2011 (n = 1,113,185) from the New York State (NYS) Department of Health's Statewide Planning and Research Cooperative System (SPARCS). In the study, we quantified relationships between multiple pollutant exposures and both community CVD event rates and individual risk of CVD events in NYC and tested whether pollution-CVD associations varied by community SEP and social stressor exposures. We hypothesized (1) that greater chronic community-level SEP, stressor, and pollution exposures would be associated with higher community CVD rates; (2) that spatiotemporal variations in multiple pollutants would be associated with excess risk of CVD events; and (3) that pollution-CVD associations would be stronger in communities of lower SEP or higher stressor exposures. RESULTS To first understand the separate and combined associations with CVD for both stressors and pollutants measured at the same spatial and temporal scale of resolution, we used ecological cross-sectional models to examine spatial relationships between multiple chronic pollutant and stressor exposures and age-adjusted community CVD rates. Using census-tract-level annual averages (n = 2,167), we compared associations with CVD rates for multiple pollutant concentrations and social stressors. We found that associations with community CVD rates were consistently stronger for social stressors than for pollutants, in terms of both magnitude and significance. We note, however, that this result may be driven by the relatively greater variation (on a proportional basis) for stressors than for pollutants in NYC. We also tested effect modification of pollutant-CVD associations by each social stressor and found evidence of stronger associations for NO2, PM2.5, and wintertime SO2 with CVD rates, particularly across quintiles of increasing community violence or assault rates (P trend < 0.0001). To examine individual-level associations between spatiotemporal exposures to multiple pollutants and the risk of CVD events, across multiple lag days, we examined the combined effects of multiple pollutant exposures, using spatiotemporal (day- and residence-specific) pollution exposure estimates and hospital data on individual CVD events in case-crossover models, which inherently adjust for nontime-varying individual confounders (e.g., sex and race) and comorbidities. We found consistent significant relationships only for same-day pollutant exposures and the risk of CVD events, suggesting very acute impacts of pollution on CVD risk. Associations with CVD were positive for NO2, PM2.5, and SO2, as hypothesized, and we found inverse associations for O3 (a secondary pollutant chemically decreased ["scavenged"] by fresh emissions that, in NYC, displays spatial and temporal patterns opposite those of NO2). Finally, to test effect modification by chronic community social stressors on the relationships between spatiotemporal pollution measures and the risk of CVD events, we used individual-level case-crossover models, adding interaction terms with categorical versions of each social stressor. We found that associations between NO2 and the risk of CVD events were significantly elevated only in communities with the highest exposures to social stressors (i.e., in the highest quintiles of poverty, socioeconomic deprivation, violence, or assault). The largest positive associations for PM2.5 and winter SO2 were generally found in the highest-stressor communities but were not significant in any quintile. We again found inverse associations for O3, which were likewise stronger for individuals living in communities with greater stressor exposures. CONCLUSIONS In ecological models, we found stronger relationships with community CVD rates for social stressors than for pollutant exposures. In case-crossover analyses, higher exposures to NO2, PM2.5, and SO2 were associated with greater excess risk of CVD events but only on the case day (there were no consistent significant lagged-day effects). In effect-modification analyses at both the community and individual level, we found evidence of stronger pollution-CVD associations in communities with higher stressor exposures. Given substantial spatial confounding across multiple social stressors, further research is needed to disentangle these effects in order to identify the predominant social stressors driving this observed differential susceptibility.
Collapse
Affiliation(s)
- J E Clougherty
- Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, Pennsylvania
| | - J L Humphrey
- Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, Pennsylvania
| | - E J Kinnee
- University of Pittsburgh Center for Social & Urban Research, Pittsburgh, Pennsylvania
| | - L F Robinson
- Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, Pennsylvania
| | - L A McClure
- Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, Pennsylvania
| | - L D Kubzansky
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - C E Reid
- University of Colorado, Boulder, Colorado
| |
Collapse
|
5
|
Sobolewski M, Abston K, Conrad K, Marvin E, Harvey K, Susiarjo M, Cory-Slechta DA. Lineage- and Sex-Dependent Behavioral and Biochemical Transgenerational Consequences of Developmental Exposure to Lead, Prenatal Stress, and Combined Lead and Prenatal Stress in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:27001. [PMID: 32073883 PMCID: PMC7064322 DOI: 10.1289/ehp4977] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Lead (Pb) exposure and prenatal stress (PS) during development are co-occurring risk factors with shared biological substrates. PS has been associated with transgenerational passage of altered behavioral phenotypes, whereas the transgenerational behavioral or biochemical consequences of Pb exposure, and modification of any such effects by PS, is unknown. OBJECTIVES The present study sought to determine whether Pb, PS, or combined Pb and PS exposures produced adverse transgenerational consequences on brain and behavior. METHODS Maternal Pb and PS exposures were carried out in F0 mice. Outside breeders were used at each subsequent breeding, producing four F1-F2 lineages: [F1 female-F2 female (FF), FM (male), MF, and MM]. F3 offspring were generated from each of these lineages and examined for outcomes previously found to be altered by Pb, PS, or combined Pb and PS in F1 offspring: behavioral performance [fixed-interval (FI) schedule of food reward, locomotor activity, and anxiety-like behavior], dopamine function [striatal expression of tyrosine hydroxylase (Th)], glucocorticoid receptor (GR) and plasma corticosterone, as well as brain-derived neurotrophic factor (BDNF) and total percent DNA methylation of Th and Bdnf genes in the frontal cortex and hippocampus. RESULTS Maternal F0 Pb exposure produced runting in F3 offspring. Considered across lineages, F3 females exhibited Pb-related alterations in behavior, striatal BDNF levels, frontal cortical Th total percentage DNA methylation levels and serum corticosterone levels, whereas F3 males showed Pb- and PS-related alterations in behavior and total percent DNA methylation of hippocampal Bdnf. However, numerous lineage-specific effects were observed, most of greater magnitude than those observed across lineages, with outcomes differing by F3 sex. DISCUSSION These findings support the possibility that exposures of previous generations to Pb or PS may influence the brain and behavior of future generations. Observed changes were sex-dependent, with F3 females showing multiple changes through Pb-exposed lineages. Lineage effects may occur through maternal responses to pregnancy, altered maternal behavior, epigenetic modifications, or a combination of mechanisms, but they have significant public health ramifications regardless of mechanism. https://doi.org/10.1289/EHP4977.
Collapse
Affiliation(s)
- Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Kadijah Abston
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Katherine Conrad
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Elena Marvin
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Katherine Harvey
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| |
Collapse
|
6
|
Win-Shwe TT, Yanagisawa R, Koike E, Takano H. Memory Function, Neurological, and Immunological Biomarkers in Allergic Asthmatic Mice Intratracheally Exposed to Bisphenol A. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16193770. [PMID: 31597243 PMCID: PMC6801617 DOI: 10.3390/ijerph16193770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/29/2019] [Accepted: 10/04/2019] [Indexed: 01/07/2023]
Abstract
Bisphenol A (BPA) is a major constituent of plastic products, including epoxy resin containers, mobile phones, dental sealants, as well as electronic and medical equipment. BPA is recognized as an endocrine system-disrupting chemical which has toxic effects on the brain and reproductive system. However, little is known about the effects of co-exposure of BPA with allergens on the memory function and neurological as well as immunological biomarker levels. In this study, we examined the effects of intratracheal instillation of BPA on the memory function and neuroimmune biomarker levels using a mouse model of allergic asthma. Male C3H/HeJ Jcl mice were given three doses of BPA (0.0625 pmol, 1.25 pmol, and 25 pmol BPA/animal) intratracheally once a week, and ovalbumin (OVA) intratracheally every other week from 5 to 11 weeks old. At 11 weeks of age, a novel object recognition test was conducted after the final administration of OVA, and the hippocampi and hypothalami of the animals were collected after 24 h. The expression levels of the memory function-related genes N-methyl-D-aspartate (NMDA) receptor subunits, inflammatory cytokines, microglia markers, estrogen receptor-alpha, and oxytocin receptor were examined by real-time RT-PCR (real-time reverse transcription polymerase chain reaction) and immunohistochemical methods. Impairment of the novel object recognition ability was observed in the high-dose BPA-exposed mice with allergic asthma. In addition, the allergic asthmatic mice also showed downregulation of neurological biomarkers, such as NMDA receptor subunit NR2B in the hippocampus but no significant effect on immunological biomarkers in the hypothalamus. These findings suggest that exposure to high-dose BPA triggered impairment of memory function in the allergic asthmatic mice. This is the first study to show that, in the presence of allergens, exposure to high-dose BPA may affect memory by modulating the memory function-related genes in the hippocampus.
Collapse
Affiliation(s)
- Tin-Tin Win-Shwe
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Rie Yanagisawa
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Eiko Koike
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Hirohisa Takano
- Environmental Health Sciences, Graduate School of Global Environmental Studies, Kyoto University, Kyoto 615-8540, Japan.
| |
Collapse
|
7
|
Abstract
The impact of environmental pollution, especially chronic low exposures of heavy metals (Pb, Cd, Hg, As, Cr, etc.) on nutritional status and health of human and livestock, has become a cause of concern. It is established that malnutrition inhibits enzyme system, alters neurotransmitter levels, degenerate myelin, glial and neural elements, lowering of IQ scores as well as impairment of fine and gross motor coordination. Chronic low-level exposure to heavy metals also results in similar type of deformities at sub-clinical level. However, additive impact of undernutrition and adverse effects of heavy metal exposure is emerging as a serious threat to health in developing countries. High blood Pb/Cd levels and low nutrient levels cause subclinical damage of organ system such as haemopoietic, renal, nervous systems in neonates, children, post-partum women, and occupationally exposed population. This could be due to chronic low-level heavy metal exposures and vis-à-vis interaction between pollutants and nutrients. Our studies are focused on the utility of biomarkers for early subclinical detection of haemopoietic and rental toxicity. Lead exposure from non-conventional sources such as toys, pet/glass bottles, etc. suggest long-term investigation. The present review compiles result of studies conducted in this area highlighting the importance of pollution-nutrition interaction. This may facilitate policymakers on developing the strategies to counter the heavy metal exposure of humans/livestock and their consequences.
Collapse
Affiliation(s)
- Dinesh Kumar Bharatraj
- Food & Drug Toxicology Research Centre, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Srinivasa Reddy Yathapu
- Food & Drug Toxicology Research Centre, ICMR-National Institute of Nutrition, Hyderabad, India
| |
Collapse
|
8
|
Methods for Evaluating the Combined Effects of Chemical and Nonchemical Exposures for Cumulative Environmental Health Risk Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15122797. [PMID: 30544651 PMCID: PMC6313653 DOI: 10.3390/ijerph15122797] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/01/2018] [Accepted: 12/03/2018] [Indexed: 02/01/2023]
Abstract
Cumulative risk assessment (CRA) has been proposed as a means of evaluating possible additive and synergistic effects of multiple chemical, physical and social stressors on human health, with the goal of informing policy and decision-making, and protecting public health. Routine application of CRA to environmental regulatory and policy decision making, however, has been limited due to a perceived lack of appropriate quantitative approaches for assessing combined effects of chemical and nonchemical exposures. Seven research projects, which represented a variety of disciplines, including population health science, laboratory science, social sciences, geography, statistics and mathematics, were funded by the US Environmental Protection Agency (EPA) to help address this knowledge gap. We synthesize key insights from these unique studies to determine the implications for CRA practice and priorities for further research. Our analyses of these seven projects demonstrate that the necessary analytical methods to support CRA are available but are ultimately context-dependent. These projects collectively provided advancements for CRA in the areas of community engagement, characterization of exposures to nonchemical stressors, and assessment of health effects associated with joint exposures to chemical and psychosocial stressors.
Collapse
|
9
|
Cory-Slechta DA, Allen JL, Conrad K, Marvin E, Sobolewski M. Developmental exposure to low level ambient ultrafine particle air pollution and cognitive dysfunction. Neurotoxicology 2018; 69:217-231. [PMID: 29247674 PMCID: PMC5999548 DOI: 10.1016/j.neuro.2017.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/08/2017] [Accepted: 12/10/2017] [Indexed: 12/27/2022]
Abstract
Developmental exposures to ambient ultrafine particles (UFPs) can produce multiple neuropathological and neurochemical changes that might contribute to persistent alterations in cognitive-type functions. The objective of the current study was to test the hypothesis that developmental UFP exposure produced impairments in learning, memory and impulsive-like behaviors and to determine whether these were selective and thus independent of deficits in other behavioral domains such as motor activity or motivation. Performance on measures of learning (repeated learning), memory (novel object recognition, NOR), impulsive-like behavior (differential reinforcement of low rate (DRL), schedule of reward and delay of reward (DOR)), motor activity (locomotor behavior) and motivation (progressive ratio schedule) were examined in adult mice that had been exposed to concentrated (10-20x) ambient ultrafine particles (CAPS) averaging approximately 45 ug/m3 particle mass concentrations from postnatal day (PND) 4-7 and 10-13 for 4 h/day. Given the number of behavioral tests, animals were tested in different groups. Results showed male-specific alterations in learning and memory functions (repeated learning, NOR and DRL) specifically during transitions in reinforcement contingencies (changes in rules governing behavior) that did not appear to be related to alterations in locomotor function or motivation. Females did not exhibit cognitive-like deficits at these exposure concentrations, but displayed behaviors consistent with altered motivation, including increases in response rates during repeated learning, significantly increased latencies to respond on the delay of reward paradigm, and reductions in the progressive ratio break point. Consistent with our prior findings, male-specific learning and memory-related deficits were seen and occurred even at relatively low level developmental UFP exposures, while females show alterations in motivational behaviors but not final performance. These findings add to the evidence suggesting the need to regulate UFP levels.
Collapse
Affiliation(s)
- D A Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, United States.
| | - J L Allen
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - K Conrad
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - E Marvin
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - M Sobolewski
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, United States
| |
Collapse
|
10
|
Prenatal lead exposure modifies the association of maternal self-esteem with child adaptive ability. Int J Hyg Environ Health 2018; 222:68-75. [PMID: 30146178 DOI: 10.1016/j.ijheh.2018.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND A child's adaptive ability is important for personal career and social development. Maternal self-esteem may help shape a child's behavior. This study aims to investigate whether maternal self-esteem measured when their children were toddlers predicts their children's adaptive skills at school age, and whether prenatal lead exposure modifies such a relationship. METHODS We assessed prenatal lead exposure using cord blood lead and maternal bone lead around delivery (tibia and patella lead measured in vivo by K-x-ray-fluorescence) among 192 mother-child pairs investigated in Mexico from 1994 to 2011. Maternal self-esteem was measured using the Coopersmith-Self-esteem-Inventory when children were 2 years old. When children were 7-to-15 years old, we measured children's blood lead levels and administered the 2nd edition of Behavior-Assessment-System-for-Children (BASC-2) parent-rating-scales (PRS) and Self-Reports of Personality (SRP) to evaluate children's adaptive skills. RESULTS Median (P25, P75) values for maternal patella and tibia lead, cord blood lead and children's current blood lead levels were 12.6 (3.2, 21.7) μg/g, 10.2 (4.1, 16.0) μg/g, 5.5 (3.5, 8.1) μg/dL and 2.7 (2.0, 4.0) μg/dL, respectively. In adjusted models, increased maternal self-esteem was associated with increased adaptive T-scores on the BASC-2 PRS and SRP scales. This relationship was weaker in high prenatal lead-exposure groups (high cord blood lead or patella lead groups, P25P100) compared with low prenatal lead-exposure (low cord blood lead or patella lead groups, P1P25) groups (P-interaction values < 0.10). No significant interactions between maternal tibia lead and self-esteem on children's adaptive T-scores were observed (P-interaction values > 0.10). CONCLUSIONS Toddlers of mothers with high (vs. low) self-esteem have better adaptive abilities when they are of school-age. Prenatal lead exposure may attenuate or eliminate this positive association.
Collapse
|
11
|
Developmental Exposure to Atrazine Impairs Spatial Memory and Downregulates the Hippocampal D1 Dopamine Receptor and cAMP-Dependent Signaling Pathway in Rats. Int J Mol Sci 2018; 19:ijms19082241. [PMID: 30065202 PMCID: PMC6121906 DOI: 10.3390/ijms19082241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/21/2018] [Accepted: 07/29/2018] [Indexed: 12/16/2022] Open
Abstract
Atrazine (ATR) is a widely used herbicide that has been implicated as a neurotoxicant. Recent experimental evidence has implicated that ATR exposure also appears to have adverse effects on the hippocampus, which is a critical region for learning and memory. The aim of the present study was to investigate the effects of ATR toxicity on the hippocampus of developing rats. Postnatal day (PND) 28 male Sprague⁻Dawley (SD) rats received ATR by oral gavage at 10 or 100 mg/kg bodyweight (BW) for 30 consecutive days and were sacrificed at PND 90. Behavioral test results indicated that spatial learning and memory were affected by ATR treatment. Electron microscopy analysis showed that the ultrastructures of the hippocampus were altered in the ATR-treated groups, as compared to the control group. Additionally, ATR treatment impacted dopamine and D1 dopamine receptor (D1DR) contents through different mechanisms. Reduced mRNA and protein expression levels of factors involved in the cAMP-dependent signaling pathway were also detected. These results indicate that the developmental exposure of rats to ATR can damage the hippocampus and spatial memory, which might be related to the downregulation of expression levels of the D1DR and its downstream signaling pathway.
Collapse
|
12
|
Sobolewski M, Conrad K, Marvin E, Allen JL, Cory-Slechta DA. Endocrine active metals, prenatal stress and enhanced neurobehavioral disruption. Horm Behav 2018; 101:36-49. [PMID: 29355495 PMCID: PMC5970043 DOI: 10.1016/j.yhbeh.2018.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/05/2018] [Accepted: 01/14/2018] [Indexed: 11/24/2022]
Abstract
Metals, including lead (Pb), methylmercury (MeHg) and arsenic (As), are long-known developmental neurotoxicants. More recently, environmental context has been recognized to modulate metals toxicity, including nutritional state and stress exposure. Modulation of metal toxicity by stress exposure can occur through shared targeting of endocrine systems, such as the hypothalamic-pituitary-adrenal axis (HPA). Our previous rodent research has identified that prenatal stress (PS) modulates neurotoxicity of two endocrine active metals (EAMs), Pb and MeHg, by altering HPA and CNS systems disrupting behavior. Here, we review this research and further test the hypothesis that prenatal stress modulates metals neurotoxicity by expanding to test the effect of developmental As ± PS exposure. Serum corticosterone and behavior was assessed in offspring of dams exposed to As ± PS. PS increased female offspring serum corticosterone at birth, while developmental As exposure decreased adult serum corticosterone in both sexes. As + PS induced reductions in locomotor activity in females and reduced response rates on a Fixed Interval schedule of reinforcement in males, with the latter suggesting unique learning deficits only in the combined exposure. As-exposed males showed increased time in the open arms of an elevated plus maze and decreased novel object recognition whereas females did not. These data further confirm the hypothesis that combined exposure to chemical (EAMs) and non-chemical (PS) stressors results in enhanced neurobehavioral toxicity. Given that humans are exposed to multiple environmental risk factors that alter endocrine function in development, such models are critical for risk assessment and public health protection, particularly for children.
Collapse
Affiliation(s)
- Marissa Sobolewski
- Dept. of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, United States. marissa:
| | - Katherine Conrad
- Dept. of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, United States
| | - Elena Marvin
- Dept. of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, United States
| | - Joshua L Allen
- Dept. of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, United States
| | - Deborah A Cory-Slechta
- Dept. of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, United States
| |
Collapse
|
13
|
Sprowles JLN, Amos-Kroohs RM, Braun AA, Sugimoto C, Vorhees CV, Williams MT. Developmental manganese, lead, and barren cage exposure have adverse long-term neurocognitive, behavioral and monoamine effects in Sprague-Dawley rats. Neurotoxicol Teratol 2018; 67:50-64. [PMID: 29631003 DOI: 10.1016/j.ntt.2018.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 12/17/2022]
Abstract
Developmental stress, including low socioeconomic status (SES), can induce dysregulation of the hypothalamic-pituitary-adrenal axis and result in long-term changes in stress reactivity. Children in lower SES households experience more stress and are more likely to be exposed to environmental neurotoxins such as lead (Pb) and manganese (Mn) than children in higher SES households. Co-exposure to stress, Pb, and Mn during early development may increase the risk of central nervous system dysfunction compared with unexposed children. To investigate the potential interaction of these factors, Sprague-Dawley rats were bred, and litters born in-house were culled on postnatal day (P)1 to 6 males and 6 females. One male and female within each litter were assigned to one of the following groups: 0 (vehicle), 10 mg/kg Pb, 100 mg/kg Mn, or 10 mg/kg Pb + 100 mg/kg Mn (PbMn), water gavage, and handled only from P4-28 with half the litters reared in cages with standard bedding (29 litters) and half with no bedding (Barren; 27 litters). Mn and PbMn groups had decreased anxiety, reduced acoustic startle, initial open-field hypoactivity, increased activity following (+)-methamphetamine, deficits in egocentric learning in the Cincinnati water maze (CWM), and deficits in latent inhibition conditioning. Pb increased anxiety and reduced open-field activity. Barren-reared rats had decreased anxiety, CWM deficits, increased startle, and initial open-field hyperactivity. Mn, PbMn, Pb Barren-reared groups had impaired Morris water maze performance. Pb altered neostriatal serotonin and norepinephrine, Mn increased hippocampal serotonin in males, Mn + Barren-rearing increased neostriatal serotonin, and Barren-rearing decreased neostriatal dopamine in males. At the doses used here, most effects were in the Mn and PbMn groups. Few interactions between Mn, Pb, and rearing stress were found, indicating that the interaction of these three variables is not as impactful as hypothesized.
Collapse
Affiliation(s)
- Jenna L N Sprowles
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Rhodes College, Department of Psychology, 2000 North Parkway, Memphis, TN 38112, United States.
| | - Robyn M Amos-Kroohs
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; Virginia Department of Forensic Science, 700 North Fifth St, Richmond, VA 23219, United States
| | - Amanda A Braun
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States
| | - Chiho Sugimoto
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States.
| | - Charles V Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States.
| | - Michael T Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States.
| |
Collapse
|
14
|
McHale CM, Osborne G, Morello-Frosch R, Salmon AG, Sandy MS, Solomon G, Zhang L, Smith MT, Zeise L. Assessing health risks from multiple environmental stressors: Moving from G×E to I×E. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 775:11-20. [PMID: 29555026 DOI: 10.1016/j.mrrev.2017.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023]
Abstract
Research on disease causation often attempts to isolate the effects of individual factors, including individual genes or environmental factors. This reductionist approach has generated many discoveries, but misses important interactive and cumulative effects that may help explain the broad range of variability in disease occurrence observed across studies and individuals. A disease rarely results from a single factor, and instead results from a broader combination of factors, characterized here as intrinsic (I) and extrinsic (E) factors. Intrinsic vulnerability or resilience emanates from a variety of both fixed and shifting biological factors including genetic traits, while extrinsic factors comprise all biologically-relevant external stressors encountered across the lifespan. The I×E concept incorporates the multi-factorial and dynamic nature of health and disease and provides a unified, conceptual basis for integrating results from multiple areas of research, including genomics, G×E, developmental origins of health and disease, and the exposome. We describe the utility of the I×E concept to better understand and characterize the cumulative impact of multiple extrinsic and intrinsic factors on individual and population health. New research methods increasingly facilitate the measurement of multifactorial and interactive effects in epidemiological and toxicological studies. Tiered or indicator-based approaches can guide the selection of potentially relevant I and E factors for study and quantification, and exposomics methods may eventually produce results that can be used to generate a response function over the life course. Quantitative data on I×E interactive effects should generate a better understanding of the variability in human response to environmental factors. The proposed I×E concept highlights the role for broader study design in order to identify extrinsic and intrinsic factors amenable to interventions at the individual and population levels in order to enhance resilience, reduce vulnerability and improve health.
Collapse
Affiliation(s)
- Cliona M McHale
- Superfund Research Center, School of Public Health, University of California, Berkeley, CA 94720, USA.
| | - Gwendolyn Osborne
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA 94612, USA
| | - Rachel Morello-Frosch
- Superfund Research Center, School of Public Health, University of California, Berkeley, CA 94720, USA; Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Andrew G Salmon
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA 94612, USA
| | - Martha S Sandy
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA 94612, USA
| | - Gina Solomon
- California Environmental Protection Agency, Sacramento, CA 95814, USA
| | - Luoping Zhang
- Superfund Research Center, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Martyn T Smith
- Superfund Research Center, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA 94612, USA
| |
Collapse
|
15
|
Sex-specific effects of developmental lead exposure on the immune-neuroendocrine network. Toxicol Appl Pharmacol 2017; 334:142-157. [DOI: 10.1016/j.taap.2017.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/28/2017] [Accepted: 09/09/2017] [Indexed: 01/22/2023]
|
16
|
Cognitive Effects of Air Pollution Exposures and Potential Mechanistic Underpinnings. Curr Environ Health Rep 2017; 4:180-191. [PMID: 28435996 DOI: 10.1007/s40572-017-0134-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW This review sought to address the potential for air pollutants to impair cognition and mechanisms by which that might occur. RECENT FINDINGS Air pollution has been associated with deficits in cognitive functions across a wide range of epidemiological studies, both with developmental and adult exposures. Studies in animal models are significantly more limited in number, with somewhat inconsistent findings to date for measures of learning, but show more consistent impairments for short-term memory. Potential contributory mechanisms include oxidative stress/inflammation, altered levels of dopamine and/or glutamate, and changes in synaptic plasticity/structure. Epidemiological studies are consistent with adverse effects of air pollutants on cognition, but additional studies and better phenotypic characterization are needed for animal models, including more precise delineation of specific components of cognition that are affected, as well as definitions of critical exposure periods for such effects and the components of air pollution responsible. This would permit development of more circumscribed hypotheses as to potential behavioral and neurobiological mechanisms.
Collapse
|
17
|
Cory-Slechta DA, Sobolewski M, Varma G, Schneider JS. Developmental Lead and/or Prenatal Stress Exposures Followed by Different Types of Behavioral Experience Result in the Divergence of Brain Epigenetic Profiles in a Sex, Brain Region, and Time-Dependent Manner: Implications for Neurotoxicology. CURRENT OPINION IN TOXICOLOGY 2017; 6:60-70. [PMID: 29430559 DOI: 10.1016/j.cotox.2017.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over a lifetime, early developmental exposures to neurocognitive risk factors, such as lead (Pb) exposures and prenatal stress (PS), will be followed by multiple varied behavioral experiences. Pb, PS and behavioral experience can each influence brain epigenetic profiles. Our recent studies show a greater level of complexity, however, as all three factors interact within each sex to generate differential adult variation in global post-translational histone modifications (PTHMs), which may result in fundamentally different consequences for life-long learning and behavioral function. We have reported that PTHM profiles differ by sex, brain region and time point of measurement following developmental exposures to Pb±PS, resulting in different profiles for each unique combination of these parameters. Imposing differing behavioral experience following developmental Pb±PS results in additional divergence of PTHM profiles, again in a sex, brain region and time-dependent manner, further increasing complexity. Such findings underscore the need to link highly localized and variable epigenetic changes along single genes to the highly-integrated brain functional connectome that is ultimately responsible for governing behavioral function. Here we advance the idea that increased understanding may be achieved through iterative reductionist and holistic approaches. Implications for experimental design of animal studies of developmental exposures to neurotoxicants include the necessity of a 'no behavioral experience' group, given that epigenetic changes in response to behavioral testing can confound effects of the neurotoxicant itself. They also suggest the potential utility of the inclusion of salient behavioral experiences as a potential effect modifier in epidemiological studies.
Collapse
Affiliation(s)
- Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical School, Rochester, NY
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester Medical School, Rochester, NY
| | - G Varma
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA
| | - J S Schneider
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
18
|
Vesterinen HM, Morello-Frosch R, Sen S, Zeise L, Woodruff TJ. Cumulative effects of prenatal-exposure to exogenous chemicals and psychosocial stress on fetal growth: Systematic-review of the human and animal evidence. PLoS One 2017; 12:e0176331. [PMID: 28700705 PMCID: PMC5507491 DOI: 10.1371/journal.pone.0176331] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/14/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Adverse effects of prenatal stress or environmental chemical exposures on fetal growth are well described, yet their combined effect remains unclear. OBJECTIVES To conduct a systematic review on the combined impact and interaction of prenatal exposure to stress and chemicals on developmental outcomes. METHODS We used the first three steps of the Navigation Guide systematic review. We wrote a protocol, performed a robust literature search to identify relevant animal and human studies and extracted data on developmental outcomes. For the most common outcome (fetal growth), we evaluated risk of bias, calculated effect sizes for main effects of individual and combined exposures, and performed a random effects meta-analysis of those studies reporting on odds of low birthweight (LBW) by smoking and socioeconomic status (SES). RESULTS We identified 17 human- and 22 animal-studies of combined chemical and stress exposures and fetal growth. Human studies tended to have a lower risk of bias across nine domains. Generally, we found stronger effects for chemicals than stress, and these exposures were associated with reduced fetal growth in the low-stress group and the association was often greater in high stress groups, with limited evidence of effect modification. We found smoking associated with significantly increased odds of LBW, with a greater effect for high stress (low SES; OR 4.75 (2.46-9.16)) compared to low stress (high SES; OR 1.95 (95% CI 1.53-2.48)). Animal studies generally had a high risk of bias with no significant combined effect or effect modification. CONCLUSIONS We found that despite concern for the combined effects of environmental chemicals and stress, this is still an under-studied topic, though limited available human studies indicate chemical exposures exert stronger effects than stress, and this effect is generally larger in the presence of stress.
Collapse
Affiliation(s)
- Hanna M. Vesterinen
- Program on Reproductive Health and the Environment, University of California, San Francisco, United States of America
| | - Rachel Morello-Frosch
- Department of Environmental Science, Policy and Management and School of Public Health, University of California, Berkeley, United States of America
| | - Saunak Sen
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, United States of America
| | - Lauren Zeise
- California Environmental Protection Agency Office of Environmental Health Hazard Assessment, Oakland, United States of America
| | - Tracey J. Woodruff
- Program on Reproductive Health and the Environment, University of California, San Francisco, United States of America
- * E-mail:
| |
Collapse
|
19
|
Beier EE, Sheu TJ, Resseguie EA, Takahata M, Awad HA, Cory-Slechta DA, Puzas JE. Sclerostin activity plays a key role in the negative effect of glucocorticoid signaling on osteoblast function in mice. Bone Res 2017; 5:17013. [PMID: 28529816 PMCID: PMC5422922 DOI: 10.1038/boneres.2017.13] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/02/2016] [Accepted: 01/10/2017] [Indexed: 12/11/2022] Open
Abstract
Stress during prenatal development is correlated with detrimental cognitive and behavioral outcomes in offspring. However, the long-term impact of prenatal stress (PS) and disrupted glucocorticoid signaling on bone mass and strength is not understood. In contrast, the detrimental effect of lead (Pb) on skeletal health is well documented. As stress and Pb act on common biological targets via glucocorticoid signaling pathways and co-occur in the environment, this study first sought to assess the combined effect of stress and Pb on bone quality in association with alterations in glucocorticoid signaling. Bone parameters were evaluated using microCT, histomorphometry, and strength determination in 8-month-old male mouse offspring subjected to PS on gestational days 16 and 17, lifetime Pb exposure (100 p.p.m. Pb in drinking water), or to both. Pb reduced trabecular bone mass and, when combined with PS, Pb unmasked an exaggerated decrement in bone mass and tensile strength. Next, to characterize a mechanism of glucocorticoid effect on bone, prednisolone was implanted subcutaneously (controlled-release pellet, 5 mg·kg-1 per day) in 5-month-old mice that decreased osteoblastic activity and increased sclerostin and leptin levels. Furthermore, the synthetic glucocorticoid dexamethasone alters the anabolic Wnt signaling pathway. The Wnt pathway inhibitor sclerostin has several glucocorticoid response elements, and dexamethasone administration to osteoblastic cells induces sclerostin expression. Dexamethasone treatment of isolated bone marrow cells decreased bone nodule formation, whereas removal of sclerostin protected against this decrement in mineralization. Collectively, these findings suggest that bone loss associated with steroid-induced osteoporosis is a consequence of sclerostin-mediated restriction of Wnt signaling, which may mechanistically facilitate glucocorticoid toxicity in bone.
Collapse
Affiliation(s)
- Eric E Beier
- Department of Environmental Medicine, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
- Department of Environmental and Occupational Medicine, Rutgers University, Piscataway, NJ, USA
| | - Tzong-Jen Sheu
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
| | - Emily A Resseguie
- Department of Environmental Medicine, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
| | - Masahiko Takahata
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
| | - Hani A Awad
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
| | - Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
| | - J Edward Puzas
- Department of Environmental Medicine, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
20
|
Bellinger DC, Matthews-Bellinger JA, Kordas K. A developmental perspective on early-life exposure to neurotoxicants. ENVIRONMENT INTERNATIONAL 2016; 94:103-112. [PMID: 27235688 DOI: 10.1016/j.envint.2016.05.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/14/2016] [Accepted: 05/14/2016] [Indexed: 05/24/2023]
Abstract
BACKGROUND Studies of early-life neurotoxicant exposure have not been designed, analyzed, or interpreted in the context of a fully developmental perspective. OBJECTIVES The goal of this paper is to describe the key principles of a developmental perspective and to use examples from the literature to illustrate the relevance of these principles to early-life neurotoxicant exposures. METHODS Four principles are discussed: 1) the effects of early-life neurotoxicant exposure depend on a child's developmental context; 2) deficits caused by early-life exposure initiate developmental cascades that can lead to pathologies that differ from those observed initially; 3) early-life neurotoxicant exposure has intra-familial and intergenerational impacts; 4) the impacts of early-life neurotoxicant exposure influence a child's ability to respond to future insults. The first principle is supported by considerable evidence, but the other three have received much less attention. DISCUSSION Incorporating a developmental perspective in studies of early-life neurotoxicant exposures requires prospective collection of data on a larger array of covariates than usually considered, using analytical approaches that acknowledge the transactional processes between a child and the environment and the phenomenon of developmental cascades. CONCLUSION Consideration of early-life neurotoxicant exposure within a developmental perspective reveals that many issues remain to be explicated if we are to achieve a deep understanding of the societal health burden associated with early-life neurotoxicant exposures.
Collapse
Affiliation(s)
- David C Bellinger
- Department of Neurology, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02112, USA; Department of Psychiatry, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Julia A Matthews-Bellinger
- Department of Psychiatry, University of Massachusetts Medical School, Boston Psychoanalytic Society and Institute, 19 Fair Oaks Park, Needham, MA 02492, USA.
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, 270 Farber Hall, Buffalo, NY 14214, USA.
| |
Collapse
|
21
|
Walters JL, Chelonis JJ, Fogle CM, Orser BA, Paule MG. Single and repeated exposures to the volatile anesthetic isoflurane do not impair operant performance in aged rats. Neurotoxicology 2016; 56:159-169. [PMID: 27498192 DOI: 10.1016/j.neuro.2016.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/27/2016] [Accepted: 07/29/2016] [Indexed: 01/12/2023]
Abstract
Postoperative Cognitive Dysfunction (POCD) is a complication that can occur in the elderly after anesthesia and surgery and is characterized by impairments in information processing, memory, and executive function. Currently, it is unclear whether POCD is due to the effects of surgery, anesthesia, or perhaps some interaction between these or other perioperative variables. Studies in rodents suggest that the development of POCD may be related directly to anesthesia-induced neuroactivity. Volatile anesthetics have been shown to increase cellular inflammation and apoptosis within the hippocampus of aged rodents, while producing corresponding impairments in hippocampal-dependent brain functions. However, it is unclear whether volatile anesthetics can affect additional aspects of cognition that do not primarily depend upon the hippocampus. The purpose of this study was to use established operant tests to examine the effects of isoflurane on aspects of behavioral inhibition, learning, and motivation in aged rats. Twenty-one adult Sprague-Dawley rats (11 male, 10 female) were trained to perform fixed consecutive number (FCN), incremental repeated acquisition (IRA), and progressive ratio (PR) tasks for a minimum of 15 months prior to receiving anesthesia. At 23 months of age, rats were exposed to 1.3% isoflurane or medical grade air for 2h. Initial results revealed that a 2h exposure to isoflurane had no effect on IRA, FCN, or PR performance. Thus, rats received 3 additional exposures to 1.3% isoflurane or medical grade air: 2, 4 and 6h exposures with 2 weeks elapsing before exposure two, 3 weeks elapsing between exposures two and three, and 2 weeks elapsing between exposures three and four. These additional exposures had no observable effects on performance of any operant task. These results suggest that single and repeated exposures to isoflurane do not impair the performance of aged rats in tasks designed to measure behavioral inhibition, learning, and motivation. This lack of significant effect suggests that the impairments associated with isoflurane exposure may not generalize to all aspects of cognition, but may be selective to tasks that primarily measure spatial memory processes.
Collapse
Affiliation(s)
- Jennifer L Walters
- National Center for Toxicological Research (NCTR)/FDA, Division of Neurotoxicology, 3900 NCTR Road, Jefferson, AR 72079, United States.
| | - John J Chelonis
- National Center for Toxicological Research (NCTR)/FDA, Division of Neurotoxicology, 3900 NCTR Road, Jefferson, AR 72079, United States
| | - Charles M Fogle
- National Center for Toxicological Research (NCTR)/FDA, Division of Neurotoxicology, 3900 NCTR Road, Jefferson, AR 72079, United States
| | - Beverley A Orser
- University of Toronto, Department of Physiology, Medical Sciences Building, Room 3318, 1 Kings College Circle, Toronto, Ontario M5S1A8, Canada
| | - Merle G Paule
- National Center for Toxicological Research (NCTR)/FDA, Division of Neurotoxicology, 3900 NCTR Road, Jefferson, AR 72079, United States
| |
Collapse
|
22
|
Amos-Kroohs RM, Graham DL, Grace CE, Braun AA, Schaefer TL, Skelton MR, Vorhees CV, Williams MT. Developmental stress and lead (Pb): Effects of maternal separation and/or Pb on corticosterone, monoamines, and blood Pb in rats. Neurotoxicology 2016; 54:22-33. [PMID: 26943976 DOI: 10.1016/j.neuro.2016.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 02/17/2016] [Accepted: 02/28/2016] [Indexed: 01/13/2023]
Abstract
The level of lead (Pb) exposure in children has decreased dramatically since restrictions on its use were implemented. However, even with restrictions, children are exposed to Pb and still present with cognitive and behavioral deficits. One prominent aspect of the exposome of these children is that many come from low social economic status (SES) conditions, and low SES is associated with stress. In order to compare the combined effects of early stress and Pb, Sprague-Dawley rats were exposed to vehicle or Pb either alone or in combination with maternal separation stress during brain development (i.e., postnatal day (P)4-P11, P19, or P28). Maternally separated/isolated pups had lower body and thymus weights during exposure and had increased levels of blood Pb compared with vehicle controls. Isolation, but not Pb, affected the response to an acute stressor (standing in shallow water) when assessed on P19 and P29, but not earlier on P11. Interactions of Pb and isolation were found on monoamines in the neostriatum, hippocampus, and hypothalamus on turnover but not on levels, and most changes were on dopamine turnover. Isolation had greater short-term effects than Pb. Interactions were dependent on age, sex, and acute stress.
Collapse
Affiliation(s)
- Robyn M Amos-Kroohs
- Department of Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Dr., Madison, WI 53706, United States.
| | - Devon L Graham
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States; University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States.
| | - Curtis E Grace
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States; University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States.
| | - Amanda A Braun
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States; University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States.
| | - Tori L Schaefer
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States; University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States.
| | - Matthew R Skelton
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States; University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States.
| | - Charles V Vorhees
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States; University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States.
| | - Michael T Williams
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States; University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States.
| |
Collapse
|
23
|
Bello O, Naidu R, Rahman MM, Liu Y, Dong Z. Lead concentration in the blood of the general population living near a lead-zinc mine site, Nigeria: Exposure pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 542:908-14. [PMID: 26556755 DOI: 10.1016/j.scitotenv.2015.10.143] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/28/2015] [Accepted: 10/28/2015] [Indexed: 05/02/2023]
Abstract
Lead (Pb) poisoning in children is a major public health catastrophe worldwide. This report summarises both exposure pathways and blood Pb levels in children below 7 years of age and adults (above 18 years) from the Adudu community living near a lead-zinc mine in Nasawara, Nigeria. The average and median blood Pb levels in children and adults were 2.1 and 1.3 μg/dL, 3.1 and 1.8 μg/dL, respectively. However, Pb in 14% of adults' blood exceeded 5 μg/dL, which is the recommended threshold blood Pb concentration in adults as established by the Centers for Disease Control and Prevention (CDC). Furthermore 68% of adults' blood exceeded blood Pb action level of 2 μg/dL. For children, 11.4% and 31% of the blood samples exceeded 5 μg/dL and 2 μg/dL, respectively, while no safe blood Pb level in children has been recommended. In Nasawara, a significant difference (p<0.05) was observed between the various age groups in children with 2-4 years old having the highest levels and 6 year old children having the lowest Pb levels. Although this study did not detect elevated levels of Pb in children's blood in regions such as Zamfara, Nigeria and Kabwe, Zambia, a high percentage of samples exceeded 2 μg/dL. Soils, floor dusts, water and crops also reveal that Pb contamination in the study area could potentially be the major cause of blood Pb in the community exposed to mining. This study also observed a significant correlation between water Pb levels of adults and blood Pb levels, suggesting that water is the major exposure pathway. This analysis highlights the need to properly manage mining activities so that the health of communities living in the vicinity of a Pb-Zn mine is not compromised.
Collapse
Affiliation(s)
- Olanrewaju Bello
- Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan Campus, Newcastle, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), P.O. Box 486, Salisbury South, SA 5106, Australia; Department of Soil Science, Faculty of Agriculture, University of Calabar, Nigeria
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan Campus, Newcastle, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), P.O. Box 486, Salisbury South, SA 5106, Australia.
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan Campus, Newcastle, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), P.O. Box 486, Salisbury South, SA 5106, Australia
| | - Yanju Liu
- Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan Campus, Newcastle, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), P.O. Box 486, Salisbury South, SA 5106, Australia
| | - Zhaomin Dong
- Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan Campus, Newcastle, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), P.O. Box 486, Salisbury South, SA 5106, Australia
| |
Collapse
|
24
|
Clougherty JE, Shmool JLC, Kubzansky LD. The Role of Non-Chemical Stressors in Mediating Socioeconomic Susceptibility to Environmental Chemicals. Curr Environ Health Rep 2014. [DOI: 10.1007/s40572-014-0031-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Sex-dependent impacts of low-level lead exposure and prenatal stress on impulsive choice behavior and associated biochemical and neurochemical manifestations. Neurotoxicology 2014; 44:169-83. [PMID: 25010656 DOI: 10.1016/j.neuro.2014.06.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 06/23/2014] [Accepted: 06/27/2014] [Indexed: 01/06/2023]
Abstract
A prior study demonstrated increased overall response rates on a fixed interval (FI) schedule of reward in female offspring that had been subjected to maternal lead (Pb) exposure, prenatal stress (PS) and offspring stress challenge relative to control, prenatal stress alone, lead alone and lead+prenatal stress alone (Virgolini et al., 2008). Response rates on FI schedules have been shown to directly relate to measures of self-control (impulsivity) in children and in infants (Darcheville et al., 1992, 1993). The current study sought to determine whether enhanced effects of Pb±PS would therefore be seen in a more direct measure of impulsive choice behavior, i.e., a delay discounting paradigm. Offspring of dams exposed to 0 or 50ppm Pb acetate from 2 to 3 months prior to breeding through lactation, with or without immobilization restraint stress (PS) on gestational days 16 and 17, were trained on a delay discounting paradigm that offered a choice between a large reward (three 45mg food pellets) after a long delay or a small reward (one 45mg food pellet) after a short delay, with the long delay value increased from 0s to 30s across sessions. Alterations in extinction of this performance, and its subsequent re-acquisition after reinforcement delivery was reinstated were also examined. Brains of littermates of behaviorally-trained offspring were utilized to examine corresponding changes in monoamines and in levels of brain derived neurotrophic factor (BDNF), the serotonin transporter (SERT) and the N-methyl-d-aspartate receptor (NMDAR) 2A in brain regions associated with impulsive choice behavior. Results showed that Pb±PS-induced changes in delay discounting occurred almost exclusively in males. In addition to increasing percent long delay responding at the indifference point (i.e., reduced impulsive choice behavior), Pb±PS slowed acquisition of delayed discounting performance, and increased numbers of both failures to and latencies to initiate trials. Overall, the profile of these alterations were more consistent with impaired learning/behavioral flexibility and/or with enhanced sensitivity to the downshift in reward opportunities imposed by the transition from delay discounting training conditions to delay discounting choice response contingencies. Consistent with these behavioral changes, Pb±PS treated males also showed reductions in brain serotonin function in all mesocorticolimbic regions, broad monoamine changes in nucleus accumbens, and reductions in both BDNF and NMDAR 2A levels and increases in SERT in frontal cortex, i.e., in regions and neurotransmitter systems known to mediate learning/behavioral flexibility, and which were of greater impact in males. The current findings do not fully support a generality of the enhancement of Pb effects by PS, as previously seen with FI performance in females (Virgolini et al., 2008), and suggest a dissociation of the behaviors controlled by FI and delay discounting paradigms, at least in response to Pb±PS in rats. Collectively, however, the findings remain consistent with sex-dependent differences in the impacts of both Pb and PS and with the need to understand both the role of contingencies of reinforcement and underlying neurobiological effects in these sex differences.
Collapse
|
26
|
Allen JL, Liu X, Weston D, Prince L, Oberdörster G, Finkelstein JN, Johnston CJ, Cory-Slechta DA. Developmental exposure to concentrated ambient ultrafine particulate matter air pollution in mice results in persistent and sex-dependent behavioral neurotoxicity and glial activation. Toxicol Sci 2014; 140:160-78. [PMID: 24690596 PMCID: PMC4081635 DOI: 10.1093/toxsci/kfu059] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/06/2014] [Indexed: 11/12/2022] Open
Abstract
The brain appears to be a target of air pollution. This study aimed to further ascertain behavioral and neurobiological mechanisms of our previously observed preference for immediate reward (Allen, J. L., Conrad, K., Oberdorster, G., Johnston, C. J., Sleezer, B., and Cory-Slechta, D. A. (2013). Developmental exposure to concentrated ambient particles and preference for immediate reward in mice. Environ. Health Perspect. 121, 32-38), a phenotype consistent with impulsivity, in mice developmentally exposed to inhaled ultrafine particles. It examined the impact of postnatal and/or adult concentrated ambient ultrafine particles (CAPS) or filtered air on another behavior thought to reflect impulsivity, Fixed interval (FI) schedule-controlled performance, and extended the assessment to learning/memory (novel object recognition (NOR)), and locomotor activity to assist in understanding behavioral mechanisms of action. In addition, levels of brain monoamines and amino acids, and markers of glial presence and activation (GFAP, IBA-1) were assessed in mesocorticolimbic brain regions mediating these cognitive functions. This design produced four treatment groups/sex of postnatal/adult exposure: Air/Air, Air/CAPS, CAPS/Air, and CAPS/CAPS. FI performance was adversely influenced by CAPS/Air in males, but by Air/CAPS in females, effects that appeared to reflect corresponding changes in brain mesocorticolimbic dopamine/glutamate systems that mediate FI performance. Both sexes showed impaired short-term memory on the NOR. Mechanistically, cortical and hippocampal changes in amino acids raised the potential for excitotoxicity, and persistent glial activation was seen in frontal cortex and corpus callosum of both sexes. Collectively, neurodevelopment and/or adulthood CAPS can produce enduring and sex-dependent neurotoxicity. Although mechanisms of these effects remain to be fully elucidated, findings suggest that neurodevelopment and/or adulthood air pollution exposure may represent a significant underexplored risk factor for central nervous system diseases/disorders and thus a significant public health threat even beyond current appreciation.
Collapse
Affiliation(s)
| | | | | | | | | | - Jacob N Finkelstein
- Department of Environmental Medicine Department of Pediatrics, University of Rochester School of Medicine Rochester, New York 14642
| | - Carl J Johnston
- Department of Environmental Medicine Department of Pediatrics, University of Rochester School of Medicine Rochester, New York 14642
| | - Deborah A Cory-Slechta
- Department of Environmental Medicine Department of Pediatrics, University of Rochester School of Medicine Rochester, New York 14642
| |
Collapse
|
27
|
Sickmann HM, Li Y, Mørk A, Sanchez C, Gulinello M. Does stress elicit depression? Evidence from clinical and preclinical studies. Curr Top Behav Neurosci 2014; 18:123-159. [PMID: 24633891 DOI: 10.1007/7854_2014_292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Exposure to stressful situations may induce or deteriorate an already existing depression. Stress-related depression can be elicited at an adolescent/adult age but evidence also shows that early adverse experiences even at the fetal stage may predispose the offspring for later development of depression. The hypothalamus-pituitary-adrenal axis (HPA-axis) plays a key role in regulating the stress response and dysregulation in the system has been linked to depression both in humans and in animal models. This chapter critically reviews clinical and preclinical findings that may explain how stress can cause depression, including HPA-axis changes and alterations beyond the HPA-axis. As stress does not elicit depression in the majority of the population, this motivated research to focus on understanding the biology underlying resilient versus sensitive subjects. Animal models of depression have contributed to a deeper understanding of these mechanisms. Findings from these models will be presented.
Collapse
Affiliation(s)
- Helle M Sickmann
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Accurate prenatal exposure assessment is one of the major challenges in environmental epidemiologic studies. Variations in placental transport make maternal biospecimens unreliable for many chemicals and fetal specimens collected at birth do not provide information on exposure timing over the prenatal period. RECENT FINDINGS The skeletal compartment is an important chemical repository, making calcified tissues important for measuring exposure. For decades teeth have been used to estimate long-term cumulative exposure to metals and some organic chemicals. Recently developed methodologies that combine sophisticated histological and chemical analysis to precisely sample tooth layers that correspond to specific life stages have the potential to reconstruct exposure in the second and third trimesters of prenatal development and during early childhood. SUMMARY Such a retrospective biomarker that precisely measures exposure intensity and timing during prenatal development would substantially aid epidemiologic investigations, particularly case-control studies of rare health outcomes.
Collapse
|
29
|
Cory-Slechta DA, Weston D, Liu S, Allen JL. Brain hemispheric differences in the neurochemical effects of lead, prenatal stress, and the combination and their amelioration by behavioral experience. Toxicol Sci 2013; 132:419-30. [PMID: 23358193 DOI: 10.1093/toxsci/kft015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Brain lateralization, critical to mediation of cognitive functions and to "multitasking," is disrupted in conditions such as attention deficit disorder and schizophrenia. Both low-level lead (Pb) exposure and prenatal stress (PS) have been associated with mesocorticolimbic system-mediated executive-function cognitive and attention deficits. Mesocorticolimbic systems demonstrate significant laterality. Thus, altered brain lateralization could play a role in this behavioral toxicity. This study examined laterality of mesocorticolimbic monoamines (frontal cortex, nucleus accumbens, striatum, midbrain) and amino acids (frontal cortex) in male and female rats subjected to lifetime Pb exposure (0 or 50 ppm in drinking water), PS (restraint stress on gestational days 16-17), or the combination with and without repeated learning behavioral experience. Control males exhibited prominent laterality, particularly in midbrain and also in frontal cortex and striatum; females exhibited less laterality, and this was primarily striatal. Lateralized Pb ± PS induced neurotransmitter changes were assessed only in males because of limited sample sizes of Pb + PS females. In males, Pb ± PS changes occurred in left hemisphere of frontal cortex and right hemisphere of midbrain. Behavioral experience modified the laterality of Pb ± PS-induced neurotransmitter changes in a region-dependent manner. Notably, behavioral experience eliminated Pb ± PS neurotransmitter changes in males. These findings underscore the critical need to evaluate both sexes and brain hemispheres for the mechanistic understanding of sex-dependent differences in neuro- and behavioral toxicity. Furthermore, assessment of central nervous system mechanisms in the absence of behavioral experience, shown here for males, may constitute less relevant models of human health effects.
Collapse
Affiliation(s)
- Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York 14642, USA.
| | | | | | | |
Collapse
|