1
|
Salminen A. Aryl hydrocarbon receptor impairs circadian regulation in Alzheimer's disease: Potential impact on glymphatic system dysfunction. Eur J Neurosci 2024; 60:3901-3920. [PMID: 38924210 DOI: 10.1111/ejn.16450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Circadian clocks maintain diurnal rhythms of sleep-wake cycle of 24 h that regulate not only the metabolism of an organism but also many other periodical processes. There is substantial evidence that circadian regulation is impaired in Alzheimer's disease. Circadian clocks regulate many properties known to be disturbed in Alzheimer's patients, such as the integrity of the blood-brain barrier (BBB) as well as the diurnal glymphatic flow that controls waste clearance from the brain. Interestingly, an evolutionarily conserved transcription factor, that is, aryl hydrocarbon receptor (AhR), impairs the function of the core clock proteins and thus could disturb diurnal rhythmicity in the BBB. There is abundant evidence that the activation of AhR signalling inhibits the expression of the major core clock proteins, such as the brain and muscle arnt-like 1 (BMAL1), clock circadian regulator (CLOCK) and period circadian regulator 1 (PER1) in different experimental models. The expression of AhR is robustly increased in the brains of Alzheimer's patients, and protein level is enriched in astrocytes of the BBB. It seems that AhR signalling inhibits glymphatic flow since it is known that (i) activation of AhR impairs the function of the BBB, which is cooperatively interconnected with the glymphatic system in the brain, and (ii) neuroinflammation and dysbiosis of gut microbiota generate potent activators of AhR, which are able to impair glymphatic flow. I will examine current evidence indicating that activation of AhR signalling could disturb circadian functions of the BBB and impair glymphatic flow and thus be involved in the development of Alzheimer's pathology.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
2
|
Salminen A. Aryl hydrocarbon receptor (AhR) impairs circadian regulation: impact on the aging process. Ageing Res Rev 2023; 87:101928. [PMID: 37031728 DOI: 10.1016/j.arr.2023.101928] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/23/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Circadian clocks control the internal sleep-wake rhythmicity of 24hours which is synchronized by the solar cycle. Circadian regulation of metabolism evolved about 2.5 billion years ago, i.e., the rhythmicity has been conserved from cyanobacteria and Archaea through to mammals although the mechanisms utilized have developed with evolution. While the aryl hydrocarbon receptor (AhR) is an evolutionarily conserved defence mechanism against environmental threats, it has gained many novel functions during evolution, such as the regulation of cell cycle, proteostasis, and many immune functions. There is robust evidence that AhR signaling impairs circadian rhythmicity, e.g., by interacting with the core BMAL1/CLOCK complex and disturbing the epigenetic regulation of clock genes. The maintenance of circadian rhythms is impaired with aging, disturbing metabolism and many important functions in aged organisms. Interestingly, it is known that AhR signaling promotes an age-related tissue degeneration, e.g., it is able to inhibit autophagy, enhance cellular senescence, and disrupt extracellular matrix. These alterations are rather similar to those induced by a long-term impairment of circadian rhythms. However, it is not known whether AhR signaling enhances the aging process by impairing circadian homeostasis. I will examine the experimental evidence indicating that AhR signaling is able to promote the age-related degeneration via a disruption of circadian rhythmicity.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
3
|
Khazaal AQ, Haque N, Krager CR, Krager SL, Chambers C, Wilber A, Tischkau SA. Aryl hydrocarbon receptor affects circadian-regulated lipolysis through an E-Box-dependent mechanism. Mol Cell Endocrinol 2023; 559:111809. [PMID: 36283500 PMCID: PMC10509633 DOI: 10.1016/j.mce.2022.111809] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
An internal circadian clock regulates timing of systemic energy homeostasis. The central clock in the hypothalamic suprachiasmatic nucleus (SCN) directs local clocks in peripheral tissues such as liver, muscle, and adipose tissue to synchronize metabolism with food intake and rest/activity cycles. Aryl hydrocarbon receptor (AhR) interacts with the molecular circadian clockworks. Activation of AhR dampens rhythmic expression of core clock genes, which may lead to metabolic dysfunction. Given the importance of appropriately-timed adipose tissue function to regulation of energy homeostasis, this study focused on mechanisms by which AhR may influence clock-controlled adipose tissue activity. We hypothesized that AhR activation in adipose tissue would impair lipolysis by dampening adipose rhythms, leading to a decreased lipolysis rate during fasting, and subsequently, altered serum glucose concentrations. Levels of clock gene and lipolysis gene transcripts in mouse mesenchymal stem cells (BMSCs) differentiated into mature adipocytes were suppressed by the AhR agonist β-napthoflavone (BNF), in an AhR dependent manner. BNF altered rhythms of core clock gene and lipolysis gene transcripts in C57bl6/J mice. BNF reduced serum free fatty acids, glycerol and liver glycogen. Chromatin immunoprecipitation indicated that BNF increased binding of AhR to E-Box elements in clock gene and lipolysis gene promoters. These data establish a link between AhR activation and impaired lipolysis, specifically by altering adipose tissue rhythmicity. In response to the decreased available energy from impaired lipolysis, the body increases glycogenolysis, thereby degrading more glycogen to provide necessary energy.
Collapse
Affiliation(s)
- Ali Qasim Khazaal
- Biotechnology Department, College of Science, University of Baghdad, Baghdad, Iraq; Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Nazmul Haque
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Callie R Krager
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Stacey L Krager
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Christopher Chambers
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Andrew Wilber
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Shelley A Tischkau
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA; Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA.
| |
Collapse
|
4
|
Pimpão AB, Sousa C, Correia MJ, Coelho NR, Monteiro EC, Melo Junior AF, Pereira SA. Control of Arterial Hypertension by the AhR Blocker CH-223191: A Chronopharmacological Study in Chronic Intermittent Hypoxia Conditions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1427:35-42. [PMID: 37322333 DOI: 10.1007/978-3-031-32371-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chronic intermittent hypoxia (CIH) is a major contributor to the development of hypertension (HTN) in obstructive sleep apnea (OSA). OSA subjects frequently display a non-dipping pattern of blood pressure (BP) and resistant HTN. After discovering that AHR-CYP1A1 axis is a druggable target in CIH-HTN, we hypothesized that CH-223191 could control BP in both active and inactive periods of the animals, recovering the BP dipping profile in CIH conditions.We evaluated the chronopharmacology of the antihypertensive efficacy of the AhR blocker CH-223191 in CIH conditions (21% to 5% of O2, 5.6 cycles/h, 10.5 h/day, in inactive period of Wistar rats). BP was measured by radiotelemetry, at 8 am (active phase) and at 6 pm (inactive phase) of the animals. The circadian variation of AhR activation in the kidney in normoxia was also assessed, measuring the CYP1A1 (hallmark of AhR activation) protein levels.Despite drug administration before starting the inactive period of the animals, CH-223191 was not able to decrease BP during the inactive phase, in CIH conditions, therefore not reverting the non-dipping profile. These results suggest that a higher dose or different time of administration of CH-223191 might be needed for an antihypertensive effect throughout the 24-h cycle.
Collapse
Affiliation(s)
- António B Pimpão
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Cátia Sousa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Maria J Correia
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Nuno R Coelho
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisboa, Portugal
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, Caparica, Portugal
| | - Emília C Monteiro
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Antonio F Melo Junior
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Sofia A Pereira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisboa, Portugal.
| |
Collapse
|
5
|
Foxx CL, Nagy MR, King AE, Albin D, DeKrey GK. TCDD exposure alters fecal IgA concentrations in male and female mice. BMC Pharmacol Toxicol 2022; 23:25. [PMID: 35449084 PMCID: PMC9026712 DOI: 10.1186/s40360-022-00563-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background Activation of the aryl hydrocarbon receptor (AhR) can alter diurnal rhythms including those for innate lymphoid cell numbers, cytokine and hormone levels, and feeding behaviors. Because immune responses and antibody levels are modulated by exposure to AhR agonists, we hypothesized that some of the variation previously reported for the effects of AhR activation on fecal secretory immunoglobulin A (sIgA) levels could be explained by dysregulation of the diurnal sIgA rhythm. Methods C57Bl/6 J mice were exposed to peanut oil or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, 10 or 40 μg/Kg) and fecal sIgA levels were determined in samples collected every 4 h over 4 days. Results Fecal sIgA concentrations were not significantly different between light and dark phases of the photoperiod in either male or female mice, and there were no significant circadian rhythms observed, but TCDD exposure significantly altered both fecal mesor sIgA and serum IgA concentrations, in parallel, in male (increased) and female (biphasic) mice. Conclusions AhR activation can contribute to the regulation of steady state IgA/sIgA concentrations. Supplementary Information The online version contains supplementary material available at 10.1186/s40360-022-00563-9.
Collapse
Affiliation(s)
- Christine L Foxx
- School of Biological Sciences, College of Natural and Health Sciences, University of Northern Colorado, Greeley, CO, 80639, USA
| | - Madeline R Nagy
- School of Biological Sciences, College of Natural and Health Sciences, University of Northern Colorado, Greeley, CO, 80639, USA
| | - Aspen E King
- School of Biological Sciences, College of Natural and Health Sciences, University of Northern Colorado, Greeley, CO, 80639, USA
| | - Dreycey Albin
- Department of Computer Science, College of Engineering and Applied Science, University of Colorado, Boulder, 80309, CO, USA
| | - Gregory K DeKrey
- School of Biological Sciences, College of Natural and Health Sciences, University of Northern Colorado, Greeley, CO, 80639, USA.
| |
Collapse
|
6
|
Kou Z, Dai W. Aryl hydrocarbon receptor: Its roles in physiology. Biochem Pharmacol 2021; 185:114428. [PMID: 33515530 PMCID: PMC8862184 DOI: 10.1016/j.bcp.2021.114428] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/27/2022]
Abstract
Aryl hydrocarbon receptor (AHR) was initially discovered as a cellular protein involved in mediating the detoxification of xenobiotic compounds. Extensive research in the past two decades has identified several families of physiological ligands and uncovered important functions of AHR in normal development and homeostasis. Deficiency in AHR expression disrupts major signaling systems and transcriptional programs, which appear to be responsible for the development of numerous developmental abnormalities including cardiac hypertrophy and epidermal hyperplasia. This mini review primarily summarizes recent advances in our understanding of AHR functions in normal physiology with an emphasis on the cardiovascular, gastrointestinal, integumentary, nervous, and immunomodulatory systems.
Collapse
Affiliation(s)
- Ziyue Kou
- Department of Environmental Medicine, New York University Langone Medical Center, NY 10010, United States
| | - Wei Dai
- Department of Environmental Medicine, New York University Langone Medical Center, NY 10010, United States.
| |
Collapse
|
7
|
Glatfelter GC, Jones AJ, Rajnarayanan RV, Dubocovich ML. Pharmacological Actions of Carbamate Insecticides at Mammalian Melatonin Receptors. J Pharmacol Exp Ther 2021; 376:306-321. [PMID: 33203660 PMCID: PMC7841424 DOI: 10.1124/jpet.120.000065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/11/2020] [Indexed: 12/29/2022] Open
Abstract
Integrated in silico chemical clustering and melatonin receptor molecular modeling combined with in vitro 2-[125I]-iodomelatonin competition binding were used to identify carbamate insecticides with affinity for human melatonin receptor 1 (hMT1) and human melatonin receptor 2 (hMT2). Saturation and kinetic binding studies with 2-[125I]-iodomelatonin revealed lead carbamates (carbaryl, fenobucarb, bendiocarb, carbofuran) to be orthosteric ligands with antagonist apparent efficacy at hMT1 and agonist apparent efficacy at hMT2 Furthermore, using quantitative receptor autoradiography in coronal brain slices from C3H/HeN mice, carbaryl, fenobucarb, and bendiocarb competed for 2-[125I]-iodomelatonin binding in the suprachiasmatic nucleus (SCN), paraventricular nucleus of the thalamus (PVT), and pars tuberalis (PT) with affinities similar to those determined for the hMT1 receptor. Carbaryl (10 mg/kg i.p.) administered in vivo also competed ex vivo for 2-[125I]-iodomelatonin binding to the SCN, PVT, and PT, demonstrating the ability to reach brain melatonin receptors in C3H/HeN mice. Furthermore, the same dose of carbaryl given to C3H/HeN mice in constant dark for three consecutive days at subjective dusk (circadian time 10) phase-advanced circadian activity rhythms (mean = 0.91 hours) similar to melatonin (mean = 1.12 hours) when compared with vehicle (mean = 0.04 hours). Carbaryl-mediated phase shift of overt circadian activity rhythm onset is likely mediated via interactions with SCN melatonin receptors. Based on the pharmacological actions of carbaryl and other carbamate insecticides at melatonin receptors, exposure may modulate time-of-day information conveyed to the master biologic clock relevant to adverse health outcomes. SIGNIFICANCE STATEMENT: In silico chemical clustering and molecular modeling in conjunction with in vitro bioassays identified several carbamate insecticides (i.e., carbaryl, carbofuran, fenobucarb, bendiocarb) as pharmacologically active orthosteric melatonin receptor 1 and 2 ligands. This work further demonstrated that carbaryl competes for melatonin receptor binding in the master biological clock (suprachiasmatic nucleus) and phase-advances overt circadian activity rhythms in C3H/HeN mice, supporting the relevance of circadian effects when interpreting toxicological findings related to carbamate insecticide exposure.
Collapse
Affiliation(s)
- Grant C Glatfelter
- Department of Pharmacology and Toxicology (G.C.G., A.J.J., R.V.R., M.L.D.), Interdepartmental Neuroscience Program (A.J.J., M.L.D.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Anthony J Jones
- Department of Pharmacology and Toxicology (G.C.G., A.J.J., R.V.R., M.L.D.), Interdepartmental Neuroscience Program (A.J.J., M.L.D.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Rajendram V Rajnarayanan
- Department of Pharmacology and Toxicology (G.C.G., A.J.J., R.V.R., M.L.D.), Interdepartmental Neuroscience Program (A.J.J., M.L.D.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Margarita L Dubocovich
- Department of Pharmacology and Toxicology (G.C.G., A.J.J., R.V.R., M.L.D.), Interdepartmental Neuroscience Program (A.J.J., M.L.D.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
8
|
Bottalico LN, Weljie AM. Cross-species physiological interactions of endocrine disrupting chemicals with the circadian clock. Gen Comp Endocrinol 2021; 301:113650. [PMID: 33166531 PMCID: PMC7993548 DOI: 10.1016/j.ygcen.2020.113650] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 10/09/2020] [Accepted: 10/17/2020] [Indexed: 02/06/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are endocrine-active chemical pollutants that disrupt reproductive, neuroendocrine, cardiovascular and metabolic health across species. The circadian clock is a transcriptional oscillator responsible for entraining 24-hour rhythms of physiology, behavior and metabolism. Extensive bidirectional cross talk exists between circadian and endocrine systems and circadian rhythmicity is present at all levels of endocrine control, from synthesis and release of hormones, to sensitivity of target tissues to hormone action. In mammals, a range of hormones directly alter clock gene expression and circadian physiology via nuclear receptor (NR) binding and subsequent genomic action, modulating physiological processes such as nutrient and energy metabolism, stress response, reproductive physiology and circadian behavioral rhythms. The potential for EDCs to perturb circadian clocks or circadian-driven physiology is not well characterized. For this reason, we explore evidence for parallel endocrine and circadian disruption following EDC exposure across species. In the reviewed studies, EDCs dysregulated core clock and circadian rhythm network gene expression in brain and peripheral organs, and altered circadian reproductive, behavioral and metabolic rhythms. Circadian impacts occurred in parallel to endocrine and metabolic alterations such as impaired fertility and dysregulated metabolic and energetic homeostasis. Further research is warranted to understand the nature of interaction between circadian and endocrine systems in mediating physiological effects of EDC exposure at environmental levels.
Collapse
Affiliation(s)
- Lisa N Bottalico
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Translational Medicine and Therapeutics, Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Aalim M Weljie
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Translational Medicine and Therapeutics, Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Abstract
Circadian rhythms govern a large array of physiological and metabolic functions. Perturbations of the daily cycle have been linked to elevated risk of developing cancer as well as poor prognosis in patients with cancer. Also, expression of core clock genes or proteins is remarkably attenuated particularly in tumours of a higher stage or that are more aggressive, possibly linking the circadian clock to cellular differentiation. Emerging evidence indicates that metabolic control by the circadian clock underpins specific hallmarks of cancer metabolism. Indeed, to support cell proliferation and biomass production, the clock may direct metabolic processes of cancer cells in concert with non-clock transcription factors to control how nutrients and metabolites are utilized in a time-specific manner. We hypothesize that the metabolic switch between differentiation or stemness of cancer may be coupled to the molecular clockwork. Moreover, circadian rhythms of host organisms appear to dictate tumour growth and proliferation. This Review outlines recent discoveries of the interplay between circadian rhythms, proliferative metabolism and cancer, highlighting potential opportunities in the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Kenichiro Kinouchi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, CA, USA.
- Department of Endocrinology, Metabolism, and Nephrology, School of Medicine, Keio University, Tokyo, Japan.
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
10
|
Ochiai M, Iida M, Agusa T, Takaguchi K, Fujii S, Nomiyama K, Iwata H. Effects of 4-Hydroxy-2,3,3',4',5-Pentachlorobiphenyl (4-OH-CB107) on Liver Transcriptome in Rats: Implication in the Disruption of Circadian Rhythm and Fatty Acid Metabolism. Toxicol Sci 2019; 165:118-130. [PMID: 29788408 DOI: 10.1093/toxsci/kfy123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) and their hydroxylated metabolites (OH-PCBs) have been detected in tissues of both wild animals and humans. Several previous studies have suggested adverse effects of OH-PCBs on the endocrine and nervous systems in mammals. However, there have been no studies on transcriptome analysis of the effects of OH-PCBs, and thus, the whole picture and mechanisms underlying the adverse effects induced by OH-PCBs are still poorly understood. We therefore investigated the mRNA expression profile in the liver of adult male Wistar rats treated with 4-hydroxy-2,3,3',4',5-pentachlorobiphenyl (4-OH-CB107) to explore the genes responsive to OH-PCBs and to understand the potential effects of the chemical. Next-generation RNA sequencing analysis revealed changes in the expression of genes involved in the circadian rhythm and fatty acid metabolism, such as nuclear receptor subfamily 1, group D, member 1, aryl hydrocarbon receptor nuclear translocator-like protein 1, cryptochrome circadian clock 1, and enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase, in 4-OH-CB107-treated rats. In addition, biochemical analysis of the plasma revealed a dose-dependent increase in the leucine aminopeptidase, indicating the onset of liver damage. These results suggest that OH-PCB exposure may induce liver injury as well as disrupt the circadian rhythm and peroxisome proliferator-activated receptor-related fatty acid metabolism.
Collapse
Affiliation(s)
- Mari Ochiai
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Midori Iida
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime 790-8577, Japan
- Department of Bioscience and Bioinformatics, Kyusyu Institute of Technology, Iizuka, Fukuoka 820-0067, Japan
| | - Tetsuro Agusa
- Graduate School of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto, Kumamoto 862-8502, Japan
| | - Kohki Takaguchi
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Satoshi Fujii
- Department of Bioscience and Bioinformatics, Kyusyu Institute of Technology, Iizuka, Fukuoka 820-0067, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
11
|
Tischkau SA. Mechanisms of circadian clock interactions with aryl hydrocarbon receptor signalling. Eur J Neurosci 2019; 51:379-395. [DOI: 10.1111/ejn.14361] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/17/2019] [Accepted: 01/23/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Shelley A. Tischkau
- Department of PharmacologySouthern Illinois University School of Medicine Springfield Illinois
| |
Collapse
|
12
|
Li S, Bostick JW, Zhou L. Regulation of Innate Lymphoid Cells by Aryl Hydrocarbon Receptor. Front Immunol 2018; 8:1909. [PMID: 29354125 PMCID: PMC5760495 DOI: 10.3389/fimmu.2017.01909] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/14/2017] [Indexed: 12/20/2022] Open
Abstract
With striking similarity to their adaptive T helper cell counterparts, innate lymphoid cells (ILCs) represent an emerging family of cell types that express signature transcription factors, including T-bet+ Eomes+ natural killer cells, T-bet+ Eomes- group 1 ILCs, GATA3+ group 2 ILCs, RORγt+ group 3 ILCs, and newly identified Id3+ regulatory ILC. ILCs are abundantly present in barrier tissues of the host (e.g., the lung, gut, and skin) at the interface of host-environment interactions. Active research has been conducted to elucidate molecular mechanisms underlying the development and function of ILCs. The aryl hydrocarbon receptor (Ahr) is a ligand-dependent transcription factor, best known to mediate the effects of xenobiotic environmental toxins and endogenous microbial and dietary metabolites. Here, we review recent progresses regarding Ahr function in ILCs. We focus on the Ahr-mediated cross talk between ILCs and other immune/non-immune cells in host tissues especially in the gut. We discuss the molecular mechanisms of the action of Ahr expression and activity in regulation of ILCs in immunity and inflammation, and the interaction between Ahr and other pathways/transcription factors in ILC development and function with their implication in disease.
Collapse
Affiliation(s)
- Shiyang Li
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - John W. Bostick
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
13
|
Jaeger C, Khazaal AQ, Xu C, Sun M, Krager SL, Tischkau SA. Aryl Hydrocarbon Receptor Deficiency Alters Circadian and Metabolic Rhythmicity. J Biol Rhythms 2017; 32:109-120. [PMID: 28347186 DOI: 10.1177/0748730417696786] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
PAS domain-containing proteins can act as environmental sensors that capture external stimuli to allow coordination of organismal physiology with the outside world. These proteins permit diverse ligand binding and heterodimeric partnership, allowing for varied combinations of PAS-dependent protein-protein interactions and promoting crosstalk among signaling pathways. Previous studies report crosstalk between circadian clock proteins and the aryl hydrocarbon receptor (AhR). Activated AhR forms a heterodimer with the circadian clock protein Bmal1 and thereby functionally inhibits CLOCK/Bmal1 activity. If physiological activation of AhR through naturally occurring, endogenous ligands inhibits clock function, it seems plausible to hypothesize that decreased AhR expression releases AhR-induced inhibition of circadian rhythms. Because both AhR and the clock are important regulators of glucose metabolism, it follows that decreased AhR will also alter metabolic function. To test this hypothesis, rhythms of behavior, metabolic outputs, and circadian and metabolic gene expression were measured in AhR-deficient mice. Genetic depletion of AhR enhanced behavioral responses to changes in the light-dark cycle, increased rhythmic amplitude of circadian clock genes in the liver, and altered rhythms of glucose and insulin. This study provides evidence of AhR-induced inhibition that influences circadian rhythm amplitude.
Collapse
Affiliation(s)
- Cassie Jaeger
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Ali Q Khazaal
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
- Biotechnology Department, College of Science, Baghdad University, Baghdad, Iraq
| | - Canxin Xu
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Mingwei Sun
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Stacey L Krager
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Shelley A Tischkau
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| |
Collapse
|
14
|
Jaeger C, Xu C, Sun M, Krager S, Tischkau SA. Aryl hydrocarbon receptor-deficient mice are protected from high fat diet-induced changes in metabolic rhythms. Chronobiol Int 2017; 34:318-336. [PMID: 28102700 DOI: 10.1080/07420528.2016.1256298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
High fat diet (HFD) consumption alters the synchronized circadian timing system resulting in harmful loss, gain or shift of transcriptional oscillations. The aryl hydrocarbon receptor (AhR) shares structural homology to clock genes, containing both PAS domains and basic helix-loop helix structural motifs, allowing for interaction with components of the primary circadian feedback loop. Activation of AhR alters circadian rhythmicity, primarily through inhibition of Clock/Bmal1-mediated regulation of Per1. AhR-deficient mice are protected from diet-induced metabolic dysfunction, exhibiting enhanced insulin sensitivity and glucose tolerance. This study examined whether AhR haploinsufficiency can also protect against diet-induced alterations in rhythm. After feeding AhR+/+ and AhR+/- mice an HFD (60% fat) for 15 weeks, samples were collected every 4 hours over a 24-hour period. HFD altered the rhythm of serum glucose and the metabolic transcriptome, including hepatic nuclear receptors Rev-erbα and PPARγ in wild-type c57bl6/j mice. AhR reduction provided protection against diet-induced transcriptional oscillation changes; serum glucose and metabolic gene rhythms were protected from the disruption caused by HFD feeding. These data highlight the critical role of AhR signaling in the regulation of metabolism and provide a potential therapeutic target for diseases characterized by rhythmic desynchrony.
Collapse
Affiliation(s)
- Cassie Jaeger
- a Department of Pharmacology , Southern Illinois University School of Medicine , Springfield , IL , USA
| | - Canxin Xu
- a Department of Pharmacology , Southern Illinois University School of Medicine , Springfield , IL , USA
| | - Mingwei Sun
- a Department of Pharmacology , Southern Illinois University School of Medicine , Springfield , IL , USA
| | - Stacey Krager
- a Department of Pharmacology , Southern Illinois University School of Medicine , Springfield , IL , USA
| | - Shelley A Tischkau
- a Department of Pharmacology , Southern Illinois University School of Medicine , Springfield , IL , USA
| |
Collapse
|
15
|
Xue Z, Li D, Yu W, Zhang Q, Hou X, He Y, Kou X. Mechanisms and therapeutic prospects of polyphenols as modulators of the aryl hydrocarbon receptor. Food Funct 2017; 8:1414-1437. [DOI: 10.1039/c6fo01810f] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polyphenolic AhR modulators displayed concentration-, XRE-, gene-, species- and cell-specific agonistic/antagonistic activity.
Collapse
Affiliation(s)
- Zhaohui Xue
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Dan Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Wancong Yu
- Medical Plant Laboratory
- Tianjin Research Center of Agricultural Biotechnology
- Tianjin 3000381
- China
| | - Qian Zhang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xiaonan Hou
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yulong He
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
16
|
Jaeger C, Tischkau SA. Role of Aryl Hydrocarbon Receptor in Circadian Clock Disruption and Metabolic Dysfunction. ENVIRONMENTAL HEALTH INSIGHTS 2016; 10:133-141. [PMID: 27559298 PMCID: PMC4990151 DOI: 10.4137/ehi.s38343] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 06/01/2023]
Abstract
The prevalence of metabolic syndrome, a clustering of three or more risk factors that include abdominal obesity, increased blood pressure, and high levels of glucose, triglycerides, and high-density lipoproteins, has reached dangerous and costly levels worldwide. Increases in morbidity and mortality result from a combination of factors that promote altered glucose metabolism, insulin resistance, and metabolic dysfunction. Although diet and exercise are commonly touted as important determinants in the development of metabolic dysfunction, other environmental factors, including circadian clock disruption and activation of the aryl hydrocarbon receptor (AhR) by dietary or other environmental sources, must also be considered. AhR binds a range of ligands, which prompts protein-protein interactions with other Per-Arnt-Sim (PAS)-domain-containing proteins and subsequent transcriptional activity. This review focuses on the reciprocal crosstalk between the activated AhR and the molecular circadian clock. AhR exhibits a rhythmic expression and time-dependent sensitivity to activation by AhR agonists. Conversely, AhR activation influences the amplitude and phase of expression of circadian clock genes, hormones, and the behavioral responses of the clock system to changes in environmental illumination. Both the clock and AhR status and activation play significant and underappreciated roles in metabolic homeostasis. This review highlights the state of knowledge regarding how AhR may act together with the circadian clock to influence energy metabolism. Understanding the variety of AhR-dependent mechanisms, including its interactions with the circadian timing system that promote metabolic dysfunction, reveals new targets of interest for maintenance of healthy metabolism.
Collapse
|
17
|
Biological Rhythms in the Skin. Int J Mol Sci 2016; 17:ijms17060801. [PMID: 27231897 PMCID: PMC4926335 DOI: 10.3390/ijms17060801] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/29/2016] [Accepted: 05/12/2016] [Indexed: 12/26/2022] Open
Abstract
Circadian rhythms, ≈24 h oscillations in behavior and physiology, are reflected in all cells of the body and function to optimize cellular functions and meet environmental challenges associated with the solar day. This multi-oscillatory network is entrained by the master pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus, which directs an organism's rhythmic expression of physiological functions and behavior via a hierarchical system. This system has been highly conserved throughout evolution and uses transcriptional-translational autoregulatory loops. This master clock, following environmental cues, regulates an organism's sleep pattern, body temperature, cardiac activity and blood pressure, hormone secretion, oxygen consumption and metabolic rate. Mammalian peripheral clocks and clock gene expression have recently been discovered and are present in all nucleated cells in our body. Like other essential organ of the body, the skin also has cycles that are informed by this master regulator. In addition, skin cells have peripheral clocks that can function autonomously. First described in 2000 for skin, this review summarizes some important aspects of a rapidly growing body of research in circadian and ultradian (an oscillation that repeats multiple times during a 24 h period) cutaneous rhythms, including clock mechanisms, functional manifestations, and stimuli that entrain or disrupt normal cycling. Some specific relationships between disrupted clock signaling and consequences to skin health are discussed in more depth in the other invited articles in this IJMS issue on Sleep, Circadian Rhythm and Skin.
Collapse
|
18
|
Xu B, Yang H, Sun M, Chen H, Jiang L, Zheng X, Ding G, Liu Y, Sheng Y, Cui D, Duan Y. 2,3',4,4',5-Pentachlorobiphenyl Induces Inflammatory Responses in the Thyroid Through JNK and Aryl Hydrocarbon Receptor-Mediated Pathway. Toxicol Sci 2015; 149:300-11. [PMID: 26519956 DOI: 10.1093/toxsci/kfv235] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) are durable and widely distributed environmental contaminants that can compromise the normal functions of multiple organs and systems; one important mechanism is the induction of inflammatory disorders. In this study, we explored the influences of 2,3',4,4',5-pentachlorobiphenyl (PCB118) on inflammatory responses and its underlying mechanisms in the thyroid. Wistar rats were administered PCB118 intraperitoneally at 0, 10, 100, and 1000 μg/kg/d, 5 days a week for 13 weeks; rat thyroid FRTL-5 cells were treated with PCB118 (0, 0.25, 2.5, and 25 nM) for indicated time. Results revealed that PCB118 promoted the generation of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and intercellular adhesion molecule-1 (ICAM-1) in a time- and dose-related manner and decreased sodium/iodide symporter (NIS) protein expression. Moreover, stimulation with PCB118 resulted in the upregulation of the aryl hydrocarbon receptor (AhR)-responsive gene cytochrome P450 1A1 in FRTL-5 cells; whereas pretreatment with the AhR inhibitor α-naphthoflavone or AhR small interfering RNA (siRNA) suppressed AhR, CYP1A1, IL-6, and ICAM-1 and restored NIS expression. In vivo and in vitro studies also suggested that the c-Jun N-terminal kinase (JNK) pathway was activated on PCB118 exposure, and the experiments using siRNA for JNK partially blocked PCB118-induced upregulation of IL-6 and ICAM-1 and downregulation of NIS. Altogether, PCB118 stimulates production of IL-6, TNF-α, and ICAM-1 in the thyroid through AhR and JNK activations and subsequently interferes with NIS expression, resulting in the disruption of thyroid structure and function.
Collapse
Affiliation(s)
- Bojin Xu
- *Department of Endocrinology and
| | - Hui Yang
- *Department of Endocrinology and
| | | | | | | | | | | | - Yun Liu
- Department of Gerontology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yunlu Sheng
- Department of Gerontology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Dai Cui
- *Department of Endocrinology and
| | - Yu Duan
- *Department of Endocrinology and
| |
Collapse
|
19
|
Baerwald MR, Meek MH, Stephens MR, Nagarajan RP, Goodbla AM, Tomalty KMH, Thorgaard GH, May B, Nichols KM. Migration-related phenotypic divergence is associated with epigenetic modifications in rainbow trout. Mol Ecol 2015; 25:1785-1800. [PMID: 25958780 DOI: 10.1111/mec.13231] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/30/2015] [Accepted: 05/01/2015] [Indexed: 12/11/2022]
Abstract
Migration is essential for the reproduction and survival of many animals, yet little is understood about its underlying molecular mechanisms. We used the salmonid Oncorhynchus mykiss to gain mechanistic insight into smoltification, which is a morphological, physiological and behavioural transition undertaken by juveniles in preparation for seaward migration. O. mykiss is experimentally tractable and displays intra- and interpopulation variation in migration propensity. Migratory individuals can produce nonmigratory progeny and vice versa, indicating a high degree of phenotypic plasticity. One potential way that phenotypic plasticity might be linked to variation in migration-related life history tactics is through epigenetic regulation of gene expression. To explore this, we quantitatively measured genome-scale DNA methylation in fin tissue using reduced representation bisulphite sequencing of F2 siblings produced from a cross between steelhead (migratory) and rainbow trout (nonmigratory) lines. We identified 57 differentially methylated regions (DMRs) between smolt and resident O. mykiss juveniles. DMRs were high in magnitude, with up to 62% differential methylation between life history types, and over half of the gene-associated DMRs were in transcriptional regulatory regions. Many of the DMRs encode proteins with activity relevant to migration-related transitions (e.g. circadian rhythm pathway, nervous system development, protein kinase activity). This study provides the first evidence of a relationship between epigenetic variation and life history divergence associated with migration-related traits in any species.
Collapse
Affiliation(s)
- Melinda R Baerwald
- Department of Animal Science, University of California - Davis, Davis, CA, 95616
| | - Mariah H Meek
- Department of Animal Science, University of California - Davis, Davis, CA, 95616
| | - Molly R Stephens
- School of Natural Sciences, University of California - Merced, Merced, CA, 95343
| | - Raman P Nagarajan
- GlaxoSmithKline, Cancer Epigenetics Discovery Performance Unit, Collegeville, PA 19426
| | - Alisha M Goodbla
- Department of Animal Science, University of California - Davis, Davis, CA, 95616
| | | | - Gary H Thorgaard
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164
| | - Bernie May
- Department of Animal Science, University of California - Davis, Davis, CA, 95616
| | - Krista M Nichols
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112
| |
Collapse
|
20
|
Interplay between Dioxin-mediated signaling and circadian clock: a possible determinant in metabolic homeostasis. Int J Mol Sci 2014; 15:11700-12. [PMID: 24987953 PMCID: PMC4139808 DOI: 10.3390/ijms150711700] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/13/2014] [Accepted: 06/17/2014] [Indexed: 11/16/2022] Open
Abstract
The rotation of the earth on its axis creates the environment of a 24 h solar day, which organisms on earth have used to their evolutionary advantage by integrating this timing information into their genetic make-up in the form of a circadian clock. This intrinsic molecular clock is pivotal for maintenance of synchronized homeostasis between the individual organism and the external environment to allow coordinated rhythmic physiological and behavioral function. Aryl hydrocarbon receptor (AhR) is a master regulator of dioxin-mediated toxic effects, and is, therefore, critical in maintaining adaptive responses through regulating the expression of phase I/II drug metabolism enzymes. AhR expression is robustly rhythmic, and physiological cross-talk between AhR signaling and circadian rhythms has been established. Increasing evidence raises a compelling argument that disruption of endogenous circadian rhythms contributes to the development of disease, including sleep disorders, metabolic disorders and cancers. Similarly, exposure to environmental pollutants through air, water and food, is increasingly cited as contributory to these same problems. Thus, a better understanding of interactions between AhR signaling and the circadian clock regulatory network can provide critical new insights into environmentally regulated disease processes. This review highlights recent advances in the understanding of the reciprocal interactions between dioxin-mediated AhR signaling and the circadian clock including how these pathways relate to health and disease, with emphasis on the control of metabolic function.
Collapse
|
21
|
Fu L, Kettner NM. The circadian clock in cancer development and therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 119:221-82. [PMID: 23899600 PMCID: PMC4103166 DOI: 10.1016/b978-0-12-396971-2.00009-9] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Most aspects of mammalian function display circadian rhythms driven by an endogenous clock. The circadian clock is operated by genes and comprises a central clock in the brain that responds to environmental cues and controls subordinate clocks in peripheral tissues via circadian output pathways. The central and peripheral clocks coordinately generate rhythmic gene expression in a tissue-specific manner in vivo to couple diverse physiological and behavioral processes to periodic changes in the environment. However, with the industrialization of the world, activities that disrupt endogenous homeostasis with external circadian cues have increased. This change in lifestyle has been linked to an increased risk of diseases in all aspects of human health, including cancer. Studies in humans and animal models have revealed that cancer development in vivo is closely associated with the loss of circadian homeostasis in energy balance, immune function, and aging, which are supported by cellular functions important for tumor suppression including cell proliferation, senescence, metabolism, and DNA damage response. The clock controls these cellular functions both locally in cells of peripheral tissues and at the organismal level via extracellular signaling. Thus, the hierarchical mammalian circadian clock provides a unique system to study carcinogenesis as a deregulated physiological process in vivo. The asynchrony between host and malignant tissues in cell proliferation and metabolism also provides new and exciting options for novel anticancer therapies.
Collapse
Affiliation(s)
- Loning Fu
- Department of Pediatrics/U.S. Department of Agriculture/Agricultural Research Service/Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Nicole M. Kettner
- Department of Pediatrics/U.S. Department of Agriculture/Agricultural Research Service/Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|