1
|
Sun B, Liang Z, Wang Y, Yu Y, Zhou X, Geng X, Li B. A 3D spheroid model of quadruple cell co-culture with improved liver functions for hepatotoxicity prediction. Toxicology 2024; 505:153829. [PMID: 38740170 DOI: 10.1016/j.tox.2024.153829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Drug-induced liver injury (DILI) is one of the major concerns during drug development. Wide acceptance of the 3 R principles and the innovation of in-vitro techniques have introduced various novel model options, among which the three-dimensional (3D) cell spheroid cultures have shown a promising prospect in DILI prediction. The present study developed a 3D quadruple cell co-culture liver spheroid model for DILI prediction via self-assembly. Induction by phorbol 12-myristate 13-acetate at the concentration of 15.42 ng/mL for 48 hours with a following 24-hour rest period was used for THP-1 cell differentiation, resulting in credible macrophagic phenotypes. HepG2 cells, PUMC-HUVEC-T1 cells, THP-1-originated macrophages, and human hepatic stellate cells were selected as the components, which exhibited adaptability in the designated spheroid culture conditions. Following establishment, the characterization demonstrated the competence of the model in long-term stability reflected by the maintenance of morphology, viability, cellular integration, and cell-cell junctions for at least six days, as well as the reliable liver-specific functions including superior albumin and urea secretion, improved drug metabolic enzyme expression and CYP3A4 activity, and the expression of MRP2, BSEP, and P-GP accompanied by the bile acid efflux transport function. In the comparative testing using 22 DILI-positive and 5 DILI-negative compounds among the novel 3D co-culture model, 3D HepG2 spheroids, and 2D HepG2 monolayers, the 3D culture method significantly enhanced the model sensitivity to compound cytotoxicity compared to the 2D form. The novel co-culture liver spheroid model exhibited higher overall predictive power with margin of safety as the classifying tool. In addition, the non-parenchymal cell components could amplify the toxicity of isoniazid in the 3D model, suggesting their potential mediating role in immune-mediated toxicity. The proof-of-concept experiments demonstrated the capability of the model in replicating drug-induced lipid dysregulation, bile acid efflux inhibition, and α-SMA upregulation, which are the key features of liver steatosis and phospholipidosis, cholestasis, and fibrosis, respectively. Overall, the novel 3D quadruple cell co-culture spheroid model is a reliable and readily available option for DILI prediction.
Collapse
Affiliation(s)
- Baiyang Sun
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing Key Laboratory for Nonclinical Safety Evaluation of Drugs, Beijing 100176, China
| | - Zihe Liang
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing Key Laboratory for Nonclinical Safety Evaluation of Drugs, Beijing 100176, China
| | - Yupeng Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing Key Laboratory for Nonclinical Safety Evaluation of Drugs, Beijing 100176, China
| | - Yue Yu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing Key Laboratory for Nonclinical Safety Evaluation of Drugs, Beijing 100176, China
| | - Xiaobing Zhou
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing Key Laboratory for Nonclinical Safety Evaluation of Drugs, Beijing 100176, China
| | - Xingchao Geng
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing Key Laboratory for Nonclinical Safety Evaluation of Drugs, Beijing 100176, China.
| | - Bo Li
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; National Institutes for Food and Drug Control, Beijing 102629, China.
| |
Collapse
|
2
|
Melillo N, Scotcher D, Kenna JG, Green C, Hines CDG, Laitinen I, Hockings PD, Ogungbenro K, Gunwhy ER, Sourbron S, Waterton JC, Schuetz G, Galetin A. Use of In Vivo Imaging and Physiologically-Based Kinetic Modelling to Predict Hepatic Transporter Mediated Drug-Drug Interactions in Rats. Pharmaceutics 2023; 15:896. [PMID: 36986758 PMCID: PMC10057977 DOI: 10.3390/pharmaceutics15030896] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Gadoxetate, a magnetic resonance imaging (MRI) contrast agent, is a substrate of organic-anion-transporting polypeptide 1B1 and multidrug resistance-associated protein 2. Six drugs, with varying degrees of transporter inhibition, were used to assess gadoxetate dynamic contrast enhanced MRI biomarkers for transporter inhibition in rats. Prospective prediction of changes in gadoxetate systemic and liver AUC (AUCR), resulting from transporter modulation, were performed by physiologically-based pharmacokinetic (PBPK) modelling. A tracer-kinetic model was used to estimate rate constants for hepatic uptake (khe), and biliary excretion (kbh). The observed median fold-decreases in gadoxetate liver AUC were 3.8- and 1.5-fold for ciclosporin and rifampicin, respectively. Ketoconazole unexpectedly decreased systemic and liver gadoxetate AUCs; the remaining drugs investigated (asunaprevir, bosentan, and pioglitazone) caused marginal changes. Ciclosporin decreased gadoxetate khe and kbh by 3.78 and 0.09 mL/min/mL, while decreases for rifampicin were 7.20 and 0.07 mL/min/mL, respectively. The relative decrease in khe (e.g., 96% for ciclosporin) was similar to PBPK-predicted inhibition of uptake (97-98%). PBPK modelling correctly predicted changes in gadoxetate systemic AUCR, whereas underprediction of decreases in liver AUCs was evident. The current study illustrates the modelling framework and integration of liver imaging data, PBPK, and tracer-kinetic models for prospective quantification of hepatic transporter-mediated DDI in humans.
Collapse
Affiliation(s)
- Nicola Melillo
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Science, The University of Manchester, Manchester M13 9PL, UK (D.S.)
- SystemsForecastingUK Ltd., Lancaster LA1 5DD, UK
| | - Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Science, The University of Manchester, Manchester M13 9PL, UK (D.S.)
| | | | - Claudia Green
- MR & CT Contrast Media Research, Bayer AG, 13353 Berlin, Germany
| | | | - Iina Laitinen
- Sanofi-Aventis Deutschland GmbH, Bioimaging Germany, 65929 Frankfurt am Main, Germany
- Antaros Medical, 431 83 Mölndal, Sweden
| | - Paul D. Hockings
- Antaros Medical, 431 83 Mölndal, Sweden
- MedTech West, Chalmers University of Technology, 413 45 Gothenburg, Sweden
| | - Kayode Ogungbenro
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Science, The University of Manchester, Manchester M13 9PL, UK (D.S.)
| | - Ebony R. Gunwhy
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TA, UK
| | - Steven Sourbron
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TA, UK
| | - John C. Waterton
- Bioxydyn Ltd., Manchester M15 6SZ, UK
- Centre for Imaging Sciences, Division of Informatics Imaging & Data Sciences, School of Health Sciences, The University of Manchester, Manchester M13 9PL, UK
| | - Gunnar Schuetz
- MR & CT Contrast Media Research, Bayer AG, 13353 Berlin, Germany
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Science, The University of Manchester, Manchester M13 9PL, UK (D.S.)
| |
Collapse
|
3
|
Özvegy-Laczka C, Ungvári O, Bakos É. Fluorescence-based methods for studying activity and drug-drug interactions of hepatic solute carrier and ATP binding cassette proteins involved in ADME-Tox. Biochem Pharmacol 2023; 209:115448. [PMID: 36758706 DOI: 10.1016/j.bcp.2023.115448] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
In humans, approximately 70% of drugs are eliminated through the liver. This process is governed by the concerted action of membrane transporters and metabolic enzymes. Transporters mediating hepatocellular uptake of drugs belong to the SLC (Solute carrier) superfamily of transporters. Drug efflux either toward the portal vein or into the bile is mainly mediated by active transporters of the ABC (ATP Binding Cassette) family. Alteration in the function and/or expression of liver transporters due to mutations, disease conditions, or co-administration of drugs or food components can result in altered pharmacokinetics. On the other hand, drugs or food components interacting with liver transporters may also interfere with liver function (e.g., bile acid homeostasis) and may even cause liver toxicity. Accordingly, certain transporters of the liver should be investigated already at an early stage of drug development. Most frequently radioactive probes are applied in these drug-transporter interaction tests. However, fluorescent probes are cost-effective and sensitive alternatives to radioligands, and are gaining wider application in drug-transporter interaction tests. In our review, we summarize our current understanding about hepatocyte ABC and SLC transporters affected by drug interactions. We provide an update of the available fluorescent and fluorogenic/activable probes applicable in in vitro or in vivo testing of these ABC and SLC transporters, including near-infrared transporter probes especially suitable for in vivo imaging. Furthermore, our review gives a comprehensive overview of the available fluorescence-based methods, not directly relying on the transport of the probe, suitable for the investigation of hepatic ABC or SLC-type drug transporters.
Collapse
Affiliation(s)
- Csilla Özvegy-Laczka
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary.
| | - Orsolya Ungvári
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary
| |
Collapse
|
4
|
Chong LH, Ching T, Farm HJ, Grenci G, Chiam KH, Toh YC. Integration of a microfluidic multicellular coculture array with machine learning analysis to predict adverse cutaneous drug reactions. LAB ON A CHIP 2022; 22:1890-1904. [PMID: 35348137 DOI: 10.1039/d1lc01140e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Adverse cutaneous reactions are potentially life-threatening skin side effects caused by drugs administered into the human body. The availability of a human-specific in vitro platform that can prospectively screen drugs and predict this risk is therefore of great importance to drug safety. However, since adverse cutaneous drug reactions are mediated by at least 2 distinct mechanisms, both involving systemic interactions between liver, immune and dermal tissues, existing in vitro skin models have not been able to comprehensively recapitulate these complex, multi-cellular interactions to predict the skin-sensitization potential of drugs. Here, we report a novel in vitro drug screening platform, which comprises a microfluidic multicellular coculture array (MCA) to model different mechanisms-of-action using a collection of simplistic cellular assays. The resultant readouts are then integrated with a machine-learning algorithm to predict the skin sensitizing potential of systemic drugs. The MCA consists of 4 cell culture compartments connected by diffusion microchannels to enable crosstalk between hepatocytes that generate drug metabolites, antigen-presenting cells (APCs) that detect the immunogenicity of the drug metabolites, and keratinocytes and dermal fibroblasts, which collectively determine drug metabolite-induced FasL-mediated apoptosis. A single drug screen using the MCA can simultaneously generate 5 readouts, which are integrated using support vector machine (SVM) and principal component analysis (PCA) to classify and visualize the drugs as skin sensitizers or non-skin sensitizers. The predictive performance of the MCA and SVM classification algorithm is then validated through a pilot screen of 11 drugs labelled by the US Food and Drug Administration (FDA), including 7 skin-sensitizing and 4 non-skin sensitizing drugs, using stratified 4-fold cross-validation (CV) on SVM. The predictive performance of our in vitro model achieves an average of 87.5% accuracy (correct prediction rate), 75% specificity (prediction rate of true negative drugs), and 100% sensitivity (prediction rate of true positive drugs). We then employ the MCA and the SVM training algorithm to prospectively identify the skin-sensitizing likelihood and mechanism-of-action for obeticholic acid (OCA), a farnesoid X receptor (FXR) agonist which has undergone clinical trials for non-alcoholic steatohepatitis (NASH) with well-documented cutaneous side effects.
Collapse
Affiliation(s)
- Lor Huai Chong
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, #04-08, Singapore 117583, Singapore
- Bioinformatics Institute, ASTAR, 30 Biopolis St, Singapore 138671, Singapore
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, 47500, Malaysia
| | - Terry Ching
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, #04-08, Singapore 117583, Singapore
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
- Digital Manufacturing and Design Centre, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372, Singapore
| | - Hui Jia Farm
- Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK
| | - Gianluca Grenci
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, #04-08, Singapore 117583, Singapore
- Mechanobiology Institute, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Keng-Hwee Chiam
- Bioinformatics Institute, ASTAR, 30 Biopolis St, Singapore 138671, Singapore
| | - Yi-Chin Toh
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, #04-08, Singapore 117583, Singapore
- School of Mechanical Medical & Process Engineering, Queensland University of Technology, 2 George St, Brisbane, QLD 4000, Australia.
- Centre for Biomedical Technologies, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
| |
Collapse
|
5
|
Sun S, Wang J, Yao J, Guo H, Dai J. Transcriptome analysis of 3D primary mouse liver spheroids shows that long-term exposure to hexafluoropropylene oxide trimer acid disrupts hepatic bile acid metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:151509. [PMID: 34762948 DOI: 10.1016/j.scitotenv.2021.151509] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Hexafluoropropylene oxide trimer acid (HFPO-TA), an alternative to perfluorooctanoic acid (PFOA), has been detected in various environmental and human matrices. However, information regarding its toxicity remains limited. Here, we established a three-dimensional (3D) primary mouse liver spheroid model to compare the hepatotoxicity of HFPO-TA and PFOA. The 3D spheroids were repeatedly exposed to 25-, 50-, or 100-μM HFPO-TA and PFOA for 28 d. Compared with the PFOA groups, the HFPO-TA groups showed higher bioaccumulation potential, higher lactate dehydrogenase (LDH) leakage, and lower adenosine triphosphate (ATP), albumin, and urea secretion. Transcriptome analysis identified 1603 and 772 differentially expressed genes in the 100-μM HFPO-TA- and PFOA-treated groups, respectively. Bioinformatics analysis indicated that cholesterol metabolism, bile acid metabolism, and inflammatory response were significantly altered. Exposure to 100-μM HFPO-TA increased triglyceride content but decreased total cholesterol content, while no changes were observed in the 100-μM PFOA-treated group. Total bile acids in the re-polarized 3D spheroids increased significantly after 100-μM HFPO-TA and PFOA treatment, which did not affect bile acid synthesis but inhibited the expression levels of Bsep and Mrp2 related to bile acid transport. Thus, HFPO-TA exhibited more serious hepatotoxicity than PFOA in 3D primary liver spheroids and may not be a safe alternative.
Collapse
Affiliation(s)
- Sujie Sun
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianshe Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, Shandong Province, China
| | - Jingzhi Yao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hua Guo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
6
|
Jiang T, Guo H, Xia YN, Liu Y, Chen D, Pang G, Feng Y, Yu H, Wu Y, Zhang S, Wang Y, Wang Y, Wen H, Zhang LW. Hepatotoxicity of copper sulfide nanoparticles towards hepatocyte spheroids using a novel multi-concave agarose chip method. Nanomedicine (Lond) 2021; 16:1487-1504. [PMID: 34184559 DOI: 10.2217/nnm-2021-0011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: To explore the hepatotoxicity of copper sulfide nanoparticles (CuSNPs) toward hepatocyte spheroids. Materials & methods: Other than the traditional agarose method to generate hepatocyte spheroids, we developed a multi-concave agarose chip (MCAC) method to investigate changes in hepatocyte viability, morphology, mitochondrial membrane potential, reactive oxygen species and hepatobiliary transporter by CuSNPs. Results: The MCAC method allowed a large number of spheroids to be obtained per sample. CuSNPs showed hepatotoxicity in vitro through a decrease in spheroid viability, albumin/urea production and glycogen deposition. CuSNPs also introduced hepatocyte spheroid injury through alteration of mitochondrial membrane potential and reactive oxygen species, that could be reversed by N-acetyl-l-cysteine. CuSNPs significantly decreased the activity of BSEP transporter by downregulating its mRNA and protein levels. Activity of the MRP2 transporter remained unchanged. Conclusion: We observed the hepatotoxicity of CuSNPs in vitro with associated mechanisms in an advanced 3D culture system.
Collapse
Affiliation(s)
- Tianyan Jiang
- School of Radiation Medicine & Protection, State Key Laboratory of Radiation Medicine & Protection, School for Radiological & Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, PR China
| | - Haoxiang Guo
- School of Radiation Medicine & Protection, State Key Laboratory of Radiation Medicine & Protection, School for Radiological & Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, PR China
| | - Ya-Nan Xia
- School of Radiation Medicine & Protection, State Key Laboratory of Radiation Medicine & Protection, School for Radiological & Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, PR China
| | - Yun Liu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.,Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, 201210, PR China
| | - Dandan Chen
- School of Radiation Medicine & Protection, State Key Laboratory of Radiation Medicine & Protection, School for Radiological & Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, PR China
| | - Guibin Pang
- State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai, PR China
| | - Yahui Feng
- Department of Science & Technology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, PR China
| | - Huan Yu
- School of Radiation Medicine & Protection, State Key Laboratory of Radiation Medicine & Protection, School for Radiological & Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, PR China
| | - Yanxian Wu
- School of Radiation Medicine & Protection, State Key Laboratory of Radiation Medicine & Protection, School for Radiological & Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, PR China
| | - Shaodian Zhang
- The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, PR China
| | - Yangyun Wang
- School of Radiation Medicine & Protection, State Key Laboratory of Radiation Medicine & Protection, School for Radiological & Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, PR China
| | - Yong Wang
- School of Radiation Medicine & Protection, State Key Laboratory of Radiation Medicine & Protection, School for Radiological & Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, PR China
| | - Hairuo Wen
- Beijing Key Laboratory, National Center for Safety Evaluation of Drugs, National Institutes for Food & Drug Control, Beijing, 100176, PR China
| | - Leshuai W Zhang
- School of Radiation Medicine & Protection, State Key Laboratory of Radiation Medicine & Protection, School for Radiological & Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, PR China
| |
Collapse
|
7
|
Tabernilla A, dos Santos Rodrigues B, Pieters A, Caufriez A, Leroy K, Van Campenhout R, Cooreman A, Gomes AR, Arnesdotter E, Gijbels E, Vinken M. In Vitro Liver Toxicity Testing of Chemicals: A Pragmatic Approach. Int J Mol Sci 2021; 22:5038. [PMID: 34068678 PMCID: PMC8126138 DOI: 10.3390/ijms22095038] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
The liver is among the most frequently targeted organs by noxious chemicals of diverse nature. Liver toxicity testing using laboratory animals not only raises serious ethical questions, but is also rather poorly predictive of human safety towards chemicals. Increasing attention is, therefore, being paid to the development of non-animal and human-based testing schemes, which rely to a great extent on in vitro methodology. The present paper proposes a rationalized tiered in vitro testing strategy to detect liver toxicity triggered by chemicals, in which the first tier is focused on assessing general cytotoxicity, while the second tier is aimed at identifying liver-specific toxicity as such. A state-of-the-art overview is provided of the most commonly used in vitro assays that can be used in both tiers. Advantages and disadvantages of each assay as well as overall practical considerations are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.T.); (B.d.S.R.); (A.P.); (A.C.); (K.L.); (R.V.C.); (A.C.); (A.R.G.); (E.A.); (E.G.)
| |
Collapse
|
8
|
Shinozawa T, Kimura M, Cai Y, Saiki N, Yoneyama Y, Ouchi R, Koike H, Maezawa M, Zhang RR, Dunn A, Ferguson A, Togo S, Lewis K, Thompson W, Asai A, Takebe T. High-Fidelity Drug-Induced Liver Injury Screen Using Human Pluripotent Stem Cell-Derived Organoids. Gastroenterology 2021; 160:831-846.e10. [PMID: 33039464 PMCID: PMC7878295 DOI: 10.1053/j.gastro.2020.10.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/10/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Preclinical identification of compounds at risk of causing drug induced liver injury (DILI) remains a significant challenge in drug development, highlighting a need for a predictive human system to study complicated DILI mechanism and susceptibility to individual drug. Here, we established a human liver organoid (HLO)-based screening model for analyzing DILI pathology at organoid resolution. METHODS We first developed a reproducible method to generate HLO from storable foregut progenitors from pluripotent stem cell (PSC) lines with reproducible bile transport function. The qRT-PCR and single cell RNA-seq determined hepatocyte transcriptomic state in cells of HLO relative to primary hepatocytes. Histological and ultrastructural analyses were performed to evaluate micro-anatomical architecture. HLO based drug-induced liver injury assays were transformed into a 384 well based high-speed live imaging platform. RESULTS HLO, generated from 10 different pluripotent stem cell lines, contain polarized immature hepatocytes with bile canaliculi-like architecture, establishing the unidirectional bile acid transport pathway. Single cell RNA-seq profiling identified diverse and zonal hepatocytic populations that in part emulate primary adult hepatocytes. The accumulation of fluorescent bile acid into organoid was impaired by CRISPR-Cas9-based gene editing and transporter inhibitor treatment with BSEP. Furthermore, we successfully developed an organoid based assay with multiplexed readouts measuring viability, cholestatic and/or mitochondrial toxicity with high predictive values for 238 marketed drugs at 4 different concentrations (Sensitivity: 88.7%, Specificity: 88.9%). LoT positively predicts genomic predisposition (CYP2C9∗2) for Bosentan-induced cholestasis. CONCLUSIONS Liver organoid-based Toxicity screen (LoT) is a potential assay system for liver toxicology studies, facilitating compound optimization, mechanistic study, and precision medicine as well as drug screening applications.
Collapse
Affiliation(s)
- Tadahiro Shinozawa
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Masaki Kimura
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Yuqi Cai
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Norikazu Saiki
- Institute of Research, Tokyo Medical and Dental University (TMDU) 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yosuke Yoneyama
- Institute of Research, Tokyo Medical and Dental University (TMDU) 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Rie Ouchi
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Hiroyuki Koike
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Mari Maezawa
- Institute of Research, Tokyo Medical and Dental University (TMDU) 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ran-Ran Zhang
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Andrew Dunn
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Autumn Ferguson
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Shodai Togo
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Kyle Lewis
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Wendy Thompson
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Akihiro Asai
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Takanori Takebe
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Communication Design Center, Advanced Medical Research Center, Yokohama City University Graduate School of Medicine, Japan.
| |
Collapse
|
9
|
Kohara H, Bajaj P, Yamanaka K, Miyawaki A, Harada K, Miyamoto K, Matsui T, Okai Y, Wagoner M, Shinozawa T. High-Throughput Screening to Evaluate Inhibition of Bile Acid Transporters Using Human Hepatocytes Isolated From Chimeric Mice. Toxicol Sci 2020; 173:347-361. [PMID: 31722436 DOI: 10.1093/toxsci/kfz229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cholestasis resulting from hepatic bile acid efflux transporter inhibition may contribute to drug-induced liver injury (DILI). This condition is a common safety-related reason for drug attrition and withdrawal. To screen for safety risks associated with efflux transport inhibition, we developed a high-throughput cellular assay for different drug discovery phases. Hepatocytes isolated from chimeric mice with humanized livers presented gene expression resembling that of the human liver and demonstrated apical membrane polarity when sandwiched between Matrigel and collagen. The fluorescent bile acid-derivative cholyl-l-lysyl-fluorescein (CLF) was used to quantify drug-induced efflux transport inhibition in hepatocytes. Cyclosporine inhibited CLF accumulation in the apical bile canalicular lumen in a concentration-dependent manner. The assay had equivalent predictive power to a primary human hepatocyte-based assay and greater predictive power than an assay performed with rat hepatocytes. Predictive power was tested using 45 pharmaceutical compounds, and 91.3% of the compounds with cholestatic potential (21/23) had margins (IC50/Cmax) < 20. In contrast, 90.9% (20/22) of compounds without cholestatic potential had IC50/Cmax>20. Assay sensitivity and specificity were 91.3% and 90.9%, respectively. We suggest that this improved assay performance could result from higher expression of efflux transporters, metabolic pathways, and/or species differences. Given the long-term supply of cells from the same donor, the humanized mouse-derived hepatocyte-based CLF efflux assay could be a valuable tool for predicting cholestatic DILI.
Collapse
Affiliation(s)
- Hiroshi Kohara
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Kanagawa 251-8555, Kanagawa, Japan
| | - Piyush Bajaj
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts 02139, USA
| | - Kazunori Yamanaka
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Kanagawa 251-8555, Kanagawa, Japan
| | - Akimitsu Miyawaki
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Kanagawa 251-8555, Kanagawa, Japan
| | - Kosuke Harada
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Kanagawa 251-8555, Kanagawa, Japan
| | - Kazumasa Miyamoto
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Kanagawa 251-8555, Kanagawa, Japan
| | - Toshikatsu Matsui
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Kanagawa 251-8555, Kanagawa, Japan
| | - Yoshiko Okai
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Kanagawa 251-8555, Kanagawa, Japan
| | - Matthew Wagoner
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts 02139, USA
| | - Tadahiro Shinozawa
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Kanagawa 251-8555, Kanagawa, Japan
| |
Collapse
|
10
|
Jang KJ, Otieno MA, Ronxhi J, Lim HK, Ewart L, Kodella KR, Petropolis DB, Kulkarni G, Rubins JE, Conegliano D, Nawroth J, Simic D, Lam W, Singer M, Barale E, Singh B, Sonee M, Streeter AJ, Manthey C, Jones B, Srivastava A, Andersson LC, Williams D, Park H, Barrile R, Sliz J, Herland A, Haney S, Karalis K, Ingber DE, Hamilton GA. Reproducing human and cross-species drug toxicities using a Liver-Chip. Sci Transl Med 2020; 11:11/517/eaax5516. [PMID: 31694927 DOI: 10.1126/scitranslmed.aax5516] [Citation(s) in RCA: 255] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
Nonclinical rodent and nonrodent toxicity models used to support clinical trials of candidate drugs may produce discordant results or fail to predict complications in humans, contributing to drug failures in the clinic. Here, we applied microengineered Organs-on-Chips technology to design a rat, dog, and human Liver-Chip containing species-specific primary hepatocytes interfaced with liver sinusoidal endothelial cells, with or without Kupffer cells and hepatic stellate cells, cultured under physiological fluid flow. The Liver-Chip detected diverse phenotypes of liver toxicity, including hepatocellular injury, steatosis, cholestasis, and fibrosis, and species-specific toxicities when treated with tool compounds. A multispecies Liver-Chip may provide a useful platform for prediction of liver toxicity and inform human relevance of liver toxicities detected in animal studies to better determine safety and human risk.
Collapse
Affiliation(s)
| | - Monicah A Otieno
- Janssen Pharmaceutical Research and Development, Nonclinical Safety, 1400 Welsh and McKean Road, Spring House, PA 19477, USA.
| | - Janey Ronxhi
- Emulate Inc., 27 Drydock Avenue, Boston, MA 02210, USA
| | - Heng-Keang Lim
- Janssen Pharmaceutical Research and Development, Drug Metabolism and Pharmacokinetics, 1400 Welsh and McKean Road, Spring House, PA 19477, USA
| | - Lorna Ewart
- Clinical Pharmacology and Safety Sciences Department, Biopharmaceuticals Science Unit, AstraZeneca, Cambridge, CB4 0WG, UK
| | | | | | | | | | | | - Janna Nawroth
- Emulate Inc., 27 Drydock Avenue, Boston, MA 02210, USA
| | - Damir Simic
- Janssen Pharmaceutical Research and Development, Nonclinical Safety, 1400 Welsh and McKean Road, Spring House, PA 19477, USA
| | - Wing Lam
- Janssen Pharmaceutical Research and Development, Drug Metabolism and Pharmacokinetics, 1400 Welsh and McKean Road, Spring House, PA 19477, USA
| | - Monica Singer
- Janssen Pharmaceutical Research and Development, Nonclinical Safety, 1400 Welsh and McKean Road, Spring House, PA 19477, USA
| | - Erio Barale
- Janssen Pharmaceutical Research and Development, Nonclinical Safety, 1400 Welsh and McKean Road, Spring House, PA 19477, USA
| | - Bhanu Singh
- Janssen Pharmaceutical Research and Development, Nonclinical Safety, 1400 Welsh and McKean Road, Spring House, PA 19477, USA
| | - Manisha Sonee
- Janssen Pharmaceutical Research and Development, Nonclinical Safety, 1400 Welsh and McKean Road, Spring House, PA 19477, USA
| | - Anthony J Streeter
- Janssen Pharmaceutical Research and Development, Nonclinical Safety, 1400 Welsh and McKean Road, Spring House, PA 19477, USA
| | - Carl Manthey
- Janssen Pharmaceutical Research and Development, IPD Biology, 1400 Welsh and McKean Road, Spring House, PA 19477, USA
| | - Barry Jones
- Clinical Pharmacology and Safety Sciences Department, Biopharmaceuticals Science Unit, AstraZeneca, Cambridge, CB4 0WG, UK
| | - Abhishek Srivastava
- Clinical Pharmacology and Safety Sciences Department, Biopharmaceuticals Science Unit, AstraZeneca, Cambridge, CB4 0WG, UK
| | - Linda C Andersson
- Clinical Pharmacology and Safety Sciences Department, Biopharmaceuticals Science Unit, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Dominic Williams
- Clinical Pharmacology and Safety Sciences Department, Biopharmaceuticals Science Unit, AstraZeneca, Cambridge, CB4 0WG, UK
| | | | | | - Josiah Sliz
- Emulate Inc., 27 Drydock Avenue, Boston, MA 02210, USA
| | - Anna Herland
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | | | - Katia Karalis
- Emulate Inc., 27 Drydock Avenue, Boston, MA 02210, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA.,Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02139, USA
| | | |
Collapse
|
11
|
Székely V, Patik I, Ungvári O, Telbisz Á, Szakács G, Bakos É, Özvegy-Laczka C. Fluorescent probes for the dual investigation of MRP2 and OATP1B1 function and drug interactions. Eur J Pharm Sci 2020; 151:105395. [PMID: 32473861 DOI: 10.1016/j.ejps.2020.105395] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/27/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022]
Abstract
Detoxification in hepatocytes is a strictly controlled process, in which the governed action of membrane transporters involved in the uptake and efflux of potentially dangerous molecules has a crucial role. Major transporters of hepatic clearance belong to the ABC (ATP Binding Cassette) and Solute Carrier (SLC) protein families. Organic anion-transporting polypeptide OATP1B1 (encoded by the SLCO1B1 gene) is exclusively expressed in the sinusoidal membrane of hepatocytes, where it mediates the cellular uptake of bile acids, bilirubin, and also that of various drugs. The removal of toxic molecules from hepatocytes to the bile is accomplished by several ABC transporters, including P-glycoprotein (ABCB1), MRP2 (ABCC2) and BCRP (ABCG2). Owing to their pharmacological relevance, monitoring drug interaction with OATP1B1/3 and ABC proteins is recommended. Our aim was to assess the interaction of recently identified fluorescent OATP substrates (various dyes used in cell viability assays, pyranine, Cascade Blue hydrazide (CB) and sulforhodamine 101 (SR101)) (Bakos et al., 2019; Patik et al., 2018) with MRP2 and ABCG2 in order to find fluorescent probes for the simultaneous characterization of both uptake and efflux processes. Transport by MRP2 and ABCG2 was investigated in inside-out membrane vesicles (IOVs) allowing a fast screen of the transport of membrane impermeable substrates by efflux transporters. Next, transcellular transport of shared OATP and ABC transporter substrate dyes was evaluated in MDCKII cells co-expressing OATP1B1 and MRP2 or ABCG2. Our results indicate that pyranine is a general substrate of OATP1B1, OATP1B3 and OATP2B1, and we find that the dye Live/Dead Violet and CB are good tools to investigate ABCG2 function in IOVs. Besides their suitability for MRP2 functional tests in the IOV setup, pyranine, CB and SR101 are the first dual probes that can be used to simultaneously measure OATP1B1 and MRP2 function in polarized cells by a fluorescent method.
Collapse
Affiliation(s)
- Virág Székely
- Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; Doctoral School of Molecular Medicine, Semmelweis University, H-1085 Budapest, Hungary
| | - Izabel Patik
- Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Orsolya Ungvári
- Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Ágnes Telbisz
- Biomembrane research group, Institute of Enzymology, RCNS, H-1117 Budapest, Hungary
| | - Gergely Szakács
- Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; Institute of Cancer Research, Medical University Vienna, Borschkegasse 8a, 1090 Wien, Austria
| | - Éva Bakos
- Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Csilla Özvegy-Laczka
- Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary.
| |
Collapse
|
12
|
Garzel B, Zhang L, Huang SM, Wang H. A Change in Bile Flow: Looking Beyond Transporter Inhibition in the Development of Drug-induced Cholestasis. Curr Drug Metab 2020; 20:621-632. [PMID: 31288715 DOI: 10.2174/1389200220666190709170256] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/22/2019] [Accepted: 06/12/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Drug-induced Liver Injury (DILI) has received increasing attention over the past decades, as it represents the leading cause of drug failure and attrition. One of the most prevalent and severe forms of DILI involves the toxic accumulation of bile acids in the liver, known as Drug-induced Cholestasis (DIC). Traditionally, DIC is studied by exploring the inhibition of hepatic transporters such as Bile Salt Export Pump (BSEP) and multidrug resistance-associated proteins, predominantly through vesicular transport assays. Although this approach has identified numerous drugs that alter bile flow, many DIC drugs do not demonstrate prototypical transporter inhibition, but rather are associated with alternative mechanisms. METHODS We undertook a focused literature search on DIC and biliary transporters and analyzed peer-reviewed publications over the past two decades or so. RESULTS We have summarized the current perception regarding DIC, biliary transporters, and transcriptional regulation of bile acid homeostasis. A growing body of literature aimed to identify alternative mechanisms in the development of DIC has been evaluated. This review also highlights current in vitro approaches used for prediction of DIC. CONCLUSION Efforts have continued to focus on BSEP, as it is the primary route for hepatic biliary clearance. In addition to inhibition, drug-induced BSEP repression or the combination of these two has emerged as important alternative mechanisms leading to DIC. Furthermore, there has been an evolution in the approaches to studying DIC including 3D cell cultures and computational modeling.
Collapse
Affiliation(s)
- Brandy Garzel
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States.,Becton Dickinson, 54 Loveton Circle, Sparks, MD 21152, United States
| | - Lei Zhang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States.,Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, FDA, Silver Spring, MD 20993, United States
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States
| |
Collapse
|
13
|
Kenna JG, Taskar KS, Battista C, Bourdet DL, Brouwer KLR, Brouwer KR, Dai D, Funk C, Hafey MJ, Lai Y, Maher J, Pak YA, Pedersen JM, Polli JW, Rodrigues AD, Watkins PB, Yang K, Yucha RW. Can Bile Salt Export Pump Inhibition Testing in Drug Discovery and Development Reduce Liver Injury Risk? An International Transporter Consortium Perspective. Clin Pharmacol Ther 2019; 104:916-932. [PMID: 30137645 PMCID: PMC6220754 DOI: 10.1002/cpt.1222] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022]
Abstract
Bile salt export pump (BSEP) inhibition has emerged as an important mechanism that may contribute to the initiation of human drug‐induced liver injury (DILI). Proactive evaluation and understanding of BSEP inhibition is recommended in drug discovery and development to aid internal decision making on DILI risk. BSEP inhibition can be quantified using in vitro assays. When interpreting assay data, it is important to consider in vivo drug exposure. Currently, this can be undertaken most effectively by consideration of total plasma steady state drug concentrations (Css,plasma). However, because total drug concentrations are not predictive of pharmacological effect, the relationship between total exposure and BSEP inhibition is not causal. Various follow‐up studies can aid interpretation of in vitro BSEP inhibition data and may be undertaken on a case‐by‐case basis. BSEP inhibition is one of several mechanisms by which drugs may cause DILI, therefore, it should be considered alongside other mechanisms when evaluating possible DILI risk.
Collapse
Affiliation(s)
| | - Kunal S Taskar
- Mechanistic Safety and Disposition, IVIVT, GlaxoSmithKline, Ware, Hertfordshire, UK
| | - Christina Battista
- DILIsym Services Inc., a Simulations Plus Company, Research Triangle Park, North Carolina, USA
| | - David L Bourdet
- Drug Metabolism and Pharmacokinetics, Theravance Biopharma, South San Francisco, California, USA
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - David Dai
- Clinical Pharmacology, Research and Development Sciences, Agios Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Christoph Funk
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Michael J Hafey
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc, Kenilworth, New Jersey, USA
| | - Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, California, USA
| | - Jonathan Maher
- Safety Assessment, Genentech, South San Francisco, California, USA
| | - Y Anne Pak
- Lilly Research Laboratory, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Jenny M Pedersen
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Novum, Huddinge, Sweden
| | - Joseph W Polli
- Mechanistic Safety and Drug Disposition, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | | | - Paul B Watkins
- Institute for Drug Safety Sciences, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kyunghee Yang
- DILIsym Services Inc., a Simulations Plus Company, Research Triangle Park, North Carolina, USA
| | - Robert W Yucha
- Takeda Pharmaceuticals, Global Drug Metabolism and Pharmacokinetics, Cambridge, Massachusetts, USA
| | | |
Collapse
|
14
|
Chong LH, Ng C, Li H, Tian EF, Ananthanarayanan A, McMillian M, Toh YC. Hepatic Bioactivation of Skin-Sensitizing Drugs to Immunogenic Reactive Metabolites. ACS OMEGA 2019; 4:13902-13912. [PMID: 31497708 PMCID: PMC6714514 DOI: 10.1021/acsomega.9b01551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
The clinical use of some drugs, such as carbamazepine, phenytoin, and allopurinol, is often associated with adverse cutaneous reactions. The bioactivation of drugs into immunologically reactive metabolites by the liver is postulated to be the first step in initiating a downstream cascade of pathological immune responses. Current mechanistic understanding and the ability to predict such adverse drug cutaneous responses have been partly limited by the lack of appropriate cutaneous drug bioactivation experimental models. Although in vitro human liver models have been extensively investigated for predicting hepatotoxicity and drug-drug interactions, their ability to model the generation of antigenic reactive drug metabolites that are capable of eliciting immunological reactions is not well understood. Here, we employed a human progenitor cell (HepaRG)-derived hepatocyte model and established highly sensitive liquid chromatography-mass spectrometry analytical assays to generate and quantify different reactive metabolite species of three paradigm skin sensitizers, namely, carbamazepine, phenytoin, and allopurinol. We found that the generation of reactive drug metabolites by the HepaRG-hepatocytes was sensitive to the medium composition. In addition, a functional assay based on the activation of U937 myeloid cells into the antigen-presenting cell (APC) phenotype was established to evaluate the immunogenicity potential of the reactive drug metabolites produced by HepaRG-derived hepatocytes. We showed that the reactive drug metabolites of known skin sensitizers could significantly upregulate IL8, IL1β, and CD86 expressions in U937 cells compared to the metabolites from a nonskin sensitizer (i.e., acetaminophen). Thus, the extent of APC activation by HepaRG-hepatocytes conditioned medium containing reactive drug metabolites can potentially be used to predict their skin sensitization potential.
Collapse
Affiliation(s)
- Lor Huai Chong
- Department
of Biomedical Engineering, National University
of Singapore, 4 Engineering Drive 3, #04-08, Singapore 117583
| | - Celine Ng
- School
of Applied Science, Temasek Polytechnic, Tampines Avenue 1, Singapore 529765
| | - Huan Li
- School
of Applied Science, Temasek Polytechnic, Tampines Avenue 1, Singapore 529765
| | - Edmund Feng Tian
- School
of Applied Science, Temasek Polytechnic, Tampines Avenue 1, Singapore 529765
| | | | - Michael McMillian
- Invitrocue
Pte Ltd, 11, Biopolis
Way, Helios #12-07/08, Singapore 138667
- Department
of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, #04-11, Singapore 117597
| | - Yi-Chin Toh
- Department
of Biomedical Engineering, National University
of Singapore, 4 Engineering Drive 3, #04-08, Singapore 117583
- Institute
for Health Innovation and Technology (iHealthtech), National University of Singapore, MD6, 14 Medical Drive, #14-01, Singapore 117599
- The
N.1 Institute for Health, 28 Medical Drive, #05-corridor, Singapore 117456
- NUS
Tissue Engineering Programme, National University
of Singapore, 28 Medical
Drive, Singapore 117456
| |
Collapse
|
15
|
Fleddermann J, Susewind J, Peuschel H, Koch M, Tavernaro I, Kraegeloh A. Distribution of SiO 2 nanoparticles in 3D liver microtissues. Int J Nanomedicine 2019; 14:1411-1431. [PMID: 30863069 PMCID: PMC6390853 DOI: 10.2147/ijn.s189888] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Introduction Nanoparticles (NPs) are used in numerous products in technical fields and biomedicine; their potential adverse effects have to be considered in order to achieve safe applications. Besides their distribution in tissues, organs, and cellular localization, their impact and penetration during the process of tissue formation occurring in vivo during liver regeneration are critical steps for establishment of safe nanomaterials. Materials and methods In this study, 3D cell culture of human hepatocarcinoma cells (HepG2) was used to generate cellular spheroids, serving as in vitro liver microtissues. In order to determine their differential distribution and penetration depth in HepG2 spheroids, SiO2 NPs were applied either during or after spheroid formation. The NP penetration was comprehensively studied using confocal laser scanning microscopy and scanning electron microscopy. Results Spheroids were exposed to 100 µg mL−1 SiO2 NPs either at the beginning of spheroid formation, or during or after formation of spheroids. Microscopy analyses revealed that NP penetration into the spheroid is limited. During and after spheroid formation, SiO2 NPs penetrated about 20 µm into the spheroids, corresponding to about three cell layers. In contrast, because of the addition of SiO2 NPs simultaneously to cell seeding, NP agglomerates were located also in the spheroid center. Application of SiO2 NPs during the process of spheroid formation had no impact on final spheroid size. Conclusion Understanding the distribution of NPs in tissues is essential for biomedical applications. The obtained results indicate that NPs show only limited penetration into already formed tissue, which is probably caused by the alteration of the tissue structure and cell packing density during the process of spheroid formation.
Collapse
Affiliation(s)
- Jana Fleddermann
- INM - Leibniz Institute for New Materials, Saarbrücken, Germany,
| | | | - Henrike Peuschel
- INM - Leibniz Institute for New Materials, Saarbrücken, Germany,
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Saarbrücken, Germany,
| | | | | |
Collapse
|
16
|
Abstract
Since HepaRG cells can differentiate into well-polarized mature hepatocyte-like cells that synthesize, conjugate, and secrete bile acids, they represent an appropriate surrogate to primary human hepatocytes for investigations on drug-induced cholestasis mechanisms. In this chapter, culture conditions for obtaining HepaRG hepatocytes and the main methods used to detect cholestatic potential of drugs are described. Assays for evaluation of bile canaliculi dynamics and morphology are mainly based on time-lapse and phase-contrast microscopy analysis. Bile acid uptake, trafficking, and efflux are investigated using fluorescent probes. Individual bile acids are quantified in both culture media and cell layers by high-pressure liquid chromatography/tandem mass spectrometry. Preferential cellular accumulation of toxic hydrophobic bile acids is easily evidenced when exogenous primary and secondary bile acids are added to the culture medium.
Collapse
Affiliation(s)
| | - André Guillouzo
- INSERM U1241, NuMeCan, Université de Rennes 1, Rennes, France.
| |
Collapse
|
17
|
Ramaiahgari SC, Ferguson SS. Organotypic 3D HepaRG Liver Model for Assessment of Drug-Induced Cholestasis. Methods Mol Biol 2019; 1981:313-323. [PMID: 31016663 DOI: 10.1007/978-1-4939-9420-5_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cholestasis remains a major challenge in drug-induced liver injury, and therefore warrants identification of chemical entities that may lead to cholestasis. Recent advances in cell culture methods enable 3D spheroid models to remain viable for much longer periods of time than conventional sandwich cultures of primary human hepatocytes while maintaining native tissue-like functionality, such as drug metabolism activity, receptor signaling functionality, and physiological relevance. These spheroid models enable us to study repeated exposure effects associated with chemicals and their metabolites that may ultimately progress to cholestasis and liver injury. HepaRG cells cultured as spheroids are viable for more than 4 weeks with cytochrome P450 enzymatic activities comparable to ranges observed in freshly isolated/cryopreserved suspensions of primary human hepatocytes. HepaRG spheroids form bile canalicular structures with potential application as a model to study biliary excretion processes and intrahepatic obstruction of bile flow, leading to hepatocellular damage and death. In this chapter, we describe methods to culture 3D spheroids of HepaRG cells with extensive bile canalicular structures/networks, image transport of bile acid (cholyl-lysyl-fluorescein) to the bile canaliculi, and measure cholestatic drug-induced cytotoxicity.
Collapse
Affiliation(s)
- Sreenivasa C Ramaiahgari
- Division of National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Stephen S Ferguson
- Division of National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, USA.
| |
Collapse
|
18
|
Kenna JG, Uetrecht J. Do In Vitro Assays Predict Drug Candidate Idiosyncratic Drug-Induced Liver Injury Risk? Drug Metab Dispos 2018; 46:1658-1669. [PMID: 30021844 DOI: 10.1124/dmd.118.082719] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/05/2018] [Indexed: 12/16/2022] Open
Abstract
In vitro assays are commonly used during drug discovery to try to decrease the risk of idiosyncratic drug-induced liver injury (iDILI). But how effective are they at predicting risk? One of the most widely used methods evaluates cell cytotoxicity. Cytotoxicity assays that used cell lines that are very different from normal hepatocytes, and high concentrations of drug, were not very accurate at predicting idiosyncratic drug reaction risk. Even cytotoxicity assays that use more biologically normal cells resulted in many false-positive and false-negative results. Assays that quantify reactive metabolite formation, mitochondrial injury, and bile salt export pump (BSEP) inhibition have also been described. Although evidence suggests that reactive metabolite formation and BSEP inhibition can play a role in the mechanism of iDILI, these assays are not very accurate at predicting risk. In contrast, inhibition of the mitochondrial electron transport chain appears not to play an important role in the mechanism of iDILI, although other types of mitochondrial injury may do so. It is likely that there are many additional mechanisms by which drugs can cause iDILI. However, simply measuring more parameters is unlikely to provide better predictive assays unless those parameters are actually involved in the mechanism of iDILI. Hence, a better mechanistic understanding of iDILI is required; however, mechanistic studies of iDILI are very difficult. There is substantive evidence that most iDILI is immune mediated; therefore, the most accurate assays may involve those that determine immune responses to drugs. New methods to manipulate immune tolerance may greatly facilitate development of more suitable methods.
Collapse
Affiliation(s)
- J Gerry Kenna
- Safer Medicines Trust, Kingsbridge, United Kingdom (J.G.K.); and Faculties of Pharmacy and Medicine, University of Toronto, Toronto, Ontario, Canada (J.U.)
| | - Jack Uetrecht
- Safer Medicines Trust, Kingsbridge, United Kingdom (J.G.K.); and Faculties of Pharmacy and Medicine, University of Toronto, Toronto, Ontario, Canada (J.U.)
| |
Collapse
|
19
|
Ramaiahgari SC, Waidyanatha S, Dixon D, DeVito MJ, Paules RS, Ferguson SS. From the Cover: Three-Dimensional (3D) HepaRG Spheroid Model With Physiologically Relevant Xenobiotic Metabolism Competence and Hepatocyte Functionality for Liver Toxicity Screening. Toxicol Sci 2018. [PMID: 28633424 DOI: 10.1093/toxsci/kfx122] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Effective prediction of human responses to chemical and drug exposure is of critical importance in environmental toxicology research and drug development. While significant progress has been made to address this challenge using invitro liver models, these approaches often fail due to inadequate tissue model functionality. Herein, we describe the development, optimization, and characterization of a novel three-dimensional (3D) spheroid model using differentiated HepaRG cells that achieve and maintain physiologically relevant levels of xenobiotic metabolism (CYP1A2, CYP2B6, and CYP3A4/5). This invitro model maintains a stable phenotype over multiple weeks in both 96- and 384-well formats, supports highly reproducible tissue-like architectures and models pharmacologically- and environmentally important hepatic receptor pathways (ie AhR, CAR, and PXR) analogous to primary human hepatocyte cultures. HepaRG spheroid cultures use 50-100× fewer cells than conventional two dimensional cultures, and enable the identification of metabolically activated toxicants. Spheroid size, time in culture and culture media composition were important factors affecting basal levels of xenobiotic metabolism and liver enzyme inducibility with activators of hepatic receptors AhR, CAR and PXR. Repeated exposure studies showed higher sensitivity than traditional 2D cultures in identifying compounds that cause liver injury and metabolism-dependent toxicity. This platform combines the well-documented impact of 3D culture configuration for improved tissue functionality and longevity with the requisite throughput and repeatability needed for year-over-year toxicology screening.
Collapse
Affiliation(s)
- Sreenivasa C Ramaiahgari
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Durham, North Carolina 27709
| | - Suramya Waidyanatha
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Durham, North Carolina 27709
| | - Darlene Dixon
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Durham, North Carolina 27709
| | - Michael J DeVito
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Durham, North Carolina 27709
| | - Richard S Paules
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Durham, North Carolina 27709
| | - Stephen S Ferguson
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Durham, North Carolina 27709
| |
Collapse
|
20
|
Kenna JG. Human biology-based drug safety evaluation: scientific rationale, current status and future challenges. Expert Opin Drug Metab Toxicol 2017; 13:567-574. [PMID: 28150517 DOI: 10.1080/17425255.2017.1290082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Animal toxicity studies used to assess the safety of new candidate pharmaceuticals prior to their progression into human clinical trials are unable to assess the risk of non-pharmacologically mediated idiosyncratic adverse drug reactions (ADRs), the most frequent of which are drug-induced liver injury and cardiotoxicity. Idiosyncratic ADRs occur only infrequently and in certain susceptible humans, but are caused by many hundreds of different drugs and may lead to serious illness. Areas covered: Idiosyncratic ADRs are initiated by drug-related chemical insults, which cause toxicity due to susceptibility factors that manifest only in certain patients. The chemical insults can be detected using in vitro assays. These enable useful discrimination between drugs that cause high versus low levels of idiosyncratic ADR concern. Especially promising assays, which have been described recently in peer-reviewed scientific literature, are highlighted. Expert opinion: Effective interpretation of in vitro toxicity data requires integration of endpoints from multiple assays, which each address different mechanisms, and must also take account of human systemic and tissue drug exposure in vivo. Widespread acceptance and use of such assays has been hampered by the lack of correlation between idiosyncratic human ADR risk and toxicities observed in vivo in animals.
Collapse
|
21
|
Sistare FD, Mattes WB, LeCluyse EL. The Promise of New Technologies to Reduce, Refine, or Replace Animal Use while Reducing Risks of Drug Induced Liver Injury in Pharmaceutical Development. ILAR J 2017; 57:186-211. [DOI: 10.1093/ilar/ilw025] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/25/2016] [Accepted: 09/13/2016] [Indexed: 12/19/2022] Open
|
22
|
Sandwich-Cultured Hepatocytes as a Tool to Study Drug Disposition and Drug-Induced Liver Injury. J Pharm Sci 2016; 105:443-459. [PMID: 26869411 DOI: 10.1016/j.xphs.2015.11.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022]
Abstract
Sandwich-cultured hepatocytes (SCH) are metabolically competent and have proper localization of basolateral and canalicular transporters with functional bile networks. Therefore, this cellular model is a unique tool that can be used to estimate biliary excretion of compounds. SCH have been used widely to assess hepatobiliary disposition of endogenous and exogenous compounds and metabolites. Mechanistic modeling based on SCH data enables estimation of metabolic and transporter-mediated clearances, which can be used to construct physiologically based pharmacokinetic models for prediction of drug disposition and drug-drug interactions in humans. In addition to pharmacokinetic studies, SCH also have been used to study cytotoxicity and perturbation of biological processes by drugs and hepatically generated metabolites. Human SCH can provide mechanistic insights underlying clinical drug-induced liver injury (DILI). In addition, data generated in SCH can be integrated into systems pharmacology models to predict potential DILI in humans. In this review, applications of SCH in studying hepatobiliary drug disposition and bile acid-mediated DILI are discussed. An example is presented to show how data generated in the SCH model were used to establish a quantitative relationship between intracellular bile acids and cytotoxicity, and how this information was incorporated into a systems pharmacology model for DILI prediction.
Collapse
|
23
|
Persson M, Hornberg JJ. Advances in Predictive Toxicology for Discovery Safety through High Content Screening. Chem Res Toxicol 2016; 29:1998-2007. [DOI: 10.1021/acs.chemrestox.6b00248] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mikael Persson
- Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Jorrit J. Hornberg
- Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden
| |
Collapse
|
24
|
Key Challenges and Opportunities Associated with the Use of In Vitro Models to Detect Human DILI: Integrated Risk Assessment and Mitigation Plans. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9737920. [PMID: 27689095 PMCID: PMC5027328 DOI: 10.1155/2016/9737920] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/22/2016] [Indexed: 01/10/2023]
Abstract
Drug-induced liver injury (DILI) is a major cause of late-stage clinical drug attrition, market withdrawal, black-box warnings, and acute liver failure. Consequently, it has been an area of focus for toxicologists and clinicians for several decades. In spite of considerable efforts, limited improvements in DILI prediction have been made and efforts to improve existing preclinical models or develop new test systems remain a high priority. While prediction of intrinsic DILI has improved, identifying compounds with a risk for idiosyncratic DILI (iDILI) remains extremely challenging because of the lack of a clear mechanistic understanding and the multifactorial pathogenesis of idiosyncratic drug reactions. Well-defined clinical diagnostic criteria and risk factors are also missing. This paper summarizes key data interpretation challenges, practical considerations, model limitations, and the need for an integrated risk assessment. As demonstrated through selected initiatives to address other types of toxicities, opportunities exist however for improvement, especially through better concerted efforts at harmonization of current, emerging and novel in vitro systems or through the establishment of strategies for implementation of preclinical DILI models across the pharmaceutical industry. Perspectives on the incorporation of newer technologies and the value of precompetitive consortia to identify useful practices are also discussed.
Collapse
|
25
|
Liu L, Shi Y, Yang Y, Li M, Long Y, Huang Y, Zheng H. Fluorescein as an artificial enzyme to mimic peroxidase. Chem Commun (Camb) 2016; 52:13912-13915. [DOI: 10.1039/c6cc07896f] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescein was found to possess intrinsic peroxidase-like activity, which could catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) by H2O2 to produce a color reaction.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory on Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Ying Shi
- Key Laboratory on Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Yufang Yang
- Key Laboratory on Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Menglu Li
- Key Laboratory on Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Yijuan Long
- Key Laboratory on Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Yuming Huang
- Key Laboratory on Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Huzhi Zheng
- Key Laboratory on Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|