1
|
Rao T, Zhou Y, Chen C, Chen J, Zhang J, Lin W, Jia D. Recent progress in neonatal hyperoxic lung injury. Pediatr Pulmonol 2024. [PMID: 38742254 DOI: 10.1002/ppul.27062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/28/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
With the progress in neonatal intensive care, there has been an increase in the survival rates of premature infants. However, this has also led to an increased incidence of neonatal hyperoxia lung injury and bronchopulmonary dysplasia (BPD), whose pathogenesis is believed to be influenced by various prenatal and postnatal factors, although the exact mechanisms remain unclear. Recent studies suggest that multiple mechanisms might be involved in neonatal hyperoxic lung injury and BPD, with sex also possibly playing an important role, and numerous drugs have been proposed and shown promise for improving the treatment outcomes of hyperoxic lung injury. Therefore, this paper aims to analyze and summarize sex differences in neonatal hyperoxic lung injury, potential pathogenesis and treatment progress to provide new ideas for basic and clinical research in this field.
Collapse
Affiliation(s)
- Tian Rao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyang Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chizhang Chen
- Department of Clinical Medicine, Chinese Medicine Hospital of Pingyang, Wenzhou, Zhejiang, China
| | - Jiayi Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Lin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Danyun Jia
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Stading R, Swanson L, Xia G, Jiang W, Wang L, Couroucli X, Lingappan K, Moorthy B. Prenatal exposure to polycyclic aromatic hydrocarbons (PAHs) augments neonatal hyperoxic lung injury: Role of cytochrome P450 (CYP)1A1, 1A2, and 1B1. Free Radic Biol Med 2024; 211:35-46. [PMID: 38081439 DOI: 10.1016/j.freeradbiomed.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/29/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Pregnant women exposed to polycyclic aromatic hydrocarbons (PAHs) are at increased risk for premature delivery. Premature infants often require supplemental oxygen, a known risk factor for bronchopulmonary dysplasia (BPD). Cytochrome P450 (CYP) enzymes have been implicated in hyperoxic lung injury. We hypothesize that prenatal PAH exposure exacerbates oxygen-mediated lung injury in neonatal mice, and that this effect is differentially altered in mice lacking the gene for (Cyp)1a1, 1a2, or 1b1. Timed pregnant wild type (WT) (C57BL/6J) mice were orally administered a PAH mixture of benzo[a]pyrene (BP) and benzo[b]fluoranthene (BbF) or the vehicle corn oil (CO) once daily on gestational days 16-19, and the dose response on postnatal lung injury was examined. In addition, timed pregnant mice with one of four genotypes, WT, Cyp1a1-null, Cyp1a2-null, and Cyp1b1-null, were treated orally with CO or PAH on gestational days 16-19 and exposed to hyperoxia or room air for 14 days. Lung injury was assessed on PND15 by radial alveolar count (RAC) and mean linear intercept (MLI) Gene expression of DNA repair genes in lung and liver were measured. Results showed that neonatal hyperoxic lung injury is augmented by prenatal PAH exposure in a dose-dependent manner. This effect was differentially altered in the Cyp-null mice, with Cyp1a2-null showing the greatest extent of lung injury. We concluded that newborn mice exposed to PAH in utero had more significant lung injury in response to hyperoxia than non-PAH exposed pups, and that CYP1A1 and CYP1A2 are protective against lung injury while CYP1B1 augments lung injury.
Collapse
Affiliation(s)
- Rachel Stading
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Lauren Swanson
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Guobin Xia
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Weiwu Jiang
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Lihua Wang
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Xanthi Couroucli
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Krithika Lingappan
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Bhagavatula Moorthy
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States.
| |
Collapse
|
3
|
Chen H, Li S, Pan B, Liu K, Yu H, Ma C, Qi H, Zhang Y, Huang X, Ouyang D, Xie Z. Qing-Kai-Ling oral liquid alleviated pneumonia via regulation of intestinal flora and metabolites in rats. Front Microbiol 2023; 14:1194401. [PMID: 37362920 PMCID: PMC10288885 DOI: 10.3389/fmicb.2023.1194401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Background Qing-Kai-Ling (QKL) oral liquid, evolving from a classical Chinese formula known as An-Gong-Niu-Huang pills, is a well-established treatment for pneumonia with its mechanism remaining muddled. Studies have shown that the regulation of both intestinal flora and host-microbiota co-metabolism may contribute to preventing and treating pneumonia. The study aimed to investigate the potential mechanism by which QKL alleviates pneumonia from the perspective of 'microbiota-metabolites-host' interaction. Methods We evaluated the therapeutic effects of QKL on lipopolysaccharide (LPS)-induced pneumonia rats. To explore the protective mechanism of QKL treatment, a multi-omics analysis that included 16S rDNA sequencing for disclosing the key intestinal flora, the fecal metabolome to discover the differential metabolites, and whole transcriptome sequencing of lung tissue to obtain the differentially expressed genes was carried out. Then, a Spearman correlation was employed to investigate the association between the intestinal flora, the fecal metabolome and inflammation-related indices. Results The study demonstrated that pneumonia symptoms were significantly attenuated in QKL-treated rats, including decreased TNF-α, NO levels and increased SOD level. Furthermore, QKL was effective in alleviating pneumonia and provided protection equivalent to that of the positive drug dexamethasone. Compared with the Model group, QKL treatment significantly increased the richness and αlpha diversity of intestinal flora, and restored multiple intestinal genera (e.g., Bifidobacterium, Ruminococcus_torques_group, Dorea, Mucispirillum, and Staphylococcus) that were correlated with inflammation-related indices. Interestingly, the intestinal flora demonstrated a strong correlation with several metabolites impacted by QKL. Furthermore, metabolome and transcriptome analyses showed that enrichment of several host-microbiota co-metabolites [arachidonic acid, 8,11,14-eicosatrienoic acid, LysoPC (20:0/0:0), LysoPA (18:0e/0:0), cholic acid, 7-ketodeoxycholic acid and 12-ketodeoxycholic acid] levels and varying lung gene (Pla2g2a, Pla2g5, Alox12e, Cyp4a8, Ccl19, and Ccl21) expression were observed in the QKL group. Moreover, these metabolites and genes were involved in arachidonic acid metabolism and inflammation-related pathways. Conclusion Our findings indicated that QKL could potentially modulate intestinal flora dysbiosis, improve host-microbiota co-metabolism dysregulation and regulate gene expression in the lungs, thereby mitigating LPS-induced pneumonia in rats. The study may provide new ideas for the clinical application and further development of QKL.
Collapse
Affiliation(s)
- Hongying Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Guangzhou Baiyunshan Mingxing Pharmaceutical Company Limited, Guangzhou, China
- Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Siju Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
| | - Biyan Pan
- Guangzhou Baiyunshan Mingxing Pharmaceutical Company Limited, Guangzhou, China
| | - Kun Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
| | - Hansheng Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
| | - Chong Ma
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
| | - Huiyuan Qi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
| | - Yuefeng Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
| | - Xinyi Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
4
|
Xu J, Fu Y, Wang F, Zhou W, Chen L, Liu L. The clinical value of lung ultrasound in premature infants with bronchopulmonary dysplasia. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2023; 69:262-266. [PMID: 36888767 PMCID: PMC9983486 DOI: 10.1590/1806-9282.20220960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/14/2022] [Indexed: 03/08/2023]
Abstract
OBJECTIVE This study aimed to explore the risk factors of bronchopulmonary dysplasia in premature infants and the clinical application value of lung ultrasound in the diagnosis of bronchopulmonary dysplasia. METHODS A total of 80 premature infants with a gestational age of <32 weeks or a birth weight of <1,500 g who were treated in our hospital from January to August 2021 were randomly divided into a bronchopulmonary dysplasia group (n=12) and a non-bronchopulmonary dysplasia group (n=62). The clinical data, lung ultrasound, and X-ray image characteristics of the two groups were compared. RESULTS Among the 74 preterm infants, 12 preterm infants were diagnosed with bronchopulmonary dysplasia, and 62 preterm infants were determined not to have bronchopulmonary dysplasia. There were significant differences in sex, severe asphyxia, invasive mechanical ventilation, premature membrane ruptures, and intrauterine infection between the two groups (p<0.05). Lung ultrasound showed abnormal pleural lines and alveolar-interstitial syndrome in all 12 patients with bronchopulmonary dysplasia and vesicle inflatable signs in 3 patients. Before clinical diagnosis, the accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of lung ultrasound in the diagnosis of bronchopulmonary dysplasia were 98.65, 100, 98.39, 92.31, and 100%, respectively. The accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of X-rays in the diagnosis of bronchopulmonary dysplasia were 85.14, 75.00, 87.10, 52.94, and 94.74%, respectively. CONCLUSION The diagnostic efficiency of lung ultrasound for premature bronchopulmonary dysplasia is better than that of X-rays. The application of lung ultrasound can screen patients with bronchopulmonary dysplasia early for timely intervention.
Collapse
Affiliation(s)
- Jingyi Xu
- Guiyang Maternal and Child Health Care Hospital, Department of Neonates - Guiyang, China
| | - Yikang Fu
- Guiyang Maternal and Child Health Care Hospital, Department of Neonates - Guiyang, China
| | - Fang Wang
- Guiyang Maternal and Child Health Care Hospital, Department of Neonates - Guiyang, China
| | - Wen Zhou
- Guiyang Maternal and Child Health Care Hospital, Department of Neonates - Guiyang, China
| | - Lan Chen
- Guiyang Maternal and Child Health Care Hospital, Department of Neonates - Guiyang, China
| | - Ling Liu
- Guiyang Maternal and Child Health Care Hospital, Department of Neonates - Guiyang, China
| |
Collapse
|
5
|
The Aryl Hydrocarbon Receptor (AHR): A Novel Therapeutic Target for Pulmonary Diseases? Int J Mol Sci 2022; 23:ijms23031516. [PMID: 35163440 PMCID: PMC8836075 DOI: 10.3390/ijms23031516] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 01/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a cytoplasmic transcription factor that is well-known for regulating xenobiotic metabolism. Studies in knockout and transgenic mice indicate that the AHR plays a vital role in the development of liver and regulation of reproductive, cardiovascular, hematopoietic, and immune homeostasis. In this focused review on lung diseases associated with acute injury and alveolar development, we reviewed and summarized the current literature on the mechanistic role(s) and therapeutic potential of the AHR in acute lung injury, chronic obstructive pulmonary disease, and bronchopulmonary dysplasia (BPD). Pre-clinical studies indicate that endogenous AHR activation is necessary to protect neonatal and adult lungs against hyperoxia- and cigarette smoke-induced injury. Our goal is to provide insight into the high translational potential of the AHR in the meaningful management of infants and adults with these lung disorders that lack curative therapies.
Collapse
|
6
|
Oxygen Toxicity to the Immature Lung-Part I: Pathomechanistic Understanding and Preclinical Perspectives. Int J Mol Sci 2021; 22:ijms222011006. [PMID: 34681665 PMCID: PMC8540649 DOI: 10.3390/ijms222011006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 01/13/2023] Open
Abstract
In utero, the fetus and its lungs develop in a hypoxic environment, where HIF-1α and VEGFA signaling constitute major determinants of further development. Disruption of this homeostasis after preterm delivery and extrauterine exposure to high fractions of oxygen are among the key events leading to bronchopulmonary dysplasia (BPD). Reactive oxygen species (ROS) production constitutes the initial driver of pulmonary inflammation and cell death, altered gene expression, and vasoconstriction, leading to the distortion of further lung development. From preclinical studies mainly performed on rodents over the past two decades, the deleterious effects of oxygen toxicity and the injurious insults and downstream cascades arising from ROS production are well recognized. This article provides a concise overview of disease drivers and different therapeutic approaches that have been successfully tested within experimental models. Despite current studies, clinical researchers are still faced with an unmet clinical need, and many of these strategies have not proven to be equally effective in clinical trials. In light of this challenge, adapting experimental models to the complexity of the clinical situation and pursuing new directions constitute appropriate actions to overcome this dilemma. Our review intends to stimulate research activities towards the understanding of an important issue of immature lung injury.
Collapse
|
7
|
Dahl MJ, Veneroni C, Lavizzari A, Bowen S, Emerson H, Rebentisch A, Dawson E, Summers K, Pettet L, Wang Z, Null DM, Yoder BA, Dellacà RL, Albertine KH. Early extubation to noninvasive respiratory support of former preterm lambs improves long-term respiratory outcomes. Am J Physiol Lung Cell Mol Physiol 2021; 321:L248-L262. [PMID: 34009031 DOI: 10.1152/ajplung.00051.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Invasive mechanical ventilation (IMV) and exposure to oxygen-rich gas during early postnatal life are contributing factors for long-term pulmonary morbidities faced by survivors of preterm birth and bronchopulmonary dysplasia. The duration of IMV that leads to long-term pulmonary morbidities is unknown. We compared two durations of IMV (3 h vs. 6 days) during the first 6-7 days of postnatal life in preterm lambs to test the hypothesis that minimizing the duration of IMV will improve long-term respiratory system mechanics and structural outcomes later in life. Moderately preterm (∼85% gestation) lambs were supported by IMV for either 3 h or 6 days before weaning from all respiratory support to become former preterm lambs. Respiratory system mechanics and airway reactivity were assessed monthly from 1 to 6 mo of chronological postnatal age by the forced oscillation technique. Quantitative morphological measurements were made for smooth muscle accumulation around terminal bronchioles and indices of alveolar formation. Minimizing IMV to 3 h led to significantly better (P < 0.05) baseline respiratory system mechanics and less reactivity to methacholine in the first 3 mo of chronological age (2 mo corrected age), significantly less (P < 0.05) accumulation of smooth muscle around peripheral resistance airways (terminal bronchioles), and significantly better (P < 0.05) alveolarization at the end of 5 mo corrected age compared with continuous IMV for 6 days. We conclude that limiting the duration of IMV following preterm birth of fetal lambs leads to better respiratory system mechanics and structural outcomes later in life.
Collapse
Affiliation(s)
- Mar Janna Dahl
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Chiara Veneroni
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano University, Milan, Italy
| | - Anna Lavizzari
- U.O. di Neonatologia e Terapia Intensiva Neonatale, Department of Clinical Sciences and Community Health, University of Milan Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sydney Bowen
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Haleigh Emerson
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Andrew Rebentisch
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Elaine Dawson
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Kyle Summers
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Luke Pettet
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Zhengming Wang
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Donald M Null
- Division of Neonatology, University of California, Davis, California
| | - Bradley A Yoder
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Raffaele L Dellacà
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano University, Milan, Italy
| | - Kurt H Albertine
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| |
Collapse
|
8
|
Kwon YJ, Shin S, Chun YJ. Biological roles of cytochrome P450 1A1, 1A2, and 1B1 enzymes. Arch Pharm Res 2021; 44:63-83. [PMID: 33484438 DOI: 10.1007/s12272-021-01306-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Human cytochrome P450 enzymes (CYPs) play a critical role in various biological processes and human diseases. CYP1 family members, including CYP1A1, CYP1A2, and CYP1B1, are induced by aryl hydrocarbon receptors (AhRs). The binding of ligands such as polycyclic aromatic hydrocarbons activates the AhRs, which are involved in the metabolism (including oxidation) of various endogenous or exogenous substrates. The ligands that induce CYP1 expression are reported to be carcinogenic xenobiotics. Hence, CYP1 enzymes are correlated with the pathogenesis of cancers. Various endogenous substrates are involved in the metabolism of steroid hormones, eicosanoids, and other biological molecules that mediate the pathogenesis of several human diseases. Additionally, CYP1s metabolize and activate/inactivate therapeutic drugs, especially, anti-cancer agents. As the metabolism of drugs determines their therapeutic efficacy, CYP1s can determine the susceptibility of patients to some drugs. Thus, understanding the role of CYP1s in diseases and establishing novel and efficient therapeutic strategies based on CYP1s have piqued the interest of the scientific community.
Collapse
Affiliation(s)
- Yeo-Jung Kwon
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sangyun Shin
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Young-Jin Chun
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
9
|
Stading R, Couroucli X, Lingappan K, Moorthy B. The role of cytochrome P450 (CYP) enzymes in hyperoxic lung injury. Expert Opin Drug Metab Toxicol 2020; 17:171-178. [PMID: 33215946 DOI: 10.1080/17425255.2021.1853705] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Hyperoxic lung injury is a condition that can occur in patients in need of supplemental oxygen, such as premature infants with bronchopulmonary dysplasia or adults with acute respiratory distress syndrome. Cytochrome P450 (CYP) enzymes play critical roles in the metabolism of endogenous and exogenous compounds. AREAS COVERED Through their complex pathways, some subfamilies of these enzymes may contribute to or protect against hyperoxic lung injury. Oxidative stress from reactive oxygen species (ROS) production is most likely a major contributor of hyperoxic lung injury. CYP1A enzymes have been shown to protect against hyperoxic lung injury while CYP1B enzymes seem to contribute to it. CYP2J2 enzymes help protect against hyperoxic lung injury by triggering EET production, thereby, increasing antioxidant enzymes. The metabolism of arachidonic acid to ω-terminal hydroxyeicosatetraenoic acid (20-HETEs) by CYP4A and CYP4F enzymes could impact hyperoxic lung injury via the vasodilating effects of 20-HETE. CYP2E1 and CYP2A enzymes may contribute to the oxidative stress in the lungs caused by ethanol- and nicotine-metabolism, respectively. EXPERT OPINION Overall, the CYP enzymes, depending upon the isoform, play a contributory or protective role in hyperoxic lung injury, and are, therefore, ideal candidates for developing drugs that can treat oxygen-mediated lung injury.
Collapse
Affiliation(s)
- Rachel Stading
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital , Houston, TX, USA
| | - Xanthi Couroucli
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital , Houston, TX, USA
| | - Krithika Lingappan
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital , Houston, TX, USA
| | - Bhagavatula Moorthy
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital , Houston, TX, USA
| |
Collapse
|
10
|
Callaway DA, Jiang W, Wang L, Lingappan K, Moorthy B. Oxygen-mediated lung injury in mice lacking the gene for NRF2: Rescue with the cytochrome P4501A-inducer, beta-naphthoflavone (BNF), and differential sex-specific effects. Free Radic Biol Med 2020; 160:208-218. [PMID: 32791187 PMCID: PMC7704914 DOI: 10.1016/j.freeradbiomed.2020.07.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 01/27/2023]
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) leads to progressive lung injury, which significantly impacts patient morbidity and mortality but may differ clinically between the sexes. Cytochrome P450 (CYP) 1A enzymes are protective against hyperoxic lung injury and may contribute to sex-dependent pathology. NRF2 is a critical transcriptional regulator of antioxidants and loss of NRF2 leads to severe hyperoxic lung injury and mortality in mice. NRF2 deficiencies and polymorphisms have been observed in patients with pulmonary diseases such as chronic obstructive pulmonary disease and severe asthma. No prior studies have evaluated whether there are sex-specific differences in oxygen-mediated lung injury in Nrf2-/- mice and there are few rescue studies. OBJECTIVE To test the hypothesis that hyperoxia induces greater lung injury and inflammation in Nrf2-/- mice compared to wild type (WT) that differs between sexes, and that this phenotype will be rescued by the administration of the cytochrome P450 (CYP) 1A inducer beta-naphthoflavone (BNF). DESIGN/METHODS Male and female 8-10-week-old WT or Nrf2-/- C57BL/6 mice were pre-treated with BNF (40 mg/kg) or corn oil control and exposed to hyperoxia (95% O2) for 68 h. Survival, pulmonary edema, neutrophil recruitment, and lung injury scores were evaluated. Gene expression of phase II detoxification enzymes, pulmonary cytokines, and Cyp1a1/2 was quantified. CYP1A1/2 protein expression and catalytic activities were also measured. RESULTS Hyperoxia exposure greatly reduced survival in Nrf2-/- mice, particularly in females. BNF treatment improved survival by 182.8% in Nrf2-/- females and by 41.4% in Nrf2-/- males as well as in WT females by 85.7%. Females had greater pulmonary edema as measured by lung weight to body weight ratios but was attenuated in all groups except Nrf2-/- females by BNF. Neutrophils doubled in Nrf2-/- lungs compared to WT in hyperoxia but were decreased in BNF-treated females of both genotypes. Pulmonary cytokine gene expression including Il-6 and Tnf-α increased in hyperoxia especially in Nrf2-/- mice and was unaffected by BNF. Pulmonary and hepatic Nqo1 gene expression w-as decreased in Nrf2-/- mice and was largely unaffected by BNF; however pulmonary Ho-1 did not vary significantly between the genotypes and was decreased in WT animals treated with BNF. Activities and protein expression of pulmonary and hepatic CYP1A1/2 were induced via BNF across all groups. Although hepatic Cyp1a2 gene expression was higher in Nrf2-/- males, the catalytic activity was higher in Nrf2-/- females. CONCLUSIONS Hyperoxia augmented lung injury in Nrf2-/- mice, and pre-treatment with BNF was protective against mortality and injury, eliminating the sex-dependent survival difference in both genotypes. Our results support the hypothesis that NRF2 protects mice against lung injury, and the fact that BNF rescues the lung injury phenotype in Nrf2-/- mice suggests that augmented CYP1A expression by BNF may contribute to the beneficial effects. Further studies could lead to the development of BNF and other flavonoids for the prevention/treatment of hyperoxic lung injury, particularly in vulnerable patients with relative NRF2 deficiency, regardless of sex.
Collapse
Affiliation(s)
- Danielle A Callaway
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| | - Weiwu Jiang
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| | - Lihua Wang
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Krithika Lingappan
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| | - Bhagavatula Moorthy
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
11
|
Wang T, Lin S, Li H, Liu R, Liu Z, Xu H, Li Q, Bi K. A stepwise integrated multi-system to screen quality markers of Chinese classic prescription Qingzao Jiufei decoction on the treatment of acute lung injury by combining 'network pharmacology-metabolomics-PK/PD modeling'. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 78:153313. [PMID: 32866904 DOI: 10.1016/j.phymed.2020.153313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/14/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Previously, we have investigated the therapeutic mechanism of Qingzao Jiufei Decoction (QZJFD), a Chinese classic prescription, on acute lung injury (ALI), however, which remained to be further clarified together with the underlying efficacy related compounds for quality markers (Q-markers). HYPOTHESIS/PURPOSE To explore Q-markers of QZJFD on ALI by integrating a stepwise multi-system with 'network pharmacology-metabolomics- pharmacokinetic (PK)/ pharmacodynamic (PD) modeling'. METHODS First, based on in vitro and in vivo component analysis, a network pharmacology strategy was developed to identify active components and potential action mechanism of QZJFD on ALI. Next, studies of poly-pharmacology and non-targeted metabolomics were used to elaborate efficacy and verify network pharmacology results. Then, a comparative PK study on active components in network pharmacology was developed to profile their dynamic laws in vivo under ALI, suggesting Q-marker candidates. Next, quantified analytes with marked PK variations after modeling were fitted with characteristic endogenous metabolites along drug concentration-efficacy-time curve in a PK-PD modeling to verify and select primary effective compounds. Finally, Q-markers were further chosen based on representativeness among analytes through validity analysis of PK quantitation of primary effective compounds. RESULTS In virtue of 121 and 33 compounds identified in vitro and in vivo, respectively, 33 absorbed prototype compounds were selected to construct a ternary network of '20 components-47 targets-113 pathways' related to anti-ALI of QZJFD. Predicted mechanism (leukocytes infiltration, cytokines, endogenous metabolism) were successively verified by poly-pharmacology and metabolomics. Next, 18 measurable components were retained from 20 analytes by PK comparison under ALI. Then, 15 primary effective compounds from 18 PK markers were further selected by PK-PD analysis. Finally, 9 representative Q-markers from 15 primary effective compounds attributed to principal (chlorogenic acid), ministerial (methylophiopogonanone A, methylophiopogonanone B), adjuvant (sesamin, ursolic acid, amygdalin), conductant drugs (liquiritin apioside, liquiritigenin and isoliquiritin) in QZJFD, were recognized by substitutability and relevance of plasmatic concentration at various time points. CONCLUSION 9 Q-markers for QZJFD on ALI were identified by a stepwise integration strategy, moreover, which was a powerful tool for screening Q-makers involved with the therapeutic action of traditional Chinese medicine (TCM) prescription and promoting the process of TCM modernization and scientification.
Collapse
Affiliation(s)
- Tianyang Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Song Lin
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, Heilongjiang Province, 161006, China
| | - Hua Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Ran Liu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Zihan Liu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Huarong Xu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
12
|
Wang SH, Tsao PN. Phenotypes of Bronchopulmonary Dysplasia. Int J Mol Sci 2020; 21:ijms21176112. [PMID: 32854293 PMCID: PMC7503264 DOI: 10.3390/ijms21176112] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/18/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common chronic morbidity in preterm infants. In the absence of effective interventions, BPD is currently a major therapeutic challenge. Several risk factors are known for this multifactorial disease that results in disrupted lung development. Inflammation plays an important role and leads to persistent airway and pulmonary vascular disease. Since corticosteroids are potent anti-inflammatory agents, postnatal corticosteroids have been used widely for BPD prevention and treatment. However, the clinical responses vary to a great degree across individuals, and steroid-related complications remain major concerns. Emerging studies on the molecular mechanism of lung alveolarization during inflammatory stress will elucidate the complicated pathway and help discover novel therapeutic targets. Moreover, with the advances in metabolomics, there are new opportunities to identify biomarkers for early diagnosis and prognosis prediction of BPD. Pharmacometabolomics is another novel field aiming to identify the metabolomic changes before and after a specific drug treatment. Through this "metabolic signature," a more precise treatment may be developed, thereby avoiding unnecessary drug exposure in non-responders. In the future, more clinical, genetic, and translational studies would be required to improve the classification of BPD phenotypes and achieve individualized care to enhance the respiratory outcomes in preterm infants.
Collapse
Affiliation(s)
- Shih-Hsin Wang
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan;
| | - Po-Nien Tsao
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100225, Taiwan
- Center for Developmental Biology & Regenerative Medicine, National Taiwan University, Taipei 100226, Taiwan
- Correspondence: ; Tel.: +886-2-23123456 (ext. 71013)
| |
Collapse
|
13
|
Gao X, He D, Liu D, Hu G, Zhang Y, Meng T, Su Y, Zhou A, Huang B, Du J, Fu S. Beta-naphthoflavone inhibits LPS-induced inflammation in BV-2 cells via AKT/Nrf-2/HO-1-NF-κB signaling axis. Immunobiology 2020; 225:151965. [PMID: 32747020 DOI: 10.1016/j.imbio.2020.151965] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/06/2020] [Accepted: 05/24/2020] [Indexed: 01/15/2023]
Abstract
Numerous studies have shown that over-activation of microglia could cause neuroinflammation and release pro-inflammatory mediators, which could result in neurodegenerative diseases, like Parkinson's disease, Alzheimer's disease etc. Beta-naphthoflavone (BNF) has anti-oxidant and anti-inflammatory effects in borderline tissues, but BNF has not been reported the effect associated with neuroinflammation. Therefore, the purpose of this experiment is to inquiry the impact and mechanism of BNF on neuroinflammation. The results indicated that BNF significantly inhibited the production of pro-inflammatory mediators (inducible nitric-oxide synthase (iNOS), Cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α) andinterleukin-6 (IL-6)) in LPS-exposed BV-2 cells. Analysis of western blot results found that BNF accelerated the activation of AKT/Nrf-2/HO-1 signaling pathway and suppressed NF-κB pathway activation. Further study showed that BNF inhibited activation of NF-κB pathway via promoting HO-1, and SnPP IX (a HO-1 inhibitor) could inhibit anti-inflammatory function of BNF. We also found that BNF reduced the apoptosis rate of Human neuroblastoma cells (SHSY5Y) and mouse hippocampal neuron cell line (HT22) by inhibiting release of inflammatory mediators in LPS-exposed BV2 cells. In a word, our results suggested that BNF could inhibit inflammatory response via AKT/Nrf-2/HO-1-NF-κB signaling axis in BV-2 cells and exerts neuroprotective impact via inhibiting the activation of BV2 cells.
Collapse
Affiliation(s)
- Xiyu Gao
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China.
| | - Dewei He
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China.
| | - Dianfeng Liu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China.
| | - Guiqiu Hu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China.
| | - Yufei Zhang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China.
| | - Tianyu Meng
- College of Food Science and Engineering, Jilin University, Changchun, China.
| | - Yingchun Su
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China.
| | - Ang Zhou
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China.
| | - Bingxu Huang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China.
| | - Jian Du
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China.
| | - Shoupeng Fu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
14
|
Stading R, Chu C, Couroucli X, Lingappan K, Moorthy B. Molecular role of cytochrome P4501A enzymes inoxidative stress. CURRENT OPINION IN TOXICOLOGY 2020; 20-21:77-84. [PMID: 33283080 PMCID: PMC7709944 DOI: 10.1016/j.cotox.2020.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P4501A (CYP1A) enzymes play important roles in xenobiotic and endobiotic metabolism. Due to uncoupling reactions during the enzymatic cycle, CYP1A enzymes can release reactive oxidative species (ROS) in the form of superoxide radical, hydrogen peroxide, hydroxyl radical etc. An imbalance between production of free radicals and the ability of antioxidants to detoxify the free radicals can lead to accumulation of ROS, which in turn can lead to oxidative stress. Oxidative stress can lead to inflammation and toxicity, which in turn can cause human diseases such as bronchopulmonary disease (BPD), ARDS, renal hypertension, etc. CYP1A enzymes, depending on the organ system, they either contribute or protect against oxidative injury. Thus, they have dual roles in regard to oxidative stress. This review presents an overview of the mechanistic relationship between CYP1A enzymes and oxidative stress in relation to various diseases in different organs (e.g., liver, lungs, heart, kidneys, and reproductive organs).
Collapse
Affiliation(s)
- Rachel Stading
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| | - Chun Chu
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| | - Xanthi Couroucli
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| | - Krithika Lingappan
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| | - Bhagavatula Moorthy
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| |
Collapse
|
15
|
Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L832-L887. [PMID: 31596603 DOI: 10.1152/ajplung.00369.2019] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common cause of morbidity and mortality in preterm infants. A key histopathological feature of BPD is stunted late lung development, where the process of alveolarization-the generation of alveolar gas exchange units-is impeded, through mechanisms that remain largely unclear. As such, there is interest in the clarification both of the pathomechanisms at play in affected lungs, and the mechanisms of de novo alveoli generation in healthy, developing lungs. A better understanding of normal and pathological alveolarization might reveal opportunities for improved medical management of affected infants. Furthermore, disturbances to the alveolar architecture are a key histopathological feature of several adult chronic lung diseases, including emphysema and fibrosis, and it is envisaged that knowledge about the mechanisms of alveologenesis might facilitate regeneration of healthy lung parenchyma in affected patients. To this end, recent efforts have interrogated clinical data, developed new-and refined existing-in vivo and in vitro models of BPD, have applied new microscopic and radiographic approaches, and have developed advanced cell-culture approaches, including organoid generation. Advances have also been made in the development of other methodologies, including single-cell analysis, metabolomics, lipidomics, and proteomics, as well as the generation and use of complex mouse genetics tools. The objective of this review is to present advances made in our understanding of the mechanisms of lung alveolarization and BPD over the period 1 January 2017-30 June 2019, a period that spans the 50th anniversary of the original clinical description of BPD in preterm infants.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Despoina Myti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
16
|
Veith AC, Bou Aram B, Jiang W, Wang L, Zhou G, Jefcoate CR, Couroucli XI, Lingappan K, Moorthy B. Mice Lacking the Cytochrome P450 1B1 Gene Are Less Susceptible to Hyperoxic Lung Injury Than Wild Type. Toxicol Sci 2019; 165:462-474. [PMID: 29939353 DOI: 10.1093/toxsci/kfy154] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Supplemental oxygen is a life-saving intervention administered to individuals suffering from respiratory distress, including adults with acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Despite the clinical benefit, supplemental oxygen can create a hyperoxic environment that increases reactive oxygen species, oxidative stress, and lung injury. We have previously shown that cytochrome P450 (CYP)1A enzymes decrease susceptibility to hyperoxia-induced lung injury. In this investigation, we determined the role of CYP1B1 in hyperoxic lung injury in vivo. Eight- to ten-week old C57BL/6 wild type (WT) and Cyp1b1-/- mice were exposed to hyperoxia (>95% O2) for 24-72 h or maintained in room air (21% O2). Lung injury was assessed by histology and lung weight to body weight (LW/BW) ratios. Extent of inflammation was determined by assessing pulmonary neutrophil infiltration and cytokine levels. Lipid peroxidation markers were quantified by gas chromatography mass spectrometry, and oxidative DNA adducts were quantified by 32P-postlabeling as markers of oxidative stress. We found that Cyp1b1-/- mice displayed attenuation of lung weight and pulmonary edema, particularly after 48-72 h of hyperoxia compared with WT controls. Further, Cyp1b1-/- mice displayed decreased levels of pulmonary oxidative DNA adducts and pulmonary isofurans after 24 h of hyperoxia. Cyp1b1-/- mice also showed increased pulmonary CYP1A1 and 1A2 and mRNA expression. In summary, our results support the hypothesis that Cyp1b1-/- mice display decreased hyperoxic lung injury than wild type counterparts and that CYP1B1 may act as a pro-oxidant during hyperoxia exposure, contributing to increases in oxidative DNA damage and accumulation of lipid hydroperoxides.
Collapse
Affiliation(s)
- Alex C Veith
- Section of Neonatology, Department of Pediatrics.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | | | - Weiwu Jiang
- Section of Neonatology, Department of Pediatrics
| | - Lihua Wang
- Section of Neonatology, Department of Pediatrics
| | - Guodong Zhou
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas
| | - Colin R Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | | | - Bhagavatula Moorthy
- Section of Neonatology, Department of Pediatrics.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
17
|
Dahl MJ, Bowen S, Aoki T, Rebentisch A, Dawson E, Pettet L, Emerson H, Yu B, Wang Z, Yang H, Zhang C, Presson AP, Joss-Moore L, Null DM, Yoder BA, Albertine KH. Former-preterm lambs have persistent alveolar simplification at 2 and 5 months corrected postnatal age. Am J Physiol Lung Cell Mol Physiol 2018; 315:L816-L833. [PMID: 30211655 PMCID: PMC6295507 DOI: 10.1152/ajplung.00249.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/29/2018] [Accepted: 09/02/2018] [Indexed: 12/29/2022] Open
Abstract
Preterm birth and mechanical ventilation (MV) frequently lead to bronchopulmonary dysplasia, the histopathological hallmark of which is alveolar simplification. How developmental immaturity and ongoing injury, repair, and remodeling impact completion of alveolar formation later in life is not known, in part because of lack of suitable animal models. We report a new model, using former-preterm lambs, to test the hypothesis that they will have persistent alveolar simplification later in life. Moderately preterm lambs (~85% gestation) were supported by MV for ~6 days before being transitioned from all respiratory support to become former-preterm lambs. Results are compared with term control lambs that were not ventilated, and between males (M) and females (F). Alveolar simplification was quantified morphometrically and stereologically at 2 mo (4 M, 4 F) or 5 mo (4 M, 6 F) corrected postnatal age (cPNA) compared with unventilated, age-matched term control lambs (4 M, 4 F per control group). These postnatal ages in sheep are equivalent to human postnatal ages of 1-2 yr and ~6 yr, respectively. Multivariable linear regression results showed that former-preterm lambs at 2 or 5 mo cPNA had significantly thicker distal airspace walls ( P < 0.001 and P < 0.009, respectively), lower volume density of secondary septa ( P < 0.007 and P < 0.001, respectively), and lower radial alveolar count ( P < 0.003 and P < 0.020, respectively) compared with term control lambs. Sex-specific differences were not detected. We conclude that moderate preterm birth and MV for ~6 days impedes completion of alveolarization in former-preterm lambs. This new model provides the opportunity to identify underlying pathogenic mechanisms that may reveal treatment approaches.
Collapse
Affiliation(s)
- Mar Janna Dahl
- Division of Neonatology, Department of Pediatrics, University of Utah , Salt Lake City, Utah
| | - Sydney Bowen
- Division of Neonatology, Department of Pediatrics, University of Utah , Salt Lake City, Utah
| | - Toshio Aoki
- Division of Neonatology, Department of Pediatrics, University of Utah , Salt Lake City, Utah
| | - Andrew Rebentisch
- Division of Neonatology, Department of Pediatrics, University of Utah , Salt Lake City, Utah
| | - Elaine Dawson
- Division of Neonatology, Department of Pediatrics, University of Utah , Salt Lake City, Utah
| | - Luke Pettet
- Division of Neonatology, Department of Pediatrics, University of Utah , Salt Lake City, Utah
| | - Haleigh Emerson
- Division of Neonatology, Department of Pediatrics, University of Utah , Salt Lake City, Utah
| | - Baifeng Yu
- Division of Neonatology, Department of Pediatrics, University of Utah , Salt Lake City, Utah
| | - Zhengming Wang
- Division of Neonatology, Department of Pediatrics, University of Utah , Salt Lake City, Utah
| | - Haixia Yang
- Division of Neonatology, Department of Pediatrics, University of Utah , Salt Lake City, Utah
| | - Chong Zhang
- Division of Epidemiology, Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | - Angela P Presson
- Division of Epidemiology, Department of Internal Medicine, University of Utah , Salt Lake City, Utah
- Division of Critical Care, Department of Pediatrics, University of Utah , Salt Lake City, Utah
| | - Lisa Joss-Moore
- Division of Neonatology, Department of Pediatrics, University of Utah , Salt Lake City, Utah
| | - Donald M Null
- Division of Neonatology, University of California , Davis, California
| | - Bradley A Yoder
- Division of Neonatology, Department of Pediatrics, University of Utah , Salt Lake City, Utah
| | - Kurt H Albertine
- Division of Neonatology, Department of Pediatrics, University of Utah , Salt Lake City, Utah
| |
Collapse
|
18
|
Abstract
Bronchopulmonary dysplasia (BPD) continues to be one of the most common complications of preterm birth and is characterized histopathologically by impaired lung alveolarization. Extremely preterm born infants remain at high risk for the development of BPD, highlighting a pressing need for continued efforts to understand the pathomechanisms at play in affected infants. This brief review summarizes recent progress in our understanding of the how the development of the newborn lung is stunted, highlighting recent reports on roles for growth factor signaling, oxidative stress, inflammation, the extracellular matrix and proteolysis, non-coding RNA, and fibroblast and epithelial cell plasticity. Additionally, some concerns about modeling BPD in experimental animals are reviewed, as are new developments in the in vitro modeling of pathophysiological processes relevant to impaired lung alveolarization in BPD.
Collapse
Affiliation(s)
- Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
19
|
Albertolle ME, Peter Guengerich F. The relationships between cytochromes P450 and H 2O 2: Production, reaction, and inhibition. J Inorg Biochem 2018; 186:228-234. [PMID: 29990746 PMCID: PMC6084448 DOI: 10.1016/j.jinorgbio.2018.05.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/25/2018] [Accepted: 05/23/2018] [Indexed: 12/26/2022]
Abstract
In this review we address the relationship between cytochromes P450 (P450) and H2O2. This association can affect biology in three distinct ways. First, P450s produce H2O2 as a byproduct either during catalysis or when no substrate is present. This reaction, known as uncoupling, releases reactive oxygen species that may have implications in disease. Second, H2O2 is used as an oxygen-donating co-substrate in peroxygenase and peroxidase reactions catalyzed by P450s. This activity has proven to be important mainly in reactions involving prokaryotic P450s, and investigators have harnessed this reaction with the aim of adaptation for industrial use. Third, H2O2-dependent inhibition of human P450s has been studied in our laboratory, demonstrating heme destruction and also the inactivating oxidation of the heme-thiolate ligand to a sulfenic acid (-SOH). This reversible oxidative modification of P450s may have implications in the prevention of uncoupling and may give new insights into the oxidative regulation of these enzymes. Research has elucidated many of the chemical mechanisms involved in the relationship between P450 and H2O2, but the application to biology is difficult to evaluate. Further studies are needed reveal both the harmful and protective natures of reactive oxygen species in an organismal context.
Collapse
Affiliation(s)
- Matthew E Albertolle
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, United States
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, United States.
| |
Collapse
|
20
|
Maturu P, Wei-Liang Y, Androutsopoulos VP, Jiang W, Wang L, Tsatsakis AM, Couroucli XI. Quercetin attenuates the hyperoxic lung injury in neonatal mice: Implications for Bronchopulmonary dysplasia (BPD). Food Chem Toxicol 2018; 114:23-33. [PMID: 29432836 DOI: 10.1016/j.fct.2018.02.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/19/2022]
Abstract
Quercetin (QU) is one of the most common flavonoids that are present in a wide variety of fruits, vegetables, and beverages. This compound possesses potent anti-inflammatory and anti-oxidant properties. Supplemental oxygen is routinely administered to premature infants with pulmonary insufficiency. However, hyperoxia is one of the major risk factors for the development of bronchopulmonary dysplasia (BPD), which is also termed chronic lung disease in premature infants. Currently, no preventive approaches have been reported against BPD. The treatment of BPD is notably limited to oxygen administration, ventilatory support, and steroids. Since QU has been shown to be effective in reducing inflammation and oxidative stress in various disease models, we hypothesized that the postnatal QU treatment of newborn mice will protect against hyperoxic lung injury by the upregulation of the phase I (CYP1A/B) and/or phase II, NADPH quinone reductase enzymes. Newborn C57BL/6J mice within 24 h of birth with the nursing dams were exposed to either 21% O2 (air) and/or 85% O2 (hyperoxia) for 7 days. The mice were treated, intraperitoneally (i.p.) once every other day with quercetin, at a concentration of 20 mg/kg, or saline alone from postnatal day (PND) 2-6. The mice were sacrificed on day 7, and lung and liver tissues were collected. The expression levels of CYP1A1, CYP1B1, NQO1 proteins and mRNA as well as the levels of MDA-protein adducts were analyzed in lung and liver tissues. The findings indicated that QU attenuated hyperoxia-mediated lung injury by reducing inflammation and improving alveolarization with decreased number of neutrophil and macrophage infiltration. The attenuation of this lung injury correlated with the upregulation of CYP1A1/CYP1B1/NQO1 mRNA, proteins and the down regulation of NF-kB levels and MDA-protein adducts in lung and liver tissues. The present study demonstrated the potential therapeutic value of quercetin in the prevention and/or treatment of BPD.
Collapse
Affiliation(s)
- Paramahamsa Maturu
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Yanhong Wei-Liang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Vasilis P Androutsopoulos
- Laboratory of Toxicology, University of Crete, Medical School, Voutes, Heraklion 71409, Crete, Greece
| | - Weiwu Jiang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Lihua Wang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Aristides M Tsatsakis
- Laboratory of Toxicology, University of Crete, Medical School, Voutes, Heraklion 71409, Crete, Greece
| | - Xanthi I Couroucli
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
21
|
Veith A, Moorthy B. ROLE OF CYTOCHROME P450S IN THE GENERATION AND METABOLISM OF REACTIVE OXYGEN SPECIES. CURRENT OPINION IN TOXICOLOGY 2018; 7:44-51. [PMID: 29527583 PMCID: PMC5841237 DOI: 10.1016/j.cotox.2017.10.003] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The cytochrome P450 (CYP) enzymes are a diverse group of heme monooxygenases that, through the course of their reaction cycle, contribute to cellular reactive oxygen species (ROS). CYP enzymes play a crucial role in human physiology and are involved in drug and xenobiotic metabolism as well as biosynthesis of endogenous molecules and are expressed throughout the human body. However, during the course of the CYP catalytic cycle, ROS can be generated through uncoupling of the enzymatic cycle. ROS is known to modify endogenous molecules, included lipids, proteins, and nucleic acids, which can lead to cell damage and death and contribute to disease development. ROS has been implicated in a wide range of diseases and conditions, including cancer and ageing, but ROS also play a role in the normal physiological functions in the cell. Here, we discuss specific examples whereby ROS generated by CYPs contribute to or protect against various phenomena, such as hyperoxic lung injury, oxidative hepatic toxicity, formation of DNA adducts from lipid peroxidation products. We have also discussed the mechanistic roles of CYP enzymes belonging to various families, and their effect on cellular ROS production, in relation to normal cellular function as well as disease pathophysiology.
Collapse
Affiliation(s)
- Alex Veith
- Interdepartmental Program in Translational Biology and Molecular Medicine, Houston, TX, 77030, USA
- Department of Pediatrics-Newborn, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bhagavatula Moorthy
- Interdepartmental Program in Translational Biology and Molecular Medicine, Houston, TX, 77030, USA
- Department of Pediatrics-Newborn, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
22
|
Lingappan K, Maturu P, Liang YW, Jiang W, Wang L, Moorthy B, Couroucli XI. β-Naphthoflavone treatment attenuates neonatal hyperoxic lung injury in wild type and Cyp1a2-knockout mice. Toxicol Appl Pharmacol 2018; 339:133-142. [PMID: 29180065 PMCID: PMC5758404 DOI: 10.1016/j.taap.2017.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/19/2017] [Accepted: 11/21/2017] [Indexed: 01/06/2023]
Abstract
Exposure to supraphysiological concentrations of oxygen (hyperoxia) leads to bronchopulmonary dysplasia (BPD), one of the most common pulmonary morbidities in preterm neonates, which is more prevalent in males than females. Beta-naphthoflavone (BNF) is protective against hyperoxic lung injury in adult and neonatal wild type (WT) mice and in and mice lacking Cyp1a1gene. In this investigation, we tested the hypothesis that BNF treatment will attenuate neonatal hyperoxic lung injury in WT and Cyp1a2-/- mice, and elucidated the effect of sex-specific differences. Newborn WT or Cyp1a2-/- mice were treated with BNF (10mg/kg) or the vehicle corn oil (CO) i.p., from postnatal day (PND) 2 to 8 once every other day, while being maintained in room air or hyperoxia (85% O2) for 14days. Hyperoxia exposure lead to alveolar simplification and arrest in angiogenesis in WT as well as Cyp1a2-/- mice No significant differences were seen between WT and Cyp1a2-/- mice. Cyp1a2-/- female mice had better preservation of pulmonary angiogenesis at PND15 compared to similarly exposed males. BNF treatment attenuated lung injury and inflammation in both genotypes, and this was accompanied by a significant induction of hepatic and pulmonary CYP1A1 in WT but not in Cyp1a2-/- mice. BNF treatment increased NADPH quinone oxidoreductase (NQO1) mRNA levels in Cyp1a2-/- mouse livers compared to WT mice. These results suggest that BNF is protective in neonatal mice exposed to hyperoxia independent of CYP1A2 and this may entail the protective effect of phase II enzymes like NQO1.
Collapse
Affiliation(s)
- Krithika Lingappan
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Paramahamsa Maturu
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Yanhong Wei Liang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Weiwu Jiang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Lihua Wang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Bhagavatula Moorthy
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Xanthi I Couroucli
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
23
|
Jiang W, Maturu P, Liang YW, Wang L, Lingappan K, Couroucli X. Hyperoxia-mediated transcriptional activation of cytochrome P4501A1 (CYP1A1) and decreased susceptibility to oxygen-mediated lung injury in newborn mice. Biochem Biophys Res Commun 2018; 495:408-413. [PMID: 29101037 PMCID: PMC5743196 DOI: 10.1016/j.bbrc.2017.10.166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 10/29/2017] [Indexed: 02/02/2023]
Abstract
Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. In this study, we tested the hypothesis that newborn transgenic mice carrying the human CYP1A1-Luc promoter will display transcriptional activation of the human CYP1A1 promoter in vivo upon exposure to hyperoxia, and that these mice will be less susceptible to hyperoxic lung injury and alveolar simplification than similarly exposed wild type (WT) mice. Newborn WT (CD-1) or transgenic mice carrying a 13.2 kb human CYP1A1 promoter and the luciferase (Luc) reporter gene (CYP1A1-luc) were maintained in room air or exposed to hyperoxia (85% O2) for 7-14 days. Hyperoxia exposure of CYP1A1-Luc mice for 7 and 14 days resulted in 4- and 30-fold increases, respectively, in hepatic Luc (CYP1A1) expression, compared to room air controls. In lung, hyperoxia caused a 2-fold induction of reporter Luc at 7 days, but the induction declined after 14 days. The newborn CYP1A1-Luc mice were less susceptible to lung injury and alveolar simplification than similarly exposed wild type (WT) CD-1 mice. Also, the CYP1A1-Luc mice showed increased levels of hepatic and pulmonary CYP1A1 expression and hepatic CYP1A2 activity after hyperoxia exposure. Hyperoxia also increased NADP(H) quinone reductase (NQO1) pulmonary gene expression in both CD-1 and CYP1A1-Luc mice at both time points, but this was more pronounced in the latter at 14 days. Our results support the hypothesis that hyperoxia activates the human CYP1A1 promoter in newborn mice, and that increased endogenous expression of CYP1A1 and NADP(H) quinone reductase (NQO1) contributes to the decreased susceptibilities to hyperoxic lung injury in the transgenic animals. This is the first report providing evidence of hyperoxia-mediated transcriptional activation of the human CYP1A1 promoter in newborn mice, and this in conjunction with decreased lung injury, suggests that these phenomena have important implications for BPD.
Collapse
Affiliation(s)
- Weiwu Jiang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030, USA
| | - Paramahamsa Maturu
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030, USA
| | - Yanhong Wei Liang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030, USA
| | - Lihua Wang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030, USA
| | - Krithika Lingappan
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030, USA
| | - Xanthi Couroucli
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030, USA.
| |
Collapse
|
24
|
Surate Solaligue DE, Rodríguez-Castillo JA, Ahlbrecht K, Morty RE. Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1101-L1153. [PMID: 28971976 DOI: 10.1152/ajplung.00343.2017] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 02/08/2023] Open
Abstract
The objective of lung development is to generate an organ of gas exchange that provides both a thin gas diffusion barrier and a large gas diffusion surface area, which concomitantly generates a steep gas diffusion concentration gradient. As such, the lung is perfectly structured to undertake the function of gas exchange: a large number of small alveoli provide extensive surface area within the limited volume of the lung, and a delicate alveolo-capillary barrier brings circulating blood into close proximity to the inspired air. Efficient movement of inspired air and circulating blood through the conducting airways and conducting vessels, respectively, generates steep oxygen and carbon dioxide concentration gradients across the alveolo-capillary barrier, providing ideal conditions for effective diffusion of both gases during breathing. The development of the gas exchange apparatus of the lung occurs during the second phase of lung development-namely, late lung development-which includes the canalicular, saccular, and alveolar stages of lung development. It is during these stages of lung development that preterm-born infants are delivered, when the lung is not yet competent for effective gas exchange. These infants may develop bronchopulmonary dysplasia (BPD), a syndrome complicated by disturbances to the development of the alveoli and the pulmonary vasculature. It is the objective of this review to update the reader about recent developments that further our understanding of the mechanisms of lung alveolarization and vascularization and the pathogenesis of BPD and other neonatal lung diseases that feature lung hypoplasia.
Collapse
Affiliation(s)
- David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - José Alberto Rodríguez-Castillo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Katrin Ahlbrecht
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|