1
|
Mi K, Sun L, Zhang L, Tang A, Tian X, Hou Y, Sun L, Huang L. A physiologically based pharmacokinetic/pharmacodynamic model to determine dosage regimens and withdrawal intervals of aditoprim against Streptococcus suis. Front Pharmacol 2024; 15:1378034. [PMID: 38694922 PMCID: PMC11061430 DOI: 10.3389/fphar.2024.1378034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/26/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction: Streptococcus suis (S. suis) is a zoonotic pathogen threatening public health. Aditoprim (ADP), a novel veterinary medicine, exhibits an antibacterial effect against S. suis. In this study, a physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model was used to determine the dosage regimens of ADP against S. suis and withdrawal intervals. Methods: The PBPK model of ADP injection can predict drug concentrations in plasma, liver, kidney, muscle, and fat. A semi-mechanistic pharmacodynamic (PD) model, including susceptible subpopulation and resistant subpopulation, is successfully developed by a nonlinear mixed-effect model to evaluate antibacterial effects. An integrated PBPK/PD model is conducted to predict the time-course of bacterial count change and resistance development under different ADP dosages. Results: ADP injection, administrated at 20 mg/kg with 12 intervals for 3 consecutive days, can exert an excellent antibacterial effect while avoiding resistance emergence. The withdrawal interval at the recommended dosage regimen is determined as 18 days to ensure food safety. Discussion: This study suggests that the PBPK/PD model can be applied as an effective tool for the antibacterial effect and safety evaluation of novel veterinary drugs.
Collapse
Affiliation(s)
- Kun Mi
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Lei Sun
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Lan Zhang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Aoran Tang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaoyuan Tian
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yixuan Hou
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lingling Sun
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lingli Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Chou WC, Tell LA, Baynes RE, Davis JL, Cheng YH, Maunsell FP, Riviere JE, Lin Z. Development and application of an interactive generic physiologically based pharmacokinetic (igPBPK) model for adult beef cattle and lactating dairy cows to estimate tissue distribution and edible tissue and milk withdrawal intervals for per- and polyfluoroalkyl substances (PFAS). Food Chem Toxicol 2023; 181:114062. [PMID: 37769896 DOI: 10.1016/j.fct.2023.114062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Humans can be exposed to per- and polyfluoroalkyl substances (PFAS) through dietary intake from milk and edible tissues from food animals. This study developed a physiologically based pharmacokinetic (PBPK) model to predict tissue and milk residues and estimate withdrawal intervals (WDIs) for multiple PFAS including PFOA, PFOS and PFHxS in beef cattle and lactating dairy cows. Results showed that model predictions were mostly within a two-fold factor of experimental data for plasma, tissues, and milk with an estimated coefficient of determination (R2) of >0.95. The predicted muscle WDIs for beef cattle were <1 day for PFOA, 449 days for PFOS, and 69 days for PFHxS, while the predicted milk WDIs in dairy cows were <1 day for PFOA, 1345 days for PFOS, and zero day for PFHxS following a high environmental exposure scenario (e.g., 49.3, 193, and 161 ng/kg/day for PFOA, PFOS, and PFHxS, respectively, for beef cattle for 2 years). The model was converted to a web-based interactive generic PBPK (igPBPK) platform to provide a user-friendly dashboard for predictions of tissue and milk WDIs for PFAS in cattle. This model serves as a foundation for extrapolation to other PFAS compounds to improve safety assessment of cattle-derived food products.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA; Center for Environmental and Human Toxicology, University of Florida, FL, 32608, USA.
| | - Lisa A Tell
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA.
| | - Ronald E Baynes
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA.
| | - Jennifer L Davis
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24060, USA.
| | - Yi-Hsien Cheng
- Institute of Computational Comparative Medicine, Kansas State University, Manhattan, KS, 66506, USA; Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.
| | - Fiona P Maunsell
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32608, USA.
| | - Jim E Riviere
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA; 1Data Consortium, Kansas State University, Olathe, KS, 66061, USA.
| | - Zhoumeng Lin
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA; Center for Environmental and Human Toxicology, University of Florida, FL, 32608, USA.
| |
Collapse
|
3
|
Mi K, Sun L, Hou Y, Cai X, Zhou K, Ma W, Xu X, Pan Y, Liu Z, Huang L. A physiologically based pharmacokinetic model to optimize the dosage regimen and withdrawal time of cefquinome in pigs. PLoS Comput Biol 2023; 19:e1011331. [PMID: 37585381 PMCID: PMC10431683 DOI: 10.1371/journal.pcbi.1011331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/06/2023] [Indexed: 08/18/2023] Open
Abstract
Cefquinome is widely used to treat respiratory tract diseases of swine. While extra-label dosages of cefquinome could improve clinical efficacy, they might lead to excessively high residues in animal-derived food. In this study, a physiologically based pharmacokinetic (PBPK) model was calibrated based on the published data and a microdialysis experiment to assess the dosage efficiency and food safety. For the microdialysis experiment, in vitro/in vivo relative recovery and concentration-time curves of cefquinome in the lung interstitium were investigated. This PBPK model is available to predict the drug concentrations in the muscle, kidney, liver, plasma, and lung interstitial fluid. Concentration-time curves of 1000 virtual animals in different tissues were simulated by applying sensitivity and Monte Carlo analyses. By integrating pharmacokinetic/pharmacodynamic target parameters, cefquinome delivered at 3-5 mg/kg twice daily is advised for the effective control of respiratory tract infections of nursery pig, which the bodyweight is around 25 kg. Based on the predicted cefquinome concentrations in edible tissues, the withdrawal interval is 2 and 3 days for label and the extra-label doses, respectively. This study provides a useful tool to optimize the dosage regimen of cefquinome against respiratory tract infections and predicts the concentration of cefquinome residues in edible tissues. This information would be helpful to improve the food safety and guide rational drug usage.
Collapse
Affiliation(s)
- Kun Mi
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and National Safety Laboratory of Veterinary Drug (HZAU), Wuhan, China
- MOA Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Lei Sun
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and National Safety Laboratory of Veterinary Drug (HZAU), Wuhan, China
| | - Yixuan Hou
- MOA Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Xin Cai
- MOA Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Kaixiang Zhou
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China
| | - Wenjin Ma
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiangyue Xu
- MOA Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Yuanhu Pan
- MOA Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and National Safety Laboratory of Veterinary Drug (HZAU), Wuhan, China
- MOA Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and National Safety Laboratory of Veterinary Drug (HZAU), Wuhan, China
- MOA Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Yang F, Zhang M, Jin YG, Chen JC, Duan MH, Liu Y, Li ZE, Li XP, Yang F. Development and Application of a Physiologically Based Pharmacokinetic Model for Diclazuril in Broiler Chickens. Animals (Basel) 2023; 13:ani13091512. [PMID: 37174549 PMCID: PMC10177140 DOI: 10.3390/ani13091512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Withdrawal periods for diclazuril in broilers have traditionally been determined through regression analysis. However, over the last two decades, the physiologically based pharmacokinetic (PBPK) model has gained prominence as a predictive tool for veterinary drug residues, which offers an alternative method for establishing appropriate withdrawal periods for veterinary drugs. In this current study, a flow-limited PBPK model was developed to predict diclazuril concentrations in broilers following long-duration administration via medicated feed and water. This model consists of nine compartments, including arterial and venous plasma, lung, muscle, skin + fat, kidney, liver, intestine contents, and the rest of the body compartment. Physiological parameters such as tissue weights (Vcxx) and blood flow (Qcxx) were gathered from published studies, and tissue/plasma partition coefficients (Pxx) were calculated through the area method or parameter optimization. Published diclazuril concentrations were compared to the predicted values, indicating the accuracy and validity of the model. The sensitivity analysis showed that parameters associated with cardiac output, drug absorption, and elimination significantly affected diclazuril concentrations in the muscle. Finally, a Monte Carlo analysis, consisting of 1000 iterations, was conducted to calculate the withdrawal period. Based on the Chinese MRL values, we calculated a withdrawal period of 0 days for both recommended dosing regimens (through mediated water and feed at concentrations of 0.5-1 mg/L and 1 mg/kg, respectively). However, based on the European MRLs, longer periods were determined for the mediated feed dosing route. Our model provides a foundation for scaling other coccidiostats and poultry species.
Collapse
Affiliation(s)
- Fang Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Mei Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yang-Guang Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Jun-Cheng Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Ming-Hui Duan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yue Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Ze-En Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Xing-Ping Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Fan Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
5
|
Dubbelboer IR, Le Roux-Pullen L, Gehring R. Systematic review of physiologically based kinetic lactation models for transfer of xenobiotic compounds to milk. Toxicol Appl Pharmacol 2023; 467:116495. [PMID: 36996912 DOI: 10.1016/j.taap.2023.116495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Lactational elimination has been described mathematically for nearly 50 years. Over 40 published articles, containing >50 physiologically based kinetic (PBK) lactation models were included in the systematic review. These PBK models described the lactational elimination of xenobiotic compounds in humans, rats, mice, and dairy cows and goats. A total of 78 compounds have been modelled, ranging from industrial chemicals, pesticides, to pain medication, antibiotics, and caffeine. Few models included several species or compounds, and models were thus generally not translational or generic. Three dairy cow models mechanistically described the intramammary disposition of pharmaceuticals after intramammary administration, including volume changes caused by milking, while empirically describing the remaining pharmacokinetics. The remaining models were semi- or whole body PBK models, describing long-term exposure of environmental pollutants, or short-term exposure of pharmaceuticals. The absolute majority described the disposition to the mammary gland or milk with perfusion limited compartments, but permeability limited models were available as well. With long-term exposure, models often included changes in milk volume and/or consumption by the offspring, and changes in body weight of offspring. Periodic emptying of the mammary gland, as with feeding or milking, was sparsely applied. Rodent models used similar physiological parameters, while values of physiological parameters applied in human models could range widely. When milk composition was included in the models, it most often included the fat content. The review gives an extensive overview of the applied functions and modelling strategies of PBK lactation models.
Collapse
|
6
|
Bandeira LC, Pinto L, Carneiro CM. Pharmacometrics: The Already-Present Future of Precision Pharmacology. Ther Innov Regul Sci 2023; 57:57-69. [PMID: 35984633 DOI: 10.1007/s43441-022-00439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023]
Abstract
The use of mathematical modeling to represent, analyze, make predictions or providing information on data obtained in drug research and development has made pharmacometrics an area of great prominence and importance. The main purpose of pharmacometrics is to provide information relevant to the search for efficacy and safety improvements in pharmacotherapy. Regulatory agencies have adopted pharmacometrics analysis to justify their regulatory decisions, making those decisions more efficient. Demand for specialists trained in the field is therefore growing. In this review, we describe the meaning, history, and development of pharmacometrics, analyzing the challenges faced in the training of professionals. Examples of applications in current use, perspectives for the future, and the importance of pharmacometrics for the development and growth of precision pharmacology are also presented.
Collapse
Affiliation(s)
- Lorena Cera Bandeira
- Laboratory of Immunopathology, Nucleus of Biological Sciences Research, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
| | - Leonardo Pinto
- Laboratory of Immunopathology, Nucleus of Biological Sciences Research, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Cláudia Martins Carneiro
- Laboratory of Immunopathology, Nucleus of Biological Sciences Research, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
7
|
Liu YH, Yao L, Huang Z, Zhang YY, Chen CE, Zhao JL, Ying GG. Enhanced prediction of internal concentrations of phenolic endocrine disrupting chemicals and their metabolites in fish by a physiologically based toxicokinetic incorporating metabolism (PBTK-MT) model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120290. [PMID: 36180004 DOI: 10.1016/j.envpol.2022.120290] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA), 4-nonylphenol (4-NP), and triclosan (TCS) are phenolic endocrine disrupting chemicals (EDCs), which are widely detected in aquatic environments and further bioaccumulated and metabolized in fish. Physiologically based toxicokinetic (PBTK) models have been used to describe the absorption, distribution, metabolism, and excretion (ADME) of parent compounds in fish, whereas the metabolites are less explored. In this study, a PBTK incorporating metabolism (PBTK-MT) model for BPA, 4-NP, and TCS was established to enhance the performance of the traditional PBTK model. The PBTK-MT model comprised 16 compartments, showing great accuracy in predicting the internal concentrations of three compounds and their glucuronidated and sulfated conjugates in fish. The impact of typical hepatic metabolism on the PBTK-MT model was successfully resolved by optimizing the mechanism for deriving the partition coefficients between the blood and liver. The PBTK-MT model exhibited a potential data gap-filling capacity for unknown parameters through a backward extrapolation approach of parameters. Model sensitivity analysis suggested that only five parameters were sensitive in at least two PBTK-MT models, while most parameters were insensitive. The PBTK-MT model will contribute to a well understanding of the environmental behavior and risks of pollutants in aquatic biota.
Collapse
Affiliation(s)
- Yue-Hong Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China; School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Li Yao
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, People's Republic of China
| | - Zheng Huang
- School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Yuan-Yuan Zhang
- School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Chang-Er Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China; School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China; School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China; School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
8
|
A web-based interactive physiologically based pharmacokinetic (iPBPK) model for meloxicam in broiler chickens and laying hens. Food Chem Toxicol 2022; 168:113332. [DOI: 10.1016/j.fct.2022.113332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023]
|
9
|
Chou WC, Tell LA, Baynes RE, Davis JL, Maunsell FP, Riviere JE, Lin Z. An Interactive Generic Physiologically Based Pharmacokinetic (igPBPK) Modeling Platform to Predict Drug Withdrawal Intervals in Cattle and Swine: A Case Study on Flunixin, Florfenicol and Penicillin G. Toxicol Sci 2022; 188:180-197. [PMID: 35642931 PMCID: PMC9333411 DOI: 10.1093/toxsci/kfac056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Violative chemical residues in edible tissues from food-producing animals are of global public health concern. Great efforts have been made to develop physiologically based pharmacokinetic (PBPK) models for estimating withdrawal intervals (WDIs) for extralabel prescribed drugs in food animals. Existing models are insufficient to address the food safety concern as these models are either limited to 1 specific drug or difficult to be used by non-modelers. This study aimed to develop a user-friendly generic PBPK platform that can predict tissue residues and estimate WDIs for multiple drugs including flunixin, florfenicol, and penicillin G in cattle and swine. Mechanism-based in silico methods were used to predict tissue/plasma partition coefficients and the models were calibrated and evaluated with pharmacokinetic data from Food Animal Residue Avoidance Databank (FARAD). Results showed that model predictions were, in general, within a 2-fold factor of experimental data for all 3 drugs in both species. Following extralabel administration and respective U.S. FDA-approved tolerances, predicted WDIs for both cattle and swine were close to or slightly longer than FDA-approved label withdrawal times (eg, predicted 8, 28, and 7 days vs labeled 4, 28, and 4 days for flunixin, florfenicol, and penicillin G in cattle, respectively). The final model was converted to a web-based interactive generic PBPK platform. This PBPK platform serves as a user-friendly quantitative tool for real-time predictions of WDIs for flunixin, florfenicol, and penicillin G following FDA-approved label or extralabel use in both cattle and swine, and provides a basis for extrapolating to other drugs and species.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA.,Center for Environmental and Human Toxicology, University of Florida, FL, 32608, USA
| | - Lisa A Tell
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - Ronald E Baynes
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA
| | - Jennifer L Davis
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24060, USA
| | - Fiona P Maunsell
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32608, USA
| | - Jim E Riviere
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA.,1Data Consortium,Kansas State University, Olathe, KS, 66061, USA
| | - Zhoumeng Lin
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA.,Center for Environmental and Human Toxicology, University of Florida, FL, 32608, USA
| |
Collapse
|
10
|
Optimization and Validation of Dosage Regimen for Ceftiofur against Pasteurella multocida in Swine by Physiological Based Pharmacokinetic-Pharmacodynamic Model. Int J Mol Sci 2022; 23:ijms23073722. [PMID: 35409082 PMCID: PMC8998519 DOI: 10.3390/ijms23073722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 12/10/2022] Open
Abstract
Model informed drug development is a valuable tool for drug development and clinical application due to its ability to integrate variability and uncertainty of data. This study aimed to determine an optimal dosage of ceftiofur against P. multocida by ex vivo pharmacokinetic/pharmacodynamic (PK/PD) model and validate the dosage regimens by Physiological based Pharmacokinetic-Pharmacodynamic (PBPK/PD) model. The pharmacokinetic profiles of ceftiofur both in plasma and bronchoalveolar lavage fluid (BALF) are determined. PD performance of ceftiofur against P. multocida was investigated. By establishing PK/PD model, PK/PD parameters and doses were determined. PBPK model and PBPK/PD model were developed to validate the dosage efficacy. The PK/PD parameters, AUC0–24 h/MIC, for bacteriostatic action, bactericidal action and elimination were determined as 44.02, 89.40, and 119.90 h and the corresponding dosages were determined as 0.22, 0.46, and 0.64 mg/kg, respectively. AUC24 h/MIC and AUC 72 h/MIC are simulated by PBPK model, compared with the PK/PD parameters, the therapeutic effect can reach probability of target attainment (PTA) of 90%. The time-courses of bacterial growth were predicted by the PBPK/PD model, which indicated the dosage of 0.46 mg/kg body weight could inhibit the bacterial growth and perform good bactericidal effect.
Collapse
|
11
|
Yang F, Liu D, Yang C, Song ZW, Shao HT, Zhang M, Zhang CS, Zhang ZD, Yang F. Development and application of a physiologically based pharmacokinetic model for orbifloxacin in crucian carp (Carassius auratus). J Vet Pharmacol Ther 2022; 45:311-319. [PMID: 35243644 DOI: 10.1111/jvp.13049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/07/2022] [Accepted: 02/23/2022] [Indexed: 11/29/2022]
Abstract
A flow-limited physiologically based pharmacokinetic (PBPK) model consisting of seven compartments was established for orbifloxacin in crucian carp to predict drug concentrations after intravenous or intramuscular injections. Physiological and anatomical parameters, including tissue weights and blood flow through different tissues, were obtained from previous literature. The tissue/plasma partition coefficients for orbifloxacin were calculated using the area method or parameter optimization. In addition, their values were 0.9326, 1.1204, 1.1644, 1.3514, and 2.0057 in the liver, skin, muscle, kidney, and the rest of the body compartment, respectively. Based on the current PBPK model, orbifloxacin concentrations were predicted and compared with those previously reported for further validation. In addition, the mean absolute percentage error (MAPE) values were also calculated, with values ranging from 10.21% in plasma to 42.37% in kidneys, indicating acceptable predictions for all tissues and plasma. A local sensitivity analysis was performed, which showed that the parameters related to elimination and distribution were most influential on orbifloxacin concentrations in muscle. This model was finally used to predict plasma and tissue concentrations after multiple intramuscular dosing. The current PBPK model provided a valuable tool for predicting the tissue residues of orbifloxacin in crucian carp following intramuscular injection.
Collapse
Affiliation(s)
- Fang Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Dan Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Chao Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Zhe-Wen Song
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Hao-Tian Shao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Mei Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Chao-Shuo Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Zhen-Dong Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Fan Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
12
|
A physiologically based pharmacokinetic (PBPK) model exploring the blood-milk barrier in lactating species - A case study with oxytetracycline administered to dairy cows and goats. Food Chem Toxicol 2022; 161:112848. [DOI: 10.1016/j.fct.2022.112848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/11/2022]
|
13
|
Halleran JL, Papich MG, Li M, Lin Z, Davis JL, Maunsell FP, Riviere JE, Baynes RE, Foster DM. Update on withdrawal intervals following extralabel use of procaine penicillin G in cattle and swine. J Am Vet Med Assoc 2022; 260:50-55. [PMID: 34793323 DOI: 10.2460/javma.21.05.0268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jennifer L Halleran
- Food Animal Residue Avoidance and Depletion Program (FARAD), Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Mark G Papich
- FARAD, Department of Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Miao Li
- FARAD, Institute of Computational Comparative Medicine, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Zhoumeng Lin
- FARAD, Institute of Computational Comparative Medicine, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS.,Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL
| | - Jennifer L Davis
- FARAD, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
| | - Fiona P Maunsell
- FARAD, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL
| | - Jim E Riviere
- Food Animal Residue Avoidance and Depletion Program (FARAD), Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Ronald E Baynes
- Food Animal Residue Avoidance and Depletion Program (FARAD), Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Derek M Foster
- Food Animal Residue Avoidance and Depletion Program (FARAD), Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| |
Collapse
|
14
|
Zhou K, Liu A, Ma W, Sun L, Mi K, Xu X, Algharib SA, Xie S, Huang L. Apply a Physiologically Based Pharmacokinetic Model to Promote the Development of Enrofloxacin Granules: Predict Withdrawal Interval and Toxicity Dose. Antibiotics (Basel) 2021; 10:antibiotics10080955. [PMID: 34439005 PMCID: PMC8388861 DOI: 10.3390/antibiotics10080955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/21/2022] Open
Abstract
Enrofloxacin (ENR) granules were developed to prevent and control the infections caused by foodborne zoonotic intestinal pathogens in our previous studies. To promote the further development of ENR granules and standardize their usage in pigs, a physiologically based pharmacokinetic (PBPK) model of the ENR granule in pigs was built to determine the withdrawal time (WT) and evaluate the toxicity to pigs. Meanwhile, the population WT was determined by a Monte Carlo analysis to guarantee pork safety. The fitting results of the model showed that the tissue residual concentrations of ENR, ciprofloxacin, and ENR plus ciprofloxacin were all well predicted by the built PBPK model (R2 > 0.82). When comparing with the EMA's WT1.4 software method, the final WT (6 d) of the ENR granules in the population of pigs was well predicted. Moreover, by combining the cytotoxicity concentration (225.9 µg/mL) of ENR against pig hepatocytes, the orally safe dosage range (≤130 mg/kg b.w.) of the ENR granules to pigs was calculated based on the validated PBPK model. The well-predicted WTs and a few uses in animals proved that the PBPK model is a potential tool for promoting the judicious use of antimicrobial agents and evaluating the toxicity of the veterinary antimicrobial products.
Collapse
Affiliation(s)
- Kaixiang Zhou
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (K.Z.); (A.L.); (W.M.); (L.S.); (K.M.); (X.X.); (S.A.A.); (S.X.)
| | - Aimei Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (K.Z.); (A.L.); (W.M.); (L.S.); (K.M.); (X.X.); (S.A.A.); (S.X.)
| | - Wenjin Ma
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (K.Z.); (A.L.); (W.M.); (L.S.); (K.M.); (X.X.); (S.A.A.); (S.X.)
| | - Lei Sun
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (K.Z.); (A.L.); (W.M.); (L.S.); (K.M.); (X.X.); (S.A.A.); (S.X.)
| | - Kun Mi
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (K.Z.); (A.L.); (W.M.); (L.S.); (K.M.); (X.X.); (S.A.A.); (S.X.)
| | - Xiangyue Xu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (K.Z.); (A.L.); (W.M.); (L.S.); (K.M.); (X.X.); (S.A.A.); (S.X.)
| | - Samah Attia Algharib
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (K.Z.); (A.L.); (W.M.); (L.S.); (K.M.); (X.X.); (S.A.A.); (S.X.)
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (K.Z.); (A.L.); (W.M.); (L.S.); (K.M.); (X.X.); (S.A.A.); (S.X.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (K.Z.); (A.L.); (W.M.); (L.S.); (K.M.); (X.X.); (S.A.A.); (S.X.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: ; Tel.: +86-027-8728-7186
| |
Collapse
|
15
|
Riad MH, Baynes RE, Tell LA, Davis JL, Maunsell FP, Riviere JE, Lin Z. Development and Application of an interactive Physiologically Based Pharmacokinetic (iPBPK) Model to Predict Oxytetracycline Tissue Distribution and Withdrawal Intervals in Market-Age Sheep and Goats. Toxicol Sci 2021; 183:253-268. [PMID: 34329480 DOI: 10.1093/toxsci/kfab095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Oxytetracycline (OTC) is a widely used antibiotic in food-producing animals. Extralabel use of OTC is common and may lead to violative residues in edible tissues. It is important to have a quantitative tool to predict scientifically-based withdrawal intervals (WDIs) after extralabel use in food animals to ensure human food safety. This study focuses on developing a physiologically based pharmacokinetic (PBPK) model for OTC in sheep and goats. The model included seven compartments: plasma, lung, liver, kidneys, muscle, fat, and rest of the body. The model was calibrated with serum and tissue (liver, muscle, kidney, and fat) concentration data following a single intramuscular (IM, 20 mg/kg) and/or intravenous (IV, 10 mg/kg) administration of a long-acting formulation in sheep and goats. The model was evaluated with independent datasets from Food Animal Residue Avoidance Databank (FARAD). Results showed that the model adequately simulated the calibration datasets with an overall estimated coefficient of determination (R2) of 0.95 and 0.92, respectively, for sheep and goat models and had acceptable accuracy for the validation datasets. Monte Carlo sampling technique was applied to predict the time needed for drug concentrations in edible tissues to fall below tolerances for the 99th percentiles of the population. The model was converted to a web-based interactive PBPK (iPBPK) interface to facilitate model applications. This iPBPK model provides a useful tool to estimate WDIs for OTC after extralabel use in small ruminants to ensure food safety and serves as a basis for extrapolation to other tetracycline drugs and other food animals.
Collapse
Affiliation(s)
- Mahbubul H Riad
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506.,Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, USA.,Center for Environmental and Human Toxicology, University of Florida, FL 32608, USA
| | - Ronald E Baynes
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606
| | - Lisa A Tell
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616
| | - Jennifer L Davis
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24060
| | - Fiona P Maunsell
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608
| | - Jim E Riviere
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506.,Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506.,Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, USA.,Center for Environmental and Human Toxicology, University of Florida, FL 32608, USA
| |
Collapse
|
16
|
Chou WC, Lin Z. Development of a Gestational and Lactational Physiologically Based Pharmacokinetic (PBPK) Model for Perfluorooctane Sulfonate (PFOS) in Rats and Humans and Its Implications in the Derivation of Health-Based Toxicity Values. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:37004. [PMID: 33730865 PMCID: PMC7969127 DOI: 10.1289/ehp7671] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND There is a great concern on potential adverse effects of exposure to perfluorooctane sulfonate (PFOS) in sensitive subpopulations, such as pregnant women, fetuses, and neonates, due to its reported transplacental and lactational transfer and reproductive and developmental toxicities in animals and humans. OBJECTIVES This study aimed to develop a gestational and lactational physiologically based pharmacokinetic (PBPK) model in rats and humans for PFOS to aid risk assessment in sensitive human subpopulations. METHODS Based upon existing PBPK models for PFOS, the present model addressed a data gap of including a physiologically based description of basolateral and apical membrane transporter-mediated renal reabsorption and excretion in kidneys during gestation and lactation. The model was calibrated with published rat toxicokinetic and human biomonitoring data and was independently evaluated with separate data. Monte Carlo simulation was used to address the interindividual variability. RESULTS Model simulations were generally within 2-fold of observed PFOS concentrations in maternal/fetal/neonatal plasma and liver in rats and humans. Estimated fifth percentile human equivalent doses (HEDs) based on selected critical toxicity studies in rats following U.S. Environmental Protection Agency (EPA) guidelines ranged from 0.08 to 0.91 μ g / kg per day . These values are lower than the HEDs estimated in U.S. EPA guidance (0.51 - 1.6 μ g / kg per day ) using an empirical toxicokinetic model in adults. CONCLUSIONS The results support the importance of renal reabsorption/excretion during pregnancy and lactation in PFOS dosimetry and suggest that the derivation of health-based toxicity values based on developmental toxicity studies should consider gestational/lactational dosimetry estimated from a life stage-appropriate PBPK model. This study provides a quantitative tool to aid risk reevaluation of PFOS, especially in sensitive human subpopulations, and it provides a basis for extrapolating to other per- and polyfluoroalkyl substances (PFAS). All model codes and detailed tutorials are provided in the Supplemental Materials to allow readers to reproduce our results and to use this model. https://doi.org/10.1289/EHP7671.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Institute of Computational Comparative Medicine, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
17
|
Physiologically based pharmacokinetic (PBPK) modeling of RNAi therapeutics: Opportunities and challenges. Biochem Pharmacol 2021; 189:114468. [PMID: 33577889 DOI: 10.1016/j.bcp.2021.114468] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
Physiologically based pharmacokinetic (PBPK) modeling is a powerful tool with many demonstrated applications in various phases of drug development and regulatory review. RNA interference (RNAi)-based therapeutics are a class of drugs that have unique pharmacokinetic properties and mechanisms of action. With an increasing number of RNAi therapeutics in the pipeline and reaching the market, there is a considerable amount of active research in this area requiring a multidisciplinary approach. The application of PBPK models for RNAi therapeutics is in its infancy and its utility to facilitate the development of this new class of drugs is yet to be fully evaluated. From this perspective, we briefly discuss some of the current computational modeling approaches used in support of efficient development and approval of RNAi therapeutics. Considerations for PBPK model development are highlighted both in a relative context between small molecules and large molecules such as monoclonal antibodies and as it applies to RNAi therapeutics. In addition, the prospects for drawing upon other recognized avenues of PBPK modeling and some of the foreseeable challenges in PBPK model development for these chemical modalities are briefly discussed. Finally, an exploration of the potential application of PBPK model development for RNAi therapeutics is provided. We hope these preliminary thoughts will help initiate a dialogue between scientists in the relevant sectors to examine the value of PBPK modeling for RNAi therapeutics. Such evaluations could help standardize the practice in the future and support appropriate guidance development for strengthening the RNAi therapeutics development program.
Collapse
|
18
|
Yang F, Yang F, Wang D, Zhang CS, Wang H, Song ZW, Shao HT, Zhang M, Yu ML, Zheng Y. Development and Application of a Water Temperature Related Physiologically Based Pharmacokinetic Model for Enrofloxacin and Its Metabolite Ciprofloxacin in Rainbow Trout. Front Vet Sci 2021; 7:608348. [PMID: 33585600 PMCID: PMC7874017 DOI: 10.3389/fvets.2020.608348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/31/2020] [Indexed: 01/21/2023] Open
Abstract
Enrofloxacin (ENR) has been approved for the treatment of infections in aquaculture, but it may cause tissue residue. This research aimed to develop and validate a water temperature related PBPK model, including both ENR and ciprofloxacin (CIP), in rainbow trout, and to predict further their residue concentrations and the withdrawal periods for ENR at different water temperatures. With the published concentrations data, a flow-limited PBPK model including both ENR and CIP sub-models was developed to predict ENR and CIP concentrations in tissues and plasma/serum after intravenous, oral, or immersion administration. A Monte Carlo simulation including 500 iterations was further incorporated into this model. Based on the model and Monte Carlo analysis, the withdrawal intervals were estimated for different dosage regimens and at different water temperatures, ranging from 80 to 272 degree-days. All of these values were shorter than the labeled withdrawal period (500 degree-days) in fish. This model provided a useful tool for predicting the tissue residues of ENR and CIP in rainbow trout under different dosage regimens and at different water temperatures.
Collapse
Affiliation(s)
- Fan Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,Environmental and Animal Products Safety Laboratory of Key Discipline in University of Henan Province, Henan University of Science and Technology, Luoyang, China
| | - Fang Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Dan Wang
- Jiaozuo Livestock Product Quality and Safety Monitoring Center, Jiaozuo, China
| | - Chao-Shuo Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Han Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Zhe-Wen Song
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Hao-Tian Shao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Mei Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Meng-Li Yu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yang Zheng
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
19
|
Li M, Wang YS, Elwell-Cuddy T, Baynes RE, Tell LA, Davis JL, Maunsell FP, Riviere JE, Lin Z. Physiological parameter values for physiologically based pharmacokinetic models in food-producing animals. Part III: Sheep and goat. J Vet Pharmacol Ther 2020; 44:456-477. [PMID: 33350478 PMCID: PMC8359294 DOI: 10.1111/jvp.12938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/07/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022]
Abstract
This report is the third in a series of studies that aimed to compile physiological parameters related to develop physiologically based pharmacokinetic (PBPK) models for drugs and environmental chemicals in food‐producing animals including swine and cattle (Part I), chickens and turkeys (Part II), and finally sheep and goats (the focus of this manuscript). Literature searches were conducted in multiple databases (PubMed, Google Scholar, ScienceDirect, and ProQuest), with data on relevant parameters including body weight, relative organ weight (% of body weight), cardiac output, relative organ blood flow (% of cardiac output), residual blood volume (% of organ weight), and hematocrit reviewed and statistically summarized. The mean and standard deviation of each parameter are presented in tables. Equations describing the growth curves of sheep and goats are presented in figures. When data are sufficient, parameter values are reported for different ages or production classes of sheep, including fetal sheep, lambs, and market‐age sheep (mature sheep). These data provide a reference database for developing standardized PBPK models to predict drug withdrawal intervals in sheep and goats, and also provide a basis for extrapolating PBPK models from major species such as cattle to minor species such as sheep and goats.
Collapse
Affiliation(s)
- Miao Li
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Yu-Shin Wang
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Trevor Elwell-Cuddy
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Ronald E Baynes
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Lisa A Tell
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Jennifer L Davis
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Fiona P Maunsell
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Jim E Riviere
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.,Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
20
|
Fairman K, Li M, Kabadi SV, Lumen A. Physiologically based pharmacokinetic modeling: A promising tool for translational research and regulatory toxicology. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2020.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Woodward AP, Morin D, Whittem T. Population physiologically based modeling of pirlimycin milk concentrations in dairy cows. J Dairy Sci 2020; 103:10639-10650. [PMID: 32921458 DOI: 10.3168/jds.2020-18760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/16/2020] [Indexed: 12/31/2022]
Abstract
Predictions of drug residues in milk are critical in food protection and are a major consideration in the economics of treatment of mastitis in dairy cows. Nonlinear mixed-effects modeling (NLME) has been advocated as a suitable pharmaco-statistical method for the study of drug residues in milk. Recent developments in physiologically based pharmacokinetic (PBPK) modeling of intramammary drugs allow the combination of a mechanistic description of milk pharmacokinetics with NLME methods. The PBPK model was applied to NLME analysis of a data set consisting of milk drug concentrations from 78 healthy cows and 117 with clinical mastitis. Pirlimycin milk pharmacokinetics were adequately described by the model across the range of observed concentrations. Mastitis was characterized by increased variance in milk production volume. Udder residual volume was larger in cows with 1, or 2 or greater diseased mammary glands than in the healthy cows. Low-producing cows had a greater risk of prolonged milk residues. With the exclusion of the low-production cows, the model predicted that healthy cows required a milk discard time 12 h longer than that indicated by the label, and the diseased cows 36 h longer than indicated by the label. More pirlimycin was systemically absorbed in the gram-positive infected compared with the gram-negative infected or healthy cows, suggesting a greater risk of violative meat residues in gram-positive infected cows. Using NLME and PBPK models, we identified factors associated with changes in pirlimycin milk residues that may affect food safety. This model extends the verification of a simple physiologically based framework for the study of intramammary drugs.
Collapse
Affiliation(s)
- A P Woodward
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Australia, 3030.
| | - D Morin
- College of Veterinary Medicine, University of Illinois, Urbana 61802
| | - T Whittem
- Melbourne Veterinary School, Melbourne, Victoria, Australia, 3030
| |
Collapse
|
22
|
Lin Z, Li M, Wang YS, Tell LA, Baynes RE, Davis JL, Vickroy TW, Riviere JE. Physiological parameter values for physiologically based pharmacokinetic models in food-producing animals. Part I: Cattle and swine. J Vet Pharmacol Ther 2020; 43:385-420. [PMID: 32270548 PMCID: PMC7540321 DOI: 10.1111/jvp.12861] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/04/2020] [Indexed: 12/15/2022]
Abstract
Physiologically based pharmacokinetic (PBPK) models for chemicals in food animals are a useful tool in estimating chemical tissue residues and withdrawal intervals. Physiological parameters such as organ weights and blood flows are an important component of a PBPK model. The objective of this study was to compile PBPK‐related physiological parameter data in food animals, including cattle and swine. Comprehensive literature searches were performed in PubMed, Google Scholar, ScienceDirect, and ProQuest. Relevant literature was reviewed and tables of relevant parameters such as relative organ weights (% of body weight) and relative blood flows (% of cardiac output) were compiled for different production classes of cattle and swine. The mean and standard deviation of each parameter were calculated to characterize their variability and uncertainty and to allow investigators to conduct population PBPK analysis via Monte Carlo simulations. Regression equations using weight or age were created for parameters having sufficient data. These compiled data provide a comprehensive physiological parameter database for developing PBPK models of chemicals in cattle and swine to support animal‐derived food safety assessment. This work also provides a basis to compile data in other food animal species, including goats, sheep, chickens, and turkeys.
Collapse
Affiliation(s)
- Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Miao Li
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Yu-Shin Wang
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Lisa A Tell
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Ronald E Baynes
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Jennifer L Davis
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia
| | - Thomas W Vickroy
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Jim E Riviere
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas.,Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
23
|
A physiologically based pharmacokinetic model of doxycycline for predicting tissue residues and withdrawal intervals in grass carp (Ctenopharyngodon idella). Food Chem Toxicol 2020; 137:111127. [PMID: 31945393 DOI: 10.1016/j.fct.2020.111127] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/14/2019] [Accepted: 01/09/2020] [Indexed: 01/18/2023]
Abstract
The extensive use of doxycycline in aquaculture results in drug residue violations that negatively impact human food safety. This study aimed to develop a physiologically based pharmacokinetic (PBPK) model for doxycycline to predict drug residues and withdrawal times (WTs) in grass carp (Ctenopharyngodon idella) after daily oral administration for 3 days. Physiological parameters including cardiac output and organ weights were measured experimentally. Chemical-specific parameters were obtained from the literature or estimated by fitting to the observed data. The model properly captured the observed kinetic profiles of doxycycline in tissues (i.e., liver, kidney, muscle + skin and gill). The predicted WT in muscle + skin by Monte Carlo analysis based on sensitive parameters identified at 24 h after drug administration was 41 d, which was similar to 43 d calculated using the tolerance limit method. Sensitivity analysis identified two additional sensitive parameters at 6 weeks: intestinal transit rate constant and urinary elimination rate constant. The predicted WT in muscle + skin based on sensitive parameters identified at 6 weeks was 54 d. This model provides a useful tool to estimate tissue residues and withdrawal times for doxycycline in grass carp and also serves a foundation for extrapolation to other fish species and other tetracyclines.
Collapse
|
24
|
Lautz L, Oldenkamp R, Dorne J, Ragas A. Physiologically based kinetic models for farm animals: Critical review of published models and future perspectives for their use in chemical risk assessment. Toxicol In Vitro 2019; 60:61-70. [DOI: 10.1016/j.tiv.2019.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/28/2019] [Accepted: 05/05/2019] [Indexed: 10/26/2022]
|
25
|
Woodward AP, Whittem T. Physiologically based modelling of the pharmacokinetics of three beta-lactam antibiotics after intra-mammary administration in dairy cows. J Vet Pharmacol Ther 2019; 42:693-706. [PMID: 31553070 DOI: 10.1111/jvp.12812] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022]
Abstract
Understanding the pharmacokinetics of intra-mammary antibiotics is important for the prediction of drug residues in milk and for the design of optimal dosage regimens. Unfortunately, compartmental pharmacokinetic models are not valid for this unique system. A minimal physiologically based pharmacokinetic model is presented incorporating the physiology of milk secretion, drug administration at the quarter level, drug absorption and dispersion, drug retention during the inter-milking interval and episodic drug elimination at milking. The primary objective of the study was the development and exploration of a model for major factors controlling drug concentration in milk, rather than generation of rigorously predictive pharmaco-statistical models for any particular drug. This model was implemented in a two-stage approach, using published concentration data for penicillin, cefuroxime, cephapirin and desacetyl-cephapirin in milk of healthy cows. Model simulations evaluated sensitivity and developed predictions of drug residues. The model successfully predicted both drug concentrations and drug residues in milk. The postmilking residual milk volume did not adequately explain antibiotic pharmacokinetics, requiring additional considerations for drug retention. Local sensitivity analysis indicated that increasing the number of quarters treated, the dosage, or the duration of the inter-milking interval prolonged both the persistence of drug residues and the duration that antibiotic concentration exceeded typical minimum inhibitory concentrations. The model was flexible across different beta-lactam drugs as a general description of intra-mammary pharmacokinetics. This model is suitable for the design and analysis of dosage regimens, and could be applied for the prediction of withholding periods when these antibiotic preparations are used off-label. The final model indicates that explicit consideration of the milking regimen is fundamental to the design and interpretation of pharmacokinetic studies of antibiotics in bovine milk.
Collapse
Affiliation(s)
- Andrew P Woodward
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Australia
| | - Ted Whittem
- Melbourne Veterinary School, The University of Melbourne, Werribee, Australia
| |
Collapse
|
26
|
Integration of Food Animal Residue Avoidance Databank (FARAD) empirical methods for drug withdrawal interval determination with a mechanistic population-based interactive physiologically based pharmacokinetic (iPBPK) modeling platform: example for flunixin meglumine administration. Arch Toxicol 2019; 93:1865-1880. [PMID: 31025081 DOI: 10.1007/s00204-019-02464-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/18/2019] [Indexed: 12/31/2022]
Abstract
Violative chemical residues in animal-derived food products affect food safety globally and have impact on the trade of international agricultural products. The Food Animal Residue Avoidance Databank program has been developing scientific tools to provide appropriate withdrawal interval (WDI) estimations after extralabel drug use in food animals for the past three decades. One of the tools is physiologically based pharmacokinetic (PBPK) modeling, which is a mechanistic-based approach that can be used to predict tissue residues and WDIs. However, PBPK models are complicated and difficult to use by non-modelers. Therefore, a user-friendly PBPK modeling framework is needed to move this field forward. Flunixin was one of the top five violative drug residues identified in the United States from 2010 to 2016. The objective of this study was to establish a web-based user-friendly framework for the development of new PBPK models for drugs administered to food animals. Specifically, a new PBPK model for both cattle and swine after administration of flunixin meglumine was developed. Population analysis using Monte Carlo simulations was incorporated into the model to predict WDIs following extralabel administration of flunixin meglumine. The population PBPK model was converted to a web-based interactive PBPK (iPBPK) framework to facilitate its application. This iPBPK framework serves as a proof-of-concept for further improvements in the future and it can be applied to develop new models for other drugs in other food animal species, thereby facilitating the application of PBPK modeling in WDI estimation and food safety assessment.
Collapse
|
27
|
Li M, Mainquist-Whigham C, Karriker LA, Wulf LW, Zeng D, Gehring R, Riviere JE, Coetzee JF, Lin Z. An integrated experimental and physiologically based pharmacokinetic modeling study of penicillin G in heavy sows. J Vet Pharmacol Ther 2019; 42:461-475. [PMID: 31012501 DOI: 10.1111/jvp.12766] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/12/2019] [Accepted: 03/14/2019] [Indexed: 01/09/2023]
Abstract
Penicillin G is widely used in food-producing animals at extralabel doses and is one of the most frequently identified violative drug residues in animal-derived food products. In this study, the plasma pharmacokinetics and tissue residue depletion of penicillin G in heavy sows after repeated intramuscular administrations at label (6.5 mg/kg) and 5 × label (32.5 mg/kg) doses were determined. Plasma, urine, and environmental samples were tested as potential antemortem markers for penicillin G residues. The collected new data and other available data from the literature were used to develop a population physiologically based pharmacokinetic (PBPK) model for penicillin G in heavy sows. The results showed that antemortem testing of urine provided potential correlation with tissue residue levels. Based on the United States Department of Agriculture Food Safety and Inspection Service action limit of 25 ng/g, the model estimated a withdrawal interval of 38 days for penicillin G in heavy sows after 3 repeated intramuscular injections at 5 × label dose. This study improves our understanding of penicillin G pharmacokinetics and tissue residue depletion in heavy sows and provides a tool to predict proper withdrawal intervals after extralabel use of penicillin G in heavy sows, thereby helping safety assessment of sow-derived meat products.
Collapse
Affiliation(s)
- Miao Li
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Christine Mainquist-Whigham
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Locke A Karriker
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa.,Swine Medicine Education Center, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Larry W Wulf
- Pharmacology Analytical Support Team (PhAST), Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Dongping Zeng
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas.,National Reference Laboratory of Veterinary Drug Residues (SCAU), Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ronette Gehring
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Jim E Riviere
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Johann F Coetzee
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas.,Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa.,Pharmacology Analytical Support Team (PhAST), Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| |
Collapse
|
28
|
Yang F, Lin Z, Riviere JE, Baynes RE. Development and application of a population physiologically based pharmacokinetic model for florfenicol and its metabolite florfenicol amine in cattle. Food Chem Toxicol 2019; 126:285-294. [DOI: 10.1016/j.fct.2019.02.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/17/2022]
|
29
|
Zeng D, Lin Z, Zeng Z, Fang B, Li M, Cheng YH, Sun Y. Assessing Global Human Exposure to T-2 Toxin via Poultry Meat Consumption Using a Lifetime Physiologically Based Pharmacokinetic Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1563-1571. [PMID: 30633497 DOI: 10.1021/acs.jafc.8b07133] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Residue depletion of T-2 toxin in chickens after oral gavage at 2.0 mg/kg twice daily for 2 days was determined in this study. A flow-limited physiologically based pharmacokinetic (PBPK) model was developed for lifetime exposure assessment in chickens. The model was calibrated with data from the residue depletion study and then validated with independent data. A local sensitivity analysis was performed, and 16 sensitive parameters were subjected to Monte Carlo analysis. The population PBPK model was applied to estimate daily intake values of T-2 toxin in different countries based on reported consumption factors and the guidance value of 0.25 mg/kg in feed for chickens by the European Food Safety Authority (EFSA). The predicted daily intakes in different countries were all lower than the EFSA's total daily intake, suggesting that the EFSA's guidance value has minimal risk. This model provides a foundation for scaling to other mycotoxins and other food animal species.
Collapse
Affiliation(s)
- Dongping Zeng
- National Reference Laboratory of Veterinary Drug Residues (SCAU), Laboratory of Veterinary Pharmacology, College of Veterinary Medicine , South China Agricultural University , Guangzhou 510640 , China
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine , Kansas State University , Manhattan , Kansas 66506 , United States
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine , Kansas State University , Manhattan , Kansas 66506 , United States
| | - Zhenling Zeng
- National Reference Laboratory of Veterinary Drug Residues (SCAU), Laboratory of Veterinary Pharmacology, College of Veterinary Medicine , South China Agricultural University , Guangzhou 510640 , China
| | - Binghu Fang
- National Reference Laboratory of Veterinary Drug Residues (SCAU), Laboratory of Veterinary Pharmacology, College of Veterinary Medicine , South China Agricultural University , Guangzhou 510640 , China
| | - Miao Li
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine , Kansas State University , Manhattan , Kansas 66506 , United States
| | - Yi-Hsien Cheng
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine , Kansas State University , Manhattan , Kansas 66506 , United States
| | - Yongxue Sun
- National Reference Laboratory of Veterinary Drug Residues (SCAU), Laboratory of Veterinary Pharmacology, College of Veterinary Medicine , South China Agricultural University , Guangzhou 510640 , China
| |
Collapse
|
30
|
Elwell-Cuddy T, Li M, KuKanich B, Lin Z. The construction and application of a population physiologically based pharmacokinetic model for methadone in Beagles and Greyhounds. J Vet Pharmacol Ther 2018; 41:670-683. [DOI: 10.1111/jvp.12676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/30/2018] [Accepted: 05/18/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Trevor Elwell-Cuddy
- Institute of Computational Comparative Medicine (ICCM); Department of Anatomy and Physiology; College of Veterinary Medicine; Kansas State University; Manhattan Kansas
| | - Miao Li
- Institute of Computational Comparative Medicine (ICCM); Department of Anatomy and Physiology; College of Veterinary Medicine; Kansas State University; Manhattan Kansas
| | - Butch KuKanich
- Institute of Computational Comparative Medicine (ICCM); Department of Anatomy and Physiology; College of Veterinary Medicine; Kansas State University; Manhattan Kansas
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM); Department of Anatomy and Physiology; College of Veterinary Medicine; Kansas State University; Manhattan Kansas
| |
Collapse
|