1
|
Yiotis C, Chondrogiannis C. Reduced diffusional limitations in carnation stems facilitate higher photosynthetic rates and reduced photorespiratory losses compared with leaves. PHYSIOLOGIA PLANTARUM 2024; 176:e14573. [PMID: 39400364 DOI: 10.1111/ppl.14573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Green stem photosynthesis has been shown to be relatively inefficient but can occasionally contribute significantly to the carbon budget of desert plants. Although the possession of green photosynthetic stems is a common trait, little is known about their photosynthetic characteristics in non-desert species. Dianthus caryophyllus is a semi-woody species with prominent green stems, which show similar photosynthetic anatomy with leaves. In the present study, we used a combination of gas exchange and chlorophyll fluorescence measurements, some of which were taken under varying O2 and CO2 partial pressures, to investigate whether the apparent anatomical similarities between the species' leaves and stems translate into similar photosynthetic physiology and capacity for CO2 assimilation. Both organs displayed high photosynthetic electron transport rates (ETR) and similar values of steady-state non-photochemical quenching (NPQ), albeit leaves could attain them faster. The analysis of OJIP transients showed that the quantum efficiencies and energy fluxes along the photosynthetic electron transport chain are largely similar between leaves and stems. Stems displayed higher total conductance to CO2 diffusion, similar biochemical properties, significantly higher photosynthetic rates and lower water use efficiency than leaves. Leaf ETR was more sensitive to sub-ambient O2 and super-ambient CO2 partial pressures, while leaves also displayed a higher relative rate of Rubisco oxygenation. We conclude that the highly responsive NPQ and the enhanced photorespiration and WUE in leaves represent photoprotective and water-conserving adaptations to the high incident light intensities they experience naturally, at the expense of higher CO2 assimilation rates, which the vertically orientated stems can readily attain.
Collapse
Affiliation(s)
- Charilaos Yiotis
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Christos Chondrogiannis
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
- Laboratory of Plant Physiology, Department of Biology, University of Patras, Patras, Greece
| |
Collapse
|
2
|
Guo Y, He S, Wang HL, Lin H, Zhang Y, Zhao Y. MicroRNA257 promotes secondary growth in hybrid poplar. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108870. [PMID: 38914038 DOI: 10.1016/j.plaphy.2024.108870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/30/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Populus, a significant fast-growing tree species with global afforestation and energy potential, holds considerable economic value. The abundant production of secondary xylem by trees, which serves as a vital resource for industrial purposes and human sustenance, necessitates the orchestration of various regulatory mechanisms, encompassing transcriptional regulators and microRNAs (miRNAs). Nevertheless, the investigation of microRNA-mediated regulation of poplar secondary growth remains limited. In this study, we successfully isolated a novel microRNA (Pag-miR257) from 84 K poplar and subsequently integrated it into the 35 S overexpression vector. The overexpression of Pag-miR257 resulted in notable increases in plant height, stem diameter, and fresh weight. Additionally, the overexpression of Pag-miR257 demonstrated a significant enhancement in net photosynthetic rate. The findings from the examination of cell wall autofluorescence indicated a substantial increase in both xylem area and the number of vessels in poplar plants overexpressing Pag-miR257. Furthermore, the cell wall of the Pag-miR257 overexpressing plants exhibited thickening as observed through transmission electron microscopy. Moreover, the Fourier Transforms Infrared (FTIR) analysis and phloroglucinol-HCl staining revealed an elevation in lignin content in Pag-miR257 overexpressing poplar plants. The findings of this study suggest that microRNA257 may play a role in the control of secondary growth in poplar stems, thereby potentially enhancing the development of wood engineering techniques for improved material and energy production.
Collapse
Affiliation(s)
- Yayu Guo
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China; National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shuhang He
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China; National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China; Dongguan No.1 Senior High School, China
| | - Hou-Ling Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China; National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hongxia Lin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China; National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yuqian Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China; National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yuanyuan Zhao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China; National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
3
|
Ávila-Lovera E, Haro R, Choudhary M, Acosta-Rangel A, Pratt RB, Santiago LS. The benefits of woody plant stem photosynthesis extend to hydraulic function and drought survival in Parkinsonia florida. TREE PHYSIOLOGY 2024; 44:tpae013. [PMID: 38284819 PMCID: PMC10918054 DOI: 10.1093/treephys/tpae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
As climate change exacerbates drought stress in many parts of the world, understanding plant physiological mechanisms for drought survival is critical to predicting ecosystem responses. Stem net photosynthesis, which is common in arid environments, may be a drought survival trait, but whether the additional carbon fixed by stems contributes to plant hydraulic function and drought survival in arid land plants is untested. We conducted a stem light-exclusion experiment on saplings of a widespread North American desert tree species, Parkinsonia florida L., and after shading acclimation, we then subjected half of the plants to a drought treatment to test the interaction between light exclusion and water limitation on growth, leaf and stem photosynthetic gas exchange, xylem embolism assessed with micro-computed tomography and gravimetric techniques, and survival. Growth, stem photosynthetic gas exchange, hydraulic function and survival all showed expected reductions in response to light exclusion. However, stem photosynthesis mitigated the drought-induced reductions in gas exchange, xylem embolism (percent loss of conductivity, PLC) and mortality. The highest mortality was in the combined light exclusion and drought treatment, and was related to stem PLC and native sapwood-specific hydraulic conductivity. This research highlights the integration of carbon economy and water transport. Our results show that additional carbon income by photosynthetic stems has an important role in the growth and survival of a widespread desert tree species during drought. This shift in function under conditions of increasing stress underscores the importance of considering stem photosynthesis for predicting drought-induced mortality not only for the additional supply of carbon, but also for its extended benefits for hydraulic function.
Collapse
Affiliation(s)
- Eleinis Ávila-Lovera
- School of Biological Sciences, The University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA
- Department of Botany and Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA 92521, USA
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama, Republic of Panama
| | - Roxana Haro
- Department of Botany and Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA 92521, USA
| | - Manika Choudhary
- Department of Botany and Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA 92521, USA
| | - Aleyda Acosta-Rangel
- Department of Botany and Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA 92521, USA
| | - R Brandon Pratt
- Department of Biology, California State University, 9001 Stockdale Hwy, Bakersfield, CA 93311, USA
| | - Louis S Santiago
- Department of Botany and Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA 92521, USA
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama, Republic of Panama
| |
Collapse
|
4
|
Valverdi NA, Acosta C, Dauber GR, Goldsmith GR, Ávila‐Lovera E. A comparison of methods for excluding light from stems to evaluate stem photosynthesis. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11542. [PMID: 38106534 PMCID: PMC10719881 DOI: 10.1002/aps3.11542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 12/19/2023]
Abstract
Premise A comparison of methods using different materials to exclude light from stems to prevent stem CO2 exchange (i.e., photosynthesis), without affecting stem conductance to water vapor, surface temperature, and relative humidity, was conducted on stems of avocado trees in California. Methods and Results The experiment featured three materials: aluminum foil, paper-based wrap, and mineral-based paint. We examined stem CO2 exchange with and without the light exclusion treatments. We also examined stem surface temperature, relative humidity, and photosynthetic active radiation (PAR) under the cover materials. All materials reduced PAR and stem CO2 exchange. However, aluminum foil reduced stem surface temperature and increased relative humidity. Conclusions Methods used to study stem CO2 exchange through light exclusion have historically relied on methods that may induce experimental artifacts. Among the methods tested here, mineral-based paint effectively reduced PAR without affecting stem surface temperature and relative humidity around the stem.
Collapse
Affiliation(s)
- Nadia A. Valverdi
- Schmid College of Science and TechnologyChapman UniversityOrangeCaliforniaUSA
- Estación Experimental Agropecuaria Catamarca, Instituto Nacional de Tecnología Agropecuaria Catamarca – La RiojaCatamarcaArgentina
| | - Camilla Acosta
- Schmid College of Science and TechnologyChapman UniversityOrangeCaliforniaUSA
| | - Gabriella R. Dauber
- Schmid College of Science and TechnologyChapman UniversityOrangeCaliforniaUSA
| | | | - Eleinis Ávila‐Lovera
- Schmid College of Science and TechnologyChapman UniversityOrangeCaliforniaUSA
- Smithsonian Tropical Research InstituteBalboa, AncónPanama CityPanama
| |
Collapse
|
5
|
Lauriks F, Salomón RL, De Roo L, Steppe K. Leaf and tree responses of young European aspen trees to elevated atmospheric CO2 concentration vary over the season. TREE PHYSIOLOGY 2021; 41:1877-1892. [PMID: 33824983 DOI: 10.1093/treephys/tpab048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Elevated atmospheric CO2 concentration (eCO2) commonly stimulates net leaf assimilation, decreases stomatal conductance and has no clear effect on leaf respiration. However, effects of eCO2 on whole-tree functioning and its seasonal dynamics remain far more uncertain. To evaluate temporal and spatial variability in eCO2 effects, 1-year-old European aspen trees were grown in two treatment chambers under ambient (aCO2, 400 p.p.m.) and elevated (eCO2, 700 p.p.m.) CO2 concentrations during an early (spring 2019) and late (autumn 2018) seasonal experiment. Leaf (net carbon assimilation, stomatal conductance and leaf respiration) and whole-tree (stem growth, sap flow and stem CO2 efflux) responses to eCO2 were measured. Under eCO2, carbon assimilation was stimulated during the early (1.63-fold) and late (1.26-fold) seasonal experiments. Stimulation of carbon assimilation changed over time with largest increases observed in spring when stem volumetric growth was highest, followed by late season down-regulation, when stem volumetric growth ceased. The neutral eCO2 effect on stomatal conductance and leaf respiration measured at leaf level paralleled the unresponsive canopy conductance (derived from sap flow measurements) and stem CO2 efflux measured at tree level. Our results highlight that seasonality in carbon demand for tree growth substantially affects the magnitude of the response to eCO2 at both leaf and whole-tree level.
Collapse
Affiliation(s)
- Fran Lauriks
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Roberto Luis Salomón
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
- Grupo de Investigación Sistemas Naturales e Historia Forestal, Universidad Politécnica de Madrid, Madrid 28040, Spain
| | - Linus De Roo
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| |
Collapse
|
6
|
Lauriks F, Salomón RL, Steppe K. Temporal variability in tree responses to elevated atmospheric CO 2. PLANT, CELL & ENVIRONMENT 2021; 44:1292-1310. [PMID: 33368341 DOI: 10.1111/pce.13986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
At leaf level, elevated atmospheric CO2 concentration (eCO2 ) results in stimulation of carbon net assimilation and reduction of stomatal conductance. However, a comprehensive understanding of the impact of eCO2 at larger temporal (seasonal and annual) and spatial (from leaf to whole-tree) scales is still lacking. Here, we review overall trends, magnitude and drivers of dynamic tree responses to eCO2 , including carbon and water relations at the leaf and the whole-tree level. Spring and early season leaf responses are most susceptible to eCO2 and are followed by a down-regulation towards the onset of autumn. At the whole-tree level, CO2 fertilization causes consistent biomass increments in young seedlings only, whereas mature trees show a variable response. Elevated CO2 -induced reductions in leaf stomatal conductance do not systematically translate into limitation of whole-tree transpiration due to the unpredictable response of canopy area. Reduction in the end-of-season carbon sink demand and water-limiting strategies are considered the main drivers of seasonal tree responses to eCO2 . These large temporal and spatial variabilities in tree responses to eCO2 highlight the risk of predicting tree behavior to eCO2 based on single leaf-level point measurements as they only reveal snapshots of the dynamic responses to eCO2 .
Collapse
Affiliation(s)
- Fran Lauriks
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Roberto Luis Salomón
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Department of Natural Resources and Systems, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|