1
|
Xie Y, Liu B, Zhou Z, Gao K, Yin H, Zhao Y, Liu Q. PmHs1 pro-1 monitors Bsursaphelenchus xylophilus infection and activates defensive response in resistant Pinus massoniana. PLANT, CELL & ENVIRONMENT 2024; 47:4369-4382. [PMID: 38973616 DOI: 10.1111/pce.15025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/09/2024]
Abstract
Plant resistance (R) genes play a crucial role in the detection of effector proteins secreted by pathogens, either directly or indirectly, as well as in the subsequent activation of downstream defence mechanisms. However, little is known about how R genes regulate the defence responses of conifers, particularly Pinus massoniana, against the destructive pine wood nematode (PWN; Bursaphelenchus xylophilus). Here, we isolated and characterised PmHs1pro-1, a nematode-resistance gene of P. massoniana, using bioinformatics, molecular biology, histochemistry and transgenesis. Tissue-specific expressional pattern and localisation of PmHs1pro-1 suggested that it was a crucial positive regulator in response to PWN attack in resistant P. massoniana. Meanwhile, overexpression of PmHs1pro-1 was found to activate reactive oxygen species (ROS) metabolism-related enzymes and the expressional level of their key genes, including superoxide dismutase, peroxidase and catalase. In addition, we showed that PmHs1pro-1 directly recognised the effector protein BxSCD1of PWN, and induced the ROS burst responding to PWN invasion in resistant P. massoniana. Our findings illustrated the molecular framework of R genes directly recognising the effector protein of pathology in pine, which offered a novel insight into the plant-pathogen arms race.
Collapse
Affiliation(s)
- Yini Xie
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, Zhejiang, China
| | - Bin Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, Zhejiang, China
| | - Zhichun Zhou
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, Zhejiang, China
| | - Kai Gao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, Zhejiang, China
| | - Hengfu Yin
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Yunxiao Zhao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Qinghua Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, Zhejiang, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
2
|
Feng Y, Li Y, Liu Z, Wang X, Zhang W, Li D, Wen X, Zhang X. Bursaphelenchus xylophilus Venom Allergen-Like Protein BxVAP1, Triggering Plant Defense-Related Programmed Cell Death, Plays an Important Role in Regulating Pinus massoniana Terpene Defense Responses. PHYTOPATHOLOGY 2024; 114:2331-2340. [PMID: 39348155 DOI: 10.1094/phyto-01-24-0026-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Bursaphelenchus xylophilus (pine wood nematode, PWN), a migratory plant-parasitic nematode, acts as an etiological agent, inflicting considerable damage to pine forests worldwide. Plant immunity constitutes a crucial factor in resisting various pathogenic invasions. The primary defensive responses of host pines against PWN infection encompass terpene accumulation, defense response-related gene expression, and programmed cell death. Venom allergen-like proteins (VAPs), as potential effectors, are instrumental in facilitating the successful colonization of PWNs. In this study, we investigated the inhibition of B. xylophilus VAP (BxVAP1) expression by RNA interference in vitro. Following BxVAP1 silencing, the reproduction rate and migration rate of the PWN population in Pinus massoniana decreased, the expression of the α-pinene synthase gene was induced, other terpene synthase and pathogenesis-related genes were inhibited and delayed, the peak times and levels of terpene-related substances were changed, and the degree of cavitation in P. massoniana was diminished. Transient expression of BxVAP1 in Nicotiana benthamiana revealed that BxVAP1 was expressed in both the cell membrane and nucleus, inducing programmed cell death and the expression of pathogen-associated molecular pattern-triggered immunity marker genes (NbAcre31 and NbPTI5). This study is the first to demonstrate that silencing the BxVAP1 gene affects host defense responses, including terpenoid metabolism in P. massoniana, and that BxVAP1 can be recognized by N. benthamiana as an effector to trigger its innate immunity, expanding our understanding of the parasitic mechanism of B. xylophilus.
Collapse
Affiliation(s)
- Yuqian Feng
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yongxia Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenkai Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xuan Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Dongzhen Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaojian Wen
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xingyao Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
3
|
Xie W, Lai X, Wu Y, Li Z, Zhu J, Huang Y, Zhang F. Transcription Factor and Protein Regulatory Network of PmACRE1 in Pinus massoniana Response to Pine Wilt Nematode Infection. PLANTS (BASEL, SWITZERLAND) 2024; 13:2672. [PMID: 39409542 PMCID: PMC11479228 DOI: 10.3390/plants13192672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024]
Abstract
Pine wilt disease, caused by Bursaphelenchus xylophilus, is a highly destructive and contagious forest affliction. Often termed the "cancer" of pine trees, it severely impacts the growth of Masson pine (Pinus massoniana). Previous studies have demonstrated that ectopic expression of the PmACRE1 gene from P. massoniana in Arabidopsis thaliana notably enhances resistance to pine wilt nematode infection. To further elucidate the transcriptional regulation and protein interactions of the PmACRE1 in P. massoniana in response to pine wilt nematode infection, we cloned a 1984 bp promoter fragment of the PmACRE1 gene, a transient expression vector was constructed by fusing this promoter with the reporter GFP gene, which successfully activated the GFP expression. DNA pull-down assays identified PmMYB8 as a trans-acting factor regulating PmACRE1 gene expression. Subsequently, we found that the PmACRE1 protein interacts with several proteins, including the ATP synthase CF1 α subunit, ATP synthase CF1 β subunit, extracellular calcium-sensing receptor (PmCAS), caffeoyl-CoA 3-O-methyltransferase (PmCCoAOMT), glutathione peroxidase, NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase 1, cinnamyl alcohol dehydrogenase, auxin response factor 16, and dehydrin 1 protein. Bimolecular fluorescence complementation (BiFC) assays confirmed the interactions between PmACRE1 and PmCCoAOMT, as well as PmCAS proteins in vitro. These findings provide preliminary insights into the regulatory role of PmACRE1 in P. massoniana's defense against pine wilt nematode infection.
Collapse
Affiliation(s)
- Wanfeng Xie
- Jinshan College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.X.); (Z.L.)
- Key Laboratory of Integrated Pest Management in Ecological Forests (Fujian Province University), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (Y.W.); (J.Z.)
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaolin Lai
- Key Laboratory of Integrated Pest Management in Ecological Forests (Fujian Province University), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (Y.W.); (J.Z.)
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuxiao Wu
- Key Laboratory of Integrated Pest Management in Ecological Forests (Fujian Province University), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (Y.W.); (J.Z.)
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zheyu Li
- Jinshan College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.X.); (Z.L.)
| | - Jingwen Zhu
- Key Laboratory of Integrated Pest Management in Ecological Forests (Fujian Province University), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (Y.W.); (J.Z.)
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu Huang
- Fujian Academy of Forestry, Fuzhou 350000, China
| | - Feiping Zhang
- Key Laboratory of Integrated Pest Management in Ecological Forests (Fujian Province University), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (Y.W.); (J.Z.)
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Liu Y, Li D, Liu Y, Wang J, Liu C. Genome-Wide Identification and Evolution-Profiling Analysis of TPS Gene Family in Triticum Plants. Int J Mol Sci 2024; 25:8546. [PMID: 39126114 PMCID: PMC11312503 DOI: 10.3390/ijms25158546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Terpenoids play a crucial role in plant growth and development, as well as in regulating resistance mechanisms. Terpene synthase (TPS) serves as the final step in the synthesis process of terpenoids. However, a comprehensive bioinformatics analysis of the TPS gene family in Triticum plants had not previously been systematically undertaken. In this study, a total of 531 TPS members were identified in Triticum plants. The evolutionary tree divided the TPS proteins into five subfamilies: Group1, Group2, Group3, Group4, and Group5. The results of the duplication events analysis showed that TD and WGD were major driving forces during the evolution of the TPS family. The cis-element analysis showed that the TPS genes were related to plant growth and development and environmental stress. Moreover, the GO annotation displayed that the biological function of TPS was relatively conserved in wheat plants. The RNA-seq data showed that the rice and wheat TPS genes responded to low-temperature stress and exhibited significantly different expression patterns. This research shed light on the functions of TPSs in responding to abiotic stress and demonstrated their modulatory potential during root development. These findings provide a foundation for further and deeper investigation of the TPSs' functions in Triticum plants.
Collapse
Affiliation(s)
- Yiyang Liu
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Dongyang Li
- College of Agronomy, Shenyang Agriculture University, Shenyang 110866, China;
| | - Yue Liu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110866, China
| | - Jiazheng Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China;
| | - Chang Liu
- College of Agronomy, Shenyang Agriculture University, Shenyang 110866, China;
| |
Collapse
|
5
|
Lan Y, Xiong R, Zhang K, Wang L, Wu M, Yan H, Xiang Y. Geranyl diphosphate synthase large subunits OfLSU1/2 interact with small subunit OfSSUII and are involved in aromatic monoterpenes production in Osmanthus fragrans. Int J Biol Macromol 2024; 256:128328. [PMID: 38000574 DOI: 10.1016/j.ijbiomac.2023.128328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/23/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023]
Abstract
Osmanthus fragrans is a famous ornamental tree species for its pleasing floral fragrance. Monoterpenoids are the core floral volatiles of O. fragrans flowers, which have tremendous commercial value. Geranyl diphosphate synthase (GPPS) is a key enzyme that catalyzes the formation of GPP, the precursor of monoterpenoids. However, there are no reports of GPPSs in O. fragrans. Here, we performed RNA sequencing on the O. fragrans flowers and identified three GPPSs. Phylogenetic tree analysis showed that OfLSU1/2 belonged to the GPPS.LSU branch, while the OfSSUII belonged to the GPPS.SSU branch. OfLSU1, OfLSU2 and OfSSUII were all localized in chloroplasts. Y2H and pull-down assays showed that OfLSU1 or OfLSU2 interacted with OfSSUII to form heteromeric GPPSs. Site mutation experiments revealed that the conserved CXXXC motifs of OfLSU1/2 and OfSSUII were essential for the interaction between OfLSU1/2 and OfSSUII. Transient expression experiments showed that OfLSU1, OfLSU2 and OfSSUII co-expressed with monoterpene synthase genes OfTPS1 or OfTPS2 improved the biosynthesis of monoterpenoids (E)-β-ocimene and linalool. The heteromeric GPPSs formed by OfLSU1/2 interacting with OfSSUII further improves the biosynthesis of monoterpenoids. Overall, these preliminary results suggested that the GPPSs play a key role in regulating the production of aromatic monoterpenes in O. fragrans.
Collapse
Affiliation(s)
- Yangang Lan
- Anhui Province Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei 230036, China
| | - Rui Xiong
- Anhui Province Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei 230036, China
| | - Kaimei Zhang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Linna Wang
- Anhui Province Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei 230036, China
| | - Min Wu
- Anhui Province Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei 230036, China
| | - Hanwei Yan
- Anhui Province Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei 230036, China
| | - Yan Xiang
- Anhui Province Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
6
|
Ozyigit II, Dogan I, Hocaoglu-Ozyigit A, Yalcin B, Erdogan A, Yalcin IE, Cabi E, Kaya Y. Production of secondary metabolites using tissue culture-based biotechnological applications. FRONTIERS IN PLANT SCIENCE 2023; 14:1132555. [PMID: 37457343 PMCID: PMC10339834 DOI: 10.3389/fpls.2023.1132555] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/22/2023] [Indexed: 07/18/2023]
Abstract
Plants are the sources of many bioactive secondary metabolites which are present in plant organs including leaves, stems, roots, and flowers. Although they provide advantages to the plants in many cases, they are not necessary for metabolisms related to growth, development, and reproduction. They are specific to plant species and are precursor substances, which can be modified for generations of various compounds in different plant species. Secondary metabolites are used in many industries, including dye, food processing and cosmetic industries, and in agricultural control as well as being used as pharmaceutical raw materials by humans. For this reason, the demand is high; therefore, they are needed to be obtained in large volumes and the large productions can be achieved using biotechnological methods in addition to production, being done with classical methods. For this, plant biotechnology can be put in action through using different methods. The most important of these methods include tissue culture and gene transfer. The genetically modified plants are agriculturally more productive and are commercially more effective and are valuable tools for industrial and medical purposes as well as being the sources of many secondary metabolites of therapeutic importance. With plant tissue culture applications, which are also the first step in obtaining transgenic plants with having desirable characteristics, it is possible to produce specific secondary metabolites in large-scale through using whole plants or using specific tissues of these plants in laboratory conditions. Currently, many studies are going on this subject, and some of them receiving attention are found to be taken place in plant biotechnology and having promising applications. In this work, particularly benefits of secondary metabolites, and their productions through tissue culture-based biotechnological applications are discussed using literature with presence of current studies.
Collapse
Affiliation(s)
| | - Ilhan Dogan
- Department of Medical Services and Techniques, Akyazi Vocational School of Health Services, Sakarya University of Applied Science, Sakarya, Türkiye
| | - Asli Hocaoglu-Ozyigit
- Department of Biology, Faculty of Science, Marmara University, Istanbul, Türkiye
- Biology Program, Institute of Pure and Applied Sciences, Tekirdag Namık Kemal University, Tekirdag, Türkiye
| | - Bestenur Yalcin
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Bahcesehir University, Istanbul, Türkiye
| | - Aysegul Erdogan
- Application and Research Centre for Testing and Analysis, EGE MATAL, Chromatography and Spectroscopy Laboratory, Ege University, Izmir, Türkiye
| | - Ibrahim Ertugrul Yalcin
- Department of Civil Engineering, Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Türkiye
| | - Evren Cabi
- Department of Biology, Faculty of Arts and Sciences, Tekirdag Namık Kemal University, Tekirdag, Türkiye
| | - Yilmaz Kaya
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Türkiye
| |
Collapse
|
7
|
Zhao Y, Liu Y, Chen Y, Gao M, Wu L, Wang Y. Overexpression of 1-deoxy-D-xylulose-5-phosphate reductoisomerase enhances the monoterpene content in Litsea cubeba. FORESTRY RESEARCH 2023; 3:11. [PMID: 39526280 PMCID: PMC11524321 DOI: 10.48130/fr-2023-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/18/2023] [Indexed: 11/16/2024]
Abstract
Monoterpenes are important components of plant essential oils and have long been used as raw materials for spices and food flavorings. Litsea cubeba is an economically aromatic plant species, the fruits of which produce essential oil with monoterpenes as the dominant components. As a branch point of carbon flow in the methyl erythritol phosphate (MEP) biosynthesis pathway, 1-deoxy-D-xylo-5-phosphate reductoisomerase (DXR) is a key rate-limiting enzyme that catalyzes the MEP pathway's second committed step. Therefore, DXR has become an effective regulation target to improve the biosynthesis of plant monoterpenes. In this study, we identified a DXR from L. cubeba, which was highly expressed in fruits, induced by MeJA and repressed by darkness. An enzyme assay showed that recombination LcDXR protein catalyzed DXP with NADPH as the cofactor. Transient overexpression of LcDXR significantly increased the content of monoterpenes in L. cubeba. Furthermore, LcDXR-overexpressing tobaccos were conducted and showed almost 5.9-fold increase in monoterpenes production, including limonene, α-pinene, eucalyptol, linalool, terpineol and camphor. Overexpression of LcDXR activated the metabolic flux of monoterpene biosynthesis through crosstalk and feedback mechanism. In addition, LcDXR-overexpressing tobaccos had no effect on phenotype of transgenic tobaccos. Our results demonstrate that LcDXR is a critical regulator of the monoterpene production in L. cubeba and other plants.
Collapse
Affiliation(s)
- Yunxiao Zhao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yingguan Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yicun Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Ming Gao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Liwen Wu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yangdong Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| |
Collapse
|
8
|
Cao Z, Ma Q, Weng Y, Shi J, Chen J, Hao Z. Genome-Wide Identification and Expression Analysis of TPS Gene Family in Liriodendron chinense. Genes (Basel) 2023; 14:genes14030770. [PMID: 36981040 PMCID: PMC10048281 DOI: 10.3390/genes14030770] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Terpenoids play a key role in plant growth and development, supporting resistance regulation and terpene synthase (TPS), which is the last link in the synthesis process of terpenoids. Liriodendron chinense, commonly called the Chinese tulip tree, is a rare and endangered tree species of the family Magnoliaceae. However, the genome-wide identification of the TPS gene family and its transcriptional responses to development and abiotic stress are still unclear. In the present study, we identified a total of 58 TPS genes throughout the L. chinense genome. A phylogenetic tree analysis showed that they were clustered into five subfamilies and unevenly distributed across six chromosomes. A cis-acting element analysis indicated that LcTPSs were assumed to be highly responsive to stress hormones, such as methyl jasmonate (MeJA) and abscisic acid (ABA). Consistent with this, transcriptome data showed that most LcTPS genes responded to abiotic stress, such as cold, drought, and hot stress, at the transcriptional level. Further analysis showed that LcTPS genes were expressed in a tissue-dependent manner, especially in buds, leaves, and bark. Quantitative reverse transcription PCR (qRT-PCR) analysis confirmed that LcTPS expression was significantly higher in mature leaves compared to young leaves. These results provide a reference for understanding the function and role of the TPS family, laying a foundation for further study of the regulation of TPS in terpenoid biosynthesis in L. chinense.
Collapse
Affiliation(s)
- Zijian Cao
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Qianxi Ma
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yuhao Weng
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaodong Hao
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
9
|
Xie Y, Liu B, Gao K, Zhao Y, Li W, Deng L, Zhou Z, Liu Q. Comprehensive Analysis and Functional Verification of the Pinus massoniana NBS-LRR Gene Family Involved in the Resistance to Bursaphelenchus xylophilus. Int J Mol Sci 2023; 24:1812. [PMID: 36768136 PMCID: PMC9915305 DOI: 10.3390/ijms24031812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Pinus massoniana Lamb. is a crucial timber and resin conifer in China, but its plantation industry is threatened by outbreaks of pine wilt disease (PWD) caused by Bursaphelenchus xylophilus (pinewood nematode; PWN). However, as of yet, there is no comprehensive analysis of NBS-LRR genes in P. massoniana involved in its defense against PWN. In this study, 507 NBS genes were identified in the transcriptome of resistant and susceptible P. masoniana inoculated with the PWN. The phylogenetic analysis and expression profiles of resistant and susceptible P. massoniana revealed that the up-regulated PmNBS-LRR97 gene was involved in conferring resistance to PWN. The results of real-time quantitative PCR (qRT-PCR) showed that PmNBS-LRR97 was significantly up-regulated after PWN infection, especially in the stems. Subcellular localization indicated that PmNBS-LRR97 located to the cell membrane. PmNBS-LRR97 significantly activated the expression of reactive oxygen species (ROS)-related genes in P. massoniana. In addition, the overexpression of PmNBS-LRR97 was capable of promoting the production of ROS, aiding in plant growth and development. In summary, PmNBS-LRR97 participates in the defense response to PWN and plays an active role in conferring resistance in P. massoniana. This finding provides new insight into the regulatory mechanism of the R gene in P. massoniana.
Collapse
Affiliation(s)
- Yini Xie
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Faculty of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China
| | - Bin Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China
| | - Kai Gao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China
| | - Yunxiao Zhao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Wenhua Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China
| | - Lili Deng
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China
| | - Zhichun Zhou
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China
| | - Qinghua Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China
| |
Collapse
|
10
|
Yang C, Wu P, Cao Y, Yang B, Liu L, Chen J, Zhuo R, Yao X. Overexpression of dihydroflavonol 4-reductase ( CoDFR) boosts flavonoid production involved in the anthracnose resistance. FRONTIERS IN PLANT SCIENCE 2022; 13:1038467. [PMID: 36438122 PMCID: PMC9682034 DOI: 10.3389/fpls.2022.1038467] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The outbreak of anthracnose caused by Colletotrichum spp. represents a devastating epidemic that severely affects oil tea (Camellia oleifera) production in China. However, the unknown resistance mechanism to anthracnose in C. oleifera has impeded the progress of breeding disease-resistant varieties. In this study, we investigated the physiological responses of resistant and susceptible lines during C. gloeosporioides infection. Our results showed that the accumulation of malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) in both disease-resistant and susceptible lines increased by C. gloeosporioides infection. Also, disease-resistant lines exhibited lower MDA, but higher POD, SOD, and CAT activities compared to susceptible lines. The accumulation of flavonoids in both resistant and susceptible C. oleifera leaves increased following C. gloeosporioides infection, and the increase was greater in resistant lines. Further, we identified and functionally characterized the dihydroflavonol 4-reductase (CoDFR) from the resistant C. oleifera line. We showed that the full-length coding sequence (CDS) of CoDFR is 1044 bp encoding 347 amino acids. The overexpression of CoDFR in tobacco altered the expression of flavonoid biosynthetic genes, resulting in an increased flavonoid content in leaves. CoDFR transgenic tobacco plants exhibited increased anthracnose resistance. Furthermore, the transgenic plants had higher salicylic acid content. These findings offer potential insights into the pivotal role of CoDFR involved in flavonoid-mediated defense mechanisms during anthracnose invasion in resistant C. oleifera.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaohua Yao
- *Correspondence: Renying Zhuo, ; Xiaohua Yao,
| |
Collapse
|
11
|
Liu B, Xie Y, Yin H, Zhou Z, Liu Q. Identification and Defensive Characterization of PmCYP720B11v2 from Pinus massoniana. Int J Mol Sci 2022; 23:6640. [PMID: 35743081 PMCID: PMC9223603 DOI: 10.3390/ijms23126640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
Pinus massoniana is a pioneer species for afforestation timber and oleoresin, while epidemics of pinewood nematode (PWN; Bursaphelenchus xylophilus) are causing a serious biotic disaster for P. massoniana in China. Importantly, resistant P. massoniana could leak copious oleoresin terpenoids to build particular defense fronts for survival when attacked by PWN. However, the defense mechanisms regulating this process remain unknown. Here, PmCYP720B11v2, a cytochrome P450 monooxygenase gene, was first identified and functionally characterized from resistant P. massoniana following PWN inoculation. The tissue-specific expression pattern and localization of PmCYP720B11v2 at the transcript and protein levels in resistant P. massoniana indicated that its upregulation in the stem supported its involvement in the metabolic processes of diterpene biosynthesis as a positive part of the defense against PWN attack. Furthermore, overexpression of PmCYP720B11v2 may enhance the growth and development of plants. In addition, PmCYP720B11v2 activated the metabolic flux of antioxidases and stress-responsive proteins under drought conditions and improved drought stress tolerance. Our results provide new insights into the favorable role of PmCYP720B11v2 in diterpene defense mechanisms in response to PWN attack in resistant P. massoniana and provide a novel metabolic engineering scenario to reform the stress tolerance potential of tobacco.
Collapse
Affiliation(s)
- Bin Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (B.L.); (Y.X.)
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China
| | - Yini Xie
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (B.L.); (Y.X.)
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China
| | - Huanhuan Yin
- Zhengzhou Botanical Garden, Zhengzhou 450007, China;
| | - Zhichun Zhou
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (B.L.); (Y.X.)
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China
| | - Qinghua Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (B.L.); (Y.X.)
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China
| |
Collapse
|