1
|
Arnaud M, Krause S, Norby RJ, Dang TH, Acil N, Kettridge N, Gauci V, Ullah S. Global mangrove root production, its controls and roles in the blue carbon budget of mangroves. GLOBAL CHANGE BIOLOGY 2023; 29:3256-3270. [PMID: 36994691 DOI: 10.1111/gcb.16701] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/17/2023] [Indexed: 05/16/2023]
Abstract
Mangroves are among the most carbon-dense ecosystems worldwide. Most of the carbon in mangroves is found belowground, and root production might be an important control of carbon accumulation, but has been rarely quantified and understood at the global scale. Here, we determined the global mangrove root production rate and its controls using a systematic review and a recently formalised, spatially explicit mangrove typology framework based on geomorphological settings. We found that global mangrove root production averaged ~770 ± 202 g of dry biomass m-2 year-1 globally, which is much higher than previously reported and close to the root production of the most productive tropical forests. Geomorphological settings exerted marked control over root production together with air temperature and precipitation (r2 ≈ 30%, p < .001). Our review shows that individual global changes (e.g. warming, eutrophication, drought) have antagonist effects on root production, but they have rarely been studied in combination. Based on this newly established root production rate, root-derived carbon might account for most of the total carbon buried in mangroves, and 19 Tg C lost in mangroves each year (e.g. as CO2 ). Inclusion of root production measurements in understudied geomorphological settings (i.e. deltas), regions (Indonesia, South America and Africa) and soil depth (>40 cm), as well as the creation of a mangrove root trait database will push forward our understanding of the global mangrove carbon cycle for now and the future. Overall, this review presents a comprehensive analysis of root production in mangroves, and highlights the central role of root production in the global mangrove carbon budget.
Collapse
Affiliation(s)
- Marie Arnaud
- School of Geography, Earth & Environmental Sciences, University of Birmingham, and Birmingham Institute of Forest Research, Birmingham, UK
- Institute of Ecology and Environmental Sciences Paris (iEES-Paris), Sorbonne University, Paris, France
| | - Stefan Krause
- School of Geography, Earth & Environmental Sciences, University of Birmingham, and Birmingham Institute of Forest Research, Birmingham, UK
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023, Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), Villeurbanne, France
| | - Richard J Norby
- School of Geography, Earth & Environmental Sciences, University of Birmingham, and Birmingham Institute of Forest Research, Birmingham, UK
- Department of Ecology and Evolutionary Biology, University of Tennessee, Tennessee, Knoxville, USA
| | - Thuong Huyen Dang
- Faculty of Geology and Petroleum Engineering, University of Technology, Vietnam National University, Ho Chi Minh City (VNU-HCM), Vietnam
| | - Nezha Acil
- Institute for Environmental Futures, School of Geography, Geology and the Environment, University of Leicester, Space Park Leicester, Leicester, UK
- National Centre for Earth Observation, University of Leicester, Space Park Leicester, Leicester, UK
| | - Nicholas Kettridge
- School of Geography, Earth & Environmental Sciences, University of Birmingham, and Birmingham Institute of Forest Research, Birmingham, UK
| | - Vincent Gauci
- School of Geography, Earth & Environmental Sciences, University of Birmingham, and Birmingham Institute of Forest Research, Birmingham, UK
| | - Sami Ullah
- School of Geography, Earth & Environmental Sciences, University of Birmingham, and Birmingham Institute of Forest Research, Birmingham, UK
| |
Collapse
|
2
|
Chandregowda MH, Tjoelker MG, Pendall E, Zhang H, Churchill AC, Power SA. Belowground carbon allocation, root trait plasticity, and productivity during drought and warming in a pasture grass. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2127-2145. [PMID: 36640126 PMCID: PMC10084810 DOI: 10.1093/jxb/erad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Sustaining grassland production in a changing climate requires an understanding of plant adaptation strategies, including trait plasticity under warmer and drier conditions. However, our knowledge to date disproportionately relies on aboveground responses, despite the importance of belowground traits in maintaining aboveground growth, especially in grazed systems. We subjected a perennial pasture grass, Festuca arundinacea, to year-round warming (+3 °C) and cool-season drought (60% rainfall reduction) in a factorial field experiment to test the hypotheses that: (i) drought and warming increase carbon allocation belowground and shift root traits towards greater resource acquisition and (ii) increased belowground carbon reserves support post-drought aboveground recovery. Drought and warming reduced plant production and biomass allocation belowground. Drought increased specific root length and reduced root diameter in warmed plots but increased root starch concentrations under ambient temperature. Higher diameter and soluble sugar concentrations of roots and starch storage in crowns explained aboveground production under climate extremes. However, the lack of association between post-drought aboveground biomass and belowground carbon and nitrogen reserves contrasted with our predictions. These findings demonstrate that root trait plasticity and belowground carbon reserves play a key role in aboveground production during climate stress, helping predict pasture responses and inform management decisions under future climates.
Collapse
Affiliation(s)
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Elise Pendall
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Haiyang Zhang
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Amber C Churchill
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- Department of Ecology, Evolution and Behaviour, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Ave, St. Paul, MN 55108, USA
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
3
|
Chandregowda MH, Tjoelker MG, Pendall E, Zhang H, Churchill AC, Power SA. Root trait shifts towards an avoidance strategy promote productivity and recovery in
C
3
and
C
4
pasture grasses under drought. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Manjunatha H. Chandregowda
- Hawkesbury Institute for the Environment Western Sydney University, Locked Bag 1797 Penrith NSW Australia
| | - Mark G. Tjoelker
- Hawkesbury Institute for the Environment Western Sydney University, Locked Bag 1797 Penrith NSW Australia
| | - Elise Pendall
- Hawkesbury Institute for the Environment Western Sydney University, Locked Bag 1797 Penrith NSW Australia
| | - Haiyang Zhang
- Hawkesbury Institute for the Environment Western Sydney University, Locked Bag 1797 Penrith NSW Australia
| | - Amber C. Churchill
- Hawkesbury Institute for the Environment Western Sydney University, Locked Bag 1797 Penrith NSW Australia
- Department of Ecology, Evolutionary Biology and Behaviour University of Minnesota 140 Gortner Laboratory, 1479 Gortner Ave St. Paul MN USA
| | - Sally A. Power
- Hawkesbury Institute for the Environment Western Sydney University, Locked Bag 1797 Penrith NSW Australia
| |
Collapse
|
4
|
Li X, Zhang C, Zhang B, Wu D, Zhu D, Zhang W, Ye Q, Yan J, Fu J, Fang C, Ha D, Fu S. Nitrogen deposition and increased precipitation interact to affect fine root production and biomass in a temperate forest: Implications for carbon cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:144497. [PMID: 33418324 DOI: 10.1016/j.scitotenv.2020.144497] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Fine roots connect belowground and aboveground systems and help regulate the carbon balance of terrestrial ecosystems by providing nutrients and water for plants. To evaluate the effects of atmospheric nitrogen (N) deposition and increased precipitation on fine root production and standing biomass in a temperate deciduous forest in central China, we conducted a 6-year experiment. From 2013 to 2018, we applied N (25 kg N ha-1 yr-1) and water (336 mm, 30% of the ambient annual precipitation) above the forest canopy, and we quantified fine root production and biomass in 2017 and 2018. At 0-10 cm soil depth, the statistical interaction between addition of N and water was not significant in terms of fine root production or biomass. At 0-10 cm soil depth, N addition significantly increased fine root production by 18.1%, but did not affect fine root biomass. Water addition significantly increased fine root production and biomass by 13.6 and 17.0%, respectively. Both N and water addition had significant direct positive effects on fine root production, and water addition had indirect positive effects on fine root biomass through decreasing soil NO3- concentration. At 10-30 cm soil depth, the statistical interaction between N addition and water addition was significant in terms of both fine root production and biomass, i.e., the positive effect of N addition was reduced by water addition, and vice versa. These findings indicate that fine roots and therefore belowground carbon storage may have complex responses to increases in atmospheric N deposition and changes in precipitation predicted for the future. The findings also suggest that results obtained from experiments that consider only one independent variable (e.g., N input or water input) and only one soil depth should be interpreted with caution.
Collapse
Affiliation(s)
- Xiaowei Li
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, College of Environment and Planning, Henan University, Kaifeng 475004, China; Henan Key Laboratory of Integrated Air Pollution Control and Ecological Security, Henan University, Kaifeng 475004, China
| | - Chenlu Zhang
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, College of Environment and Planning, Henan University, Kaifeng 475004, China; Henan Key Laboratory of Integrated Air Pollution Control and Ecological Security, Henan University, Kaifeng 475004, China.
| | - Beibei Zhang
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, College of Environment and Planning, Henan University, Kaifeng 475004, China
| | - Di Wu
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, College of Environment and Planning, Henan University, Kaifeng 475004, China
| | - Dandan Zhu
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, College of Environment and Planning, Henan University, Kaifeng 475004, China
| | - Wei Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Qing Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Junhua Yan
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Juemin Fu
- Jigongshan National Nature Reserve, Xinyang 464039, China
| | | | - Denglong Ha
- Jigongshan National Nature Reserve, Xinyang 464039, China
| | - Shenglei Fu
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, College of Environment and Planning, Henan University, Kaifeng 475004, China; Henan Key Laboratory of Integrated Air Pollution Control and Ecological Security, Henan University, Kaifeng 475004, China
| |
Collapse
|
5
|
Lasso E, Matheus-Arbeláez P, Gallery RE, Garzón-López C, Cruz M, Leon-Garcia IV, Aragón L, Ayarza-Páez A, Curiel Yuste J. Homeostatic Response to Three Years of Experimental Warming Suggests High Intrinsic Natural Resistance in the Páramos to Warming in the Short Term. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.615006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Páramos, tropical alpine ecosystems, host one of the world’s most diverse alpine floras, account for the largest water reservoirs in the Andes, and some of the largest soil carbon pools worldwide. It is of global importance to understand the future of this extremely carbon-rich ecosystem in a warmer world and its role on global climate feedbacks. This study presents the result of the first in situ warming experiment in two Colombian páramos using Open-Top Chambers. We evaluated the response to warming of several ecosystem carbon balance-related processes, including decomposition, soil respiration, photosynthesis, plant productivity, and vegetation structure after 3 years of warming. We found that OTCs are an efficient warming method in the páramo, increasing mean air temperature by 1.7°C and mean daytime temperature by 3.4°C. The maximum air temperature differences between OTC and control was 23.1°C. Soil temperature increased only by 0.1°C. After 3 years of warming using 20 OTC (10 per páramo) in a randomized block design, we found no evidence that warming increased CO2 emissions from soil respiration, nor did it increase decomposition rate, photosynthesis or productivity in the two páramos studied. However, total C and N in the soil and vegetation structure are slowly changing as result of warming and changes are site dependent. In Sumapaz, shrubs, and graminoids cover increased in response to warming while in Matarredonda we observed an increase in lichen cover. Whether this change in vegetation might influence the carbon sequestration potential of the páramo needs to be further evaluated. Our results suggest that páramos ecosystems can resist an increase in temperature with no significant alteration of ecosystem carbon balance related processes in the short term. However, the long-term effect of warming could depend on the vegetation changes and how these changes alter the microbial soil composition and soil processes. The differential response among páramos suggest that the response to warming could be highly dependent on the initial conditions and therefore we urgently need more warming experiments in páramos to understand how specific site characteristics will affect their response to warming and their role in global climate feedbacks.
Collapse
|
6
|
Li X, Minick KJ, Li T, Williamson JC, Gavazzi M, McNulty S, King JS. An improved method for quantifying total fine root decomposition in plantation forests combining measurements of soil coring and minirhizotrons with a mass balance model. TREE PHYSIOLOGY 2020; 40:1466-1473. [PMID: 32510135 DOI: 10.1093/treephys/tpaa074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Accurate measurement of total fine root decomposition (the amount of dead fine roots decomposed per unit soil volume) is essential for constructing a soil carbon budget. However, the ingrowth/soil core-based models are dependent on the assumptions that fine roots in litterbags/intact cores have the same relative decomposition rate as those in intact soils and that fine root growth and death rates remain constant over time, while minirhizotrons cannot quantify the total fine root decomposition. To improve the accuracy of estimates for total fine root decomposition, we propose a new method (balanced hybrid) with two models that integrate measurements of soil coring and minirhizotrons into a mass balance model. Model input parameters were fine root biomass, necromass and turnover rate for Model 1, and fine root biomass, necromass and death rate for Model 2. We tested the balanced hybrid method in a loblolly pine plantation forest in coastal North Carolina, USA. The total decomposition rate of absorptive fine roots (ARs) (a combination of first- and second-order fine roots) using Models 1 and 2 was 107 ± 13 g m-2 year-1 and 129 ± 12 g m-2 year-1, respectively. Monthly total AR decomposition was highest from August to November, which corresponded with the highest monthly total ARs mortality. The ARs imaged by minirhizotrons well represent those growing in intact soils, evident by a significant and positive relationship between the standing biomass and the standing length. The total decomposition estimate in both models was sensitive to changes in fine root biomass, turnover rate and death rate but not to change in necromass. Compared with Model 2, Model 1 can avoid the technical difficulty of deciding dead time of individual fine roots but requires greater time and effort to accurately measure fine root biomass dynamics. The balanced hybrid method is an improved technique for measuring total fine root decomposition in plantation forests in which the estimates are based on empirical data from soil coring and minirhizotrons, moving beyond assumptions of traditional approaches.
Collapse
Affiliation(s)
- Xuefeng Li
- Department of Forestry and Environmental Resources, North Carolina State University, 2820 Faucette Dr., Raleigh, NC 27695, USA
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang City, 110016, China
| | - Kevan J Minick
- Department of Forestry and Environmental Resources, North Carolina State University, 2820 Faucette Dr., Raleigh, NC 27695, USA
| | - Tonghua Li
- Department of Forestry and Environmental Resources, North Carolina State University, 2820 Faucette Dr., Raleigh, NC 27695, USA
| | - James C Williamson
- Department of Forestry and Environmental Resources, North Carolina State University, 2820 Faucette Dr., Raleigh, NC 27695, USA
| | - Michael Gavazzi
- USDA Forest Service, Eastern Forest Environmental Threat Assessment Center, 3041 E. Cornwallis Rd. RTP, NC 27709, USA
| | - Steven McNulty
- USDA Forest Service, Eastern Forest Environmental Threat Assessment Center, 3041 E. Cornwallis Rd. RTP, NC 27709, USA
| | - John S King
- Department of Forestry and Environmental Resources, North Carolina State University, 2820 Faucette Dr., Raleigh, NC 27695, USA
| |
Collapse
|
7
|
Rodtassana C, Tanner EVJ. Litter removal in a tropical rain forest reduces fine root biomass and production but litter addition has few effects. Ecology 2019; 99:735-742. [PMID: 29336482 DOI: 10.1002/ecy.2143] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/26/2017] [Accepted: 12/06/2017] [Indexed: 11/11/2022]
Abstract
Many old-growth lowland tropical rain forests are potentially nutrient limited, and it has long been thought that many such forests maintain growth by recycling nutrients from decomposing litter. We investigated this by continuously removing (for 10 yr) freshly fallen litter from five (45 m × 45 m) plots, adding it to five other plots, there were five controls. From monthly measures over 1 yr we show that litter removal caused lower: fine root (≤2 mm diameter) standing mass, fine root standing length, fine root length production and fine root length survivorship. Litter addition did not significantly change fine root mass or length or production. Nutrient concentrations in fine roots in litter removal plots were lower than those in controls for nitrogen (N), calcium (Ca) and magnesium (Mg), concentrations in fine roots in litter addition plots were higher for N and Ca. Chronic litter removal has resulted in reduced forest growth due to lack of nutrients, probably nitrogen. Conversely, long-term litter addition has had fewer effects.
Collapse
Affiliation(s)
- C Rodtassana
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK.,Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - E V J Tanner
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK.,Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Panama
| |
Collapse
|
8
|
Estimating Fine Root Production from Ingrowth Cores and Decomposed Roots in a Bornean Tropical Rainforest. FORESTS 2019. [DOI: 10.3390/f10010036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Research highlights: Estimates of fine root production using ingrowth cores are strongly influenced by decomposed roots in the cores during the incubation period and should be accounted for when calculating fine root production (FRP). Background and Objectives: The ingrowth core method is often used to estimate fine root production; however, decomposed roots are often overlooked in estimates of FRP. Uncertainty remains on how long ingrowth cores should be installed and how FRP should be calculated in tropical forests. Here, we aimed to estimate FRP by taking decomposed fine roots into consideration. Specifically, we compared FRP estimates at different sampling intervals and using different calculation methods in a tropical rainforest in Borneo. Materials and Methods: Ingrowth cores were installed with root litter bags and collected after 3, 6, 12 and 24 months. FRP was estimated based on (1) the difference in biomass at different sampling times (differential method) and (2) sampled biomass at just one sampling time (simple method). Results: Using the differential method, FRP was estimated at 447.4 ± 67.4 g m−2 year−1 after 12 months, with decomposed fine roots accounting for 25% of FRP. Using the simple method, FRP was slightly higher than that in the differential method after 12 months (516.3 ± 45.0 g m−2 year−1). FRP estimates for both calculation methods using data obtained in the first half of the year were much higher than those using data after 12-months of installation, because of the rapid increase in fine root biomass and necromass after installation. Conclusions: Therefore, FRP estimates vary with the timing of sampling, calculation method and presence of decomposed roots. Overall, the ratio of net primary production (NPP) of fine roots to total NPP in this study was higher than that previously reported in the Neotropics, indicating high belowground carbon allocation in this forest.
Collapse
|
9
|
Gavrichkova O, Liberati D, de Dato G, Abou Jaoudé R, Brugnoli E, de Angelis P, Guidolotti G, Pausch J, Spohn M, Tian J, Kuzyakov Y. Effects of rain shortage on carbon allocation, pools and fluxes in a Mediterranean shrub ecosystem - a 13C labelling field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:1242-1252. [PMID: 30857089 DOI: 10.1016/j.scitotenv.2018.01.311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 06/09/2023]
Abstract
Hydrological cycle is expected to become the primary cause of ecosystem's degradation in near future under changing climate. Rain manipulation experiments under field conditions provide accurate picture on the responses of biotic processes to changed water availability for plants. A field experiment, mimicking expected changes in rain patterns, was established in a Mediterranean shrub community at Porto Conte, Italy, in 2001. In November 2011 Cistus monspeliensis, one of the dominating shrub species in the Mediterranean basin, was 13C labelled on plots subjected to extended rain shortage period and on control non manipulated plots. Carbon (C) allocation was traced by 13C dynamics in shoots, shoot-respired CO2, roots, microbial biomass, K2SO4-extractable C and CO2 respired from soil. Most of the recovered 13C (60%) was respired by shoots within 2weeks in control plots. In rain shortage treatment, 13C remained incorporated in aboveground plant parts. Residence time of 13C in leaves was longer under the rain shortage because less 13C was lost by shoot respiration and because 13C was re-allocated to leaves from woody tissues. The belowground C sink was weak (3-4% of recovered 13C) and independent on rain manipulation. Extended rain shortage promoted C exudation into rhizosphere soil in expense of roots. Together with lowered photosynthesis, this "save" economy of new C metabolites reduces the growing season under rain shortage resulting in decrease of shrub cover and C losses from the system on the long-term.
Collapse
Affiliation(s)
- Olga Gavrichkova
- Institute of Agro Environmental and Forest Biology, National Research Council, Porano 05010, Monterotondo Scalo 00015 and Cinte Tesino 38050, Italy; Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russian Federation.
| | - Dario Liberati
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo 01100, Italy
| | - Giovanbattista de Dato
- Council for Agricultural Research and Economics (CREA) - Research Centre for Forestry and Wood, 52100 Arezzo, Italy
| | - Renée Abou Jaoudé
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo 01100, Italy
| | - Enrico Brugnoli
- Institute of Agro Environmental and Forest Biology, National Research Council, Porano 05010, Monterotondo Scalo 00015 and Cinte Tesino 38050, Italy
| | - Paolo de Angelis
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo 01100, Italy
| | - Gabriele Guidolotti
- Institute of Agro Environmental and Forest Biology, National Research Council, Porano 05010, Monterotondo Scalo 00015 and Cinte Tesino 38050, Italy
| | - Johanna Pausch
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen 37077, Germany; Department of Agricultural Soil Science, University of Göttingen, Göttingen 37077, Germany
| | - Marie Spohn
- Department of Soil Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University Bayreuth, Germany
| | - Jing Tian
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen 37077, Germany; Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), 100101 Beijing, China; Department of Agricultural Soil Science, University of Göttingen, Göttingen 37077, Germany
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen 37077, Germany; Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russian Federation; Institute of Environmental Sciences, Kazan Federal University, 420049 Kazan, Russian Federation; Department of Agricultural Soil Science, University of Göttingen, Göttingen 37077, Germany
| |
Collapse
|
10
|
Fine Root Dynamics in Afromontane Forest and Adjacent Land Uses in the Northwest Ethiopian Highlands. FORESTS 2017. [DOI: 10.3390/f8070249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fine roots are a major pathway of C input into soils. The aim of this study was to quantify fine root stocks, production and turnover in natural forest and land use systems converted from forests in Ethiopia. The study was conducted in a remnant Afromontane forest, eucalyptus plantation and grass and cropland in NW Ethiopia. Fine root dynamics were investigated using three different methods: sequential coring, in-growth cores and in-growth nets. Soil cores for sequential analyses were taken in quarterly intervals, while in-growth cores and nets were harvested corresponding to 1-, 2-, 3-, 4-, 5-, 8- and 12-month interval. Fine root stocks averaged 564, 425, 56 and 46 g·m−2 in the forest, eucalyptus, grazing land and cropland ecosystems, respectively. The values decreased exponentially with increasing soil depth. In forest and eucalyptus, fine root biomass and necromass were highest in the dry season. Estimates of fine root production differed according to the method used. Fine root production based on in-growth coring averaged 468, 293, 70 and 52 g m−2·year−1. In general, land use conversion from forest to open lands reduced fine root production by 85–91%. The turnover rate of fine roots was 1.5 for forest and 2.1 for eucalyptus plantation.
Collapse
|
11
|
Epron D, Osawa A. Fine roots: when anisotropy matters. TREE PHYSIOLOGY 2017; 37:693-696. [PMID: 28541584 DOI: 10.1093/treephys/tpx063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Daniel Epron
- Université de Lorraine, INRA, UMR 1137, Ecologie et Ecophysiologie Forestières, Faculté des Sciences et Technologies, F-54500 Vandœuvre-lès-Nancy, France
| | - Akira Osawa
- Laboratory of Forest Utilization, Department of Forest and Biomaterial Science, Kyoto University, Graduate School of Agriculture, Kyoto 606-8502, Japan
| |
Collapse
|
12
|
Van Do T, Osawa A, Sato T. Estimation of fine-root production using rates of diameter-dependent root mortality, decomposition and thickening in forests. TREE PHYSIOLOGY 2016; 36:513-523. [PMID: 26614784 DOI: 10.1093/treephys/tpv121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
Current studies indicate that fine roots of different diameter classes show different rates of decomposition. This study developed a new method to estimate fine-root production by considering the difference in the production of fine roots of two size classes, fine roots thinner than 1 mm and those between 1 and 2 mm, and their corresponding rates of decomposition. A litter bag experiment was used to estimate the decomposition rates, while the sequential soil core technique was used to identify mass values of live roots and dead roots at a given period of observation. The continuous inflow method was applied to estimate the amount of root decomposition, mortality and production with a framework of two diameter classes of fine roots and for quantification of the amount of mass transfer from the thicker fine-root class to the coarser root category (>2 mm). The results indicated that the estimate of fine-root production was greater when two size classes of fine roots were distinguished. Using a framework of two size classes developed in this study resulted in 21.3% higher fine-root production than a method that did not recognize fine-root size classes or mass transfer to the category of coarse roots. In addition, using shorter collection intervals led to higher production estimates than longer intervals. The production estimate with a 1-month interval was 21.4% higher than that with a 6-month interval. We consider that the use of the sequential soil core technique with continuous inflow estimate method by differentiating size classes of fine roots is likely to minimize the underestimation of the parameters of fine-root dynamics by accounting for decomposition and mortality of fine roots more appropriately.
Collapse
Affiliation(s)
- Tran Van Do
- Sivilculture Research Institute, Vietnamese Academy of Forest Sciences, Hanoi 100-000, Vietnam Center for Southeast Asian Studies, Kyoto University, Kyoto 606-8501, Japan Department of Forest Vegetation, Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan
| | - Akira Osawa
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan Graduate School of Global Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Tamotsu Sato
- Department of Forest Vegetation, Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan
| |
Collapse
|