1
|
Liu Y, Nadezhdina N, Hu W, Clothier B, Duan J, Li X, Xi B. Evaporation-driven internal hydraulic redistribution alleviates root drought stress: Mechanisms and modeling. PLANT PHYSIOLOGY 2023; 193:1058-1072. [PMID: 37350505 DOI: 10.1093/plphys/kiad364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
Many tree species have developed extensive root systems that allow them to survive in arid environments by obtaining water from a large soil volume. These root systems can transport and redistribute soil water during drought by hydraulic redistribution (HR). A recent study revealed the phenomenon of evaporation-driven hydraulic redistribution (EDHR), which is driven by evaporative demand (transpiration). In this study, we confirmed the occurrence of EDHR in Chinese white poplar (Populus tomentosa) through root sap flow measurements. We utilized microcomputed tomography technology to reconstruct the xylem network of woody lateral roots and proposed conceptual models to verify EDHR from a physical perspective. Our results indicated that EDHR is driven by the internal water potential gradient within the plant xylem network, which requires 3 conditions: high evaporative demand, soil water potential gradient, and special xylem structure of the root junction. The simulations demonstrated that during periods of extreme drought, EDHR could replenish water to dry roots and improve root water potential up to 38.9% to 41.6%. This highlights the crucial eco-physiological importance of EDHR in drought tolerance. Our proposed models provide insights into the complex structure of root junctions and their impact on water movement, thus enhancing our understanding of the relationship between xylem structure and plant hydraulics.
Collapse
Affiliation(s)
- Yang Liu
- Laboratory for Silviculture and Forest Ecosystem in Arid- and Semi-Arid Region of State Forestry and Grassland Administration, Beijing Forestry University, Beijing 10083, China
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing 100083, China
| | - Nadezhda Nadezhdina
- Institute of Forest Botany, Dendrology and Geobiocenology, Mendel University in Brno, Zemedelska 3, Brno 61300, Czech Republic
| | - Wei Hu
- New Zealand Institute for Plant & Food Research Ltd., Private Bag 4707, Christchurch 8140, New Zealand
| | - Brent Clothier
- New Zealand Institute for Plant & Food Research Ltd., Fitzherbert Science Centre, Palmerston North 4442, New Zealand
| | - Jie Duan
- Laboratory for Silviculture and Forest Ecosystem in Arid- and Semi-Arid Region of State Forestry and Grassland Administration, Beijing Forestry University, Beijing 10083, China
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing 100083, China
| | - Ximeng Li
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, China
| | - Benye Xi
- Laboratory for Silviculture and Forest Ecosystem in Arid- and Semi-Arid Region of State Forestry and Grassland Administration, Beijing Forestry University, Beijing 10083, China
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
2
|
Liu Y, Nadezhdina N, Di N, Ma X, Liu J, Zou S, Xi B, Clothier B. An undiscovered facet of hydraulic redistribution driven by evaporation-a study from a Populus tomentosa plantation. PLANT PHYSIOLOGY 2021; 186:361-372. [PMID: 33764473 PMCID: PMC8154088 DOI: 10.1093/plphys/kiab036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Maintaining the activity and function of the shallow root system of plants is essential for withstanding drought stress, but the associated mechanism is poorly understood. By investigating sap flow in 14 lateral roots (LRs) randomly selected from trees of a Chinese white poplar (Populus tomentosa) plantation receiving three levels of irrigation, an unknown root water transport mode of simultaneous daytime bi-directional water flow was discovered. This mode existed in five LRs confined to the surface soil without attached sinker roots. In the longer term, the bi-directional water flow was correlated with the soil water content. However, within the day, it was associated with transpiration. Our data demonstrated that bi-directional root sap flow occurred during the day, and was driven by evaporative demand, further suggesting the existence of circumferential water movement in the LR xylem. We named this phenomenon evaporation-driven hydraulic redistribution (EDHR). A soil-root water transport model was proposed to encapsulate this water movement mode. EDHR may be a crucial drought-tolerance mechanism that allows plants to maintain shallow root survival and activity by promoting root water recharge under extremely dry conditions.
Collapse
Affiliation(s)
- Yang Liu
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing, China
| | - Nadezhda Nadezhdina
- Institute of Forest Botany, Dendrology and Geobiocenology, Mendel University, Zemedelska 3, Brno 61300, Czech Republic
| | - Nan Di
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Xu Ma
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing, China
- Chinese Society of Forestry, Beijing, China
| | - Jinqiang Liu
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing, China
| | - Songyan Zou
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing, China
| | - Benye Xi
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing, China
| | - Brent Clothier
- Plant & Food Research, Fitzherbert Science Centre, Palmerston North, New Zealand
| |
Collapse
|
3
|
Querejeta JI, Ren W, Prieto I. Vertical decoupling of soil nutrients and water under climate warming reduces plant cumulative nutrient uptake, water-use efficiency and productivity. THE NEW PHYTOLOGIST 2021; 230:1378-1393. [PMID: 33550582 DOI: 10.1111/nph.17258] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/01/2021] [Indexed: 05/21/2023]
Abstract
Warming-induced desiccation of the fertile topsoil layer could lead to decreased nutrient diffusion, mobility, mineralization and uptake by roots. Increased vertical decoupling between nutrients in topsoil and water availability in subsoil/bedrock layers under warming could thereby reduce cumulative nutrient uptake over the growing season. We used a Mediterranean semiarid shrubland as model system to assess the impacts of warming-induced topsoil desiccation on plant water- and nutrient-use patterns. A 6 yr manipulative field experiment examined the effects of warming (2.5°C), rainfall reduction (30%) and their combination on soil resource utilization by Helianthemum squamatum shrubs. A drier fertile topsoil ('growth pool') under warming led to greater proportional utilization of water from deeper, wetter, but less fertile subsoil/bedrock layers ('maintenance pool') by plants. This was linked to decreased cumulative nutrient uptake, increased nonstomatal (nutritional) limitation of photosynthesis and reduced water-use efficiency, above-ground biomass growth and drought survival. Whereas a shift to greater utilization of water stored in deep subsoil/bedrock may buffer the negative impact of warming-induced topsoil desiccation on transpiration, this plastic response cannot compensate for the associated reduction in cumulative nutrient uptake and carbon assimilation, which may compromise the capacity of plants to adjust to a warmer and drier climate.
Collapse
Affiliation(s)
- José Ignacio Querejeta
- Departamento de Conservación de Suelos y Agua, Centro de Edafología y Biología Aplicada del Segura - Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Murcia, 30100, Spain
| | - Wei Ren
- Departamento de Conservación de Suelos y Agua, Centro de Edafología y Biología Aplicada del Segura - Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Murcia, 30100, Spain
- Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, Chongqing, 400715, China
| | - Iván Prieto
- Departamento de Conservación de Suelos y Agua, Centro de Edafología y Biología Aplicada del Segura - Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Murcia, 30100, Spain
| |
Collapse
|
4
|
Hafner BD, Hesse BD, Bauerle TL, Grams TEE. Water potential gradient, root conduit size and root xylem hydraulic conductivity determine the extent of hydraulic redistribution in temperate trees. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Benjamin D. Hafner
- Ecophysiology of Plants Technical University of Munich Freising Germany
- School of Integrative Plant Science Cornell University Ithaca NY USA
| | - Benjamin D. Hesse
- Ecophysiology of Plants Technical University of Munich Freising Germany
| | - Taryn L. Bauerle
- School of Integrative Plant Science Cornell University Ithaca NY USA
| | | |
Collapse
|
5
|
Fromm H. Root Plasticity in the Pursuit of Water. PLANTS (BASEL, SWITZERLAND) 2019; 8:E236. [PMID: 31336579 PMCID: PMC6681320 DOI: 10.3390/plants8070236] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 01/22/2023]
Abstract
One of the greatest challenges of terrestrial vegetation is to acquire water through soil-grown roots. Owing to the scarcity of high-quality water in the soil and the environment's spatial heterogeneity and temporal variability, ranging from extreme flooding to drought, roots have evolutionarily acquired tremendous plasticity regarding their geometric arrangement of individual roots and their three-dimensional organization within the soil. Water deficiency has also become an increasing threat to agriculture and dryland ecosystems due to climate change. As a result, roots have become important targets for genetic selection and modification in an effort to improve crop resilience under water-limiting conditions. This review addresses root plasticity from different angles: Their structures and geometry in response to the environment, potential genetic control of root traits suitable for water-limiting conditions, and contemporary and future studies of the principles underlying root plasticity post-Darwin's 'root-brain' hypothesis. Our increasing knowledge of different disciplines of plant sciences and agriculture should contribute to a sustainable management of natural and agricultural ecosystems for the future of mankind.
Collapse
Affiliation(s)
- Hillel Fromm
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
6
|
Ren Z, Li Z, Liu X, Li P, Cheng S, Xu G. Comparing watershed afforestation and natural revegetation impacts on soil moisture in the semiarid Loess Plateau of China. Sci Rep 2018; 8:2972. [PMID: 29445237 PMCID: PMC5813155 DOI: 10.1038/s41598-018-21362-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 02/02/2018] [Indexed: 12/02/2022] Open
Abstract
Two contiguous watersheds in the Loess Plateau in China that differed in the way their vegetation had been restored—afforestation or natural revegetation—differed in their consumption of soil moisture: the afforested watershed consumed more soil moisture, although the difference was significant only in wet years. Yet, both the afforestation and natural revegetation did not induce the soil desiccation in the study area. In the afforested watershed, soil moisture was depleted even beyond a depth of 100 cm, whereas in the grassland (natural revegetation), the depletion was confined to a layer less than 60 cm deep. Rainfall in the growing season accounted for 46–60% of the variation in soil moisture in the 0–60 cm layer in the grassland, but only 22–39% of that in the forest land. Overall, afforestation is the better option for the Loess Plateau only in areas where the annual rainfall is more than 500 mm. In any attempt at revegetation, the choice of tree species and planting densities should match the carrying capacity of the region’s water resources.
Collapse
Affiliation(s)
- Zongping Ren
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi' an, 710048, China.
| | - Zhanbin Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi' an, 710048, China
| | - Xiaolu Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi' an, 710048, China
| | - Peng Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi' an, 710048, China.
| | - Shengdong Cheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi' an, 710048, China
| | - Guoce Xu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi' an, 710048, China
| |
Collapse
|
7
|
Barron-Gafford GA, Sanchez-Cañete EP, Minor RL, Hendryx SM, Lee E, Sutter LF, Tran N, Parra E, Colella T, Murphy PC, Hamerlynck EP, Kumar P, Scott RL. Impacts of hydraulic redistribution on grass-tree competition vs facilitation in a semi-arid savanna. THE NEW PHYTOLOGIST 2017; 215:1451-1461. [PMID: 28737219 DOI: 10.1111/nph.14693] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 05/28/2017] [Indexed: 06/07/2023]
Abstract
A long-standing ambition in ecosystem science has been to understand the relationship between ecosystem community composition, structure and function. Differential water use and hydraulic redistribution have been proposed as one mechanism that might allow for the coexistence of overstory woody plants and understory grasses. Here, we investigated how patterns of hydraulic redistribution influence overstory and understory ecophysiological function and how patterns vary across timescales of an individual precipitation event to an entire growing season. To this end, we linked measures of sap flux within lateral and tap roots, leaf-level photosynthesis, ecosystem-level carbon exchange and soil carbon dioxide efflux with local meteorology data. The hydraulic redistribution regime was characterized predominantly by hydraulic descent relative to hydraulic lift. We found only a competitive interaction between the overstory and understory, regardless of temporal time scale. Overstory trees used nearly all water lifted by the taproot to meet their own transpirational needs. Our work suggests that alleviating water stress is not the reason we find grasses growing in the understory of woody plants; rather, other stresses, such as excessive light and temperature, are being ameliorated. As such, both the two-layer model and stress gradient hypothesis need to be refined to account for this coexistence in drylands.
Collapse
Affiliation(s)
- Greg A Barron-Gafford
- School of Geography & Development, University of Arizona, Tucson, AZ, 85721, USA
- College of Science, Biosphere 2, University of Arizona, Tucson, AZ, 85721, USA
- School of Natural Resources & the Environment, University of Arizona, Tucson, AZ, 85721, USA
| | - Enrique P Sanchez-Cañete
- School of Geography & Development, University of Arizona, Tucson, AZ, 85721, USA
- College of Science, Biosphere 2, University of Arizona, Tucson, AZ, 85721, USA
- Centro Andaluz de Medio Ambiente (IISTA-CEAMA), Granada, 18006, Spain
| | - Rebecca L Minor
- School of Geography & Development, University of Arizona, Tucson, AZ, 85721, USA
- College of Science, Biosphere 2, University of Arizona, Tucson, AZ, 85721, USA
| | - Sean M Hendryx
- School of Natural Resources & the Environment, University of Arizona, Tucson, AZ, 85721, USA
| | - Esther Lee
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Leland F Sutter
- School of Geography & Development, University of Arizona, Tucson, AZ, 85721, USA
- School of Natural Resources & the Environment, University of Arizona, Tucson, AZ, 85721, USA
- Southwest Watershed Research Center, USDA-ARS, Tucson, AZ, 85719, USA
| | - Newton Tran
- School of Environmental Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Elizabeth Parra
- College of Science, Biosphere 2, University of Arizona, Tucson, AZ, 85721, USA
| | - Tony Colella
- School of Geography & Development, University of Arizona, Tucson, AZ, 85721, USA
| | - Patrick C Murphy
- School of Geography & Development, University of Arizona, Tucson, AZ, 85721, USA
| | - Erik P Hamerlynck
- Eastern Oregon Agricultural Research Center, USDA-ARS, Burns, OR, 97720, USA
| | - Praveen Kumar
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Russell L Scott
- Southwest Watershed Research Center, USDA-ARS, Tucson, AZ, 85719, USA
| |
Collapse
|
8
|
Hafner BD, Tomasella M, Häberle KH, Goebel M, Matyssek R, Grams TEE. Hydraulic redistribution under moderate drought among English oak, European beech and Norway spruce determined by deuterium isotope labeling in a split-root experiment. TREE PHYSIOLOGY 2017; 37:950-960. [PMID: 28541559 DOI: 10.1093/treephys/tpx050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
Hydraulic redistribution (HR) of soil water through plant roots is a crucial phenomenon improving the water balance of plants and ecosystems. It is mostly described under severe drought, and not yet studied under moderate drought. We tested the potential of HR under moderate drought, hypothesizing that (H1) tree species redistribute soil water in their roots even under moderate drought and that (H2) neighboring plants are supported with water provided by redistributing plants. Trees were planted in split-root systems with one individual (i.e., split-root plant, SRP) having its roots divided between two pots with one additional tree each. Species were 2- to 4-year-old English oak (Quercus robur L.), European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst). A gradient in soil water potential (ψsoil) was established between the two pots (-0.55 ± 0.02 MPa and -0.29 ± 0.03 MPa), and HR was observed by labeling with deuterium-enriched water. Irrespective of species identity, 93% of the SRPs redistributed deuterium enriched water from the moist to the drier side, supporting H1. Eighty-eight percent of the plants in the drier pots were deuterium enriched in their roots, with 61 ± 6% of the root water originating from SRP roots. Differences in HR among species were related to their root anatomy with diffuse-porous xylem structure in both beech and-opposing the stem structure-oak roots. In spruce, we found exclusively tracheids. We conclude that water can be redistributed within roots of different tree species along a moderate ψsoil gradient, accentuating HR as an important water source for drought-stressed plants, with potential implications for ecohydrological and plant physiological sciences. It remains to be shown to what extent HR occurs under field conditions in Central Europe.
Collapse
Affiliation(s)
- Benjamin D Hafner
- Ecophysiology of Plants, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Martina Tomasella
- Ecophysiology of Plants, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Karl-Heinz Häberle
- Ecophysiology of Plants, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Marc Goebel
- Department of Natural Resources, Cornell University, Ithaca, NY 14853, USA
| | - Rainer Matyssek
- Ecophysiology of Plants, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Thorsten E E Grams
- Ecophysiology of Plants, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| |
Collapse
|
9
|
Kulmatiski A, Adler PB, Stark JM, Tredennick AT. Water and nitrogen uptake are better associated with resource availability than root biomass. Ecosphere 2017. [DOI: 10.1002/ecs2.1738] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Andrew Kulmatiski
- Department of Wildland Resources Ecology Center Utah State University Logan Utah 84322 USA
| | - Peter B. Adler
- Department of Wildland Resources Ecology Center Utah State University Logan Utah 84322 USA
| | - John M. Stark
- Department of Biology Ecology Center Utah State University Logan Utah 84322 USA
| | - Andrew T. Tredennick
- Department of Wildland Resources Ecology Center Utah State University Logan Utah 84322 USA
| |
Collapse
|
10
|
Evaristo J, McDonnell JJ. Prevalence and magnitude of groundwater use by vegetation: a global stable isotope meta-analysis. Sci Rep 2017; 7:44110. [PMID: 28281644 PMCID: PMC5345103 DOI: 10.1038/srep44110] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/02/2017] [Indexed: 11/09/2022] Open
Abstract
The role of groundwater as a resource in sustaining terrestrial vegetation is widely recognized. But the global prevalence and magnitude of groundwater use by vegetation is unknown. Here we perform a meta-analysis of plant xylem water stable isotope (δ2H and δ18O, n = 7367) information from 138 published papers - representing 251 genera, and 414 species of angiosperms (n = 376) and gymnosperms (n = 38). We show that the prevalence of groundwater use by vegetation (defined as the number of samples out of a universe of plant samples reported to have groundwater contribution to xylem water) is 37% (95% confidence interval, 28-46%). This is across 162 sites and 12 terrestrial biomes (89% of heterogeneity explained; Q-value = 1235; P < 0.0001). However, the magnitude of groundwater source contribution to the xylem water mixture (defined as the proportion of groundwater contribution in xylem water) is limited to 23% (95% CI, 20-26%; 95% prediction interval, 3-77%). Spatial analysis shows that the magnitude of groundwater source contribution increases with aridity. Our results suggest that while groundwater influence is globally prevalent, its proportional contribution to the total terrestrial transpiration is limited.
Collapse
Affiliation(s)
- Jaivime Evaristo
- Global Institute for Water Security and School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada
| | - Jeffrey J. McDonnell
- Global Institute for Water Security and School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada
- School of Geosciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
- Department of Forest Engineering, Resources and Management, Oregon State University, Corvallis, Oregon 97330 USA
| |
Collapse
|
11
|
Cleverly J, Eamus D, Restrepo Coupe N, Chen C, Maes W, Li L, Faux R, Santini NS, Rumman R, Yu Q, Huete A. Soil moisture controls on phenology and productivity in a semi-arid critical zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 568:1227-1237. [PMID: 27241203 DOI: 10.1016/j.scitotenv.2016.05.142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 05/19/2016] [Accepted: 05/19/2016] [Indexed: 06/05/2023]
Abstract
The Earth's Critical Zone, where physical, chemical and biological systems interact, extends from the top of the canopy to the underlying bedrock. In this study, we investigated soil moisture controls on phenology and productivity of an Acacia woodland in semi-arid central Australia. Situated on an extensive sand plain with negligible runoff and drainage, the carry-over of soil moisture content (θ) in the rhizosphere enabled the delay of phenology and productivity across seasons, until conditions were favourable for transpiration of that water to prevent overheating in the canopy. Storage of soil moisture near the surface (in the top few metres) was promoted by a siliceous hardpan. Pulsed recharge of θ above the hardpan was rapid and depended upon precipitation amount: 150mm storm(-1) resulted in saturation of θ above the hardpan (i.e., formation of a temporary, discontinuous perched aquifer above the hardpan in unconsolidated soil) and immediate carbon uptake by the vegetation. During dry and inter-storm periods, we inferred the presence of hydraulic lift from soil storage above the hardpan to the surface due to (i) regular daily drawdown of θ in the reservoir that accumulates above the hardpan in the absence of drainage and evapotranspiration; (ii) the dimorphic root distribution wherein most roots were found in dry soil near the surface, but with significant root just above the hardpan; and (iii) synchronisation of phenology amongst trees and grasses in the dry season. We propose that hydraulic redistribution provides a small amount of moisture that maintains functioning of the shallow roots during long periods when the surface soil layer was dry, thereby enabling Mulga to maintain physiological activity without diminishing phenological and physiological responses to precipitation when conditions were favourable to promote canopy cooling.
Collapse
Affiliation(s)
- James Cleverly
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia; Australian SuperSite Network, University of Technology Sydney, PO Box 123, Broadway, NS 2007, Australia.
| | - Derek Eamus
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia; Australian SuperSite Network, University of Technology Sydney, PO Box 123, Broadway, NS 2007, Australia
| | - Natalia Restrepo Coupe
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia; Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Australia
| | - Chao Chen
- CSIRO Agriculture Flagship, PMB 5, PO Wembley, WA 6913, Australia
| | - Wouter Maes
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia; Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Australia
| | - Longhui Li
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Ralph Faux
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Nadia S Santini
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Rizwana Rumman
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Qiang Yu
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Alfredo Huete
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia; Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Australia
| |
Collapse
|
12
|
Holthuijzen MF, Veblen KE. Grass-Shrub Associations over a Precipitation Gradient and Their Implications for Restoration in the Great Basin, USA. PLoS One 2015; 10:e0143170. [PMID: 26625156 PMCID: PMC4666403 DOI: 10.1371/journal.pone.0143170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/02/2015] [Indexed: 11/19/2022] Open
Abstract
As environmental stress increases positive (facilitative) plant interactions often predominate. Plant-plant associations (or lack thereof) can indicate whether certain plant species favor particular types of microsites (e.g., shrub canopies or plant-free interspaces) and can provide valuable insights into whether "nurse plants" will contribute to seeding or planting success during ecological restoration. It can be difficult, however, to anticipate how relationships between nurse plants and plants used for restoration may change over large-ranging, regional stress gradients. We investigated associations between the shrub, Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis), and three common native grasses (Poa secunda, Elymus elymoides, and Pseudoroegneria spicata), representing short-, medium-, and deep-rooted growth forms, respectively, across an annual rainfall gradient (220-350 mm) in the Great Basin, USA. We hypothesized that positive shrub-grass relationships would become more frequent at lower rainfall levels, as indicated by greater cover of grasses in shrub canopies than vegetation-free interspaces. We sampled aerial cover, density, height, basal width, grazing status, and reproductive status of perennial grasses in canopies and interspaces of 25-33 sagebrush individuals at 32 sites along a rainfall gradient. We found that aerial cover of the shallow rooted grass, P. secunda, was higher in sagebrush canopy than interspace microsites at lower levels of rainfall. Cover and density of the medium-rooted grass, E. elymoides were higher in sagebrush canopies than interspaces at all but the highest rainfall levels. Neither annual rainfall nor sagebrush canopy microsite significantly affected P. spicata cover. E. elymoides and P. spicata plants were taller, narrower, and less likely to be grazed in shrub canopy microsites than interspaces. Our results suggest that exploring sagebrush canopy microsites for restoration of native perennial grasses might improve plant establishment, growth, or survival (or some combination thereof), particularly in drier areas. We suggest that land managers consider the nurse plant approach as a way to increase perennial grass abundance in the Great Basin. Controlled experimentation will provide further insights into the life stage-specific effectiveness and practicality of a nurse plant approach for ecological restoration in this region.
Collapse
Affiliation(s)
- Maike F. Holthuijzen
- Dept. of Wildland Resources and Ecology Center, Utah State University, Logan, Utah, United States of America
| | - Kari E. Veblen
- Dept. of Wildland Resources and Ecology Center, Utah State University, Logan, Utah, United States of America
- * E-mail:
| |
Collapse
|