1
|
López-Villamor A, Nunes da Silva M, Vasconcelos MW. Evaluation of plant elicitation with methyl-jasmonate, salicylic acid and benzo (1,2,3)-thiadiazole-7-carbothioic acid-S-methyl ester for the sustainable management of the pine wilt disease. TREE PHYSIOLOGY 2022; 42:2596-2613. [PMID: 35867422 DOI: 10.1093/treephys/tpac088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Treatment with plant elicitors can be a promising method to induce Pinus pinaster tolerance against the pinewood nematode (PWN), Bursaphelenchus xylophilus, by promoting plant antioxidant system, micronutrient accumulation and by modulating plant-associated bacterial populations. To test this hypothesis, plants were sprayed with methyl jasmonate (MeJA), salicylic acid (SA) or benzo (1,2,3)-thiadiazole-7-carbothioic acid-S-methyl ester (BTH), and evaluated until 35 days after-inoculation (dai) for: i) extent of foliar symptoms; ii) nematode density inside stem tissues; iii) proxies for oxidative damage and antioxidant activity, iv) micronutrient concentration and v) bacterial diversity. Compared with non-elicited plants, plant elicitation, particularly with BTH, significantly decreased nematodes density inside stem tissues (by 0.63-fold). Concordantly, without elicitation plant mortality reached 12.5% while no mortality was observed in elicited plants. BTH-elicited plants had significantly higher concentrations of anthocyanins and carotenoids at the end of the assay than SA-elicited and MeJA-elicited plants, which possibly contributed to the lower PWN colonization and degree of foliar symptoms observed. Accordingly, MeJA and SA led to increased lipid peroxidation at 28 dai (by 2.64- and 2.52-fold, respectively) in comparison with BTH (by 1.10-fold), corroborating its higher potential in increasing plant antioxidative response during infection. Moreover, carotenoids showed a negative correlation with nematode migration, whereas polyphenols showed a positive correlation. Elicitors also induced changes in the bacterial community of infected P. pinaster plants, increasing the diversity of specific populations. Finally, elicitors induced significant changes in micronutrients accumulation in plant tissues, namely a decrease in the concentration of B, Mn and Ni in plants treated with BTH compared to those treated with the other elicitors. Altogether, results suggest that elicitation with MeJA, SA and, particularly, BTH, increases tolerance against B. xylophilus by promoting plant antioxidant system, changing the accumulation of essential micronutrients and modulating plant-associated bacterial diversity.
Collapse
Affiliation(s)
- Adrián López-Villamor
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal
- Misión Biológica de Galicia (CSIC), Grupo de Genética y Ecología Forestal, Apdo. 28, 36080 Pontevedra, Spain
| | - Marta Nunes da Silva
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Marta W Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
2
|
Zhao Y, Yuan Z, Wang S, Wang H, Chao Y, Sederoff RR, Sederoff H, Yan H, Pan J, Peng M, Wu D, Borriss R, Niu B. Gene sdaB Is Involved in the Nematocidal Activity of Enterobacter ludwigii AA4 Against the Pine Wood Nematode Bursaphelenchus xylophilus. Front Microbiol 2022; 13:870519. [PMID: 35602027 PMCID: PMC9121001 DOI: 10.3389/fmicb.2022.870519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bursaphelenchus xylophilus, a plant parasitic nematode, is the causal agent of pine wilt, a devastating forest tree disease. Essentially, no efficient methods for controlling B. xylophilus and pine wilt disease have yet been developed. Enterobacter ludwigii AA4, isolated from the root of maize, has powerful nematocidal activity against B. xylophilus in a new in vitro dye exclusion test. The corrected mortality of the B. xylophilus treated by E. ludwigii AA4 or its cell extract reached 98.3 and 98.6%, respectively. Morphological changes in B. xylophilus treated with a cell extract from strain AA4 suggested that the death of B. xylophilus might be caused by an increased number of vacuoles in non-apoptotic cell death and the damage to tissues of the nematodes. In a greenhouse test, the disease index of the seedlings of Scots pine (Pinus sylvestris) treated with the cells of strain AA4 plus B. xylophilus or those treated by AA4 cell extract plus B. xylophilus was 38.2 and 30.3, respectively, was significantly lower than 92.5 in the control plants treated with distilled water and B. xylophilus. We created a sdaB gene knockout in strain AA4 by deleting the gene that was putatively encoding the beta-subunit of L-serine dehydratase through Red homologous recombination. The nematocidal and disease-suppressing activities of the knockout strain were remarkably impaired. Finally, we revealed a robust colonization of P. sylvestris seedling needles by E. ludwigii AA4, which is supposed to contribute to the disease-controlling efficacy of strain AA4. Therefore, E. ludwigii AA4 has significant potential to serve as an agent for the biological control of pine wilt disease caused by B. xylophilus.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Zhibo Yuan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Shuang Wang
- Administrative Office of the Summer Palace, Beijing Municipal Administration Center of Parks, Beijing, China
| | - Haoyu Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yanjie Chao
- The Center for Microbes, Development and Health (CMDH), Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Ronald R. Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Heike Sederoff
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - He Yan
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang, China
| | - Jialiang Pan
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang, China
| | - Mu Peng
- College of Biological Science and Technology, Hubei Minzu University, Enshi, China
| | - Di Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Rainer Borriss
- Nord Reet UG, Greifswald, Germany
- Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
- *Correspondence: Rainer Borriss,
| | - Ben Niu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
- Ben Niu,
| |
Collapse
|
3
|
Phenolic Compounds Regulating the Susceptibility of Adult Pine Species to Bursaphelenchus xylophilus. FORESTS 2022. [DOI: 10.3390/f13040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Pine wilt disease (PWD), caused by the pinewood nematode (PWN) Bursaphelenchus xylophilus, is one of the most destructive diseases in trees of the genus Pinus and is responsible for significant environmental and economic losses in North America, Eastern Asia, and Western Europe. However, pine species are not equally affected, with some being tolerant/resistant while others are susceptible to nematode infection for reasons still unclear. The present study aims to investigate differential chemical responses of susceptible and tolerant/resistant pine species shortly after nematode infection by characterizing the phenolic profiles of adult Pinus sylvestris, Pinus pinaster, Pinus pinea, and Pinus halepensis. HPLC and LC-MS were used to identify and quantify the pine´s phenolic compounds: gallic acid, ferulic acid, taxifolin, rutin, resveratrol, (+)-secoisolariciresinol, (−)-epicatechin, protocatechuic acid hexoside, gallic acid hexoside, ferulic acid glucoside, quercetin hexoside, and two unidentified compounds (#A and #B). Prior to infection, we could not differentiate between nematode-tolerant/resistant and susceptible adult pine species based on their constitutive phenolic compounds. In the presence of the PWN, the phenolic profile allowed for a noticeable separation of the PWN-tolerant/resistant P. halepensis from the susceptible P. sylvestris, contrasting with a more homogenous response from P. pinea and P. pinaster. Observations on P. halepensis suggest that taxifolin, resveratrol, and rutin may have an active role in protecting against B. xylophilus, possibly in conjugation with other biochemical and anatomical characters. We emphasize the importance of studying pine tolerant/resistance on adult trees, and not on excised branches, saplings, or seedlings to accurately simulate the nematode–pine host interactions occurring under natural conditions.
Collapse
|
4
|
Estorninho M, Chozas S, Mendes A, Colwell F, Abrantes I, Fonseca L, Fernandes P, Costa C, Máguas C, Correia O, Antunes C. Differential Impact of the Pinewood Nematode on Pinus Species Under Drought Conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:841707. [PMID: 35360314 PMCID: PMC8961127 DOI: 10.3389/fpls.2022.841707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
The pinewood nematode (PWN), Bursaphelenchus xylophilus, responsible for the pine wilt disease (PWD), is a major threat to pine forests worldwide. Since forest mortality due to PWN might be exacerbated by climate, the concerns regarding PWD in the Mediterranean region are further emphasized by the projected scenarios of more drought events and higher temperatures. In this context, it is essential to better understand the pine species vulnerability to PWN under these conditions. To achieve that, physiological responses and wilting symptoms were monitored in artificially inoculated Pinus pinaster (P. pinaster), Pinus pinea (P. pinea), and Pinus radiata (P. radiata) saplings under controlled temperature (25/30°C) and water availability (watered/water stressed). The results obtained showed that the impact of PWN is species-dependent, being infected P. pinaster and P. radiata more prone to physiological and morphological damage than P. pinea. For the more susceptible species (P. pinaster and P. radiata), the presence of the nematode was the main driver of photosynthetic responses, regardless of their temperature or water regime conditions. Nevertheless, water potential was revealed to be highly affected by the synergy of PWN and the studied abiotic conditions, with higher temperatures (P. pinaster) or water limitation (P. radiata) increasing the impact of nematodes on trees' water status. Furthermore, water limitation had an influence on nematodes density and its allocation on trees' structures, with P. pinaster revealing the highest nematode abundance and inner dispersion. In inoculated P. pinea individuals, nematodes' population decreased significantly, emphasizing this species resistance to PWN. Our findings revealed a synergistic impact of PWN infection and stressful environmental conditions, particularly on the water status of P. pinaster and P. radiata, triggering disease symptoms and mortality of these species. Our results suggest that predicted drought conditions might facilitate proliferation and exacerbate the impact of PWN on these two species, through xylem cavitation, leading to strong changes in pine forests of the Mediterranean regions.
Collapse
Affiliation(s)
- Mariana Estorninho
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Sergio Chozas
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Angela Mendes
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | | | - Isabel Abrantes
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Luís Fonseca
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Patrícia Fernandes
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina Costa
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Cristina Máguas
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Otília Correia
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Cristina Antunes
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
5
|
New discovery on the nematode activity of aureothin and alloaureothin isolated from endophytic bacteria Streptomyces sp. AE170020. Sci Rep 2022; 12:3947. [PMID: 35273247 PMCID: PMC8913828 DOI: 10.1038/s41598-022-07879-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/18/2022] [Indexed: 11/08/2022] Open
Abstract
Endophytic bacteria, a rich source of bioactive secondary metabolites, are ideal candidates for environmentally benign agents. In this study, an endophytic strain, Streptomyces sp. AE170020, was isolated and selected for the purification of nematicidal substances based on its high nematicidal activity. Two highly active components, aureothin and alloaureothin, were identified, and their chemical structures were determined using spectroscopic analysis. Both compounds suppressed the growth, reproduction, and behavior of Bursaphelenchus xylophilus. In in vivo experiments, the extracts of strain Streptomyces sp. AE170020 effectively suppressed the development of pine wilt disease in 4-year-old plants of Pinus densiflora. The potency of secondary metabolites isolated from endophytic strains suggests applications in controlling Bursaphelenchus xylophilus and opens an avenue for further research on exploring bioactive substances against the pine wood nematode.
Collapse
|
6
|
Leitão F, Pinto G, Amaral J, Monteiro P, Henriques I. New insights into the role of constitutive bacterial rhizobiome and phenolic compounds in two Pinus spp. with contrasting susceptibility to pine pitch canker. TREE PHYSIOLOGY 2022; 42:600-615. [PMID: 34508603 DOI: 10.1093/treephys/tpab119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/06/2021] [Accepted: 09/01/2021] [Indexed: 05/24/2023]
Abstract
The rhizobiome is being increasingly acknowledged as a key player in plant health and breeding strategies. The pine pitch canker (PPC), caused by the fungus Fusarium circinatum, affects pine species with varying susceptibility degrees. Our aims were to explore the bacterial rhizobiome of a susceptible (Pinus radiata) and a resistant (Pinus pinea) species together with other physiological traits, and to analyze shifts upon F. circinatum inoculation. Pinus seedlings were stem inoculated with F. circinatum spores and needle gas exchange and antioxidant-related parameters were analyzed in non-inoculated and inoculated plants. Rhizobiome structure was evaluated through 16S rRNA gene massive parallel sequencing. Species (non-inoculated plants) harbored distinct rhizobiomes (<40% similarity), where P. pinea displayed a rhizobiome with increased abundance of taxa described in suppressive soils, displaying plant growth promoting (PGP) traits and/or anti-fungal activity. Plants of this species also displayed higher levels of phenolic compounds. F. circinatum induced slight changes in the rhizobiome of both species and a negative impact in photosynthetic-related parameters in P. radiata. We concluded that the rhizobiome of each pine species is distinct and higher abundance of bacterial taxa associated to disease protection was registered for the PPC-resistant species. Furthermore, differences in the rhizobiome are paralleled by a distinct content in phenolic compounds, which are also linked to plants' resistance against PPC. This study unveils a species-specific rhizobiome and provides insights to exploit the rhizobiome for plant selection in nurseries and for rhizobiome-based plant-growth-promoting strategies, boosting environmentally friendly disease control strategies.
Collapse
Affiliation(s)
- Frederico Leitão
- Biology Department, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Glória Pinto
- Biology Department, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Joana Amaral
- Biology Department, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Pedro Monteiro
- Biology Department, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Isabel Henriques
- Faculty of Science and Technology, Department of Life Sciences and CESAM, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
7
|
Long-Term Projections of the Natural Expansion of the Pine Wood Nematode in the Iberian Peninsula. FORESTS 2021. [DOI: 10.3390/f12070849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The invasive pine wood nematode (PWN), Bursaphelenchus xylophilus, causal agent of pine wilt disease, was first reported in Europe, near Lisbon, in 1999, and has since then spread to most of Portugal. We here modelled the spatiotemporal patterns of future PNW natural spread in the Iberian Peninsula, as dispersed by the vector beetle Monochamus galloprovincialis, using a process-based and previously validated network model. We improved the accuracy, informative content, forecasted period and spatial drivers considered in previous modelling efforts for the PWN in Southern Europe. We considered the distribution and different susceptibility to the PWN of individual pine tree species and the effect of climate change projections on environmental suitability for PWN spread, as we modelled the PWN expansion dynamics over the long term (>100 years). We found that, in the absence of effective containment measures, the PWN will spread naturally to the entire Iberian Peninsula, including the Pyrenees, where it would find a gateway for spread into France. The PWN spread will be relatively gradual, with an average rate of 0.83% of the total current Iberian pine forest area infected yearly. Climate was not found to be an important limiting factor for long-term PWN spread, because (i) there is ample availability of alternative pathways for PWN dispersal through areas that are already suitable for the PWN in the current climatic conditions; and (ii) future temperatures will make most of the Iberian Peninsula suitable for the PWN before the end of this century. Unlike climate, the susceptibility of different pine tree species to the PWN was a strong determinant of PWN expansion through Spain. This finding highlights the importance of accounting for individual tree species data and of additional research on species-specific susceptibility for more accurate modelling of PWN spread and guidance of related containment efforts.
Collapse
|
8
|
Simões R, Pimentel C, Ferreira-Dias S, Miranda I, Pereira H. Phytochemical characterization of phloem in maritime pine and stone pine in three sites in Portugal. Heliyon 2021; 7:e06718. [PMID: 33898836 PMCID: PMC8055561 DOI: 10.1016/j.heliyon.2021.e06718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/09/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
This study analyzes the content and chemical profile of extractives present in the young phloem of mature trees of maritime pine (Pinus pinaster) and stone pine (P. pinea) in three sites in Portugal located in different climatic environments. The cross-sites average of extractives was similar in both pines with 38.5% in P. pinea and 37.7% in P. pinaster phloem. The hydrophilic fraction represented 82% and 70% of P. pinea and P. pinaster total extractives respectively, with large contents of phenolic compounds, flavonoids and tannins, and showed very high oxygen scavenging and reducing ability. Lipophilic extractives were present in higher proportion in P. pinaster phloem than in P. pinea phloem, and showed a large content of resin acids, with the predominance of abietic acid in P. pinaster, and dehydroabietic acid in P. pinea phloems, and of alkanoic acids. P. pinaster and P. pinea have specific defences related to phloem production of resin and phenolic compounds with the ratio phenolic-to-oleoresin compounds higher for P. pinea (4.7 vs 2.3 for P. pinaster) and constant in the three sites. The phytochemical content and composition of the young phloem of P. pinaster and P. pinea showed site differences highlighting the relationship between environment and metabolic production.
Collapse
Affiliation(s)
- Rita Simões
- Forest Research Centre (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Carla Pimentel
- Forest Research Centre (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Suzana Ferreira-Dias
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Isabel Miranda
- Forest Research Centre (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Helena Pereira
- Forest Research Centre (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
9
|
Pinus pinaster Early Hormonal Defence Responses to Pinewood Nematode ( Bursaphelenchus xylophilus) Infection. Metabolites 2021; 11:metabo11040227. [PMID: 33917772 PMCID: PMC8068127 DOI: 10.3390/metabo11040227] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/31/2022] Open
Abstract
The pinewood nematode (PWN) is the causal agent of pine wilt disease, a pathology that affects conifer forests, mainly Pinus spp. PWN infection can induce the expression of phytohormone-related genes; however, changes at the early phytohormone level have not yet been explored. Phytohormones are low-abundance metabolites, and thus, difficult to quantify. Moreover, most methodologies focus mainly on Arabidopsis or crop species. This work aimed to validate a fast (run time 6.6 min) liquid chromatography-triple quadrupole tandem mass spectrometry (LC-QqQ-MS/MS) analytical method to quantify 14 phytohormones in Pinus pinaster stem tissues. This method was further applied to evaluate, for the first time, early phytohormone changes in susceptible and resistant phenotypes of P. pinaster 24, 48 and 72 h after inoculation (HAI) with PWN. A significant increase in salicylic acid (SA, 48 and 72 HAI) and jasmonic acid methyl ester (JA-ME, 72 HAI) was observed in susceptible phenotypes. Results indicate that the higher susceptibility of P. pinaster to PWN infection might result from an inefficient trigger of hypersensitive responses, with the involvement of JA and SA pathways. This work provides an important update in forest research, and adds to the current knowledge of Pinus spp. defence responses to PWN infection.
Collapse
|
10
|
Nunes da Silva M, Santos CS, Cruz A, López-Villamor A, Vasconcelos MW. Chitosan increases Pinus pinaster tolerance to the pinewood nematode (Bursaphelenchus xylophilus) by promoting plant antioxidative metabolism. Sci Rep 2021; 11:3781. [PMID: 33580134 PMCID: PMC7881030 DOI: 10.1038/s41598-021-83445-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/01/2021] [Indexed: 11/09/2022] Open
Abstract
The pine wilt disease (PWD), for which no effective treatment is available at the moment, is a constant threat to Pinus spp. plantations worldwide, being responsible for significant economic and environmental losses every year. It has been demonstrated that elicitation with chitosan increases plant tolerance to the pinewood nematode (PWN) Bursaphelenchus xylophilus, the causal agent of the PWD, but the biochemical and genetic aspects underlying this response have not been explored. To understand the influence of chitosan in Pinus pinaster tolerance against PWN, a low-molecular-weight (327 kDa) chitosan was applied to mock- and PWN-inoculated plants. Nematode population, malondialdehyde (MDA), catalase, carotenoids, anthocyanins, phenolic compounds, lignin and gene expression related to oxidative stress (thioredoxin 1, TRX) and plant defence (defensin, DEF, and a-farnesene synthase, AFS), were analysed at 1, 7, 14, 21 and 28 days post-inoculation (dpi). At 28 dpi, PWN-infected plants elicited with chitosan showed a sixfold lower nematode population when compared to non-elicited plants. Higher levels of MDA, catalase, carotenoids, anthocyanins, phenolic compounds, and lignin were detected in chitosan-elicited plants following infection. The expression levels of DEF gene were higher in elicited plants, while TRX and AFS expression was lower, possibly due to the disease containment-effect of chitosan. Combined, we conclude that chitosan induces pine defences against PWD via modulation of metabolic and transcriptomic mechanisms related with plant antioxidant system.
Collapse
Affiliation(s)
- Marta Nunes da Silva
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal.
| | - Carla S Santos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Ana Cruz
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Adrián López-Villamor
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal
- Misión Biológica de Galicia (MBG-CSIC), Carballeira 8, Salcedo, 36143, Pontevedra, Spain
| | - Marta W Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal
| |
Collapse
|
11
|
Silva H, Anjo SI, Manadas B, Abrantes I, Fonseca L, Cardoso JMS. Comparative Analysis of Bursaphelenchus xylophilus Secretome Under Pinus pinaster and P. pinea Stimuli. FRONTIERS IN PLANT SCIENCE 2021; 12:668064. [PMID: 34046053 PMCID: PMC8144518 DOI: 10.3389/fpls.2021.668064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/29/2021] [Indexed: 05/19/2023]
Abstract
The pinewood nematode (PWN), Bursaphelenchus xylophilus, the pine wilt disease's (PWD) causal agent, is a migratory endoparasitic nematode skilled to feed on pine tissues and on fungi that colonize the trees. In order to study B. xylophilus secretomes under the stimulus of pine species with different susceptibilities to disease, nematodes were exposed to aqueous pine extracts from Pinus pinaster (high-susceptible host) and P. pinea (low-susceptible host). Sequential windowed acquisition of all theoretical mass spectra (SWATH-MS) was used to determine relative changes in protein amounts between B. xylophilus secretions, and a total of 776 secreted proteins were quantified in both secretomes. From these, 22 proteins were found increased in the B. xylophilus secretome under the P. pinaster stimulus and 501 proteins increased under the P. pinea stimulus. Functional analyses of the 22 proteins found increased in the P. pinaster stimulus showed that proteins with peptidase, hydrolase, and antioxidant activities were the most represented. On the other hand, gene ontology (GO) enrichment analysis of the 501 proteins increased under the P. pinea stimulus revealed an enrichment of proteins with binding activity. The differences detected in the secretomes highlighted the diverse responses from the nematode to overcome host defenses with different susceptibilities and provide new clues on the mechanism behind the pathogenicity of this plant-parasitic nematode. Proteomic data are available via ProteomeXchange with identifier PXD024011.
Collapse
Affiliation(s)
- Hugo Silva
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Coimbra, Portugal
| | - Sandra I. Anjo
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Isabel Abrantes
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Coimbra, Portugal
| | - Luís Fonseca
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Coimbra, Portugal
| | - Joana M. S. Cardoso
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Coimbra, Portugal
- *Correspondence: Joana M. S. Cardoso,
| |
Collapse
|
12
|
Rodrigues AM, Carrasquinho I, António C. Primary Metabolite Adjustments Associated With Pinewood Nematode Resistance in Pinus pinaster. FRONTIERS IN PLANT SCIENCE 2021; 12:777681. [PMID: 34950168 PMCID: PMC8691400 DOI: 10.3389/fpls.2021.777681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/01/2021] [Indexed: 05/14/2023]
Abstract
The pinewood nematode (PWN) Bursaphelenchus xylophilus is the causal agent of the pine wilt disease (PWD) and represents one of the major threats to conifer forests. The detection of the PWN in Portugal, associated with Pinus pinaster, increased the concern of its spread to European forests. Despite its susceptibility to PWD, genetic variability found among P. pinaster populations has been associated with heritable PWD resistance. Understanding the mechanisms underlying tree resistance constitutes a valuable resource for breeding programs toward more resilient forest plantations. This study investigated changes in anatomy, chlorophyll a fluorescence (ChlF), and primary metabolism in susceptible and resistant P. pinaster half-sib plants, after PWN inoculation. Susceptible plants showed a general shutdown of central metabolism, osmolyte accumulation, photosynthetic inhibition, and a decrease in the plant water status. The ChlF transient rise (OJIP curve) revealed the appearance of L- and K-bands, indicators of environmental stress. In contrast, resistant plants revealed a regulated defense response and were able to restrict PWN migration and cellular damage. Furthermore, the accumulation of γ-aminobutyric acid (GABA) and succinate suggested a role of these metabolites in PWD resistance and the possible activation of the GABA shunt. Altogether, these results provide new insights to the role of primary metabolism in PWD resistance and in the selection of resistant phenotypes for disease mitigation.
Collapse
Affiliation(s)
- Ana M. Rodrigues
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Isabel Carrasquinho
- Instituto Nacional Investigação Agrária e Veterinária I.P., Oeiras, Portugal
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Carla António
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- *Correspondence: Carla António,
| |
Collapse
|
13
|
Vázquez-González C, Zas R, Erbilgin N, Ferrenberg S, Rozas V, Sampedro L. Resin ducts as resistance traits in conifers: linking dendrochronology and resin-based defences. TREE PHYSIOLOGY 2020; 40:1313-1326. [PMID: 32478382 DOI: 10.1093/treephys/tpaa064] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 05/26/2020] [Indexed: 05/20/2023]
Abstract
Conifers have evolved different chemical and anatomical defences against a wide range of antagonists. Resin ducts produce, store and translocate oleoresin, a complex terpenoid mixture that acts as both a physical and a chemical defence. Although resin duct characteristics (e.g., number, density, area) have been positively related to biotic resistance in several conifer species, the literature reporting this association remains inconclusive. Axial resin ducts recorded in annual growth rings are an archive of annual defensive investment in trees. This whole-life record of defence investment can be analysed using standard dendrochronological procedures, which allows us to assess interannual variability and the effect of understudied drivers of phenotypic variation on resin-based defences. Understanding the sources of phenotypic variation in defences, such as genetic differentiation and environmental plasticity, is essential for assessing the adaptive potential of forest tree populations to resist pests under climate change. Here, we reviewed the evidence supporting the importance of resin ducts in conifer resistance, and summarized current knowledge about the sources of variation in resin duct production. We propose a standardized methodology to measure resin duct production by means of dendrochronological procedures. This approach will illuminate the roles of resin ducts in tree defence across species, while helping to fill pivotal knowledge gaps in plant defence theory, and leading to a robust understanding of the patterns of variation in resin-based defences throughout the tree's lifespan.
Collapse
Affiliation(s)
- Carla Vázquez-González
- Misión Biológica de Galicia, National Spanish Research Council (MBG-CSIC), Carballeira 8, Salcedo, Pontevedra 3614, Spain
| | - Rafael Zas
- Misión Biológica de Galicia, National Spanish Research Council (MBG-CSIC), Carballeira 8, Salcedo, Pontevedra 3614, Spain
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, T6G 2H1 Alberta, Canada
| | - Scott Ferrenberg
- Department of Biology, New Mexico State University, 1305 Frenger St., Las Cruces, 88001, NM, USA
| | - Vicente Rozas
- iuFOR-EiFAB, Campus Duques de Soria, Universidad de Valladolid, Soria 42004, Spain
- Laboratorio de Dendrocronología y Cambio Global, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Luis Sampedro
- Misión Biológica de Galicia, National Spanish Research Council (MBG-CSIC), Carballeira 8, Salcedo, Pontevedra 3614, Spain
| |
Collapse
|
14
|
Impact of the pinewood nematode on naturally-emitted volatiles and scCO2 extracts from Pinus pinaster branches: a comparison with P. pinea. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Maruyama TE, Hosoi Y. Progress in Somatic Embryogenesis of Japanese Pines. FRONTIERS IN PLANT SCIENCE 2019; 10:31. [PMID: 30745904 PMCID: PMC6360188 DOI: 10.3389/fpls.2019.00031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/09/2019] [Indexed: 05/23/2023]
Abstract
Somatic embryogenesis (SE) in not only one of the most promising techniques for mass propagation of selected trees, but also is a valuable tool for basic research studies in cell biology and genetic engineering, and it allows the long-term ex situ conservation of genetic resources by cryopreservation techniques. This review reports the most recent progress in SE, protoplast culture, and cryopreservation of four important Japanese pines (Pinus thunbergii, Pinus densiflora, Pinus armandii var. amamiana, and Pinus luchuensis). Induction of embryogenic tissues (ET), embryogenic culture maintenance/proliferation, production of somatic embryos, germination, and conversion to plants are described focusing on the protocols most commonly reported for plant production in Pinus species through to SE.
Collapse
Affiliation(s)
- Tsuyoshi E. Maruyama
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Tsukuba, Japan
| | | |
Collapse
|
16
|
Mutke S, Vendramin GG, Fady B, Bagnoli F, González-Martínez SC. Molecular and Quantitative Genetics of Stone Pine (Pinus pinea). SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2019. [DOI: 10.1007/978-3-319-96454-6_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
17
|
Forest Adaptation to Climate Change along Steep Ecological Gradients: The Case of the Mediterranean-Temperate Transition in South-Western Europe. SUSTAINABILITY 2018. [DOI: 10.3390/su10093065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Impacts of climate change are likely to be marked in areas with steep climatic transitions. Species turnover, spread of invasive species, altered productivity, and modified processes such as fire regimes can all spread rapidly along ecotones, which challenge the current paradigms of ecosystem management. We conducted a literature review at a continental-wide scale of South-Western European forests, where the drier and warmer conditions of the Mediterranean have been widely used as examples of what is expected in more temperate areas. Results from the literature point to: (a) an expansion of slow-growing evergreen hardwood trees; (b) increased dieback and mortality episodes in forests (both natural and planted) mostly related to competition and droughts, and mainly affecting conifers; and (c) an increase in emergent diseases and pests of keystone-trees used in agroforestry zones. There is no consensus in the literature that fire regimes are directly increasing due to climate change, but available satellite data of fire intensity in the last 17 years has been lower in zones where agroforestry practices are dominant compared to unmanaged forests. In contrast, there is agreement in the literature that the current spread of fire events is probably related to land abandonment patterns. The practice of agroforestry, common in all Mediterranean countries, emerges as a frequent recommendation in the literature to cope with drought, reduce fire risk, and maintain biodiverse landscapes and rural jobs. However, it is unknown the extent to which the open vegetation resulting from agroforestry is of interest to forest managers in temperate areas used to exploiting closed forest vegetation. Hence, many transitional areas surrounding the Mediterranean Basin may be left unmanaged with potentially higher climate-change risks, which require active monitoring in order to understand and help ongoing natural adaptation processes.
Collapse
|
18
|
Invasive Species May Disrupt Protected Area Networks: Insights from the Pine Wood Nematode Spread in Portugal. FORESTS 2018. [DOI: 10.3390/f9050282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Chu H, Tang M, Wang H, Wang C. Pinewood nematode infection alters root mycoflora of Pinus tabulaeformis Carr. J Appl Microbiol 2018; 125:554-563. [PMID: 29675985 DOI: 10.1111/jam.13883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 11/29/2022]
Abstract
AIMS This study investigates pinewood nematode's impacts on root mycoflora of Pinus tabulaeformis. METHODS AND RESULTS The biomass, colonization rate, community structure and diversity of root-associated fungi were investigated in pinewood nematode-infected and nematode-noninfected P. tabulaeformis. The results indicated that the roots of P. tabulaeformis were colonized highly by root-associated fungi, mainly ectomycorrhizal fungi (ECMF) and dark septate endophytes. Infection of pinewood nematode was associated with a significant (P < 0·05) decrease in root colonization rates by ECMF, dark septate endophytes and total hyphae, as well as in fungal biomass in the roots. Illumina MiSeq sequences of tagged amplicons of 18S rDNA region revealed Basidiomycota (65·70%) and Ascomycota (34·14%) as the dominant root-associated fungi in roots of P. tabulaeformis. Among the detected operational taxonomic units (OTUs), ECMF and dark septate endophytes exhibited a higher relative abundance in trees infected by pinewood nematode compared with noninfected ones. CONCLUSIONS The infection of pinewood nematode altered the composition and OTU abundance of root-associated fungi community in P. tabulaeformis roots with a decrease in the biomass, species richness and diversity of root-associated fungi, as well as in the colonization rates and abundance of ECMF and dark septate endophytes. SIGNIFICANCE AND IMPACT OF THE STUDY This study is an important contribution for better understanding the interaction between pine wilt disease and root-associated fungi.
Collapse
Affiliation(s)
- H Chu
- College of Forestry, Northwest A&F University, Yangling, China.,College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, Yunnan, China
| | - M Tang
- College of Forestry, Northwest A&F University, Yangling, China.,State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources (South China Agricultural University), Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - H Wang
- College of Forestry, Northwest A&F University, Yangling, China
| | - C Wang
- College of Forestry, Northwest A&F University, Yangling, China
| |
Collapse
|
20
|
Menéndez-Gutiérrez M, Matsunaga K, Togashi K. Relationship between pine wilt-tolerance rankings of Pinus thunbergii trees and the number of Bursaphelenchus xylophilus passing through branch sections. NEMATOLOGY 2017. [DOI: 10.1163/15685411-00003108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To establish a simple, time-saving method for selecting Pinus tree candidates tolerant to the infection of Bursaphelenchus xylophilus, the causative agent of pine wilt disease, three experiments were conducted. When two virulent isolates Sc-9 and T-4 were inoculated on cut ends of branch sections, more nematodes were inhibited from passing through P. taeda branch sections than P. thunbergii sections. Sc-9 tended to pass through P. thunbergii sections more easily than T-4. The probability of nematodes passing through 5-cm-long P. thunbergii branch sections was greater when 200 nematodes were inoculated. When 200 Sc-9 nematodes were inoculated on 5-, 10- or 15-cm-long branch sections of P. taeda trees and P. thunbergii clones of different tolerance classes in late August, an insignificant correlation was found between the tolerance class of P. thunbergii clones and the number of nematodes passing through 5-cm-long branch sections, although nematode dispersal ability could distinguish between tolerant and susceptible pine clones in mid-August, suggesting it was a helpful method for selecting tolerant tree candidates. Abrupt seasonal increases in tolerance level suggested that weather conditions, such as hot temperatures and drought, may have disrupted the tolerance mechanism of resistant species of P. taeda.
Collapse
Affiliation(s)
| | - Koji Matsunaga
- Kyushu Regional Breeding Office, Forest Tree Breeding Centre, Forestry and Forest Products Research Institute, Koshi, Kumamoto 861-1102, Japan
| | - Katsumi Togashi
- Laboratory of Forest Zoology, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|