1
|
Aspinwall MJ, Blackman CJ, Maier C, Tjoelker MG, Rymer PD, Creek D, Chieppa J, Griffin-Nolan RJ, Tissue DT. Aridity drives clinal patterns in leaf traits and responsiveness to precipitation in a broadly distributed Australian tree species. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2023; 4:70-85. [PMID: 37288162 PMCID: PMC10243541 DOI: 10.1002/pei3.10102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 06/09/2023]
Abstract
Aridity shapes species distributions and plant growth and function worldwide. Yet, plant traits often show complex relationships with aridity, challenging our understanding of aridity as a driver of evolutionary adaptation. We grew nine genotypes of Eucalyptus camaldulensis subsp. camaldulensis sourced from an aridity gradient together in the field for ~650 days under low and high precipitation treatments. Eucalyptus camaldulesis is considered a phreatophyte (deep-rooted species that utilizes groundwater), so we hypothesized that genotypes from more arid environments would show lower aboveground productivity, higher leaf gas-exchange rates, and greater tolerance/avoidance of dry surface soils (indicated by lower responsiveness) than genotypes from less arid environments. Aridity predicted genotype responses to precipitation, with more arid genotypes showing lower responsiveness to reduced precipitation and dry surface conditions than less arid genotypes. Under low precipitation, genotype net photosynthesis and stomatal conductance increased with home-climate aridity. Across treatments, genotype intrinsic water-use efficiency and osmotic potential declined with increasing aridity while photosynthetic capacity (Rubisco carboxylation and RuBP regeneration) increased with aridity. The observed clinal patterns indicate that E. camaldulensis genotypes from extremely arid environments possess a unique strategy defined by lower responsiveness to dry surface soils, low water-use efficiency, and high photosynthetic capacity. This strategy could be underpinned by deep rooting and could be adaptive under arid conditions where heat avoidance is critical and water demand is high.
Collapse
Affiliation(s)
- Michael J Aspinwall
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
- College of Forestry and Wildlife Sciences Auburn University Auburn Alabama USA
- Formation Environmental LLC Sacramento California USA
| | - Chris J Blackman
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture School of Natural Sciences, University of Tasmania Hobart Australia
| | - Chelsea Maier
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
| | - Paul D Rymer
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
| | - Danielle Creek
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
- Faculty of Environmental Sciences and Natural Resource Management Norwegian University of Life Sciences (NMBU) Ås Norway
| | - Jeff Chieppa
- College of Forestry and Wildlife Sciences Auburn University Auburn Alabama USA
| | | | - David T Tissue
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
- Global Centre for Land Based Innovation Western Sydney University Richmond New South Wales Australia
| |
Collapse
|
2
|
Pritzkow C, Williamson V, Szota C, Trouvé R, Arndt SK. Phenotypic plasticity and genetic adaptation of functional traits influences intra-specific variation in hydraulic efficiency and safety. TREE PHYSIOLOGY 2020; 40:215-229. [PMID: 31860729 DOI: 10.1093/treephys/tpz121] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/24/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Understanding which hydraulic traits are under genetic control and/or are phenotypically plastic is essential in understanding how tree species will respond to rapid shifts in climate. We quantified hydraulic traits in Eucalyptus obliqua L'Her. across a precipitation gradient in the field to describe (i) trait variation in relation to long-term climate and (ii) the short-term (seasonal) ability of traits to adjust (i.e., phenotypic plasticity). Seedlings from each field population were raised under controlled conditions to assess (iii) which traits are under strong genetic control. In the field, drier populations had smaller leaves with anatomically thicker xylem vessel walls, a lower leaf hydraulic vulnerability and a lower water potential at turgor loss point, which likely confers higher hydraulic safety. Traits such as the water potential at turgor loss point and ratio of sapwood to leaf area (Huber value) showed significant adjustment from wet to dry conditions in the field, indicating phenotypic plasticity and importantly, the ability to increase hydraulic safety in the short term. In the nursery, seedlings from drier populations had smaller leaves and a lower leaf hydraulic vulnerability, suggesting that key traits associated with hydraulic safety are under strong genetic control. Overall, our study suggests a strong genetic control over traits associated with hydraulic safety, which may compromise the survival of wet-origin populations in drier future climates. However, phenotypic plasticity in physiological and morphological traits may confer sufficient hydraulic safety to facilitate genetic adaptation.
Collapse
Affiliation(s)
- Carola Pritzkow
- School of Ecosystem and Forest Sciences, University of Melbourne, 500 Yarra Blvd Burnley, VIC 3121, Australia
| | - Virginia Williamson
- School of Ecosystem and Forest Sciences, University of Melbourne, 500 Yarra Blvd Burnley, VIC 3121, Australia
| | - Christopher Szota
- School of Ecosystem and Forest Sciences, University of Melbourne, 500 Yarra Blvd Burnley, VIC 3121, Australia
| | - Raphael Trouvé
- School of Ecosystem and Forest Sciences, University of Melbourne, 500 Yarra Blvd Burnley, VIC 3121, Australia
| | - Stefan K Arndt
- School of Ecosystem and Forest Sciences, University of Melbourne, 500 Yarra Blvd Burnley, VIC 3121, Australia
| |
Collapse
|
3
|
Flexas J, Carriquí M. Photosynthesis and photosynthetic efficiencies along the terrestrial plant's phylogeny: lessons for improving crop photosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:964-978. [PMID: 31833133 DOI: 10.1111/tpj.14651] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/12/2019] [Accepted: 12/03/2019] [Indexed: 05/08/2023]
Abstract
Photosynthesis is the basis of all life on Earth. Surprisingly, until very recently, data on photosynthesis, photosynthetic efficiencies, and photosynthesis limitations in terrestrial land plants other than spermatophytes were very scarce. Here we provide an updated data compilation showing that maximum photosynthesis rates (expressed either on an area or dry mass basis) progressively scale along the land plant's phylogeny, from lowest values in bryophytes to largest in angiosperms. Unexpectedly, both photosynthetic water (WUE) and nitrogen (PNUE) use efficiencies also scale positively through the phylogeny, for which it has been commonly reported that these two efficiencies tend to trade-off between them when comparing different genotypes or a single species subject to different environmental conditions. After providing experimental evidence that these observed trends are mostly due to an increased mesophyll conductance to CO2 - associated with specific anatomical changes - along the phylogeny, we discuss how these findings on a large phylogenetic scale can provide useful information to address potential photosynthetic improvements in crops in the near future.
Collapse
Affiliation(s)
- Jaume Flexas
- Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears - Instituto de Investigaciones Agroambientales y de Economía del Agua (UIB-INAGEA), Carretera de Valldemossa Km 7.5, 07122, Palma, Spain
| | - Marc Carriquí
- Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears - Instituto de Investigaciones Agroambientales y de Economía del Agua (UIB-INAGEA), Carretera de Valldemossa Km 7.5, 07122, Palma, Spain
- School of Biological Sciences, University of Tasmania, Private Bag 51, 7001, Hobart, TAS, Australia
| |
Collapse
|
4
|
Du B, Kreuzwieser J, Dannenmann M, Junker LV, Kleiber A, Hess M, Jansen K, Eiblmeier M, Gessler A, Kohnle U, Ensminger I, Rennenberg H, Wildhagen H. Foliar nitrogen metabolism of adult Douglas-fir trees is affected by soil water availability and varies little among provenances. PLoS One 2018; 13:e0194684. [PMID: 29566035 PMCID: PMC5864041 DOI: 10.1371/journal.pone.0194684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 03/07/2018] [Indexed: 12/29/2022] Open
Abstract
The coniferous forest tree Douglas-fir (Pseudotsuga menziesii) is native to the pacific North America, and is increasingly planted in temperate regions worldwide. Nitrogen (N) metabolism is of great importance for growth, resistance and resilience of trees. In the present study, foliar N metabolism of adult trees of three coastal and one interior provenance of Douglas-fir grown at two common gardens in southwestern Germany (Wiesloch, W; Schluchsee, S) were characterized in two subsequent years. Both the native North American habitats of the seed sources and the common garden sites in Germany differ in climate conditions. Total and mineral soil N as well as soil water content were higher in S compared to W. We hypothesized that i) provenances differ constitutively in N pool sizes and composition, ii) N pools are affected by environmental conditions, and iii) that effects of environmental factors on N pools differ among interior and coastal provenances. Soil water content strongly affected the concentrations of total N, soluble protein, total amino acids (TAA), arginine and glutamate. Foliar concentrations of total N, soluble protein, structural N and TAA of trees grown at W were much higher than in trees at S. Provenance effects were small but significant for total N and soluble protein content (interior provenance showed lowest concentrations), as well as arginine, asparagine and glutamate. Our data suggest that needle N status of adult Douglas-fir is independent from soil N availability and that low soil water availability induces a re-allocation of N from structural N to metabolic N pools. Small provenance effects on N pools suggest that local adaptation of Douglas-fir is not dominated by N conditions at the native habitats.
Collapse
Affiliation(s)
- Baoguo Du
- College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, China
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Jürgen Kreuzwieser
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Michael Dannenmann
- Karlsruhe Institute of Technology (KIT) Campus Alpin, Institute of Meteorology and Climate Research (IMK), Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany
| | - Laura Verena Junker
- Department of Biology, Graduate Programs in Cell & Systems Biology and Ecology & Evolutionary Biology, University of Toronto, Mississauga, Ontario, Canada
- Forest Research Institute Baden-Württemberg (FVA), Freiburg, Germany
| | - Anita Kleiber
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Moritz Hess
- Department of Biology, Graduate Programs in Cell & Systems Biology and Ecology & Evolutionary Biology, University of Toronto, Mississauga, Ontario, Canada
- Forest Research Institute Baden-Württemberg (FVA), Freiburg, Germany
- Institute of Medical Biometry, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Mainz, Germany
| | - Kirstin Jansen
- Institute for Landscape Biogeochemistry, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Monika Eiblmeier
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Arthur Gessler
- Institute for Landscape Biogeochemistry, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Ulrich Kohnle
- Forest Research Institute Baden-Württemberg (FVA), Freiburg, Germany
| | - Ingo Ensminger
- Department of Biology, Graduate Programs in Cell & Systems Biology and Ecology & Evolutionary Biology, University of Toronto, Mississauga, Ontario, Canada
- Forest Research Institute Baden-Württemberg (FVA), Freiburg, Germany
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- King Saud University, Riyadh, Saudi Arabia
| | - Henning Wildhagen
- Forest Research Institute Baden-Württemberg (FVA), Freiburg, Germany
- * E-mail:
| |
Collapse
|
5
|
Guarino F, Conte B, Improta G, Sciarrillo R, Castiglione S, Cicatelli A, Guarino C. Genetic characterization, micropropagation, and potential use for arsenic phytoremediation of Dittrichia viscosa (L.) Greuter. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:675-683. [PMID: 29172148 DOI: 10.1016/j.ecoenv.2017.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/03/2017] [Accepted: 11/05/2017] [Indexed: 06/07/2023]
Abstract
In the last decade, many scientists have focused their attention on the search for new plant species that can offer improved capacities to reclaim polluted soils and waters via phytoremediation. In this study, seed batches from three natural populations of Dittrichia viscosa, harvested in rural, urban, and industrial areas of central and southern Italy, were used to: (i) evaluate the genetic and morphological diversity of the populations; (ii) develop an efficient protocol for in-vitro propagation from seedling microcuttings; (iii) achieve optimal acclimatization of micropropagated plants to greenhouse conditions; (iv) test the response to arsenic (As) soil contamination of micropropagated plants. The genetic biodiversity study, based on Random Amplification of Polymorphic DNA (RAPD), as well as the morphometric analysis of 20 seedlings from each population revealed some degree of differentiation among populations. Based on these data, the most biodiverse plants from the three populations (10 lines each) were clonally multiplied by micropropagation using microcuttings of in-vitro grown seedlings. Three culture media were tested and Mureshige and Skoog medium was chosen for both seedling growth and micropropagation. The micropropagated plants responded well to greenhouse conditions and over 95% survived the acclimatization phase. Four clones were tested for their capacity to grow on soil spiked with NaAsO2 and to absorb and accumulate the metalloid. All clones tolerated up to 1.0mg As. At the end of the trial (five weeks), As was detectable only in leaves of As-treated plants and concentration varied significantly among clones. The amount of As present in plants (leaves) corresponded to ca. 0.10-1.7% of the amount supplied. However, As was no longer detectable in soil suggesting that the metalloid was taken up, translocated and probably phytovolatilized.
Collapse
Affiliation(s)
- Francesco Guarino
- Department of Chemistry and Biology "A. Zambelli" University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.
| | - Barbara Conte
- Department of Science and Technology, University of Sannio, Via Port'Arsa, 11, 82100 Benevento, Italy.
| | - Giovanni Improta
- Department of Public Health, University of Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy.
| | - Rosaria Sciarrillo
- Department of Science and Technology, University of Sannio, Via Port'Arsa, 11, 82100 Benevento, Italy.
| | - Stefano Castiglione
- Department of Chemistry and Biology "A. Zambelli" University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.
| | - Angela Cicatelli
- Department of Chemistry and Biology "A. Zambelli" University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.
| | - Carmine Guarino
- Department of Science and Technology, University of Sannio, Via Port'Arsa, 11, 82100 Benevento, Italy.
| |
Collapse
|
6
|
Otis Prud'homme G, Lamhamedi MS, Benomar L, Rainville A, DeBlois J, Bousquet J, Beaulieu J. Ecophysiology and Growth of White Spruce Seedlings from Various Seed Sources along a Climatic Gradient Support the Need for Assisted Migration. FRONTIERS IN PLANT SCIENCE 2017; 8:2214. [PMID: 29358942 PMCID: PMC5766665 DOI: 10.3389/fpls.2017.02214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/18/2017] [Indexed: 05/19/2023]
Abstract
With climate change, favorable growing conditions for tree species are shifting northwards and to higher altitudes. Therefore, local populations are becoming less adapted to their environment. Assisted migration is one of the proposed adaptive measures to reduce the vulnerability of natural populations and maintain forest productivity. It consists of moving genetic material to a territory where future climate conditions correspond to those of its current location. Eight white spruce (Picea glauca [Moench] Voss) seed sources representing as many seed orchards were planted in 2013 at three forest sites simulating a south-north climatic gradient of 1.7°C in Québec, Canada. The objectives were to (1) evaluate the morpho-physiological responses of the different seed sources and (2) determine the role of genetic adaptation and physiological plasticity on the observed variation in morpho-physiological traits. Various seedling characteristics were measured, notably height growth from nursery to the fourth year on plantation. Other traits such as biomass and carbon allocation, nutritional status, and various photosynthetic traits before bud break, were evaluated during the fourth growing season. No interaction between sites and seed sources was observed for any traits, suggesting similar plasticity between seed sources. There was no change in the rank of seed sources and sites between years for height growth. Moreover, a significant positive correlation was observed between the height from the nursery and that after 4 years in the plantation. Southern seed sources showed the best height growth, while optimum growth was observed at the central site. Juvenile height growth seems to be a good indicator of the juvenile carbon sequestration and could serve as a selection criterion for the best genetics sources for carbon sequestration. Vector analysis showed no nitrogen deficiency 4 years after planting. Neither seed sources nor planting sites had a significant effect on photosynthesis before bud break. The observed results during the establishment phase under different site conditions indicate that southern seed sources may already benefit from assisted migration to cooler climatic conditions further north. While northern seed sources are likely to benefit from anticipated local global warming, they would not match the growth performance of seedlings from southern sources.
Collapse
Affiliation(s)
- Guillaume Otis Prud'homme
- Centre d'étude de la Forêt, Faculté de Foresterie, de Géographie et de Géomatique, Université Laval, Québec City, QC, Canada
| | - Mohammed S. Lamhamedi
- Direction de la Recherche Forestière, Ministère des Forêts, de la Faune et des Parcs, Québec City, QC, Canada
| | - Lahcen Benomar
- Centre d'étude de la Forêt, Faculté de Foresterie, de Géographie et de Géomatique, Université Laval, Québec City, QC, Canada
| | - André Rainville
- Direction de la Recherche Forestière, Ministère des Forêts, de la Faune et des Parcs, Québec City, QC, Canada
| | - Josianne DeBlois
- Direction de la Recherche Forestière, Ministère des Forêts, de la Faune et des Parcs, Québec City, QC, Canada
| | - Jean Bousquet
- Centre d'étude de la Forêt, Faculté de Foresterie, de Géographie et de Géomatique, Université Laval, Québec City, QC, Canada
- Canada Research Chair in Forest Genomics, Université Laval, Québec City, QC, Canada
| | - Jean Beaulieu
- Centre d'étude de la Forêt, Faculté de Foresterie, de Géographie et de Géomatique, Université Laval, Québec City, QC, Canada
- Canada Research Chair in Forest Genomics, Université Laval, Québec City, QC, Canada
- *Correspondence: Jean Beaulieu
| |
Collapse
|
7
|
Villeneuve I, Lamhamedi MS, Benomar L, Rainville A, DeBlois J, Beaulieu J, Bousquet J, Lambert MC, Margolis H. Morpho-Physiological Variation of White Spruce Seedlings from Various Seed Sources and Implications for Deployment under Climate Change. FRONTIERS IN PLANT SCIENCE 2016; 7:1450. [PMID: 27746795 PMCID: PMC5042969 DOI: 10.3389/fpls.2016.01450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/12/2016] [Indexed: 05/29/2023]
Abstract
Because of changes in climatic conditions, tree seeds originating from breeding programs may no longer be suited to sites where they are currently sent. As a consequence, new seed zones may have to be delineated. Assisted migration consists of transferring seed sources that match the future climatic conditions to which they are currently adapted. It represents a strategy that could be used to mitigate the potential negative consequences of climate change on forest productivity. Decisions with regard to the choice of the most appropriate seed sources have to rely on appropriate knowledge of morpho-physiological responses of trees. To meet this goal, white spruce (Picea glauca [Moench] Voss) seedlings from eight seed orchards were evaluated during two years in a forest nursery, and at the end of the first growing season on three plantation sites located in different bioclimatic domains in Quebec. The morpho-physiological responses obtained at the end of the second growing season (2+0) in the nursery made it possible to cluster the orchards into three distinct groups. Modeling growth curves of these different groups showed that the height growth of seedlings from the second-generation and southern first-generation seed orchards was significantly higher than that of those from other orchards, by at least 6%. A multiple regression model with three climatic variables (average growing season temperature, average July temperature, length of the growing season) showed that the final height of seedlings (2+0) from the first-generation seed orchards was significantly related to the local climatic conditions at the orchard sites of origin where parental trees from surrounding natural populations were sampled to provide grafts for orchard establishment. Seedling height growth was significantly affected by both seed source origins and planting sites, but the relative ranking of the different seed sources was maintained regardless of reforestation site. This knowledge could be used, in conjunction with transfer models, to refine operational seed transfer rules and select the most suitable sites in an assisted migration strategy.
Collapse
Affiliation(s)
- Isabelle Villeneuve
- Centre d’Étude de la Forêt, Faculté de Foresterie, de Géographie et de Géomatique, Université Laval, QuébecQC, Canada
| | - Mohammed S. Lamhamedi
- Direction de la Recherche Forestière, Ministère des Forêts, de la Faune et des Parcs, QuébecQC, Canada
| | - Lahcen Benomar
- Centre d’Étude de la Forêt, Faculté de Foresterie, de Géographie et de Géomatique, Université Laval, QuébecQC, Canada
| | - André Rainville
- Direction de la Recherche Forestière, Ministère des Forêts, de la Faune et des Parcs, QuébecQC, Canada
| | - Josianne DeBlois
- Direction de la Recherche Forestière, Ministère des Forêts, de la Faune et des Parcs, QuébecQC, Canada
| | - Jean Beaulieu
- Centre d’Étude de la Forêt, Faculté de Foresterie, de Géographie et de Géomatique, Université Laval, QuébecQC, Canada
- Canadian Wood Fibre Centre, Canadian Forest Service, Natural Resources Canada, QuébecQC, Canada
| | - Jean Bousquet
- Centre d’Étude de la Forêt, Faculté de Foresterie, de Géographie et de Géomatique, Université Laval, QuébecQC, Canada
| | - Marie-Claude Lambert
- Direction de la Recherche Forestière, Ministère des Forêts, de la Faune et des Parcs, QuébecQC, Canada
| | - Hank Margolis
- Centre d’Étude de la Forêt, Faculté de Foresterie, de Géographie et de Géomatique, Université Laval, QuébecQC, Canada
| |
Collapse
|
8
|
|
9
|
Benomar L, Lamhamedi MS, Rainville A, Beaulieu J, Bousquet J, Margolis HA. Genetic Adaptation vs. Ecophysiological Plasticity of Photosynthetic-Related Traits in Young Picea glauca Trees along a Regional Climatic Gradient. FRONTIERS IN PLANT SCIENCE 2016; 7:48. [PMID: 26870067 PMCID: PMC4737914 DOI: 10.3389/fpls.2016.00048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 01/12/2016] [Indexed: 05/23/2023]
Abstract
Assisted population migration (APM) is the intentional movement of populations within a species range to sites where future environmental conditions are projected to be more conducive to growth. APM has been proposed as a proactive adaptation strategy to maintain forest productivity and to reduce the vulnerability of forest ecosystems to projected climate change. The validity of such a strategy will depend on the adaptation capacity of populations, which can partially be evaluated by the ecophysiological response of different genetic sources along a climatic gradient. This adaptation capacity results from the compromise between (i) the degree of genetic adaptation of seed sources to their environment of origin and (ii) the phenotypic plasticity of functional trait which can make it possible for transferred seed sources to positively respond to new growing conditions. We examined phenotypic variation in morphophysiological traits of six seed sources of white spruce (Picea glauca [Moench] Voss) along a regional climatic gradient in Québec, Canada. Seedlings from the seed sources were planted at three forest sites representing a mean annual temperature (MAT) gradient of 2.2°C. During the second growing season, we measured height growth (H2014) and traits related to resources use efficiency and photosynthetic rate (A max). All functional traits showed an adaptive response to the climatic gradient. Traits such as H2014, A max, stomatal conductance (g s ), the ratio of mesophyll to stomatal conductance, water use efficiency, and photosynthetic nitrogen-use efficiency showed significant variation in both physiological plasticity due to the planting site and seed source variation related to local genetic adaptation. However, the amplitude of seed source variation was much less than that related to plantation sites in the area investigated. The six seed sources showed a similar level of physiological plasticity. H2014, A max and g s , but not carboxylation capacity (V cmax), were correlated and decreased with a reduction of the average temperature of the growing season at seed origin. The clinal variation in H2014 and A max appeared to be driven by CO2 conductance. The presence of locally adapted functional traits suggests that the use of APM may have advantages for optimizing seed source productivity in future local climates.
Collapse
Affiliation(s)
- Lahcen Benomar
- Faculté de Foresterie, de Géographie et de Géomatique, Centre D'étude de la Forêt, Université LavalQuebec, QC, Canada
| | - Mohammed S. Lamhamedi
- Direction de la Recherche Forestière, Ministère des Forêts, de la Faune et des ParcsQuebec, QC, Canada
| | - André Rainville
- Direction de la Recherche Forestière, Ministère des Forêts, de la Faune et des ParcsQuebec, QC, Canada
| | - Jean Beaulieu
- Faculté de Foresterie, de Géographie et de Géomatique, Centre D'étude de la Forêt, Université LavalQuebec, QC, Canada
| | - Jean Bousquet
- Faculté de Foresterie, de Géographie et de Géomatique, Centre D'étude de la Forêt, Université LavalQuebec, QC, Canada
| | - Hank A. Margolis
- Faculté de Foresterie, de Géographie et de Géomatique, Centre D'étude de la Forêt, Université LavalQuebec, QC, Canada
| |
Collapse
|