1
|
Xu Z, Fan F, Lin Q, Guo S, Li S, Zhang Y, Feng Z, Wang X, Rensing C, Cao G, Wu L, Cao S. Effects of Different Stand Densities on the Composition and Diversity of Soil Microbiota in a Cunninghamia lanceolata Plantation. PLANTS (BASEL, SWITZERLAND) 2025; 14:98. [PMID: 39795358 PMCID: PMC11723032 DOI: 10.3390/plants14010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025]
Abstract
As sustainable forest management gains increasing attention, comprehending the impact of stand density on soil properties and microbial communities is crucial for optimizing forest ecosystem functions. This study employed high-throughput sequencing in conjunction with soil physicochemical analysis to assess the effects of stand density on soil physicochemical properties and microbial community characteristics in Chinese fir plantations, aiming to elucidate the influence of density regulation on ecosystem services. Our results suggested that changes in soil physicochemical properties and microenvironmental conditions were key drivers of soil microbial diversity. Total carbon (TC), soluble nitrogen (SN), and light fraction organic matter decreased with increasing stand density, while total potassium (TK) and available phosphorus (AP) concentrations increased. The plot with a density of 900 trees ha-1 exhibited the highest bacterial diversity, in contrast to the plot with 1500 trees ha-1, which showed the lowest. The dominant microbial taxa were similar across different stand retention densities, with Acidobacteria, Proteobacteria, and Chloroflexi being the predominant bacterial phyla and Ascomycota and Basidiomycota being the main fungal groups. Significant positive correlations were observed between soil microbial community structures and environmental factors, particularly with respect to soil phosphorus and nitrogen content. The present study demonstrated that reduced stand densities modulated soil nutrient content and enhanced bacterial diversity, thereby contributing to a more complex and stable soil ecosystem structure. These insights provide a scientific foundation for optimizing the management of Chinese fir plantations, thereby supporting the sustainable development of forest ecosystems.
Collapse
Affiliation(s)
- Zuyuan Xu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.X.); (S.G.); (X.W.); (G.C.)
| | - Fei Fan
- College of Jun Cao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.F.); (S.L.); (Y.Z.)
| | - Qinmin Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Shengzhou Guo
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.X.); (S.G.); (X.W.); (G.C.)
| | - Shumao Li
- College of Jun Cao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.F.); (S.L.); (Y.Z.)
| | - Yunpeng Zhang
- College of Jun Cao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.F.); (S.L.); (Y.Z.)
| | - Zhiyi Feng
- Institute for Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.F.); (C.R.)
| | - Xingxing Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.X.); (S.G.); (X.W.); (G.C.)
- Marine Electromechanical College, Xiamen Ocean Vocational College, Xiamen 361102, China
| | - Christopher Rensing
- Institute for Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.F.); (C.R.)
| | - Guangqiu Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.X.); (S.G.); (X.W.); (G.C.)
| | - Linkun Wu
- College of Jun Cao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.F.); (S.L.); (Y.Z.)
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.X.); (S.G.); (X.W.); (G.C.)
| |
Collapse
|
2
|
Guo C, Hu Y, Qin J, Wu D, Leng H, Wang H. Adaptive strategies in architecture and allocation for the asymmetric growth of camphor tree (Cinnamomum camphora L.). Sci Rep 2024; 14:22604. [PMID: 39349553 PMCID: PMC11442443 DOI: 10.1038/s41598-024-72732-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/10/2024] [Indexed: 10/02/2024] Open
Abstract
The stability-related asymmetry in roots, trunk, and crown is always found as a typical effect of biomechanical design under heterogeneous stimulus environment. However, it appears to be a conflict between the biomechanical principle and the source-sink distance of nutrient allocation strategies when the orientational asymmetry occurs. Adaptive growth strategies associated with biomass and nutrient allocation remain to be explored. This study used both the minirhizotron and harvest methods to test the effect of trunk inclination of camphor trees (Cinnamomum camphora) and found that the asymmetry coefficient of root biomass was - 0.29, showing more root biomass distributed on the other side of trunk inclination. This side had larger surface area and volume of fine roots, the smaller in diameter and the larger in length of the first level roots, higher leaf total nitrogen (TN) and slightly higher root TN content, higher activities of antioxidant enzymes SOD, POD, and CAT in leaves, and lower soluble sugar and protein. The biomass, morphological and physiological characteristics suggest that trees may follow both the biomechanical design and source-sink distance of nutrient allocation strategies. The research results expand the connotation of root-shoot balance in the orientational allocation of biomass and physiological responses.
Collapse
Affiliation(s)
- Chenbing Guo
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, No. 100 Guilin Road, Xuhui District, Shanghai, 200234, China
| | - Yonghong Hu
- Shanghai Chenshan Botanical Garden, No. 3888 Chenhua Road, Songjiang District, Shanghai, 201602, China
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, No. 3888 Chenhua Road, Songjiang District, Shanghai, 201602, China
| | - Jun Qin
- Shanghai Chenshan Botanical Garden, No. 3888 Chenhua Road, Songjiang District, Shanghai, 201602, China
| | - Duorun Wu
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, No. 100 Guilin Road, Xuhui District, Shanghai, 200234, China
| | - Hanbing Leng
- Shanghai Botanical Garden, No. 1111 Longwu Road, Xuhui District, Shanghai, 200231, China
| | - Hongbing Wang
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, No. 100 Guilin Road, Xuhui District, Shanghai, 200234, China.
| |
Collapse
|
3
|
Xing D, Wang Y, Sun P, Huang H, Lin E. A CNN-LSTM-att hybrid model for classification and evaluation of growth status under drought and heat stress in chinese fir (Cunninghamia lanceolata). PLANT METHODS 2023; 19:66. [PMID: 37400865 PMCID: PMC10316624 DOI: 10.1186/s13007-023-01044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Cunninghamia lanceolata (Chinese fir), is one of the most important timber trees in China. With the global warming, to develop new resistant varieties to drought or heat stress has become an essential task for breeders of Chinese fir. However, classification and evaluation of growth status of Chinese fir under drought or heat stress are still labor-intensive and time-consuming. RESULTS In this study, we proposed a CNN-LSTM-att hybrid model for classification of growth status of Chinese fir seedlings under drought and heat stress, respectively. Two RGB image datasets of Chinese fir seedling under drought and heat stress were generated for the first time, and utilized in this study. By comparing four base CNN models with LSTM, the Resnet50-LSTM was identified as the best model in classification of growth status, and LSTM would dramatically improve the classification performance. Moreover, attention mechanism further enhanced performance of Resnet50-LSTM, which was verified by Grad-CAM. By applying the established Resnet50-LSTM-att model, the accuracy rate and recall rate of classification was up to 96.91% and 96.79% for dataset of heat stress, and 96.05% and 95.88% for dataset of drought, respectively. Accordingly, the R2 value and RMSE value for evaluation on growth status under heat stress were 0.957 and 0.067, respectively. And, the R2 value and RMSE value for evaluation on growth status under drought were 0.944 and 0.076, respectively. CONCLUSION In summary, our proposed model provides an important tool for stress phenotyping in Chinese fir, which will be a great help for selection and breeding new resistant varieties in future.
Collapse
Affiliation(s)
- Dong Xing
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yulin Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Penghui Sun
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Huahong Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Erpei Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
4
|
Huang X, Guo W, Yang L, Zou Z, Zhang X, Addo-Danso SD, Zhou L, Li S. Effects of Drought Stress on Non-Structural Carbohydrates in Different Organs of Cunninghamia lanceolata. PLANTS (BASEL, SWITZERLAND) 2023; 12:2477. [PMID: 37447038 DOI: 10.3390/plants12132477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023]
Abstract
The Chinese fir Cunninghamia lanceolata (Lamb.) Hook. is an important timber conifer species in China. Much has been studied about Chinese fir, but the distribution of non-structural carbohydrates (NSCs) among different organs (needles, branch, stem, and roots) under drought stress remains poorly understood. In this study, we used one-year-old C. lanceolata plantlets to evaluate the effects of simulated drought under four water regimes, i.e., adequate water or control, light drought, moderate drought, and severe drought stress corresponding to 80%, 60%, 50%, and 40%, respectively of soil field maximum capacity on various NSCs in the needles, branch, stem and roots. The degree and duration of drought stress had significant effects on fructose, glucose, sucrose, soluble sugar, starch, and NSC content in various organs (p < 0.05). Fructose content increased in stem xylem, stem phloem, and leaves. Glucose and sucrose content declined in stem and branch xylem under light drought stress and moderate drought stress, and increased under severe drought stress conditions. Soluble sugars content declined, and starch content increased in leaf and branch phloem, but the latter could not compensate for soluble sugar consumption in the whole plant, and therefore, total NSCs decreased. Correlation analysis showed that a significant positive correlation existed in the soluble sugar content between leaves and roots, and between xylem and phloem in the stems and branches. Chinese fir appears to have different NSCs distribution strategies in response to drought stress, viz., allocating more soluble sugars to fine roots and increasing starch content in the needles, as well as ensuring osmosis to prevent xylem embolism. Our study may broaden the understanding of the various mechanisms that Chinese fir and other plants have to enhance their tolerance to drought stress.
Collapse
Affiliation(s)
- Xiaoyan Huang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, Fuzhou 350002, China
| | - Wenjuan Guo
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, Fuzhou 350002, China
| | - Li Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, Fuzhou 350002, China
| | - Zhiguang Zou
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, Fuzhou 350002, China
| | - Xinyang Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shalom Daniel Addo-Danso
- Forests and Climate Change Division, CSIR-Forestry Research Institute of Ghana, Kumasi P.O. Box UP 63 KNUST, Ghana
| | - Lili Zhou
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
- College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Shubin Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, Fuzhou 350002, China
| |
Collapse
|
5
|
Yan M, Zhang C, Li H, Zhang L, Ren Y, Chen Y, Cai H, Zhang S. Root pruning improves maize water-use efficiency by root water absorption. FRONTIERS IN PLANT SCIENCE 2023; 13:1023088. [PMID: 36684736 PMCID: PMC9845614 DOI: 10.3389/fpls.2022.1023088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Root systems are an important component of plants that impact crop water-use efficiency (WUE) and yield. This study examined the effects of root pruning on maize yield, WUE, and water uptake under pot and hydroponic conditions. The pot experiment showed that root pruning significantly decreased root/shoot ratio. Both small root pruning (cut off about 1/5 of the root system, RP1) and large root pruning (cut off about 1/3 of the root system, RP2) improved WUE and root hydraulic conductivity (Lpr) in the residual root system. Compared with that in the un-cut control, at the jointing stage, RP1 and RP2 increased Lpr by 43.9% and 31.5% under well-watered conditions and 27.4% and 19.8% under drought stress, respectively. RP1 increased grain yield by 12.9% compared with that in the control under well-watered conditions, whereas both pruning treatments did not exhibit a significant effect on yield under drought stress. The hydroponic experiment demonstrated that root pruning did not reduce leaf water potential but increased residual root hydraulic conductivity by 26.2% at 48 h after root pruning under well-watered conditions. The foregoing responses may be explained by the upregulation of plasma membrane intrinsic protein gene and increases in abscisic acid and jasmonic acid in roots. Increased auxin and salicylic acid contributed to the compensated lateral root growth. In conclusion, root pruning improved WUE in maize by root water uptake.
Collapse
Affiliation(s)
- Minfei Yan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Cong Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Hongbing Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Li Zhang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Yuanyuan Ren
- Geography and Environmental Engineering Department, Baoji University of Arts and Sciences, Baoji, China
| | - Yinglong Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
- The University of Western Australia Institute of Agriculture, and University of Western Australia School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Huanjie Cai
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest Agriculture and Forestry University, Yangling, China
| | - Suiqi Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
6
|
Seed Germination Behavior, Growth, Physiology and Antioxidant Metabolism of Four Contrasting Cultivars under Combined Drought and Salinity in Soybean. Antioxidants (Basel) 2022; 11:antiox11030498. [PMID: 35326148 PMCID: PMC8944481 DOI: 10.3390/antiox11030498] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 12/10/2022] Open
Abstract
Drought and salinity stresses are persistent threat to field crops and are frequently mentioned as major constraints on worldwide agricultural productivity. Moreover, their severity and frequency are predicted to rise in the near future. Therefore, in the present study we investigated the mechanisms underlying plant responses to drought (5, 10 and 15% polyethylene glycol, PEG-6000), salinity (50, 100, and 150 mM NaCl), and their combination, particularly at the seed germination stage, in terms of photosynthesis and antioxidant activity, in four soybean cultivars, viz., PI408105A (PI5A), PI567731 (PI31), PI567690 (PI90), and PI416937 (PI37). Results showed that seed germination was enhanced by 10% PEG and decreased by 15% PEG treatments compared to the control, while seed germination was drastically decreased under all levels of NaCl treatment. Furthermore, combined drought and salinity treatment reduced plant height and root length, shoot and root total weights, and relative water content compared with that of control. However, the reductions were not similar among the varieties, and definite growth retardations were observed in cultivar PI5A under drought and in PI37 under salinity. In addition, all treatments resulted in substantially reduced contents of chlorophyll pigment, anthocyanin, and chlorophyll fluorescence; and increased lipid peroxidation, electrolyte leakage, and non-photochemical quenching in all varieties of soybean as compared to the control plants. However, proline, amino acids, sugars, and secondary metabolites were increased with the drought and salinity stresses alone. Moreover, the reactive oxygen species accumulation was accompanied by improved enzymatic antioxidant activity, such as that of superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase. However, the enhancement was most noticeable in PI31 and PI90 under both treatments. In conclusion, the cultivar PI31 has efficient drought and salinity stress tolerance mechanisms, as illustrated by its superior photosynthesis, osmolyte accumulation, antioxidative enzyme activity, and secondary metabolite regulation, compared to the other cultivars, when stressed.
Collapse
|
7
|
Feng Z, Kong D, Kong Y, Zhang B, Yang X. Coordination of root growth with root morphology, physiology and defense functions in response to root pruning in Platycladus orientalis. J Adv Res 2022; 36:187-199. [PMID: 35127173 PMCID: PMC8799911 DOI: 10.1016/j.jare.2021.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 06/23/2021] [Accepted: 07/08/2021] [Indexed: 11/18/2022] Open
Abstract
A growth‒defense tradeoff following root pruning. Root growth lagged behind root physiology after root pruning. The growth–defense tradeoff was induced by indole-3-acetic acid. Proteomic analysis supported a growth–defense tradeoff. Root pruning altered the expression of genes at the protein and mRNA levels.
Introduction Root pruning is commonly used to facilitate seedling transplantation for the restoration of degraded or damaged ecosystems. However, little is known about how root growth coordinates morphology, physiology and defense functions following root pruning. Objectives We aim to elucidate whether and how root growth trades off with defense functioning after pruning. Methods Seedlings of Platycladus orientalis, a tree species widely used in forest restoration, were subjected to root pruning treatment. A suite of root growth, morphological and physiological traits were measured after pruning in combination with proteomic analysis. Results Root growth was insensitive to pruning until at 504 h with a significant increase of 16.8%, whereas root physiology was activated rapidly after pruning. Key root morphological traits, such as root diameter, specific root length and root tissue density, showed no response to the pruning treatment. Plant defense syndromes such as reactive oxygen species-scavenging enzymes and defensive phytohormones such as jasmonic acid and abscisic acid, were recruited at six hours after pruning and recovered to the unpruned levels at 504 h. Compared with the controls, 271, 360 and 106 proteins were differentially expressed at 6, 72 and 504 h after root pruning, respectively. These proteins, associated with defense function, showed temporal patterns similar to the above defense syndromes. Conclusion Our results suggest a root growth-defense tradeoff following root pruning in P. orientalis. This tradeoff was potentially due to the significant increase of indole-3-acetic acid, the phytohormone stimulating root branching, which occurred soon after pruning. Together, these results provide a holistic understanding of how root growth is coordinated with root morphology, physiology, and defense in response to root pruning.
Collapse
Affiliation(s)
- Zhipei Feng
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Deliang Kong
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Yuhua Kong
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, United States
| | - Xitian Yang
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
- Corresponding author.
| |
Collapse
|
8
|
Yu L, Dong H, Huang Z, Korpelainen H, Li C. Elevated CO2 causes different growth stimulation, water- and nitrogen-use efficiencies, and leaf ultrastructure responses in two conifer species under intra- and interspecific competition. TREE PHYSIOLOGY 2021; 41:2082-2095. [PMID: 33891044 DOI: 10.1093/treephys/tpab054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
The continuously increasing atmospheric carbon dioxide concentration ([CO2]) has substantial effects on plant growth, and on the composition and structure of forests. However, how plants respond to elevated [CO2] (e[CO2]) under intra- and interspecific competition has been largely overlooked. In this study, we employed Abies faxoniana Rehder & Wilson and Picea purpurea Mast. seedlings to explore the effects of e[CO2] (700 p.p.m.) and plant-plant competition on plant growth, physiological and morphological traits, and leaf ultrastructure. We found that e[CO2] stimulated plant growth, photosynthesis and nonstructural carbohydrates (NSC), affected morphological traits and leaf ultrastructure, and enhanced water- and nitrogen (N)- use efficiencies in A. faxoniana and P. purpurea. Under interspecific competition and e[CO2], P. purpurea showed a higher biomass accumulation, photosynthetic capacity and rate of ectomycorrhizal infection, and higher water- and N-use efficiencies compared with A. faxoniana. However, under intraspecific competition and e[CO2], the two conifers showed no differences in biomass accumulation, photosynthetic capacity, and water- and N-use efficiencies. In addition, under interspecific competition and e[CO2], A. faxoniana exhibited higher NSC levels in leaves as well as more frequent and greater starch granules, which may indicate carbohydrate limitation. Consequently, we concluded that under interspecific competition, P. purpurea possesses a positive growth and adjustment strategy (e.g. a higher photosynthetic capacity and rate of ectomycorrhizal infection, and higher water- and N-use efficiencies), while A. faxoniana likely suffers from carbohydrate limitation to cope with rising [CO2]. Our study highlights that plant-plant competition should be taken into consideration when assessing the impact of rising [CO2] on the plant growth and physiological performance.
Collapse
Affiliation(s)
- Lei Yu
- Department of Ecology, College of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Hangzhou 311121, China
| | - Haojie Dong
- Department of Ecology, College of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Hangzhou 311121, China
| | - Zongdi Huang
- Department of Ecology, College of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Hangzhou 311121, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Latokartanonkaari 5 FI-00014, Helsinki, Finland
| | - Chunyang Li
- Department of Ecology, College of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Hangzhou 311121, China
| |
Collapse
|
9
|
Suchocka M, Swoczyna T, Kosno-Jończy J, Kalaji HM. Impact of heavy pruning on development and photosynthesis of Tilia cordata Mill. trees. PLoS One 2021; 16:e0256465. [PMID: 34424935 PMCID: PMC8382193 DOI: 10.1371/journal.pone.0256465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/08/2021] [Indexed: 11/18/2022] Open
Abstract
Tree pruning is carried out to reduce conflict with infrastructure, buildings, and any other human activity. However, heavy pruning may result in a diminished tree crown capacity for sugar production and exposure to fungal infection. This risk leads to a decrease in tree stability or vigour. In this work, we analysed the effect of heavy pruning of roadside trees on the photosynthetic performance process compared to neighbouring unpruned trees. Four years of tree crown growth was studied by terrestrial imaging. Tree vitality (Roloff's classification) and risk (Visual Tree Assessment) were evaluated. Over-pruned trees showed intensified photosynthetic efficiency during the growing season following pruning. Particularly ET0/TR0 and PIABS tended to increase in pruned trees while higher Fv/Fm was noted only in late October, suggesting delayed leaf senescence. After four years, pruned trees rebuilt their crowns, however not in their entirety. Results obtained from biometric, vitality, and risk assessment showed high differentiation in pruned tree crown recovery. Our results revealed that despite the intensified efforts of trees to recover from wounding effects, severe pruning evokes dieback occurrence and a higher risk of failure in mature trees.
Collapse
Affiliation(s)
- Marzena Suchocka
- Department of Landscape Architecture, Institute of Environmental Engineering, Warsaw University of Life Sciences–SGGW, Warsaw, Poland
| | - Tatiana Swoczyna
- Department of Environment Protection and Dendrology, Institute of Horticultural Sciences, Warsaw University of Life Sciences–SGGW, Warszawa, Poland
| | - Joanna Kosno-Jończy
- Department of Landscape Architecture, Institute of Environmental Engineering, Warsaw University of Life Sciences–SGGW, Warsaw, Poland
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences–SGGW, Warszawa, Poland
| |
Collapse
|
10
|
Ramirez JA, Vitali V, Martínez-Vilalta J, Handa IT, Messier C. Reserve Accumulation Is Prioritized Over Growth Following Single or Combined Injuries in Three Common North American Urban Tree Species. FRONTIERS IN PLANT SCIENCE 2021; 12:715399. [PMID: 34421968 PMCID: PMC8378402 DOI: 10.3389/fpls.2021.715399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Trees that grow in urban areas are confronted with a wide variety of stresses that undermine their long-term survival. These include mechanical damage to the crown, root reduction and stem injury, all of which remove significant parts of plant tissues. The single or combined effects of these stresses generate a complex array of growth and ecophysiological responses that are hard to predict. Here we evaluated the effects of different individual and combined damage on the dynamics of non-structural carbohydrates (NSC, low weight sugars plus starch) concentration and new tissue growth (diameter increment) in young trees. We hypothesized that (i) tissue damage will induce larger reductions in diameter growth than in NSC concentrations and (ii) combinations of stress treatments that minimally alter the "functional equilibrium" (e.g., similar reductions of leaf and root area) would have the least impact on NSC concentrations (although not on growth) helping to maintain tree health and integrity. To test these hypotheses, we set up a manipulative field experiment with 10-year-old trees of common urban species (Celtis occidentalis, Fraxinus pennsylvanica, and Tilia cordata). These trees were treated with a complete array of mechanical damage combinations at different levels of intensity (i.e., three levels of defoliation and root reduction, and two levels of stem damage). We found that tree growth declined in relation to the total amount of stress inflicted on the trees, i.e., when the combined highest level of stress was applied, but NSC concentrations were either not affected or, in some cases, increased with an increasing level of stress. We did not find a consistent response in concentration of reserves in relation to the combined stress treatments. Therefore, trees appear to reach a new "functional equilibrium" that allows them to adjust their levels of carbohydrate reserves, especially in stems and roots, to meet their metabolic demand under stressful situations. Our results provide a unique insight into the carbon economy of trees facing multiple urban stress conditions in order to better predict long-term tree performance and vitality.
Collapse
Affiliation(s)
- Jorge Andres Ramirez
- Facultad de Ciencias Agrarias, Universidad del Cauca, Popayán, Colombia
- Centre d’Étude de la Forêt (CEF), Université du Québec à Montréal, Montreal, QC, Canada
| | - Valentina Vitali
- Centre d’Étude de la Forêt (CEF), Université du Québec à Montréal, Montreal, QC, Canada
- WSL Research Unit Forest Dynamics, Research Group Ecosystem-Ecology Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | | | - I. Tanya Handa
- Centre d’Étude de la Forêt (CEF), Université du Québec à Montréal, Montreal, QC, Canada
- Faculté des Sciences, Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, QC, Canada
| | - Christian Messier
- Centre d’Étude de la Forêt (CEF), Université du Québec à Montréal, Montreal, QC, Canada
- Faculté des Sciences, Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, QC, Canada
- Institut des Sciences de la Foret Tempérée, Université du Québec en Outaouais, Ripon, QC, Canada
| |
Collapse
|
11
|
Liu J, Zhang R, Xu X, Fowler JC, Miller TEX, Dong T. Effect of summer warming on growth, photosynthesis and water status in female and male Populus cathayana: implications for sex-specific drought and heat tolerances. TREE PHYSIOLOGY 2020; 40:1178-1191. [PMID: 32478381 DOI: 10.1093/treephys/tpaa069] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Effects of climate warming on tree growth and physiology may be driven by direct thermal effects and/or by changes in soil moisture. Dioecious tree species usually show sexual spatial segregation along abiotic gradients; however, few studies have assessed the sex-specific responses to warming in dioecious trees. We investigated the sex-specific responses in growth, photosynthesis, nonstructural carbohydrate (NSC), water-use efficiency and whole-plant hydraulic conductance (KP) of the dioecious tree species Populus cathayana Rehd. under +4 °C elevated temperature with and without supplemental water. For both sexes, high-temperature treatments significantly decreased growth (height and biomass), photosynthetic rate (A), the ratio of A to dark respiration rate, stomatal conductance (gs), transpiration rate, NSC, leaf water potential and KP, but increased water-use efficiency (estimated from carbon isotope composition). Under warming with supplemental water, most traits of females did not change relative to ambient conditions, but traits of males decreased, resulting in greater sexual differences. Females showed a lower KP, and their gs and A responded more steeply with water-related traits than males. These results show that the effect of summer warming on growth and photosynthesis was driven mainly by soil moisture in female P. cathayana, while male performance was mainly related to temperature. Females may experience less thermal stress than males due to flexible water balance strategy via stomata regulation and water use.
Collapse
Affiliation(s)
- Junyan Liu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan, China
- Key Laboratory of Environmental Science and Biodiversity Conservation (Sichuan Province), and Institute of Plant Adaptation and Utilization in Southwest Mountains, China West Normal University, Nanchong, Sichuan 637009, China
| | - Rong Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan, China
- College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Xiao Xu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan, China
| | - Joshua C Fowler
- Department of BioSciences, Program in Ecology and Evolutionary Biology, Rice University, Houston, TX 77005, USA
| | - Tom E X Miller
- Department of BioSciences, Program in Ecology and Evolutionary Biology, Rice University, Houston, TX 77005, USA
| | - Tingfa Dong
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan, China
- Key Laboratory of Environmental Science and Biodiversity Conservation (Sichuan Province), and Institute of Plant Adaptation and Utilization in Southwest Mountains, China West Normal University, Nanchong, Sichuan 637009, China
| |
Collapse
|
12
|
Han Q, Guo Q, Korpelainen H, Niinemets Ü, Li C. Rootstock determines the drought resistance of poplar grafting combinations. TREE PHYSIOLOGY 2019; 39:1855-1866. [PMID: 31595965 DOI: 10.1093/treephys/tpz102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
To increase yield and/or enhance resistance to diseases, grafting is often applied in agriculture and horticulture. Interspecific grafting could possibly be used in forestry as well to improve drought resistance, but our understanding of how the rootstock of a more drought-resistant species can affect the grafted plant is very limited. Reciprocal grafts of two poplar species, Populus cathayana Rehder (less drought-resistant, C) and Populus deltoides Bart. ex Marsh (more drought-resistant, D) were generated. Four grafting combinations (scion/rootstock: C/C, C/D, D/D and D/C) were subjected to well-watered and drought stress treatments. C/D and D/C had a higher diameter growth rate, leaf biomass, intrinsic water-use efficiency (WUEi) and total non-structural carbohydrate (NSC) content than C/C and D/D in well-watered condition. However, drought caused greater differences between P. deltoides-rooted and P. cathayana-rooted grafting combinations, especially between C/D and D/C. The C/D grafting combination showed higher resistance to drought, as indicated by a higher stem growth rate, net photosynthetic rate, WUEi, leaf water potential, proline concentration and NSC concentration and maintenance of integrity of the leaf cellular ultrastructure under drought when compared with D/C. D/C exhibited severely damaged cell membranes, mitochondria and chloroplasts under drought. The scion genotype caused a strong effect on the root proline concentration: the P. cathayana scion increased the root proline concentration more than the P. deltoides scion (C/C vs D/C and C/D vs D/D) under water deficit. Our results demonstrated that mainly the rootstock was responsible for the drought resistance of grafting combinations. Grafting of the P. cathayana scion onto P. deltoides rootstock resulted in superior growth and biomass when compared with the other three combinations both in well-watered and drought stress conditions.
Collapse
Affiliation(s)
- Qingquan Han
- Institute of Physical Education, Ludong University, Yantai 264025, China
| | - Qingxue Guo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, PO Box 27, University of Helsinki, FI-00014 Helsinki, Finland
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| | - Chunyang Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
13
|
Screening and Evaluation of Stable Reference Genes for Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) Analysis in Chinese Fir Roots under Water, Phosphorus, and Nitrogen Stresses. FORESTS 2019. [DOI: 10.3390/f10121087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chinese fir (Cunninghamia lanceolata) is an economical important timber species widely planted in southeastern Asia. Decline in yield and productivity during successive rotation is believed to be linked with abiotic stress, such as drought stress and nitrogen (N) and phosphorus (P) starvation. Molecular breeding could be an option to develop tolerant genotypes. For gene expression studies using quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR), stable reference genes are needed for normalization of gene expression under different experimental conditions. However, there is no internal reference genes identified for Chinese fir under abiotic stresses. Thus, nine internal reference genes based on transcriptome data were selected and analyzed in the root of Chinese fir under drought stress and N and P starvation. Data were analyzed using geNorm, NormFinder, and BestKeeper, to screen and identify the best reference genes. The results showed that the UBQ and GAPDH genes were the two most stable genes under drought stress and the Actin1 and GAPDH were the two most stable genes under P starvation. Further, it was discovered that the Actin1 and UBC were the two most stable genes under N starvation among nine candidate reference genes. The gene expression of drought stress induced expression protein 14-3-3-4, the P transporter gene ClPht1;3, and the nitrate transporter gene NRT1.1 were used to verify the stability of the selected reference genes under drought stress and P and N starvation, respectively, and the results revealed that the screened reference genes were sufficient to normalize expression of the target genes. In conclusion, the results demonstrate that the stability of reference genes was closely related to the external conditions and reference genes applied to the roots of Chinese fir under different abiotic stress treatments were different. Our data will facilitate further studies on stress ecology and gene function analysis in Chinese fir.
Collapse
|
14
|
Ma Z, Lin S. Transcriptomic Revelation of Phenolic Compounds Involved in Aluminum Toxicity Responses in Roots of Cunninghamia lanceolata (Lamb.) Hook. Genes (Basel) 2019; 10:genes10110835. [PMID: 31652726 PMCID: PMC6896160 DOI: 10.3390/genes10110835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/09/2019] [Accepted: 10/18/2019] [Indexed: 11/17/2022] Open
Abstract
Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) is one of the most important coniferous evergreen tree species in South China due to its desirable attributes of fast growth and production of strong and hardy wood. However, the yield of Chinese fir is often inhibited by aluminum (Al) toxicity in acidic soils of South China. Understanding the molecular mechanisms of Chinese fir root responses to Al toxicity might help to further increase its productivity. Here we used the Illumina Hiseq4000 platform to carry out transcriptome analysis of Chinese fir roots subjected to Al toxicity conditions. A total of 88.88 Gb of clean data was generated from 12 samples and assembled into 105,732 distinct unigenes. The average length and N50 length of these unigenes were 839 bp and 1411 bp, respectively. Among them, 58362 unigenes were annotated through searches of five public databases (Nr: NCBI non-redundant protein sequences, Swiss-Prot: A manually annotated and reviewed protein sequence database, GO: Gene Ontology, KOG/COG: Clusters of Orthologous Groups of proteins, and KEGG: the Kyoto Encyclopedia of Genes and Genomes database), which led to association of unigenes with 44 GO terms. Plus, 1615 transcription factors (TFs) were functionally classified. Then, differentially expressed genes (DEGs, |log2(fold change)| ≥ 1 and FDR ≤ 0.05) were identified in comparisons labelled TC1 (CK-72 h/CK-1 h) and TC2 (Al-72 h/Al-1 h). A large number of TC2 DEGs group were identified, with most being down-regulated under Al stress, while TC1 DEGs were primarily up-regulated. Combining GO, KEGG, and MapMan pathway analysis indicated that many DEGs are involved in primary metabolism, including cell wall metabolism and lipid metabolism, while other DEGs are associated with signaling pathways and secondary metabolism, including flavonoids and phenylpropanoids metabolism. Furthermore, TFs identified in TC1 and TC2 DEGs represented 21 and 40 transcription factor families, respectively. Among them, expression of bHLH, C2H2, ERF, bZIP, GRAS, and MYB TFs changed considerably under Al stress, which suggests that these TFs might play crucial roles in Chinese fir root responses to Al toxicity. These differentially expressed TFs might act in concert with flavonoid and phenylpropanoid pathway genes in fulfilling of key roles in Chinese fir roots responding to Al toxicity.
Collapse
Affiliation(s)
- Zhihui Ma
- Institute for Forest Resources and Environment of Guizhou,Guizhou University,Guiyang 550025, China.
| | - Sizu Lin
- State Forestry Administration Engineering Research Center of Chinese Fir, Fuzhou 350002, China.
- College of Forestry, Fujian Agricultural and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
15
|
Vitali V, Ramirez JA, Perrette G, Delagrange S, Paquette A, Messier C. Complex Above- and Below-Ground Growth Responses of Two Urban Tree Species Following Root, Stem, and Foliage Damage-An Experimental Approach. FRONTIERS IN PLANT SCIENCE 2019; 10:1100. [PMID: 31620144 PMCID: PMC6759508 DOI: 10.3389/fpls.2019.01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Urban trees are subjected to numerous biotic and mechanical damages, which can affect their growth rates and health. However, for most species, a systematic analysis of tree above- and below-ground growth reactions to a variety of damages is still lacking. Under a fully factorial experimental setup, using two common urban trees (Celtis occidentalis, Fraxinus pennsylvanica), we tested the effects of various degrees of frequently occurring damage as defoliation, root reduction, and stem injuries for a total of 18 treatments. We hypothesized that (i) an increasing amount of damage would proportionally negatively affect both root and stem growth; (ii) there would be a lag or lasting effect on growth; and (iii) both species would react similarly to the treatments. Contrary to our expectation, increasing levels of single or combined damage did not have an incremental effect on either stem or root growth. Although Celtis was significantly less vigorous than Fraxinus, it did not react strongly to damage treatments compared to the control. Interestingly, Celtis that experienced stem damage alone or in combination with other damages showed higher growth rates than the control. For Celtis, root injury was the treatment having the most impact, decreasing both root and stem growth consistently throughout the 5 years following treatments, whereas defoliation decreased growth only in the first 2 years. All damage treatments negatively affected stem and root growth of Fraxinus trees. Stem growth was affected the most by defoliation in the first year following the treatment, while root injury became the driving factor in subsequent years. For both species, stem injury showed the least influence on growth rates. The control and low-level damage treatments often affected growth rates in a similar way, suggesting that low-intensity stress triggers compensatory reactions stimulating photosynthetic rates and nutrient utilization. The slower-growing tree species, Celtis, showed a less negative reaction to all damage treatments compared to Fraxinus. This study illustrates that various types of above- and below-ground injuries do not have a simple additive effect on tree growth and that trees are capable of compensating for the loss of foliage, roots, or phloem to meet their metabolic demand.
Collapse
Affiliation(s)
- Valentina Vitali
- Faculté des sciences, Département des sciences biologiques, Centre d’Étude de la Forêt (CEF), Université du Québec à Montréal, Montréal, Canada
| | - Jorge A. Ramirez
- Faculté des sciences, Département des sciences biologiques, Centre d’Étude de la Forêt (CEF), Université du Québec à Montréal, Montréal, Canada
- Facultad de Ciencias Agrarias, Universidad del Cauca, Popayán, Colombia
| | - Guillaume Perrette
- Faculté des sciences, Département des sciences biologiques, Centre d’Étude de la Forêt (CEF), Université du Québec à Montréal, Montréal, Canada
| | - Sylvain Delagrange
- Institut des Sciences de la Foret Tempérée, Université du Québec en Outaouais, Ripon, Canada
| | - Alain Paquette
- Faculté des sciences, Département des sciences biologiques, Centre d’Étude de la Forêt (CEF), Université du Québec à Montréal, Montréal, Canada
| | - Christian Messier
- Faculté des sciences, Département des sciences biologiques, Centre d’Étude de la Forêt (CEF), Université du Québec à Montréal, Montréal, Canada
- Institut des Sciences de la Foret Tempérée, Université du Québec en Outaouais, Ripon, Canada
| |
Collapse
|
16
|
Nie S, Huang S, Wang S, Mao Y, Liu J, Ma R, Wang X. Enhanced brassinosteroid signaling intensity via SlBRI1 overexpression negatively regulates drought resistance in a manner opposite of that via exogenous BR application in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 138:36-47. [PMID: 30844693 DOI: 10.1016/j.plaphy.2019.02.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/06/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Brassinosteroids (BRs) regulate plant growth and stress responses. BRASSINOSTEROID-INSENSITIVE 1 (BRI1) is a BR receptor that perceives BRs and subsequently activates BR signaling. However, how BR contents and BRI1 expression levels affect the drought resistance of tomato requires further investigation. Here, we exogenously applied 24-epibrassinolide (EBR) and brassinazole (Brz) to tomato plants and generated different transgenic tomato SlBRI1 overexpression lines to study the drought stress response. Our results showed that EBR application 3 days before drought stress increased the contents of BRs and decreased abscisic acid (ABA) and reactive oxygen species (ROS), after which stomatal aperture and drought resistance eventually increased. Brz application reduced the drought resistance. Astonishingly, overexpression of 35S:SlBRI1, which increased BR signaling intensity, led to slightly improved contents of ABA and ROS and ultimately reduced both stomatal aperture and drought resistance. Moreover, plants expressing SlBRI1 driven by a stress-inducible promoter (Atrd29A) also exhibited reduced plant drought resistance. In all cases, enhancing the BR signaling intensity reduced antioxidant enzyme activity and reduced the expression of drought stress-related genes, ultimately compromising the drought resistance. Additionally, SlBRI1 mutants with altered brassinolide sensitivity (abs), which was weak BR signaling, exhibited significantly increased drought resistance. Therefore, our results reveal that BR contents positively regulated tomato drought resistance and that BR signaling intensity via BRI1 was negatively related to the drought resistance. These imply that the increased drought resistance in response to BRs is a newly discovered BR signaling branch that is located downstream of BRs and that differs from that of BRI1.
Collapse
Affiliation(s)
- Shuming Nie
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Nanchong, 637000, Sichuan, China
| | - Shuhua Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shufen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yujiao Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianwei Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ruili Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaofeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
17
|
Dong T, Duan B, Korpelainen H, Niinemets Ü, Li C. Asymmetric pruning reveals how organ connectivity alters the functional balance between leaves and roots of Chinese fir. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1941-1953. [PMID: 30689933 DOI: 10.1093/jxb/erz013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
The functional balance between leaves and roots is believed to be mediated by the specific location of shoots and roots, i.e. differences in transport distances and degrees of organ connectivity. However, it remains unknown whether the adaptive responses of trees to biomass removal depend on the relative orientation of leaf and root pruning. Here, we applied five pruning treatments to saplings of Cunninghamia lanceolata (Chinese fir) under field and glasshouse conditions, namely no pruning (control), half of lateral branches pruned, half of lateral roots pruned, half of the branches and roots pruned on the same side of the plant, and half of the branches and roots pruned on opposite sides of the plant. The effects of pruning on the growth, carbon storage and allocation, and physiology of leaves and fine roots on the same and opposite sides of the plant were investigated. Compared with the effect of root-pruning on leaves, fine roots were more limited by carbon availability and their physiological activity was more strongly reduced by shoot pruning, especially when branches on the same side of the plant were removed. Pruning of branches and roots on the opposite side of the plant resulted in the lowest carbon assimilation rates and growth among all treatments. The results of a stable-isotope labeling indicated that less C was distributed to fine roots from the leaves on the opposite side of the plant compared to those on the same side, but N allocation from roots to leaves depended less on the relative root and leaf orientation. The results collectively indicate that the functional responses of C. lanceolata to pruning are not only determined by the source-sink balance model but are also related to interactions between leaves and fine roots. We argue that the connectivity among lateral branches and roots depends on their relative orientation, which is therefore critical for the functional balance between leaves and fine roots.
Collapse
Affiliation(s)
- Tingfa Dong
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, and College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| | - Baoli Duan
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Finland
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi, Tartu, Estonia
- Estonian Academy of Sciences, Kohtu, Tallinn, Estonia
| | - Chunyang Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
18
|
Dong T, Li J, Liao Y, Chen BJW, Xu X. Root-mediated sex recognition in a dioecious tree. Sci Rep 2017; 7:801. [PMID: 28400562 PMCID: PMC5429744 DOI: 10.1038/s41598-017-00894-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/16/2017] [Indexed: 01/14/2023] Open
Abstract
Recent studies have demonstrated that plants can determine the identity of neighbouring roots (e.g., self and non-self, kin and non-kin), but whether they can discriminate by sex remains an open question. Here, we predict that dioecious plants can modulate their root performance in response to local root conditions related to sex. Female and male Populus cathayana cuttings were planted in a greenhouse in root-owner (one individual without a root neighbour) or root-sharer pairs (two individuals with roots neighbouring each other) with equal amounts of nutrients and space per plant in three combinations (females-females, males-males or females-males); root morphology, biomass and allocation were investigated. P. cathayana root-sharers altered their root growth in same-sex but not in different-sex combinations. Females enhanced root growth and allocation but decreased root proliferation (greater diameter with reduced branching and specific root length) in the presence of a female root neighbour, while males reduced root growth but increased root morphological proliferation in contact with another male. Therefore, the effect of a neighbour of the same sex differed from that of a neighbour of the opposite sex, which suggests that these plants can recognize the sexual identity of their neighbours.
Collapse
Affiliation(s)
- Tingfa Dong
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, and College of Life Sciences, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Junyu Li
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, and College of Life Sciences, China West Normal University, Nanchong, Sichuan, 637009, China
- School of Urban-rural Planning and Landscape Architecture, Xuchang University, Xuchang, 461000, China
| | - Yongmei Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, and College of Life Sciences, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Bin J W Chen
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiao Xu
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, and College of Life Sciences, China West Normal University, Nanchong, Sichuan, 637009, China.
| |
Collapse
|