1
|
Gričar J, Jevšenak J, Giagli K, Eler K, Tsalagkas D, Gryc V, Vavrčík H, Čufar K, Prislan P. Temporal and spatial variability of phloem structure in Picea abies and Fagus sylvatica and its link to climate. PLANT, CELL & ENVIRONMENT 2024; 47:1285-1299. [PMID: 38213092 DOI: 10.1111/pce.14811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/05/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024]
Abstract
Using a unique 8-year data set (2010-2017) of phloem data, we studied the effect of temperature and precipitation on the phloem anatomy (conduit area, widths of ring, early and late phloem) and xylem-ring width in two coexisting temperate tree species, Picea abies and Fagus sylvatica, from three contrasting European temperate forest sites. Histometric analyses were performed on microcores taken from tree stems in autumn. We found high interannual variability and sensitivity of phloem anatomy and xylem-ring widths to precipitation and temperature; however, the responses were species- and site-specific. The contrasting response of xylem and phloem-ring widths of the same tree species to weather conditions was found at the two Slovenian sites generally well supplied with precipitation, while at the driest Czech site, the influence of weather factors on xylem and phloem ring widths was synchronised. Since widths of mean annual xylem and phloem increments were narrowest at the Czech site, this site is suggested to be most restrictive for the radial growth of both species. By influencing the seasonal patterns of xylem and phloem development, water availability appears to be the most important determinant of tissue- and species-specific responses to local weather conditions.
Collapse
Affiliation(s)
| | - Jernej Jevšenak
- Slovenian Forestry Institute, Ljubljana, Slovenia
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Kyriaki Giagli
- Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Klemen Eler
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Dimitrios Tsalagkas
- Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Vladimír Gryc
- Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Hanuš Vavrčík
- Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Katarina Čufar
- Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
2
|
Yu B, Rossi S, Su H, Zhao P, Zhang S, Hu B, Li X, Chen L, Liang H, Huang JG. Mismatch between primary and secondary growth and its consequences on wood formation in Qinghai spruce. TREE PHYSIOLOGY 2023; 43:1886-1902. [PMID: 37584475 DOI: 10.1093/treephys/tpad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/18/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023]
Abstract
The connections between the primary and secondary growth of trees allows better understanding of the dynamics of carbon sequestration in forest ecosystems. The relationship between primary and secondary growth of trees could change due to the diverging responses of meristems to climate warming. In this study, the bud phenology and radial growth dynamics of Qinghai spruce (Picea crassifolia) in arid and semi-arid areas of China in 2019 and 2020 were weekly monitored to analyze their response to different weather conditions and their links with carbon sink. Xylem anatomical traits (i.e. lumen radial diameter and cell wall thickness) were quantified along cell radial files after the end of xylem lignification to calculate the early-to-latewood transition date. Winter and early spring (January-March) were warmer in 2020 with a colder April compared with 2019. Precipitation in April-June was lower in 2020 than in 2019. In 2019, bud phenology occurred earlier, while the onset of xylem formation and the early-to-latewood transition date were delayed. The duration from the beginning of split bud and exposed shoot to the early-to-latewood transition date was positively correlated with the radial width of earlywood (accounting for ~80% of xylem width) and total xylem width. The longer duration of xylem cell division did not increase xylem cell production and radial width. Moreover, the duration from bud burst to the early-to-latewood transition date in 2020 was negatively linked with early phloem cell production as compared with 2019. Our findings suggest that warm conditions in winter and early spring promote the xylogenesis of Qinghai spruce, but might delay bud burst. However, the xylem width increments largely depend on the duration from bud burst to the start of latewood cell division rather than on the earlier xylogenesis and longer duration of xylem cell differentiation induced by warm conditions.
Collapse
Affiliation(s)
- Biyun Yu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, China
- Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Sergio Rossi
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Québec G7H2B1, Canada
| | - Hongxin Su
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, China
- Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Ping Zhao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shaokang Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Baoqing Hu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, China
- Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Xuebin Li
- Key Laboratory of Restoration and Reconstruction of Degraded Ecosystem in Northwest China, Ningxia University, Ministry of Education, Yinchuan 750021, China
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan 750021, China
- College of Ecology and Environment, Ningxia University, Yinchuan 750021, China
| | - Lin Chen
- Key Laboratory of Restoration and Reconstruction of Degraded Ecosystem in Northwest China, Ningxia University, Ministry of Education, Yinchuan 750021, China
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan 750021, China
- College of Ecology and Environment, Ningxia University, Yinchuan 750021, China
| | - Hanxue Liang
- Key Laboratory of Ecological Restoration of Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Jian-Guo Huang
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Blumstein M, Gersony J, Martínez-Vilalta J, Sala A. Global variation in nonstructural carbohydrate stores in response to climate. GLOBAL CHANGE BIOLOGY 2023; 29:1854-1869. [PMID: 36583374 DOI: 10.1111/gcb.16573] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/26/2022] [Indexed: 05/28/2023]
Abstract
Woody plant species store nonstructural carbohydrates (NSCs) for many functions. While known to buffer against fluctuations in photosynthetic supply, such as at night, NSC stores are also thought to buffer against environmental extremes, such as drought or freezing temperatures by serving as either back-up energy reserves or osmolytes. However, a clear picture of how NSCs are shaped by climate is still lacking. Here, we update and leverage a unique global database of seasonal NSC storage measurements to examine whether maximum total NSC stores and the amount of soluble sugars are associated with clinal patterns in low temperatures or aridity, indicating they may confer a benefit under freezing or drought conditions. We examine patterns using the average climate at each study site and the unique climatic conditions at the time and place in which the sample was taken. Altogether, our results support the idea that NSC stores act as critical osmolytes. Soluble Sugars increase with both colder and drier conditions in aboveground tissues, indicating they can plastically increase a plants' tolerance of cold or arid conditions. However, maximum total NSCs increased, rather than decreased, with average site temperature and had no relationship to average site aridity. This result suggests that the total amount of NSC a plant stores may be more strongly determined by its capacity to assimilate carbon than by environmental stress. Thus, NSCs are unlikely to serve as reservoir of energy. This study is the most comprehensive synthesis to date of global NSC variation in relation to climate and supports the idea that NSC stores likely serve as buffers against environmental stress. By clarifying their role in cold and drought tolerance, we improve our ability to predict plant response to environment.
Collapse
Affiliation(s)
- Meghan Blumstein
- Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jessica Gersony
- Department of Natural Resources, University of New Hampshire, Durham, New Hampshire, USA
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
| | - Jordi Martínez-Vilalta
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Anna Sala
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
4
|
Li M, Guo X, Liu L, Liu J, Du N, Guo W. Responses to defoliation of Robinia pseudoacacia L. and Sophora japonica L. are soil water condition dependent. ANNALS OF FOREST SCIENCE 2022; 79:18. [DOI: 10.1186/s13595-022-01136-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2024]
Abstract
Abstract
Key message
Defoliation significantly affected biomass allocation of Robinia pseudoacacia L. and Sophora japonica L., but leaf physiology readjusted to control levels at the end of the experiment. Considering carbon or sink limitation and relative height growth rate, defoliated R. pseudoacacia grew faster than S. japonica under well-watered conditions, while defoliated S. japonica and R. pseudoacacia had similar performance under drought conditions.
Context
Climate change may result in increases of both drought intensity and insect survival, thereby affecting both exotic and native trees in warm temperate forests.
Aims
In this study, we examined the interaction effects of defoliation and drought on an exotic species Robinia pseudoacacia and a native species Sophora japonica in a warm temperate area, to provide a theoretical basis for predicting the distribution and dynamics of the two species under future climate change.
Methods
In a greenhouse, both species were exposed to three soil moisture (75%, 55%, and 35% of field capacity) and three defoliation treatments (no defoliation, 50% defoliation, and 100% defoliation). Leaf physiology, biomass, and non-structural carbohydrate were determined.
Results
Leaf physiology of defoliated trees did not differ from controls trees, but defoliated seedlings allocated relatively more resources to the leaves at the end of the experiment. In well-watered conditions, defoliated R. pseudoacacia was not carbon or sink limited and defoliated S. japonica was carbon limited, while defoliated individuals of the two species were sink limited under drought. Defoliated R. pseudoacacia grow more rapidly than S. japonica in well-watered conditions. Defoliated R. pseudoacacia had a similar growth rate to S. japonica in drought.
Conclusions
Defoliation clearly affects biomass allocation of the two species, but not leaf physiology. Considering the carbon or sink limitation, the growth of S. japonica and R. pseudoacacia may be limited by future global climate change scenarios.
Collapse
|
5
|
Bessonova VP, Chonhova AS. Influence of soil moisture level on metabolism of non-structural carbohydrates in Quercus robur leaves. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The long-term increases in average temperature and intensification of droughts which characterise the current state of the Earth’s climate system have a negative impact on forest ecosystems and can lead to a decrease in their area and deterioration of the living conditions of their components. In the conditions of the Ukrainian Steppe an important environmental, antierosion, water-protective and soil-protective role belongs to the ravine forests. The most valuable component of the ravine forests is presented by natural populations of common oak (Quercus robur L.), which are able to tolerate the arid climate typical of the steppe region. But with global warming, the endurance of this species is changing. It is believed that a significant role in plant adaptation to drought and high temperatures may belong to non-structural carbohydrates. Therefore, it is important to study changes in the concentration of these substances in the leaves of this leading species under the action of adverse hydrothermal conditions. The article analyzes the content and dynamics of soluble sugars (glucose, fructose, sucrose) and starch in the leaves of Quercus robur L. under different forest growth conditions of the ravine forest (hygromesophilic (CL2–3), mesoxerophilic (CL1) and xerophilic (CL0)). The research was conducted in the forest in the Viyskove area (steppe zone of Ukraine) in the thalweg and at different levels of slope of southern exposure. Content of glucose, fructose, sugar and starch in Quercus robur leaves was determined. It was found that when exposed to high temperatures and increasing water stress during the vegetation period in xerophilic (CL0–1) and mesoxerophilic (CL1) forest growth conditions, the concentration of both glucose and sucrose in the leaves of Q. robur increases and it becomes much higher than in conditions of more optimal water supply. At the same time, the disaccharide content increases more significantly than that of monosaccharide. The greatest amount of these sugars is observed in the driest months (July, August), when conditions for providing plants with water are the most stressful. When water stress grows the increase in concentration of glucose and sucrose is correlated with reduction of starch content. It has been found that the concentration of fructose in Q. robur leaves in droughty conditions of growing was comparable to more favourable conditions of moisture. In September, there is a decline in the content of all forms of non-structural carbohydrates in the leaves of plants of all variants compared to the previous month, especially in conditions of adverse water supply. Therefore, forest growth conditions do not affect the nature of the dynamics of soluble sugars and starch in the leaves of Q. robur, although they change their quantitative indicators. Based on the protective function of sugars under the action of stressors on plants, we can assume that in conditions of significant lack of moisture in the soil their accumulation in the leaves in areas with mesoxerophilic and xerophilic hygrotopes plays an important role in increasing Q. robur drought resistance.
Collapse
|
6
|
Gričar J, Jevšenak J, Hafner P, Prislan P, Ferlan M, Lavrič M, Vodnik D, Eler K. Climatic regulation of leaf and cambial phenology in Quercus pubescens: Their interlinkage and impact on xylem and phloem conduits. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149968. [PMID: 34525737 DOI: 10.1016/j.scitotenv.2021.149968] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/05/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Increased frequency and severity of stressful events affects the growth patterns and functioning of trees which adjust their phenology to given conditions. Here, we analysed environmental effects (temperature, precipitation, VPD and SWC) on the timing of leaf phenology, seasonal stem radial growth patterns, and xylem and phloem anatomy of Quercus pubescens in the sub-Mediterranean in the period 2014-2019, when various adverse weather events occurred, i.e. spring drought in 2015, summer fire in 2016 and summer drought in 2017. Results showed that the timings of leaf and cambium phenology do not occur simultaneously in Q. pubescens, reflecting different environmental and internal constraints. Although year-to-year variability in the timings of leaf and cambial phenology exists, their chronological sequence is fairly fixed. Different effects of weather conditions on different stages of leaf development in spring were observed. Common climatic drivers (i.e., negative effect of hot and dry summers and a positive effect of increasing moisture availability in winter and summer) were found to affect the widths of xylem and phloem increments with more pronounced effect on late formed parts. A legacy effect of the timing of leaf and cambial phenology of the previous growing season on the timing of phenology of the following spring was confirmed. Rarely available phloem data permitted a comprehensive insight into the interlinkage of the timing of cambium and leaf phenology and adjustment strategies of vascular tissues in Mediterranean pubescent oak to various environmental constraints, including frequent extreme events (drought, fire). Our results suggest that predicted changes in autumn/winter and spring climatic conditions for this area could affect the timings of leaf and stem cambial phenology of Q. pubescens in the coming years, which would affect stem xylem and phloem structure and hydraulic properties, and ultimately its performance.
Collapse
Affiliation(s)
- Jožica Gričar
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia.
| | - Jernej Jevšenak
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
| | - Polona Hafner
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
| | - Peter Prislan
- Department of Forest Techniques and Economics, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
| | - Mitja Ferlan
- Department of Forest Ecology, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
| | - Martina Lavrič
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
| | - Dominik Vodnik
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Klemen Eler
- Department of Forest Ecology, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia; Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Lehnebach R, Campioli M, Gričar J, Prislan P, Mariën B, Beeckman H, Van den Bulcke J. High-Resolution X-Ray Computed Tomography: A New Workflow for the Analysis of Xylogenesis and Intra-Seasonal Wood Biomass Production. FRONTIERS IN PLANT SCIENCE 2021; 12:698640. [PMID: 34421949 PMCID: PMC8377475 DOI: 10.3389/fpls.2021.698640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/28/2021] [Indexed: 06/01/2023]
Abstract
Understanding tree growth and carbon sequestration are of crucial interest to forecast the feedback of forests to climate change. To have a global understanding of the wood formation, it is necessary to develop new methodologies for xylogenesis measurements, valid across diverse wood structures and applicable to both angiosperms and gymnosperms. In this study, the authors present a new workflow to study xylogenesis using high-resolution X-ray computed tomography (HRXCT), which is generic and offers high potential for automatization. The HXRCT-based approach was benchmarked with the current classical approach (microtomy) on three tree species with contrasted wood anatomy (Pinus nigra, Fagus sylvatica, and Quercus robur). HRXCT proved to estimate the relevant xylogenesis parameters (timing, duration, and growth rates) across species with high accuracy. HRXCT showed to be an efficient avenue to investigate tree xylogenesis for a wide range of wood anatomies, structures, and species. HRXCT also showed its potential to provide quantification of intra-annual dynamics of biomass production through high-resolution 3D mapping of wood biomass within the forming growth ring.
Collapse
Affiliation(s)
- Romain Lehnebach
- UGCT–UGent-Woodlab, Laboratory of Wood Technology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
- AMAP Laboratory (botany and bio-informatics of plant architecture and vegetation), Université Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Matteo Campioli
- Research Group PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Jozica Gričar
- Department of Yield and Silviculture, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Peter Prislan
- Department of Yield and Silviculture, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Bertold Mariën
- Research Group PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Hans Beeckman
- Royal Museum for Central Africa, Service of Wood Biology, Tervuren, Belgium
| | - Jan Van den Bulcke
- UGCT–UGent-Woodlab, Laboratory of Wood Technology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| |
Collapse
|
8
|
Precipitation Gradient Drives Divergent Relationship between Non-Structural Carbohydrates and Water Availability in Pinus tabulaeformis of Northern China. FORESTS 2021. [DOI: 10.3390/f12020133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Seasonal non-structural carbohydrate (NSC) dynamics in different organs can indicate the strategies trees use to cope with water stress; however, these dynamics remain poorly understood along a large precipitation gradient. In this study, we hypothesized that the correlation between water availability and NSC concentrations in different organs might be strengthened by decreasing precipitation in Pinus tabulaeformis Carr. forests in temperate China. Our results show that the concentrations of soluble sugars were lower in stems and coarse roots, and starch was higher in branches in the early growing season at drier sites. Throughout the growing season, the concentrations of soluble sugars increased in drier sites, especially for leaves, and remained stable in wetter sites, while starch concentrations were relatively stable in branches and stems at all sites. The NSC concentrations, mainly starch, decreased in coarse roots along the growing season at drier sites. Trees have a faster growth rate with an earlier cessation in active stem growth at drier sites. Interestingly, we also found a divergent relationship between NSCs in different organs and mean growing season water availability, and a stronger correlation was observed in drier sites. These results show that pine forests in arid and semi-arid regions of northern China exhibit different physiological responses to water availability, improving our understanding of the adaptive mechanisms of trees to water limitations in a warmer and drier climate.
Collapse
|
9
|
Timeline of Leaf and Cambial Phenology in Relation to Development of Initial Conduits in Xylem and Phloem in Three Coexisting Sub-Mediterranean Deciduous Tree Species. FORESTS 2020. [DOI: 10.3390/f11101104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
It is unclear how the anticipated climate change will affect the timing of phenology of different tree organs/tissues and thus the whole-tree functioning. We examined the timing of leaf phenology and secondary growth in three coexisting deciduous tree species (Quercus pubescens Willd., Fraxinus ornus L. and Ostrya carpinifolia Scop) from a sub-Mediterranean region in 2019. In addition, we investigated the relationship between leaf and cambial phenology and the onset of the potential functioning of initial conduits, as determined by the completed differentiation process (vessels) or final size (sieve tubes). For this purpose, leaf development was monitored and the microcores of cambium and the youngest phloem and xylem increments were repeatedly collected at 7–10-day intervals during the growing season. The results revealed differences in the timing of leaf development and seasonal radial growth patterns in spring among the studied tree species, depending on wood porosity. We found that cambial cell production started in all cases in the first half of March. However, in ring-porous Q. pubescens and F. ornus, radial growth in the stem occurred more than a month before buds were swollen, whereas in diffuse-porous O. carpinifolia, these two events were detected at almost the same time. The end of cambial cell production occurred earliest in F. ornus (mid-July) and two weeks later also in the other two species. The widest initial earlywood vessels and early phloem sieve tubes were found in Q. pubescens, the narrowest initial earlywood vessels in O. carpinifolia and the narrowest early phloem sieve tubes in F. ornus. This indicates differences in the efficiency of conducting systems among the studied species. This novel approach of studying phloem phenology and anatomy in relation to leaf and xylem development contributes to a better understanding of how different tree species adapt their structure of secondary vascular tissues in response to environmental change.
Collapse
|
10
|
Shifts in Growth Responses to Climate and Exceeded Drought-Vulnerability Thresholds Characterize Dieback in Two Mediterranean Deciduous Oaks. FORESTS 2020. [DOI: 10.3390/f11070714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Drought stress has induced dieback episodes affecting many forest types and tree species worldwide. However, there is scarce information regarding drought-triggered growth decline and canopy dieback in Mediterranean deciduous oaks. These species face summer drought but have to form new foliage every spring which can make them vulnerable to hotter and drier conditions during that season. Here, we investigated two stands dominated by Quercus frainetto Ten. and Quercus canariensis Willd. and situated in southern Italy and Spain, respectively, showing drought-induced dieback since the 2000s. We analyzed how radial growth and its responses to climate differed between non-declining (ND) and declining (D) trees, showing different crown defoliation and coexisting in each stand by: (i) characterizing growth variability and its responsiveness to climate and drought through time, and (ii) simulating growth responses to soil moisture and temperature thresholds using the Vaganov–Shashkin VS-lite model. Our results show how growth responsiveness to climate and drought was higher in D trees for both oak species. Growth has become increasingly limited by warmer-drier climate and decreasing soil moisture availability since the 1990s. These conditions preceded growth drops in D trees indicating they were more vulnerable to warming and aridification trends. Extremely warm and dry conditions during the early growing season trigger dieback. Changes in the seasonal timing of water limitations caused contrasting effects on long-term growth trends of D trees after the 1980s in Q. frainetto and during the 1990s in Q. canariensis. Using growth models allows identifying early-warning signals of vulnerability, which can be compared with shifts in the growth responses to warmer and drier conditions. Our approach facilitates establishing drought-vulnerability thresholds by combining growth models with field records of dieback.
Collapse
|
11
|
Guo JS, Gear L, Hultine KR, Koch GW, Ogle K. Non-structural carbohydrate dynamics associated with antecedent stem water potential and air temperature in a dominant desert shrub. PLANT, CELL & ENVIRONMENT 2020; 43:1467-1483. [PMID: 32112440 DOI: 10.1111/pce.13749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
Non-structural carbohydrates (NSCs) are necessary for plant growth and affected by plant water status, but the temporal dynamics of water stress impacts on NSC are not well understood. We evaluated how seasonal NSC concentrations varied with plant water status (predawn xylem water potential, Ψ) and air temperature (T) in the evergreen desert shrub Larrea tridentata. Aboveground sugar and starch concentrations were measured weekly or monthly for ~1.5 years on 6-12 shrubs simultaneously instrumented with automated stem psychrometers; leaf photosynthesis (Anet ) was measured monthly for 1 year. Leaf sugar increased during the dry, premonsoon period, associated with lower Ψ (greater water stress) and high T. Leaf sugar accumulation coincided with declines in leaf starch and stem sugar, suggesting the prioritization of leaf sugar during low photosynthetic uptake. Leaf starch was strongly correlated with Anet and peaked during the spring and monsoon seasons, while stem starch remained relatively constant except for depletion during the monsoon. Recent photosynthate appeared sufficient to support spring growth, while monsoon growth required the remobilization of stem starch reserves. The coordinated responses of different NSC fractions to water status, photosynthesis, and growth demands suggest that NSCs serve multiple functions under extreme environmental conditions, including severe drought.
Collapse
Affiliation(s)
- Jessica S Guo
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | - Linnea Gear
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, Arizona, USA
| | - Kevin R Hultine
- Department of Research, Conservation, and Collections, Desert Botanical Garden, Phoenix, Arizona, USA
| | - George W Koch
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | - Kiona Ogle
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
12
|
Gričar J, Hafner P, Lavrič M, Ferlan M, Ogrinc N, Krajnc B, Eler K, Vodnik D. Post-fire effects on development of leaves and secondary vascular tissues in Quercus pubescens. TREE PHYSIOLOGY 2020; 40:796-809. [PMID: 32175576 DOI: 10.1093/treephys/tpaa030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/22/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
An increased frequency of fire events on the Slovenian Karst is in line with future climate change scenarios for drought-prone environments worldwide. It is therefore of the utmost importance to better understand tree-fire-climate interactions for predicting the impact of changing environment on tree functioning. To this purpose, we studied the post-fire effects on leaf development, leaf carbon isotope composition (δ13C), radial growth patterns and the xylem and phloem anatomy in undamaged (H-trees) and fire-damaged trees (F-trees) of Quercus pubescens Willd. with good resprouting ability in spring 2017, the growing season after a rangeland fire in August 2016. We found that the fully developed canopy of F-trees reached only half of the leaf area index values measured in H-trees. Throughout the season, F-trees were characterized by higher water potential and stomatal conductivity and achieved higher photosynthetic rates compared to unburnt H-trees. The foliage of F-trees had more negative δ13C values than those of H-trees. This reflects that F-trees less frequently meet stomatal limitations due to reduced transpirational area and more favourable leaf-to-root ratio. In addition, the growth of leaves in F-trees relied more on the recent photosynthates than on reserves due to the fire disturbed starch accumulation in the previous season. Cambial production stopped 3 weeks later in F-trees, resulting in 60 and 22% wider xylem and phloem increments, respectively. A novel approach by including phloem anatomy in the analyses revealed that fire caused changes in conduit dimensions in the early phloem but not in the earlywood. However, premature formation of the tyloses in the earlywood vessels of the youngest two xylem increments in F-trees implies that xylem hydraulic integrity was also affected by heat. Analyses of secondary tissues showed that although xylem and phloem tissues are interlinked changes in their transport systems due to heat damage are not necessarily coordinated.
Collapse
Affiliation(s)
- Jožica Gričar
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
| | - Polona Hafner
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
| | - Martina Lavrič
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
| | - Mitja Ferlan
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
| | - Nives Ogrinc
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Bor Krajnc
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Klemen Eler
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Dominik Vodnik
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
Garcia-Forner N, Vieira J, Nabais C, Carvalho A, Martínez-Vilalta J, Campelo F. Climatic and physiological regulation of the bimodal xylem formation pattern in Pinus pinaster saplings. TREE PHYSIOLOGY 2019; 39:2008-2018. [PMID: 31631224 DOI: 10.1093/treephys/tpz099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/27/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Seasonality in tree cambial activity and xylem formation encompass large variation in environmental conditions. Abiotic stressors such as warming or drought also modulate plant behavior at species and individual level. Despite xylem formation susceptibility to carbon (C) and water availability, it is still unknown which are the key physiological variables that regulate xylogenesis, and to what extent plant performance contributes to further explain the number of cells in the different phases of xylem development. Xylogenesis and physiological behavior was monitored in saplings of Pinus pinaster Aiton, a bimodal growth pattern species, distributed in different irrigation regimes. Xylogenesis and plant physiological behavior were compared between treatments and the relationship between climate, physiology and the number of cells in the cambium, enlargement and cell-wall thickening phases was evaluated. Xylogenesis regulation shifted from physiological to climatic control as cell differentiation advanced to mature tracheids. The number of cells in the cambium increased with assimilation rates and decreased with the water potential gradient through the plant. Enlargement was the most susceptible phase to plant relative water content, whereas no physiological variable contributed to explain the number of cells in the wall thickening phase, which declined as temperatures increased. All treatments showed a bimodal growth pattern with a second growth period starting when primary growth was completed and after plants had experienced the highest summer hydraulic losses. Our study demonstrates the importance of including physiological responses and not only climate to fully understand xylogenesis, with special attention to the enlargement phase. This is critical when studying species with a bimodal growth pattern because the second growth peak responds to internal shifts of C allocation and may strongly depend on plant hydraulic responses and not on a fine tuning of cambial activity with soil water availability.
Collapse
Affiliation(s)
- Núria Garcia-Forner
- Centre for Functional Ecology-Science for People & the Planet, Department of Life Sciences, University of Coimbra, Coimbra 3000-456, Portugal
| | - Joana Vieira
- Centre for Functional Ecology-Science for People & the Planet, Department of Life Sciences, University of Coimbra, Coimbra 3000-456, Portugal
| | - Cristina Nabais
- Centre for Functional Ecology-Science for People & the Planet, Department of Life Sciences, University of Coimbra, Coimbra 3000-456, Portugal
| | - Ana Carvalho
- Centre for Functional Ecology-Science for People & the Planet, Department of Life Sciences, University of Coimbra, Coimbra 3000-456, Portugal
| | - Jordi Martínez-Vilalta
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Filipe Campelo
- Centre for Functional Ecology-Science for People & the Planet, Department of Life Sciences, University of Coimbra, Coimbra 3000-456, Portugal
| |
Collapse
|