1
|
Zhao B, Luo Z, Zhang H, Zhang H. Imaging tools for plant nanobiotechnology. Front Genome Ed 2022; 4:1029944. [PMID: 36569338 PMCID: PMC9772283 DOI: 10.3389/fgeed.2022.1029944] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The successful application of nanobiotechnology in biomedicine has greatly changed the traditional way of diagnosis and treating of disease, and is promising for revolutionizing the traditional plant nanobiotechnology. Over the past few years, nanobiotechnology has increasingly expanded into plant research area. Nanomaterials can be designed as vectors for targeted delivery and controlled release of fertilizers, pesticides, herbicides, nucleotides, proteins, etc. Interestingly, nanomaterials with unique physical and chemical properties can directly affect plant growth and development; improve plant resistance to disease and stress; design as sensors in plant biology; and even be used for plant genetic engineering. Similarly, there have been concerns about the potential biological toxicity of nanomaterials. Selecting appropriate characterization methods will help understand how nanomaterials interact with plants and promote advances in plant nanobiotechnology. However, there are relatively few reviews of tools for characterizing nanomaterials in plant nanobiotechnology. In this review, we present relevant imaging tools that have been used in plant nanobiotechnology to monitor nanomaterial migration, interaction with and internalization into plants at three-dimensional lengths. Including: 1) Migration of nanomaterial into plant organs 2) Penetration of nanomaterial into plant tissues (iii)Internalization of nanomaterials by plant cells and interactions with plant subcellular structures. We compare the advantages and disadvantages of current characterization tools and propose future optimal characterization methods for plant nanobiotechnology.
Collapse
Affiliation(s)
- Bin Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Zhongxu Luo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, China
| | - Honglu Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Huan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
D'Ascenzo N, Xie Q, Antonecchia E, Ciardiello M, Pagnani G, Pisante M. Kinetically Consistent Data Assimilation for Plant PET Sparse Time Activity Curve Signals. FRONTIERS IN PLANT SCIENCE 2022; 13:882382. [PMID: 35941942 PMCID: PMC9356293 DOI: 10.3389/fpls.2022.882382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Time activity curve (TAC) signal processing in plant positron emission tomography (PET) is a frontier nuclear science technique to bring out the quantitative fluid dynamic (FD) flow parameters of the plant vascular system and generate knowledge on crops and their sustainable management, facing the accelerating global climate change. The sparse space-time sampling of the TAC signal impairs the extraction of the FD variables, which can be determined only as averaged values with existing techniques. A data-driven approach based on a reliable FD model has never been formulated. A novel sparse data assimilation digital signal processing method is proposed, with the unique capability of a direct computation of the dynamic evolution of noise correlations between estimated and measured variables, by taking into explicit account the numerical diffusion due to the sparse sampling. The sequential time-stepping procedure estimates the spatial profile of the velocity, the diffusion coefficient and the compartmental exchange rates along the plant stem from the TAC signals. To illustrate the performance of the method, we report an example of the measurement of transport mechanisms in zucchini sprouts.
Collapse
Affiliation(s)
- Nicola D'Ascenzo
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Department of Medical Physics and Engineering, Istituto Neurologico Mediterraneo, Istituto di Ricovero e Cura a Carattere Scientifico, Pozzilli, Italy
| | - Qingguo Xie
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Department of Medical Physics and Engineering, Istituto Neurologico Mediterraneo, Istituto di Ricovero e Cura a Carattere Scientifico, Pozzilli, Italy
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
| | - Emanuele Antonecchia
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Department of Medical Physics and Engineering, Istituto Neurologico Mediterraneo, Istituto di Ricovero e Cura a Carattere Scientifico, Pozzilli, Italy
| | - Mariachiara Ciardiello
- Department of Medical Physics and Engineering, Istituto Neurologico Mediterraneo, Istituto di Ricovero e Cura a Carattere Scientifico, Pozzilli, Italy
| | - Giancarlo Pagnani
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Michele Pisante
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
3
|
Liu R, Feng X, Li C, Ma J, Wang Y, Li Y. The Importance of Stem Photosynthesis for Two Desert Shrubs Across Different Groundwater Depths. FRONTIERS IN PLANT SCIENCE 2022; 13:804786. [PMID: 35371182 PMCID: PMC8965657 DOI: 10.3389/fpls.2022.804786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/10/2022] [Indexed: 06/01/2023]
Abstract
Water availability could alter multiple ecophysiological processes such as water use strategy, photosynthesis, and respiration, thereby modifying plant water use and carbon gain. However, a lack of field observations hinders our understanding of how water availability affects stem photosynthesis at both organ and plant levels of desert shrubs. In this study, we measured gas exchange and oxygen stable isotopes to quantify water sources, stem recycling photosynthesis, and whole-plant carbon balance in two coexisting Haloxylon species (Haloxylon ammodendron and Haloxylon persicum) at different groundwater depths in the Gurbantonggut Desert. The overall aim of the study was to analyze and quantify the important role of stem recycling photosynthesis for desert shrubs (Haloxylon species) under different groundwater depths. The results showed that (1) regardless of changes in groundwater depth, H. ammodendron consistently used groundwater and H. persicum used deep soil water as their main water source, with greater than 75% of xylem water being derived from groundwater and deep soil water for the two species, respectively; (2) stem recycling photosynthesis refixed 72-81% of the stem dark respiration, and its contribution to whole-plant carbon assimilation was 10-21% for the two species; and (3) deepened groundwater increased stem water use efficiency and its contribution to whole-plant carbon assimilation in H. persicum but not in H. ammodendron. Our study provided observational evidence that deepened groundwater depth induced H. persicum to increase stem recycling photosynthetic capacity and a greater contribution to whole-plant carbon assimilation, but this did not occur on H. ammodendron. Our study indicates that stem recycling photosynthesis may play an important role in the survival of desert shrubs in drought conditions.
Collapse
Affiliation(s)
- Ran Liu
- State Key Lab of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Fukang National Station of Observation and Research for Desert Ecosystem, Xinjiang, China
| | - Xiaolong Feng
- State Key Lab of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Fukang National Station of Observation and Research for Desert Ecosystem, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Congjuan Li
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Jie Ma
- State Key Lab of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Fukang National Station of Observation and Research for Desert Ecosystem, Xinjiang, China
| | - Yugang Wang
- State Key Lab of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Fukang National Station of Observation and Research for Desert Ecosystem, Xinjiang, China
| | - Yan Li
- State Key Lab of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Fukang National Station of Observation and Research for Desert Ecosystem, Xinjiang, China
| |
Collapse
|
4
|
Antonecchia E, Bäcker M, Cafolla D, Ciardiello M, Kühl C, Pagnani G, Wang J, Wang S, Zhou F, D'Ascenzo N, Gialanella L, Pisante M, Rose G, Xie Q. Design Study of a Novel Positron Emission Tomography System for Plant Imaging. FRONTIERS IN PLANT SCIENCE 2022; 12:736221. [PMID: 35116047 PMCID: PMC8805640 DOI: 10.3389/fpls.2021.736221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Positron Emission Tomography is a non-disruptive and high-sensitive digital imaging technique which allows to measure in-vivo and non invasively the changes of metabolic and transport mechanisms in plants. When it comes to the early assessment of stress-induced alterations of plant functions, plant PET has the potential of a major breakthrough. The development of dedicated plant PET systems faces a series of technological and experimental difficulties, which make conventional clinical and preclinical PET systems not fully suitable to agronomy. First, the functional and metabolic mechanisms of plants depend on environmental conditions, which can be controlled during the experiment if the scanner is transported into the growing chamber. Second, plants need to be imaged vertically, thus requiring a proper Field Of View. Third, the transverse Field of View needs to adapt to the different plant shapes, according to the species and the experimental protocols. In this paper, we perform a simulation study, proposing a novel design of dedicated plant PET scanners specifically conceived to address these agronomic issues. We estimate their expected sensitivity, count rate performance and spatial resolution, and we identify these specific features, which need to be investigated when realizing a plant PET scanner. Finally, we propose a novel approach to the measurement and verification of the performance of plant PET systems, including the design of dedicated plant phantoms, in order to provide a standard evaluation procedure for this emerging digital imaging agronomic technology.
Collapse
Affiliation(s)
- Emanuele Antonecchia
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
- Istituto Neurologico Mediterraneo, NEUROMED I.R.C.C.S, Pozzilli, Italy
| | - Markus Bäcker
- Institute for Medical Engineering and Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany
| | - Daniele Cafolla
- Istituto Neurologico Mediterraneo, NEUROMED I.R.C.C.S, Pozzilli, Italy
| | | | - Charlotte Kühl
- Institute for Medical Engineering and Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany
| | - Giancarlo Pagnani
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Jiale Wang
- School of Information and Communication Engineering, University of Electronics Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute of University of Science and Technology of China, Quzhou, China
| | - Shuai Wang
- School of Information and Communication Engineering, University of Electronics Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute of University of Science and Technology of China, Quzhou, China
| | - Feng Zhou
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Nicola D'Ascenzo
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
- Istituto Neurologico Mediterraneo, NEUROMED I.R.C.C.S, Pozzilli, Italy
| | - Lucio Gialanella
- Department of Mathematics and Physics, University of Campania L. Vanvitelli, Caserta, Italy
| | - Michele Pisante
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Georg Rose
- Institute for Medical Engineering and Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany
| | - Qingguo Xie
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
- Istituto Neurologico Mediterraneo, NEUROMED I.R.C.C.S, Pozzilli, Italy
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
| |
Collapse
|
5
|
Mincke J, Courtyn J, Vanhove C, Vandenberghe S, Steppe K. Guide to Plant-PET Imaging Using 11CO 2. FRONTIERS IN PLANT SCIENCE 2021; 12:602550. [PMID: 34149742 PMCID: PMC8206809 DOI: 10.3389/fpls.2021.602550] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 05/03/2021] [Indexed: 05/12/2023]
Abstract
Due to its high sensitivity and specificity for tumor detection, positron emission tomography (PET) has become a standard and widely used molecular imaging technique. Given the popularity of PET, both clinically and preclinically, its use has been extended to study plants. However, only a limited number of research groups worldwide report PET-based studies, while we believe that this technique has much more potential and could contribute extensively to plant science. The limited application of PET may be related to the complexity of putting together methodological developments from multiple disciplines, such as radio-pharmacology, physics, mathematics and engineering, which may form an obstacle for some research groups. By means of this manuscript, we want to encourage researchers to study plants using PET. The main goal is to provide a clear description on how to design and execute PET scans, process the resulting data and fully explore its potential by quantification via compartmental modeling. The different steps that need to be taken will be discussed as well as the related challenges. Hereby, the main focus will be on, although not limited to, tracing 11CO2 to study plant carbon dynamics.
Collapse
Affiliation(s)
- Jens Mincke
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- MEDISIP - INFINITY - IBiTech, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium
| | - Jan Courtyn
- Medical Molecular Imaging and Therapy, Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Christian Vanhove
- MEDISIP - INFINITY - IBiTech, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium
| | - Stefaan Vandenberghe
- MEDISIP - INFINITY - IBiTech, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Schmidt MP, Mamet SD, Ferrieri RA, Peak D, Siciliano SD. From the Outside in: An Overview of Positron Imaging of Plant and Soil Processes. Mol Imaging 2020; 19:1536012120966405. [PMID: 33119419 PMCID: PMC7605056 DOI: 10.1177/1536012120966405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Positron-emitting nuclides have long been used as imaging agents in medical science to spatially trace processes non-invasively, allowing for real-time molecular imaging using low tracer concentrations. This ability to non-destructively visualize processes in real time also makes positron imaging uniquely suitable for probing various processes in plants and porous environmental media, such as soils and sediments. Here, we provide an overview of historical and current applications of positron imaging in environmental research. We highlight plant physiological research, where positron imaging has been used extensively to image dynamics of macronutrients, signalling molecules, trace elements, and contaminant metals under various conditions and perturbations. We describe how positron imaging is used in porous soils and sediments to visualize transport, flow, and microbial metabolic processes. We also address the interface between positron imaging and other imaging approaches, and present accompanying chemical analysis of labelled compounds for reviewed topics, highlighting the bridge between positron imaging and complementary techniques across scales. Finally, we discuss possible future applications of positron imaging and its potential as a nexus of interdisciplinary biogeochemical research.
Collapse
Affiliation(s)
- Michael P Schmidt
- Department of Soil Science, College of Agriculture and Bioresources, 7235University of Saskatchewan, Saskatoon, Canada
| | - Steven D Mamet
- Department of Soil Science, College of Agriculture and Bioresources, 7235University of Saskatchewan, Saskatoon, Canada
| | - Richard A Ferrieri
- Interdisciplinary Plant Group, Division of Plant Sciences, Department of Chemistry, Missouri Research Reactor Center, 14716University of Missouri, Columbia, MO, USA
| | - Derek Peak
- Department of Soil Science, College of Agriculture and Bioresources, 7235University of Saskatchewan, Saskatoon, Canada
| | - Steven D Siciliano
- Department of Soil Science, College of Agriculture and Bioresources, 7235University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
7
|
De Roo L, Salomón RL, Oleksyn J, Steppe K. Woody tissue photosynthesis delays drought stress in Populus tremula trees and maintains starch reserves in branch xylem tissues. THE NEW PHYTOLOGIST 2020; 228:70-81. [PMID: 32416019 DOI: 10.1111/nph.16662] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Photosynthesis in woody tissues (Pwt ) is less sensitive to water shortage than in leaves, hence, Pwt might be a crucial carbon source to alleviate drought stress. To evaluate the impact of Pwt on tree drought tolerance, woody tissues of 4-m-tall drought-stressed Populus tremula trees were subjected to a light-exclusion treatment across the entire plant to inhibit Pwt . Xylem water potential (Ψxylem ), sap flow ( FH2O ), leaf net photosynthesis (Pn,l ), stem diameter variations (ΔD), in vivo acoustic emissions in stems (AEs) and nonstructural carbohydrate concentrations ([NSC]) were monitored to comprehensively assess water and carbon relations at whole-tree level. Under well-watered conditions, Pwt kept Ψxylem at a higher level, lowered FH2O and had no effect on [NSC]. Under drought, Ψxylem , FH2O and Pn,l in light-excluded trees rapidly decreased in concert with reductions in branch xylem starch concentration. Moreover, sub-daily patterns of ΔD, FH2O and AEs were strongly related, suggesting that in vivo AEs may inform not only about embolism events, but also about capacitive release and replenishment of stem water pools. Results highlight the importance of Pwt in maintaining xylem hydraulic integrity under drought conditions and in sustaining NSC pools to potentially limit increases in xylem tension.
Collapse
Affiliation(s)
- Linus De Roo
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium
| | - Roberto Luis Salomón
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium
| | - Jacek Oleksyn
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, PL-62-035, Kórnik, Poland
| | - Kathy Steppe
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium
| |
Collapse
|
8
|
Mincke J, Courtyn J, Vanhove C, Vandenberghe S, Steppe K. Studying in vivo dynamics of xylem-transported 11CO2 using positron emission tomography. TREE PHYSIOLOGY 2020; 40:1058-1070. [PMID: 32333788 DOI: 10.1093/treephys/tpaa048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/20/2020] [Indexed: 05/26/2023]
Abstract
Respired CO2 in woody tissues can build up in the xylem and dissolve in the sap solution to be transported through the plant. From the sap, a fraction of the CO2 can either be radially diffuse to the atmosphere or be assimilated in chloroplasts present in woody tissues. These processes occur simultaneously in stems and branches, making it difficult to study their specific dynamics. Therefore, an 11C-enriched aqueous solution was administered to young branches of Populus tremula L., which were subsequently imaged by positron emission tomography (PET). This approach allows in vivo visualization of the internal movement of CO2 inside branches at high spatial and temporal resolution, and enables direct measurement of the transport speed of xylem-transported CO2 (vCO2). Through compartmental modeling of the dynamic data obtained from the PET images, we (i) quantified vCO2 and (ii) proposed a new method to assess the fate of xylem-transported 11CO2 within the branches. It was found that a fraction of 0.49 min-1 of CO2 present in the xylem was transported upwards. A fraction of 0.38 min-1 diffused radially from the sap to the surrounding parenchyma and apoplastic spaces (CO2,PA) to be assimilated by woody tissue photosynthesis. Another 0.12 min-1 of the xylem-transported CO2 diffused to the atmosphere via efflux. The remaining CO2 (i.e., 0.01 min-1) was stored as CO2,PA, representing the build-up within parenchyma and apoplastic spaces to be assimilated or directed to the atmosphere. Here, we demonstrate the outstanding potential of 11CO2-based plant-PET in combination with compartmental modeling to advance our understanding of internal CO2 movement and the respiratory physiology within woody tissues.
Collapse
Affiliation(s)
- Jens Mincke
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- MEDISIP-INFINITY, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Jan Courtyn
- Medical Molecular Imaging and Therapy, Department of Radiology and Nuclear Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Christian Vanhove
- MEDISIP-INFINITY, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Stefaan Vandenberghe
- MEDISIP-INFINITY, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
9
|
De Roo L, Salomón RL, Steppe K. Woody tissue photosynthesis reduces stem CO 2 efflux by half and remains unaffected by drought stress in young Populus tremula trees. PLANT, CELL & ENVIRONMENT 2020; 43:981-991. [PMID: 31884680 DOI: 10.1111/pce.13711] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
A substantial portion of locally respired CO2 in stems can be assimilated by chloroplast-containing tissues. Woody tissue photosynthesis (Pwt ) therefore plays a major role in the stem carbon balance. To study the impact of Pwt on stem carbon cycling along a gradient of water availability, stem CO2 efflux (EA ), xylem CO2 concentration ([CO2 ]), and xylem water potential (Ψxylem ) were measured in 4-year-old Populus tremula L. trees exposed to drought stress and different regimes of light exclusion of woody tissues. Under well-watered conditions, local Pwt decreased EA up to 30%. Axial CO2 diffusion (Dax ) induced by distant Pwt caused an additional decrease in EA of up to 25% and limited xylem [CO2 ] build-up. Under drought stress, absolute decreases in EA driven by Pwt remained stable, denoting that Pwt was not affected by drought. At the end of the dry period, when transpiration was low, local Pwt and Dax offset 20% and 10% of stem respiration on a daily basis, respectively. These results highlight (a) the importance of Pwt for an adequate interpretation of EA measurements and (b) homeostatic Pwt along a drought stress gradient, which might play a crucial role to fuel stem metabolism when leaf carbon uptake and phloem transport are limited.
Collapse
Affiliation(s)
- Linus De Roo
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Roberto Luis Salomón
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Terada Y, Horikawa Y, Nagata A, Kose K, Fukuda K. Dynamics of xylem and phloem sap flow in an outdoor zelkova tree visualized by magnetic resonance imaging. TREE PHYSIOLOGY 2020; 40:290-304. [PMID: 31860722 DOI: 10.1093/treephys/tpz120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/17/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Xylem and phloem sap flows in an intact, young Japanese zelkova tree (Zelkova serrata (Thunb.) Makino) growing outdoors were measured using magnetic resonance imaging (MRI). Two propagator-based sequences were developed for q-space imaging: pulse field gradient (PFG) with spin echo (PFG-SE) and stimulated echo (PFG-STE), which were used for xylem and phloem flow measurements, respectively. The data evaluation methods were improved to image fast xylem flow and slow phloem flow. Measurements were taken every 2-3 h for several consecutive days in August 2016, and diurnal changes in xylem and phloem sap flows in a cross-section of the trunk were quantified at a resolution of 1 mm2. During the day, apparent xylem flow volume exhibited a typical diurnal pattern following a vapor pressure deficit. The velocity mapping of xylem sap flow across the trunk cross section revealed that the greatest flow volume was found in current-year earlywood that had differentiated in April-May. The combined xylem flow in the 1- and 2-year-old annual rings also contributed to one-third of total sap flow. In the phloem, downward sap flow did not exhibit diurnal changes. This novel application of MRI in visualization of xylem and phloem sap flow by MRI is a promising tool for in vivo study of water transport in mature trees.
Collapse
Affiliation(s)
- Yasuhiko Terada
- Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yusuke Horikawa
- Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Akiyoshi Nagata
- Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Katsumi Kose
- Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kenji Fukuda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
11
|
Salmon Y, Dietrich L, Sevanto S, Hölttä T, Dannoura M, Epron D. Drought impacts on tree phloem: from cell-level responses to ecological significance. TREE PHYSIOLOGY 2019; 39:173-191. [PMID: 30726983 DOI: 10.1093/treephys/tpy153] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/03/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
On-going climate change is increasing the risk of drought stress across large areas worldwide. Such drought events decrease ecosystem productivity and have been increasingly linked to tree mortality. Understanding how trees respond to water shortage is key to predicting the future of ecosystem functions. Phloem is at the core of the tree functions, moving resources such as non-structural carbohydrates, nutrients, and defence and information molecules across the whole plant. Phloem function and ability to transport resources is tightly controlled by the balance of carbon and water fluxes within the tree. As such, drought is expected to impact phloem function by decreasing the amount of available water and new photoassimilates. Yet, the effect of drought on the phloem has received surprisingly little attention in the last decades. Here we review existing knowledge on drought impacts on phloem transport from loading and unloading processes at cellular level to possible effects on long-distance transport and consequences to ecosystems via ecophysiological feedbacks. We also point to new research frontiers that need to be explored to improve our understanding of phloem function under drought. In particular, we show how phloem transport is affected differently by increasing drought intensity, from no response to a slowdown, and explore how severe drought might actually disrupt the phloem transport enough to threaten tree survival. Because transport of resources affects other organisms interacting with the tree, we also review the ecological consequences of phloem response to drought and especially predatory, mutualistic and competitive relations. Finally, as phloem is the main path for carbon from sources to sink, we show how drought can affect biogeochemical cycles through changes in phloem transport. Overall, existing knowledge is consistent with the hypotheses that phloem response to drought matters for understanding tree and ecosystem function. However, future research on a large range of species and ecosystems is urgently needed to gain a comprehensive understanding of the question.
Collapse
Affiliation(s)
- Yann Salmon
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, Gustaf Hällströmin katu 2b, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, Latokartanonkaari 7, University of Helsinki, Helsinki, Finland
| | - Lars Dietrich
- Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, Basel, Switzerland
| | - Sanna Sevanto
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, PO Box 1663 MA 495, Los Alamos, NM, USA
| | - Teemu Hölttä
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, Latokartanonkaari 7, University of Helsinki, Helsinki, Finland
| | - Masako Dannoura
- Kyoto University, Laboratory of Ecosystem Production and Dynamics, Graduate School of Global Environmental Studies, Kyoto, Japan
- Kyoto University, Laboratory of Forest Utilization, Graduate School of Agriculture, Kyoto, Japan
| | - Daniel Epron
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, Faculté des Sciences et Technologies, Nancy, France
| |
Collapse
|