1
|
Nazir MA, Hasan M, Mustafa G, Tariq T, Ahmed MM, Golzari Dehno R, Ghorbanpour M. Zinc oxide nano-fertilizer differentially effect on morphological and physiological identity of redox-enzymes and biochemical attributes in wheat (Triticum aestivum L.). Sci Rep 2024; 14:13091. [PMID: 38849601 PMCID: PMC11161468 DOI: 10.1038/s41598-024-63987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
The aim of current study was to prepared zinc oxide nanofertilzers by ecofriendly friendly, economically feasible, free of chemical contamination and safe for biological use. The study focused on crude extract of Withania coagulans as reducing agent for the green synthesis of ZnO nano-particles. Biosynthesized ZnO NPs were characterized by UV-Vis spectroscopy, XRD, FTIR and GC-MS analysis. However, zinc oxide as green Nano fertilizer was used to analyze responses induced by different doses of ZnO NPs [0, 25, 50,100, 200 mg/l and Zn acetate (100 mg/l)] in Triticum aestivum (wheat). The stimulatory and inhibitory effects of foliar application of ZnO NPs were studied on wheat (Triticum aestivum) with aspect of biomass accumulation, morphological attributes, biochemical parameters and anatomical modifications. Wheat plant showed significant (p < 0.01) enhancement of growth parameters upon exposure to ZnO NPs at specific concentrations. In addition, wheat plant showed significant increase in biochemical attributes, chlorophyll content, carotenoids, carbohydrate and protein contents. Antioxidant enzyme (POD, SOD, CAT) and total flavonoid content also confirmed nurturing impact on wheat plant. Increased stem, leaf and root anatomical parameters, all showed ZnO NPs mitigating capacity when applied to wheat. According to the current research, ZnO NPs application on wheat might be used to increase growth, yield, and Zn biofortification in wheat plants.
Collapse
Affiliation(s)
- Muneeba Anum Nazir
- Department of Biotechnology, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Murtaza Hasan
- Department of Biotechnology, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Ghazala Mustafa
- Depatment of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- State Agricultural Ministry Laboratory of Horticultural Crop Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Tuba Tariq
- Department of Biotechnology, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Mahmood Ahmed
- Department of Biotinformatics, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Rosa Golzari Dehno
- Department of Agriculture, Chalus Branch, Islamic Azad University, Chalus, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
- Institute of Nanoscience and Nanotechnology, Arak University, Arak, 38156-8-8349, Iran.
| |
Collapse
|
2
|
Iori V, Muzzini VG, Venditti I, Casentini B, Iannelli MA. Phytotoxic impact of bifunctionalized silver nanoparticles (AgNPs-Cit-L-Cys) and silver nitrate (AgNO 3) on chronically exposed callus cultures of Populus nigra L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116175-116185. [PMID: 37907823 PMCID: PMC10682225 DOI: 10.1007/s11356-023-30690-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023]
Abstract
Owing to the unique physicochemical properties and the low manufacturing costs, silver nanoparticles (AgNPs) have gained growing interest and their application has expanded considerably in industrial and agricultural sectors. The large-scale production of these nanoparticles inevitably entails their direct or indirect release into the environment, raising some concerns about their hazardous aspects. Callus culture represents an important tool in toxicological studies to evaluate the impact of nanomaterials on plants and their potential environmental risk. In this study, we investigated the chronic phytotoxic effects of different concentrations of novel bifunctionalized silver nanoparticles (AgNPs-Cit-L-Cys) and silver nitrate (AgNO3) on callus culture of Populus nigra L., a pioneer tree species in the riparian ecosystem. Our results showed that AgNPs-Cit-L-Cys were more toxic on poplar calli compared to AgNO3, especially at low concentration (2.5 mg/L), leading to a significant reduction in biomass production, accompanied by a decrease in protein content, a significant increase in both lipid peroxidation level, ascorbate peroxidase (APX), and catalase (CAT) enzymatic activities. In addition, these findings suggested that the harmful activity of AgNPs-Cit-L-Cys might be correlated with their physicochemical properties and not solely attributed to the released Ag+ ions and confirmed that AgNPs-Cit-L-Cys phytoxicity is associated to oxidative stress.
Collapse
Affiliation(s)
- Valentina Iori
- Institute of Agricultural Biology and Biotechnology - National Research Council (IBBA-CNR), Strada Provinciale 35d, 9, 00010, Montelibretti, Rome, Italy.
| | - Valerio Giorgio Muzzini
- Research Institute On Terrestrial Ecosystems - National Research Council (IRET-CNR), Strada Provinciale 35d, 9, 00010, Montelibretti, Rome, Italy
| | - Iole Venditti
- Department of Sciences, University of Roma Tre, Via Della Vasca Navale 79, 00146, Rome, Italy
| | - Barbara Casentini
- Water Research Institute - National Research Council (IRSA-CNR), Strada Provinciale 35d, 9, 00010, Montelibretti, Rome, Italy
| | - Maria Adelaide Iannelli
- Institute of Agricultural Biology and Biotechnology - National Research Council (IBBA-CNR), Strada Provinciale 35d, 9, 00010, Montelibretti, Rome, Italy
| |
Collapse
|
3
|
Cui H, Hu K, Zhao Y, Zhang W, Zhu Z, Liang J, Li D, Zhou J, Zhou J. Impacts of atmospheric copper and cadmium deposition on the metal accumulation of camphor leaves and rings around a large smelter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27675-x. [PMID: 37193791 DOI: 10.1007/s11356-023-27675-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 05/11/2023] [Indexed: 05/18/2023]
Abstract
The atmospheric deposition of copper (Cu) and cadmium (Cd) was monitored in eight sites around a Cu smelter with similar distance to verify whether tree leaf and ring can be used as bio-indicators to track spatial pollution record. Results showed that total atmospheric deposition of Cu (103-1215 mg/m2/year) and Cd (3.57-11.2 mg/m2/year) were 4.73-66.6 and 3.15-12.2 times higher than those in background site (164 mg/m2/year and 0.93 mg/m2/year). The frequencies of wind directions significantly influenced the atmospheric deposition of Cu and Cd, and the highest atmospheric deposition of Cu and Cd were at the prevalent northeastern wind (JN), and low frequency south (WJ) and north (SW) winds for the lowest deposition fluxes. Since the bioavailability of Cd was higher than that of Cu, the atmospheric deposition of Cd was more easily adsorbed by tree leaf and ring, resulting in only significant relation between atmospheric Cd deposition and Cinnamomum camphora leaves and tree ring Cd. Although tree rings cannot correctly record the atmospheric Cu and Cd deposition, higher concentrations in the indigenous tree rings than the transplanted tree rings suggested that tree rings can reflect to some extent the variations of atmospheric deposition. Generally, spatial pollution of atmospheric deposition of heavy metals cannot reflect the distribution of soil total and available metals around the smelter, and only camphor leaf and tree ring can bio-indicate Cd deposition. A major implication of these findings is that leaf and tree ring can serve for biomonitoring purposes to assess the spatial distribution of atmospheric deposition metal with high bioavailability around a pollution source with similar distance.
Collapse
Affiliation(s)
- Hongbiao Cui
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
- Engineering Laboratory of Anhui Province for Comprehensive Utilization of Water and Soil Resources and Construction of Ecological Protection in Mining Area with High Groundwater Level, Anhui University of Science and Technology, Huainan, 232001, China
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy Sciences, Nanjing, 210008, China
| | - Kaixin Hu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
- Engineering Laboratory of Anhui Province for Comprehensive Utilization of Water and Soil Resources and Construction of Ecological Protection in Mining Area with High Groundwater Level, Anhui University of Science and Technology, Huainan, 232001, China
| | - Yingjie Zhao
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
- Engineering Laboratory of Anhui Province for Comprehensive Utilization of Water and Soil Resources and Construction of Ecological Protection in Mining Area with High Groundwater Level, Anhui University of Science and Technology, Huainan, 232001, China
| | - Wei Zhang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
- Engineering Laboratory of Anhui Province for Comprehensive Utilization of Water and Soil Resources and Construction of Ecological Protection in Mining Area with High Groundwater Level, Anhui University of Science and Technology, Huainan, 232001, China
| | - Zhenqiu Zhu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy Sciences, Nanjing, 210008, China
| | - Jiani Liang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy Sciences, Nanjing, 210008, China
| | - Detian Li
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
- Engineering Laboratory of Anhui Province for Comprehensive Utilization of Water and Soil Resources and Construction of Ecological Protection in Mining Area with High Groundwater Level, Anhui University of Science and Technology, Huainan, 232001, China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy Sciences, Nanjing, 210008, China
| | - Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy Sciences, Nanjing, 210008, China.
- Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts, Lowell, MA, 01854, USA.
| |
Collapse
|
4
|
Ballikaya P, Brunner I, Cocozza C, Grolimund D, Kaegi R, Murazzi ME, Schaub M, Schönbeck LC, Sinnet B, Cherubini P. First evidence of nanoparticle uptake through leaves and roots in beech (Fagus sylvatica L.) and pine (Pinus sylvestris L.). TREE PHYSIOLOGY 2023; 43:262-276. [PMID: 36226588 PMCID: PMC9923370 DOI: 10.1093/treephys/tpac117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Trees have been used for phytoremediation and as biomonitors of air pollution. However, the mechanisms by which trees mitigate nanoparticle pollution in the environment are still unclear. We investigated whether two important tree species, European beech (Fagus sylvatica L.) and Scots pine (Pinus sylvestris L.), are able to take up and transport differently charged gold nanoparticles (Au-NPs) into their stem by comparing leaf-to-root and root-to-leaf pathways. Au-NPs were taken up by roots and leaves, and a small fraction was transported to the stem in both species. Au-NPs were transported from leaves to roots but not vice versa. Leaf Au uptake was higher in beech than in pine, probably because of the higher stomatal density and wood characteristics of beech. Confocal (3D) analysis confirmed the presence of Au-NPs in trichomes and leaf blade, about 20-30 μm below the leaf surface in beech. Most Au-NPs likely penetrated into the stomatal openings through diffusion of Au-NPs as suggested by the 3D XRF scanning analysis. However, trichomes were probably involved in the uptake and internal immobilization of NPs, besides their ability to retain them on the leaf surface. The surface charge of Au-NPs may have played a role in their adhesion and uptake, but not in their transport to different tree compartments. Stomatal conductance did not influence the uptake of Au-NPs. This is the first study that shows nanoparticle uptake and transport in beech and pine, contributing to a better understanding of the interactions of NPs with different tree species.
Collapse
Affiliation(s)
- Paula Ballikaya
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
- Department of Geography, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Ivano Brunner
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Claudia Cocozza
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Via delle Cascine, 5, I-50145 Florence, Italy
| | - Daniel Grolimund
- Swiss Light Source, PSI Paul Scherrer Institute, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - Ralf Kaegi
- Eawag Swiss Federal Institute of Aquatic Science and Technology, Department Process Engineering, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Maria Elvira Murazzi
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Marcus Schaub
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Leonie C Schönbeck
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
- Department of Botany & Plant Sciences, University of California Riverside, 2150 Batchelor Hall, Riverside, CA 92521-0124 USA
| | - Brian Sinnet
- Eawag Swiss Federal Institute of Aquatic Science and Technology, Department Process Engineering, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Paolo Cherubini
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
- Department of Geography, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, 2004-2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
5
|
Chen D, Yin S, Zhang X, Lyu J, Zhang Y, Zhu Y, Yan J. A high-resolution study of PM 2.5 accumulation inside leaves in leaf stomata compared with non-stomatal areas using three-dimensional X-ray microscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158543. [PMID: 36067857 DOI: 10.1016/j.scitotenv.2022.158543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/06/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Plant leaves retain atmospheric particulate matter (PM) on their surfaces, helping PM removal and risk reduction of respiratory tract infection. Several processes (deposition, resuspension, rainfall removal) can influence the PM accumulation on leaves and different leaf microstructures (e.g., trichomes, epicuticular waxes) can also be involved in retaining PM. However, the accumulation and distribution of PM on leaves, particularly at the stomata, are unclear, and the lack of characterization methods limits our understanding of this process. Thus, in this study, we aimed to explore the pathway through which PM2.5 (aerodynamic diameter ≤ 2.5 μm) enters plant leaves, and the penetration depth of PM2.5 along the entry route. Here, an indoor experiment using diamond powder as a tracer to simulate PM2.5 deposition on leaves was carried out. Then, the treated and non-treated leaves were scanned by using three-dimensional (3D) X-ray microscopy. Next, the grayscale value of the scanned images was used to compare PM2.5 accumulation in stomatal and non-stomatal areas of the treated and non-treated leaves, respectively. Finally, a total PM2.5 volume from the abaxial epidermis was calculated. The results showed that, first, a large amount of PM2.5 accumulates within leaf stomata, whereas PM2.5 does not accumulate at non-stomatal areas. Then, the penetration depth of PM2.5 in stomata of most tree species was 5-14 μm from the abaxial epidermis. For the first time, 3D X-ray microscope scanning was used to confirm that a pathway by which PM2.5 enters the leaves is through the stomata, which is fundamental for further research on how PM2.5 translocates and interacts with tissues and cells in leaves.
Collapse
Affiliation(s)
- Dele Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China
| | - Shan Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China; Key Laboratory for Urban Agriculture, Ministry of Agriculture and Rural Affairs, 800 Dongchuan Rd., Shanghai 200240, China.
| | - Xuyi Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China
| | - Junyao Lyu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China
| | - Yiran Zhang
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China
| | - Yanhua Zhu
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China; Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Jingli Yan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China
| |
Collapse
|
6
|
Xu N, Kang J, Ye Y, Zhang Q, Ke M, Wang Y, Zhang Z, Lu T, Peijnenburg WJGM, Bao G, Qian H. Machine learning predicts ecological risks of nanoparticles to soil microbial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119528. [PMID: 35623569 DOI: 10.1016/j.envpol.2022.119528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/20/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
With the rapid development of nanotechnology in agriculture, there is increasing urgency to assess the impacts of nanoparticles (NPs) on the soil environment. This study merged raw high-throughput sequencing (HTS) data sets generated from 365 soil samples to reveal the potential ecological effects of NPs on soil microbial community by means of metadata analysis and machine learning methods. Metadata analysis showed that treatment with nanoparticles did not have a significant impact on the alpha diversity of the microbial community, but significantly altered the beta diversity. Unfortunately, the abundance of several beneficial bacteria, such as Dyella, Methylophilus, Streptomyces, which promote the growth of plants, and improve pathogenic resistance, was reduced under the addition of synthetic nanoparticles. Furthermore, metadata demonstrated that nanoparticles treatment weakened the biosynthesis ability of cofactors, carriers, and vitamins, and enhanced the degradation ability of aromatic compounds, amino acids, etc. This is unfavorable for the performance of soil functions. Besides the soil heterogeneity, machine learning uncovered that a) the exposure time of nanoparticles was the most important factor to reshape the soil microbial community, and b) long-term exposure decreased the diversity of microbial community and the abundance of beneficial bacteria. This study is the first to use a machine learning model and metadata analysis to investigate the relationship between the properties of nanoparticles and the hazards to the soil microbial community from a macro perspective. This guides the rational use of nanoparticles for which the impacts on soil microbiota are minimized.
Collapse
Affiliation(s)
- Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Jian Kang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Yangqing Ye
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Yufei Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - W J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, RA, Leiden, 2300, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, the Netherlands
| | - Guanjun Bao
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China.
| |
Collapse
|
7
|
Khodaparast Z, van Gestel CAM, Verweij RA, Papadiamantis AG, Gonçalves SF, Lynch I, Loureiro S. Effects of sulfidation of silver nanoparticles on the Ag uptake kinetics in Brassica rapa plants. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128880. [PMID: 35468391 DOI: 10.1016/j.jhazmat.2022.128880] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Land application of sewage sludge containing increasing levels of silver nanoparticles (AgNPs) raises concerns about the risk for plant exposure. This study compared the uptake kinetics and distribution of Ag in Brassica rapa seedlings grown in Lufa 2.2 natural soil spiked with 20 nm Ag2S NPs, with those from 3 to 8 nm AgNPs, 50 nm AgNPs and AgNO3 exposures (10 mg Ag/kg dry soil). A two-compartment model was used to describe the uptake kinetics of Ag in plants, distinguishing two stages: stage I with increasing Ag uptake followed by stage II with decreasing Ag uptake. The concentration of Ag in roots from Ag2S NPs was about 14 and 10 times lower than for the other AgNPs and AgNO3 exposures, respectively, at the end of stage I, with root translocation rate constants being higher for Ag2S NPs. In stage II, Ag uptake occurred only for the 50 nm AgNPs. The distribution of Ag in B. rapa exposed to pristine, ionic and sulfidized AgNPs differed at the end of exposure. This study shows that Ag uptake and distribution in plants depends on the Ag form in soil, highlighting the importance of studying the environmentally relevant chemical species in NPs risk assessment.
Collapse
Affiliation(s)
- Zahra Khodaparast
- University of Aveiro, CESAM-Centre for Environmental and Marine Studies & Department of Biology, 3810-193 Aveiro, Portugal.
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, The Netherlands
| | - Rudo A Verweij
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, The Netherlands
| | - Anastasios G Papadiamantis
- University of Birmingham, School of Geography, Earth and Environmental Sciences, B15 2TT Birmingham, UK; NovaMechanics Ltd., 1065 Nicosia, Cyprus
| | - Sandra F Gonçalves
- University of Aveiro, CESAM-Centre for Environmental and Marine Studies & Department of Biology, 3810-193 Aveiro, Portugal
| | - Iseult Lynch
- University of Birmingham, School of Geography, Earth and Environmental Sciences, B15 2TT Birmingham, UK
| | - Susana Loureiro
- University of Aveiro, CESAM-Centre for Environmental and Marine Studies & Department of Biology, 3810-193 Aveiro, Portugal
| |
Collapse
|
8
|
Huang D, Dang F, Huang Y, Chen N, Zhou D. Uptake, translocation, and transformation of silver nanoparticles in plants. ENVIRONMENTAL SCIENCE: NANO 2022; 9:12-39. [PMID: 0 DOI: 10.1039/d1en00870f] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This article reviews the plant uptake of silver nanoparticles (AgNPs) that occurred in soil systems and the in planta fate of Ag.
Collapse
Affiliation(s)
- Danyu Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, P.R. China
| | - Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, P.R. China
| | - Yingnan Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ning Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, P.R. China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, P.R. China
| |
Collapse
|
9
|
Avellan A, Yun J, Morais BP, Clement ET, Rodrigues SM, Lowry GV. Critical Review: Role of Inorganic Nanoparticle Properties on Their Foliar Uptake and in Planta Translocation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13417-13431. [PMID: 33988374 DOI: 10.1021/acs.est.1c00178] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
There is increasing pressure on global agricultural systems due to higher food demand, climate change, and environmental concerns. The design of nanostructures is proposed as one of the economically viable technological solutions that can make agrochemical use (fertilizers and pesticides) more efficient through reduced runoff, increased foliar uptake and bioavailability, and decreased environmental impacts. However, gaps in knowledge about the transport of nanoparticles across the leaf surface and their behavior in planta limit the rational design of nanoparticles for foliar delivery with controlled fate and limited risk. Here, the current literature on nano-objects deposited on leaves is reviewed. The different possible foliar routes of uptake (stomata, cuticle, trichomes, hydathodes, necrotic spots) are discussed, along with the paths of translocation, via the phloem, from the leaf to the end sinks (mature and developing tissues, roots, rhizosphere). This review details the interplays between morphological constraints, environmental stimuli, and physical-chemical properties of nanoparticles influencing their fate, transformation, and transport after foliar deposition. A metadata analysis from the existing literature highlighted that plant used for testing nanoparticle fate are most often dicotyledon plants (75%), while monocotyledons (as cereals) are less considered. Correlations on parameters calculated from the literature indicated that nanoparticle dose, size, zeta potential, and affinity to organic phases correlated with leaf-to-sink translocation, demonstrating that targeting nanoparticles to specific plant compartments by design should be achievable. Correlations also showed that time and plant growth seemed to be drivers for in planta mobility, parameters that are largely overlooked in the literature. This review thus highlights the material design opportunities and the knowledge gaps for targeted, stimuli driven deliveries of safe nanomaterials for agriculture.
Collapse
Affiliation(s)
- Astrid Avellan
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Biogeochemical Processes and Pollutants, Center for Environmental and Marine Studies, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Jie Yun
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge 02139, United States
| | - Bruno P Morais
- Biogeochemical Processes and Pollutants, Center for Environmental and Marine Studies, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Emma T Clement
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Sonia M Rodrigues
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Biogeochemical Processes and Pollutants, Center for Environmental and Marine Studies, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Gregory V Lowry
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
10
|
Sayed Ahmed HI, Elsherif DE, El-Shanshory AR, Haider AS, Gaafar RM. Silver nanoparticles and Chlorella treatments induced glucosinolates and kaempferol key biosynthetic genes in Eruca sativa. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1186/s43088-021-00139-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Background
Microalgae and nanoparticles are currently considered promising tools for numerous agricultural and biotechnological applications. The green microalga Chlorella sp. MF1 and its biosynthesized silver nanoparticles (AgNPs) were used in this study as biofortification agents to enhance glucosinolate and kaempferol levels in Eruca sativa. UV–visible spectroscopy, XRD, FTIR and TEM were comprehensively used for characterizing Chlorella-based AgNPs.
Results
The biosynthesized AgNPs were found to be spherical in shape, with size ranging from 1.45 to 5.08 nm. According to FTIR measurements, silver ions were reduced to AgNPs by functional groups such as amide, hydroxyl and carboxylate. Different experimental treatments were conducted, including either soaking seeds of E. sativa or foliar spray with various concentrations of Chlorella suspension (1, 2, 3 and 4 g L−1) and AgNPs (5, 10, 20 and 40 mg L−1). Expression levels of five key genes in the biosynthetic pathway of glucosinolates (MAM1, SUR1, MYB34 and MYB51) and kaempferol (CHS) were assessed using qRT-PCR. The results indicated an upregulation in the gene expression levels in all treatments compared to control, recording the highest level at 40 mg L−1 AgNPs and 4 g L−1Chlorella suspension. In addition, high glucosinolates and kaempferol content was detected in plants whose leaves were sprayed with AgNPs and Chlorella suspension (40 mg L−1 and 4 g L−1) based on HPLC analysis. Sequence analysis of amplified CHS fragments from E. sativa plants treated with AgNPs (40 mg L−1) showed high sequence similarity to A. thaliana CHS gene. However, there were several CHS regions with sequence polymorphism (SNPs and Indels) in foliar sprayed plants.
Conclusions
Results of this study evidenced that the application of AgNPs and Chlorella suspension increased glucosinolates and kaempferol content in E. sativa through upregulation of key genes in their biosynthetic pathway.
Collapse
|
11
|
Particulate Matter Removal Ability of Ten Evergreen Trees Planted in Korea Urban Greening. FORESTS 2021. [DOI: 10.3390/f12040438] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Broad-leaved evergreen trees create urban forests for mitigation of climate warming and adsorption of particulate matter (PM). This study was performed to identify the species suitable for urban greening by examining the adsorption capacity of the evergreen species in urban areas in Korea, the adsorption points and the elemental composition of PM in the adsorbed tree. Leaf sampling was carried out four times (period of seven months from October 2017 to May 2018) and used after drying (period 28 to 37 days). Particulate matter (PM) was classified and measured according to size PM2.5 (0.2–2.5 μm), PM10 (2.5–10 μm), PM100 (10–100 μm). The total amount of PM adsorbed on the leaf surface was highest in Pinus densiflora (24.6 μg∙cm−2), followed by Quercus salicina (47.4 μg∙cm−2). The composition of PM adsorbed by P. densiflora is 4.0% PM2.5, 39.5% PM10 and 56.5% PM100, while those adsorbed by Q. salicina are evergreen at 25.7% PM2.5, 27.4% PM10 and 46.9% PM100. When the amount of PM adsorbed on the leaf was calculated by LAI, the species that adsorbed PM the most was P. densiflora, followed by Q. salicina, followed by Q. salicina in the wax layer, then P. densiflora. As a result of this study, the amount of PM adsorbed per unit area of leaves, and the amount of PM calculated by LAI, showed a simpler pattern. The hardwoods had a high adsorption rate of PM2.5. The adsorption ratio of ultra-fine PM2.5 by evergreen broad-leaved trees was greater than that of coniferous trees. Therefore, broad-leaved evergreens such as Q. salicina are considered very suitable as species for adsorbing PM in the city. PM2.5 has been shown to be adsorbed through the pores and leaves of trees, indicating that the plant plays an important role in alleviating PM in the atmosphere. As a result of analyzing the elemental components of PM accumulated on leaf leaves by scanning electron microscopy (SEM)/ energy dispersive x-ray spectroscopy (EDXS) analysis, it was composed of O, C, Si, and N, and was found to be mainly generated by human activities around the road. The results of this study provide basic data regarding the selection of evergreen species that can effectively remove aerial PM. It also highlights the importance of evergreen plants for managing PM pollution during the winter and provides insights into planning additional green infrastructure to improve urban air quality.
Collapse
|
12
|
Pallozzi E, Guidolotti G, Mattioni M, Calfapietra C. Particulate matter concentrations and fluxes within an urban park in Naples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115134. [PMID: 32663630 DOI: 10.1016/j.envpol.2020.115134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/11/2020] [Accepted: 06/26/2020] [Indexed: 05/22/2023]
Abstract
Airborne particulate matter can represent a serious issue for human health, especially in densely populated urban areas. Moreover, the inhalation of particulate can be more harmful with decreasing particles diameter. Vegetation can provide many ecosystem services to the citizens, including the removal of many different pollutants in the air, but while the effect on many gaseous compounds has already been widely proved, the capability of particulate matter (PM) sequestration driven by vegetation and its resulting benefit on air quality has not been deeply investigated yet at larger spatial scale, especially in Mediterranean environment. This study was conducted in the Real Bosco di Capodimonte, a green area of about 125 ha located inside the urban area of Naples (Italy) containing different species typical of the Mediterranean forest ecosystem. To better understand the interaction between PM and the park area, we measured fluxes of PM10, PM2.5 and PM1 with a fast acquisition analyser, according to the Eddy Covariance technique. We found that the particle deposition was higher during the central hours of the day and it was more evident for smaller size particles. Furthermore, the daily PM fluxes found accorded with evapotranspiration and carbon sequestration operated by plants, suggesting a possible active role of vegetation on the particulate deposition.
Collapse
Affiliation(s)
- E Pallozzi
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Monterotondo Scalo, RM, 00015, Italy.
| | - G Guidolotti
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Monterotondo Scalo, RM, 00015, Italy
| | - M Mattioni
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Porano, TR, 05010, Italy
| | - C Calfapietra
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Porano, TR, 05010, Italy
| |
Collapse
|
13
|
Wojcieszek J, Jiménez-Lamana J, Ruzik L, Szpunar J, Jarosz M. To-Do and Not-To-Do in Model Studies of the Uptake, Fate and Metabolism of Metal-Containing Nanoparticles in Plants. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1480. [PMID: 32731603 PMCID: PMC7466506 DOI: 10.3390/nano10081480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 11/20/2022]
Abstract
Due to the increasing release of metal-containing nanoparticles into the environment, the investigation of their interactions with plants has become a hot topic for many research fields. However, the obtention of reliable data requires a careful design of experimental model studies. The behavior of nanoparticles has to be comprehensively investigated; their stability in growth media, bioaccumulation and characterization of their physicochemical forms taken-up by plants, identification of the species created following their dissolution/oxidation, and finally, their localization within plant tissues. On the basis of their strong expertise, the authors present guidelines for studies of interactions between metal-containing nanoparticles and plants.
Collapse
Affiliation(s)
- Justyna Wojcieszek
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego str., 00-664 Warsaw, Poland; (J.W.); (L.R.); (M.J.)
| | - Javier Jiménez-Lamana
- Universite de Pau et des Pays de l’Adour, E2S UPPA, CNRS, Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM), UMR 5254, 64053 Pau, France;
| | - Lena Ruzik
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego str., 00-664 Warsaw, Poland; (J.W.); (L.R.); (M.J.)
| | - Joanna Szpunar
- Universite de Pau et des Pays de l’Adour, E2S UPPA, CNRS, Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM), UMR 5254, 64053 Pau, France;
| | - Maciej Jarosz
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego str., 00-664 Warsaw, Poland; (J.W.); (L.R.); (M.J.)
| |
Collapse
|
14
|
Alterio E, Cocozza C, Chirici G, Rizzi A, Sitzia T. Preserving air pollution forest archives accessible through dendrochemistry. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 264:110462. [PMID: 32250895 DOI: 10.1016/j.jenvman.2020.110462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/14/2020] [Accepted: 03/17/2020] [Indexed: 05/21/2023]
Abstract
Plants are continuously exposed to human air pollution, absorbing pollutants in their tissues. Trees can store pollutants in wood, in the annual growth rings, retaining traces of pollutants in the environment. Information on past pollution events are archived by trees, which dendrochemistry, a dendrochronological science combined with chemistry, is able to access. Many authors have suggested that trees could complement the conventional environmental monitoring: a forest archive of pollution events. However, the implications of trees occurrence in polluted areas on planning and management have not yet been discussed. In this article, we investigate whether forest archives exist and whether they should be integrated into the network of existing monitoring stations. We use a case study, the Veneto region of Italy, one of the most polluted areas in Europe, to examine the occurrence of trees around 28 industrial plants retrieved from a European pollution register. We propose planning actions to develop the latent potential of these forest archives for environmental monitoring, which society may benefit. We follow three steps: (a) assessing the cover and composition of tree canopies around the industrial plants, (b) inventorying the existing artificial air monitoring stations in order to discover whether pollutants around the industrial plants are already monitored, (c) assessing land use patterns in order to identify which are the receptors of air pollution and enhance the forest archive in the future. These spatial analyses are conducted in a 1-km radius buffer with the industrial plant as the centre. Results show that forest archives are available, with cover and composition suitable for dendrochemistry studies. Artificial monitoring stations are too far from industrial plants or have been installed recently, unable to provide historical data. Trees are an alternative source of pollution data. Receptors of air pollution include a diversity of urban, rural and agricultural lands, where forest archives can be managed and conserved through a variety of actions. Environmental protection agencies should value these trees, preserving them and accessing the records held in this forest archive. Similar inventories must be promoted in other industrialised regions of the world even at larger scales. Studies like this one should also be incorporated into landscape or urban planning processes.
Collapse
Affiliation(s)
- Edoardo Alterio
- Department of Land, Environment, Agriculture and Forestry, Università degli Studi di Padova, Viale dell'Università 16, Legnaro, 35020, Padova, Italy.
| | - Claudia Cocozza
- Department of Agriculture, Food, Environment and Forestry, Università degli Studi di Firenze, Via San Bonaventura 13, 50145, Florence, Italy.
| | - Gherardo Chirici
- Department of Agriculture, Food, Environment and Forestry, Università degli Studi di Firenze, Via San Bonaventura 13, 50145, Florence, Italy.
| | - Andrea Rizzi
- Department of Land, Environment, Agriculture and Forestry, Università degli Studi di Padova, Viale dell'Università 16, Legnaro, 35020, Padova, Italy.
| | - Tommaso Sitzia
- Department of Land, Environment, Agriculture and Forestry, Università degli Studi di Padova, Viale dell'Università 16, Legnaro, 35020, Padova, Italy.
| |
Collapse
|
15
|
Rocha E, Gunnarson B, Kylander ME, Augustsson A, Rindby A, Holzkämper S. Testing the applicability of dendrochemistry using X-ray fluorescence to trace environmental contamination at a glassworks site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137429. [PMID: 32146392 DOI: 10.1016/j.scitotenv.2020.137429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
The potential of dendrochemistry as a tool for tracing anthropogenic contamination at a glassworks site in southeastern Sweden was investigated through a multidisciplinary approach combining continuous high-resolution time series of tree rings and sediment profiles. Tree cores from Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and European aspen (Populus tremula) were analysed for their elemental composition using an energy dispersive X-ray fluorescence (ED-XRF) technique. Sediment cores were sampled along a transect extending from the pollution point source to unpolluted areas and analysed using core-scanning-XRF (CS-XRF). High contaminant concentrations in the soil were found for As (≈2000 ppm), Pb (>5000 ppm), Ba (≈1000 ppm) and Cd (≈150 ppm). The concentrations decreased with depth and distance from the pollution source. The dendrochemical analyses revealed alterations in the Barium, Chlorine and Manganese profiles, allowing the identification of seven potential asynchronous releases from the glassworks. Our results suggest that differences in the response of tree species to elemental uptake together with soil chemical properties dictate the success of dendrochemistry as an environmental monitoring tool.
Collapse
Affiliation(s)
- Eva Rocha
- Department of Physical Geography, Stockholm University, Sweden; Bolin Centre for Climate Research, Stockholm University, Sweden.
| | - Björn Gunnarson
- Department of Physical Geography, Stockholm University, Sweden; Bolin Centre for Climate Research, Stockholm University, Sweden
| | - Malin E Kylander
- Department of Geological Sciences, Stockholm University, Sweden; Bolin Centre for Climate Research, Stockholm University, Sweden
| | - Anna Augustsson
- Department of Biology and Environmental Science, Linnaeus University, Sweden
| | | | - Steffen Holzkämper
- Department of Physical Geography, Stockholm University, Sweden; Bolin Centre for Climate Research, Stockholm University, Sweden
| |
Collapse
|
16
|
Su Y, Ashworth VETM, Geitner NK, Wiesner MR, Ginnan N, Rolshausen P, Roper C, Jassby D. Delivery, Fate, and Mobility of Silver Nanoparticles in Citrus Trees. ACS NANO 2020; 14:2966-2981. [PMID: 32141736 DOI: 10.1021/acsnano.9b07733] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Crop disease control is crucial for the sustainable development of agriculture, with recent advances in nanotechnology offering a promising solution to this pressing problem. However, the efficacy of nanoparticle (NP) delivery methods has not been fully explored, and knowledge regarding the fate and mobility of NPs within trees is still largely unknown. In this study, we evaluate the efficiency of NP delivery methods and investigate the mobility and distribution of NPs with different surface coatings (citrate (Ct), polyvinylpyrrolidone (PVP), and gum Arabic (GA)) within Mexican lime citrus trees. In contrast to the limited delivery efficiency reported for foliar and root delivery methods, petiole feeding and trunk injection are able to deliver a large amount of NPs into trees, although petiole feeding takes much longer time than trunk injection (7 days vs 2 h in citrus trees). Once NPs enter plants, steric repulsive interactions between NPs and conducting tube surfaces are predicted to facilitate NP transport throughout the plant. Compared to PVP and Ct, GA is highly effective in inhibiting the aggregation of NPs in synthetic sap and enhancing the mobility of NPs in trees. Over a 7 day experimental period, the majority of the Ag recovered from trees (10 mL, 10 ppm GA-AgNP suspension) remain throughout the trunk (81.0% on average), with a considerable amount in the roots (11.7% on average), some in branches (4.4% on average), and a limited amount in leaves (2.9% on average). Furthermore, NP concentrations during injection and tree incubation time postinjection are found to impact the distribution of Ag in tree. We also present evidence for a transport pathway that allows NPs to move from the xylem to the phloem, which disperses the NPs throughout the plant architecture, including to the roots.
Collapse
Affiliation(s)
- Yiming Su
- Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, United States
| | - Vanessa E T M Ashworth
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Nicholas K Geitner
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Mark R Wiesner
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Nichole Ginnan
- Department of Plant Pathology, University of California, Riverside, California 92521, United States
| | - Philippe Rolshausen
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Caroline Roper
- Department of Plant Pathology, University of California, Riverside, California 92521, United States
| | - David Jassby
- Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
17
|
Agathokleous E, Feng Z, Iavicoli I, Calabrese EJ. The two faces of nanomaterials: A quantification of hormesis in algae and plants. ENVIRONMENT INTERNATIONAL 2019; 131:105044. [PMID: 31362152 DOI: 10.1016/j.envint.2019.105044] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/20/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
The rapid progress in nanotechnology has dramatically promoted the application of engineered nanomaterials in numerous sectors. The wide application of nanomaterials and the potential accumulation in the environment sparked interest in studying the effects of nanomaterials on algae and plants. Hormesis is a dose response phenomenon characterized by a biphasic dose response with a low dose stimulation and a high dose inhibition. This paper quantifies for the first time nanomaterial-induced hormesis in algae and plants. Five hundred hormetic concentration-response relationships were mined from the published literature. The median maximum stimulatory response (MAX) was 123%, and commonly below 200%, of control response. It was also lower in algae than in plants, and occurred commonly at concentrations <100 mg L-1. The no-observed-adverse-effect-level (NOAEL) to MAX ratio was 2.4 for algae and 1.7 for plants, and the two distributions differed significantly. Ag nanoparticles induced higher MAX than TiO2 and ZnO nanoparticles. The MAX varied upon nanomaterial application methods, growth stage of application (seed versus vegetative), type of endpoint and time window. While nanomaterial size did not affect significantly the MAX, sizes ≤50 nm appeared to have lower NOAEL:MAX ratio than sizes ≥100 nm, suggesting higher risks from incorrect application. The mechanisms underlying nanomaterial-induced hormetic concentration responses are discussed. This paper provides a strong foundation for enhancing research protocols of studies on nanomaterial effects on algae and plants as well as for incorporating hormesis into the risk assessment practices.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - ZhaoZhong Feng
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Ivo Iavicoli
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
18
|
Environmental pollution effects on plant microbiota: the case study of poplar bacterial-fungal response to silver nanoparticles. Appl Microbiol Biotechnol 2019; 103:8215-8227. [DOI: 10.1007/s00253-019-10071-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 01/21/2023]
|