1
|
Zhou W, Tao Y, Peng L, Zheng H, Zhou X, Yin B, Zhang J, Zhang Y. Balancing the nutrient needs: Optimising growth in Malus sieversii seedlings through tailored nitrogen and phosphorus effects. PLANT, CELL & ENVIRONMENT 2024; 47:5280-5296. [PMID: 39188105 DOI: 10.1111/pce.15100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
The impact of nitrogen (N) and phosphorus (P) on the physiological and biochemical processes crucial for tree seedling growth is substantial. Although the study of plant hydraulic traits in response to N and P is growing, comprehensive research on their combined effects remains limited. Malus sieversii, a key ancestral species of modern apples and a dominant species in Xinjiang's Tianshan wild fruit forest, is witnessing a decline due to climate change, pests and diseases, compounded by challenges in seedling regeneration. Addressing this, a 4-year study was conducted to determine the optimal fertilisation method for it. The experiment explored varying levels of N (N10, N20 and N40) and P (P2, P4 and P8), and their combined effects (N20Px: N20P2, N20P4, N20P8; NxP4: N10P4, N20P4 and N40P4), assessing their impact on gas exchange, hydraulic traits, and the interplay among functional traits in Tianshan Mountains' M. sieversii seedlings. Our study revealed that All N-inclusive fertilisers slightly promoted the net photosynthetic rate. N10 significantly increasing leaf hydraulic conductivity. All P-inclusive fertilisers adversely affected hydraulic conductivity. P8, N20P4 and N20P8 notably increased seedlings' vulnerability to embolism. Seedlings can adaptively adjust multiple functional traits in response to nutrient changes. The research suggests N10 and N20 as the most effective fertilisation treatments for M. sieversii seedlings in this region, while fertilisation involving phosphorus is less suitable. This study contributes valuable insights into the specific nutrient needs of it, vital for conservation and cultivation efforts in the Tianshan region.
Collapse
Affiliation(s)
- Weiyi Zhou
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Key Laboratory of Biodiversity Conservation and Application in Arid Lands Xinjiang, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ye Tao
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Key Laboratory of Biodiversity Conservation and Application in Arid Lands Xinjiang, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lan Peng
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- College of Resource and Environment Sciences, Xinjiang University, Urumqi, Xinjiang, China
| | - Hongwei Zheng
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of RS & GIS Application Xinjiang, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Xiaobing Zhou
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Key Laboratory of Biodiversity Conservation and Application in Arid Lands Xinjiang, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Benfeng Yin
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Key Laboratory of Biodiversity Conservation and Application in Arid Lands Xinjiang, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Zhang
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Key Laboratory of Biodiversity Conservation and Application in Arid Lands Xinjiang, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanming Zhang
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Key Laboratory of Biodiversity Conservation and Application in Arid Lands Xinjiang, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Posch BC, Bush SE, Koepke DF, Schuessler A, Anderegg LL, Aparecido LM, Blonder BW, Guo JS, Kerr KL, Moran ME, Cooper HF, Doughty CE, Gehring CA, Whitham TG, Allan GJ, Hultine KR. Intensive leaf cooling promotes tree survival during a record heatwave. Proc Natl Acad Sci U S A 2024; 121:e2408583121. [PMID: 39401366 PMCID: PMC11513916 DOI: 10.1073/pnas.2408583121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/27/2024] [Indexed: 10/30/2024] Open
Abstract
Increasing heatwaves are threatening forest ecosystems globally. Leaf thermal regulation and tolerance are important for plant survival during heatwaves, though the interaction between these processes and water availability is unclear. Genotypes of the widely distributed foundation tree species Populus fremontii were studied in a controlled common garden during a record summer heatwave-where air temperature exceeded 48 °C. When water was not limiting, all genotypes cooled leaves 2 to 5 °C below air temperatures. Homeothermic cooling was disrupted for weeks following a 72-h reduction in soil water, resulting in leaf temperatures rising 3 °C above air temperature and 1.3 °C above leaf thresholds for physiological damage, despite the water stress having little effect on leaf water potentials. Tradeoffs between leaf thermal safety and hydraulic safety emerged but, regardless of water use strategy, all genotypes experienced significant leaf mortality following water stress. Genotypes from warmer climates showed greater leaf cooling and less leaf mortality after water stress in comparison with genotypes from cooler climates. These results illustrate how brief soil water limitation disrupts leaf thermal regulation and potentially compromises plant survival during extreme heatwaves, thus providing insight into future scenarios in which ecosystems will be challenged with extreme heat and unreliable soil water access.
Collapse
Affiliation(s)
- Bradley C. Posch
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ85008
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA94720
| | - Susan E. Bush
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ85008
| | - Dan F. Koepke
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ85008
| | - Alexandra Schuessler
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ85008
| | - Leander L.D. Anderegg
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA93106
| | | | - Benjamin W. Blonder
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA94720
| | - Jessica S. Guo
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ85008
- Arizona Experiment Station, University of Arizona, Tucson, AZ85721
| | - Kelly L. Kerr
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA93106
| | | | - Hillary F. Cooper
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ86011
| | - Christopher E. Doughty
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ86011
| | - Catherine A. Gehring
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ86011
| | - Thomas G. Whitham
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ86011
| | - Gerard J. Allan
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ86011
| | - Kevin R. Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ85008
| |
Collapse
|
3
|
Ocheltree TW, Gleason SM. Grass veins are leaky pipes: vessel widening in grass leaves explain variation in stomatal conductance and vessel diameter among species. THE NEW PHYTOLOGIST 2024; 241:243-252. [PMID: 37964665 DOI: 10.1111/nph.19368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/26/2023] [Indexed: 11/16/2023]
Abstract
The widening of xylem vessels from tip to base of trees is an adaptation to minimize the hydraulic resistance of a long pathway. Given that parallel veins of monocot leaves do not branch hierarchically, vessels should also widen basipetally but, in addition to minimizing resistance, should also account for water volume lost to transpiration since they supply water to the lamina along their lengths, that is 'leakiness'. We measured photosynthesis, stomatal conductance, and vessel diameter at five locations along each leaf of five perennial grass species. We found that the rate of conduit widening in grass leaves was larger than the widening exponent required to minimize pathlength resistance (0.35 vs c. 0.22). Furthermore, variation in the widening exponent among species was positively correlated with maximal stomatal conductance (r2 = 0.20) and net CO2 assimilation (r2 = 0.45). These results suggest that faster rates of conduit widening (> 0.22) were associated with higher rates of water loss. Taken together, our results show that the widening exponent is linked to plant function in grass leaves and that natural selection has favored parallel vein networks that are constructed to meet transpiration requirements while minimizing hydraulic resistance within grass blades.
Collapse
Affiliation(s)
- Troy W Ocheltree
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, 80523, USA
| | - Sean M Gleason
- Water Management and Systems Research Unit, United States Department of Agriculture, Agricultural Research Service, Fort Collins, CO, 80526, USA
| |
Collapse
|
4
|
An YD, Roddy AB, Zhang TH, Jiang GF. Hydraulic differences between flowers and leaves are driven primarily by pressure-volume traits and water loss. FRONTIERS IN PLANT SCIENCE 2023; 14:1130724. [PMID: 37324689 PMCID: PMC10264769 DOI: 10.3389/fpls.2023.1130724] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
Flowers are critical for successful reproduction and have been a major axis of diversification among angiosperms. As the frequency and severity of droughts are increasing globally, maintaining water balance of flowers is crucial for food security and other ecosystem services that rely on flowering. Yet remarkably little is known about the hydraulic strategies of flowers. We characterized hydraulic strategies of leaves and flowers of ten species by combining anatomical observations using light and scanning electron microscopy with measurements of hydraulic physiology (minimum diffusive conductance (g min) and pressure-volume (PV) curves parameters). We predicted that flowers would exhibit higher g min and higher hydraulic capacitance than leaves, which would be associated with differences in intervessel pit traits because of their different hydraulic strategies. We found that, compared to leaves, flowers exhibited: 1) higher g min, which was associated with higher hydraulic capacitance (C T); 2) lower variation in intervessel pit traits and differences in pit membrane area and pit aperture shape; and 3) independent coordination between intervessel pit traits and other anatomical and physiological traits; 4) independent evolution of most traits in flowers and leaves, resulting in 5) large differences in the regions of multivariate trait space occupied by flowers and leaves. Furthermore, across organs intervessel pit trait variation was orthogonal to variation in other anatomical and physiological traits, suggesting that pit traits represent an independent axis of variation that have as yet been unquantified in flowers. These results suggest that flowers, employ a drought-avoidant strategy of maintaining high capacitance that compensates for their higher g min to prevent excessive declines in water potentials. This drought-avoidant strategy may have relaxed selection on intervessel pit traits and allowed them to vary independently from other anatomical and physiological traits. Furthermore, the independent evolution of floral and foliar anatomical and physiological traits highlights their modular development despite being borne from the same apical meristem.
Collapse
Affiliation(s)
- Yi-Dong An
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Adam B. Roddy
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL, United States
| | - Tian-Hao Zhang
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Guo-Feng Jiang
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
5
|
Gebauer R, Urban J, Volařík D, Matoušková M, Vitásek R, Houšková K, Hurt V, Pantová P, Polívková T, Plichta R. Does leaf gas exchange correlate with petiole xylem structural traits in Ulmus laevis seedlings under well-watered and drought stress conditions? TREE PHYSIOLOGY 2022; 42:2534-2545. [PMID: 35866300 DOI: 10.1093/treephys/tpac082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Several studies have shown that petiole xylem structure could be an important predictor of leaf gas exchange capacity, but the question of how petiole xylem structure relates to leaf gas exchange under different environment conditions remains unresolved. Moreover, knowledge of the amount of leaf gas exchange and structural variation that exists within a single species is also limited. In this study, we investigated the intraspecies coordination of leaf gas exchange and petiole xylem traits in 2-year-old seedlings of Ulmus laevis Pall. under well-watered and drought conditions. It was found that all studied petiole xylem traits of the elm seedlings were positively correlated with each other. This shows that the development of petiole xylem structure is internally well-coordinated. Nevertheless, the lower correlation coefficients between some petiole xylem traits indicate that the coordination is also individually driven. Drought stress reduced all studied leaf gas exchange traits and significantly increased intraspecies variation. In addition, drought stress also shifted the relationships between physiological traits and exhibited more structure-function relationships. This indicates the importance of petiole xylem structure in dictating water loss during drought stress and could partly explain the inconsistencies between leaf structure-function relationships studied under optimal conditions. Although several structure-function traits were related, the wide ranges of correlation coefficients indicate that the internal coordination of these traits substantially differs between individual elm seedlings. These findings are very important in the context of expected climatic change, as some degree of intraspecies variation in structure-function relationships could ensure the survival of some individuals under different environmental conditions.
Collapse
Affiliation(s)
- Roman Gebauer
- Department of Forest Botany, Dendrology and Geobiocoenology, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic
| | - Josef Urban
- Department of Forest Botany, Dendrology and Geobiocoenology, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic
- Department of Ecology and Environmental Study, Siberian Federal University, Krasnoyarsk, 79 Svobodny prospect, 66004, Russia
| | - Daniel Volařík
- Department of Forest Botany, Dendrology and Geobiocoenology, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic
| | - Marie Matoušková
- Department of Forest Botany, Dendrology and Geobiocoenology, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic
| | - Roman Vitásek
- Department of Forest Botany, Dendrology and Geobiocoenology, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic
| | - Kateřina Houšková
- Department of Silviculture, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic
| | - Václav Hurt
- The Czech Republic Nursery Association, z.s., Wolkerova 37/17, 779 00 Olomouc, Czech Republic
| | - Petra Pantová
- Department of Silviculture, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic
| | - Terezie Polívková
- Department of Forest Botany, Dendrology and Geobiocoenology, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic
| | - Roman Plichta
- Department of Forest Botany, Dendrology and Geobiocoenology, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic
| |
Collapse
|
6
|
Gao T, Wang H, Li C, Zuo M, Wang X, Liu Y, Yang Y, Xu D, Liu Y, Fang X. Effects of Heavy Metal Stress on Physiology, Hydraulics, and Anatomy of Three Desert Plants in the Jinchang Mining Area, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15873. [PMID: 36497949 PMCID: PMC9738440 DOI: 10.3390/ijerph192315873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
The physiological mechanisms and phytoremediation effects of three kinds of native quinoa in a desert mining area were studied. We used two different types of local soils (native soil and tailing soil) to analyze the changes in the heavy metal content, leaf physiology, photosynthetic parameters, stem hydraulics, and anatomical characteristics of potted quinoa. The results show that the chlorophyll content, photosynthetic rate, stomatal conductance, and transpiration rate of Kochia scoparia were decreased, but intercellular CO2 concentration (Ci) was increased under heavy metal stress, and the net photosynthetic rate (Pn) was decreased due to non-stomatal limitation. The gas exchange of Chenopodium glaucum and Atriplex centralasiatica showed a decrease in Pn, stomatal conductance (Gs), and transpiration rate (E) due to stomatal limitation. The three species showed a similar change in heavy metal content; they all showed elevated hydraulic parameters, decreased vessel density, and significantly thickened vessel walls under heavy metal stress. Physiological indicators such as proline content and activity of superoxide dismutase (SOD) and peroxidase (POD) increased, but the content of malondialdehyde (MDA) and glutathione (GSH), as well as catalase (CAT) activity, decreased in these three plants. Therefore, it can be concluded that these three species of quinoa, possibly the most dominant 30 desert plants in the region, showed a good adaptability and accumulation capacity under the pressure of heavy metal stress, and these plants can be good candidates for tailings remediation in the Jinchang desert mining area.
Collapse
Affiliation(s)
- Tianpeng Gao
- School of Biological and Environmental Engineering, Xi’an University, Xi’an 710065, China
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
- Engineering Center for Pollution Control and Ecological Restoration in Mining of Gansu Province, Lanzhou City University, Lanzhou 730070, China
| | - Haoming Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Changming Li
- School of Biological and Environmental Engineering, Xi’an University, Xi’an 710065, China
| | - Mingbo Zuo
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Xueying Wang
- Institute of Environmental Health Science in Xi’an, Xi’an 710065, China
| | - Yuan Liu
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yingli Yang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Danghui Xu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Yubing Liu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Xiangwen Fang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
7
|
Yang XD, Anwar E, Xu YL, Zhou J, Sha LB, Gong XW, Ali A, Gao YC, Liu Y, Ge P. Hydraulic constraints determine the distribution of heteromorphic leaves along plant vertical height. FRONTIERS IN PLANT SCIENCE 2022; 13:941764. [PMID: 36275510 PMCID: PMC9580785 DOI: 10.3389/fpls.2022.941764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
As an interesting and important trait of some drought-tolerant species, heteromorphic leaves are distributed differentially along plant vertical heights. However, the underpinning mechanism for the formation of heteromorphic leaves remains unclear. We hypothesize that heteromorphic leaves are caused by the hydraulic constraints possibly due to the compensation of the changes in functional traits in response to water transport capacity or the reduction of ineffective water loss. In this study, differences in water transport capacity, morphological traits, anatomical structures, and cellular water relations among three typical types of heteromorphic leaves (i.e., lanceolate, ovate, and broad-ovate) of Populus euphratica Oliv. (a dominant species of desert riparian forest in Central and West Asia) and their relationships were analyzed in order to explore the forming mechanism of heteromorphic leaves. The results showed that the lanceolate, ovate, and broad-ovate leaves were growing in the lower, intermediate, and higher positions from the ground, respectively. Morphological traits, anatomical structures, cellular water relations, and water transport capacity significantly varied among the three types of heteromorphic leaves (P< 0.01). Drought stress in broad-ovate leaves was significantly higher than that in ovate and lanceolate leaves (P< 0.01). Water transport capacity has significant correlations with morphological traits, anatomical structures, and cellular water relations (R 2 ≥ 0.30; P< 0.01). Our results indicated that heteromorphic leaves were used as an important adaptive strategy for P. euphratica to alleviate the increase of hydraulic constraints along vertical heights.
Collapse
Affiliation(s)
- Xiao-Dong Yang
- Department of Geography and Spatial Information/Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, China
- Institute of Resources and Environment Science, Xinjiang University, Urumqi, China
| | - Elhamjan Anwar
- Institute of Resources and Environment Science, Xinjiang University, Urumqi, China
| | - Yi-Lu Xu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle (UON), Newcastle, NSW, Australia
| | - Jie Zhou
- Institute of Resources and Environment Science, Xinjiang University, Urumqi, China
| | - Long-Bin Sha
- Institute of Resources and Environment Science, Xinjiang University, Urumqi, China
| | - Xue-Wei Gong
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Arshad Ali
- Forest Ecology Research Group, College of Life Sciences, Hebei University, Baoding, Hebei, China
| | - Yong-Chao Gao
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yanju Liu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle (UON), Newcastle, NSW, Australia
| | - Ping Ge
- Department of Development Planning, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
8
|
Zhang SB, Wen GJ, Qu YY, Yang LY, Song Y. Trade-offs between xylem hydraulic efficiency and mechanical strength in Chinese evergreen and deciduous savanna species. TREE PHYSIOLOGY 2022; 42:1337-1349. [PMID: 35157087 PMCID: PMC9272745 DOI: 10.1093/treephys/tpac017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Evergreen and deciduous species coexist in tropical dry forests and savannas, but differ in physiological mechanisms and life-history strategies. Hydraulic conductivity and mechanical support are two major functions of the xylems of woody plant species related to plant growth and survival. In this study, we measured sapwood-specific hydraulic conductivity (Ks), leaf-specific hydraulic conductivity (KL), modulus of rupture (MOR) and elasticity (MOE), xylem anatomical traits and fiber contents in the xylems of 20 woody species with contrasting leaf phenology (evergreen vs deciduous) in a Chinese savanna. Our results showed that deciduous species had significantly higher Ks and KL but lower MOR and MOE than evergreen species. Evergreen species experienced more negative seasonal minimum water potential (Pmin) than deciduous species during the dry season. Furthermore, we found trade-offs between xylem hydraulic efficiency and mechanical strength across species and within the evergreen and deciduous groups, and these trade-offs were modulated by structural and chemical traits. Both Ks and KL were significantly related to hydraulic weighted vessel diameter (Dh) across all species and within the deciduous group. Both MOR and MOE were significantly related to wood density, neutral detergent fiber and acid detergent fiber across species and within evergreen and deciduous groups. Our findings demonstrated that Chinese evergreen and deciduous savanna species diverged in xylem hydraulic and mechanical functions, reflecting conservative and acquisitive life-history strategies for evergreen and deciduous species, respectively. This study provides new information with which to understand the hydraulic and biomechanical properties and ecological strategies of savanna species in long-term dry-hot environments.
Collapse
Affiliation(s)
| | - Guo-Jing Wen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Yuanjiang Savanna Ecosystem Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yuanjiang, Yunnan 653300, China
| | - Ya-Ya Qu
- School of Forestry, Southwest Forestry University, No. 300, Bailongshi, Panlong District, Kunming, Yunnan 650224, China
| | - Lin-Yi Yang
- School of Forestry, Southwest Forestry University, No. 300, Bailongshi, Panlong District, Kunming, Yunnan 650224, China
| | - Yu Song
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| |
Collapse
|
9
|
Wang YQ, Ni MY, Zeng WH, Huang DL, Xiang W, He PC, Ye Q, Cao KF, Zhu SD. Co-ordination between leaf biomechanical resistance and hydraulic safety across 30 sub-tropical woody species. ANNALS OF BOTANY 2021; 128:183-191. [PMID: 33930116 PMCID: PMC8324032 DOI: 10.1093/aob/mcab055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/24/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIMS Leaf biomechanical resistance protects leaves from biotic and abiotic damage. Previous studies have revealed that enhancing leaf biomechanical resistance is costly for plant species and leads to an increase in leaf drought tolerance. We thus predicted that there is a functional correlation between leaf hydraulic safety and biomechanical characteristics. METHODS We measured leaf morphological and anatomical traits, pressure-volume parameters, maximum leaf hydraulic conductance (Kleaf-max), leaf water potential at 50 % loss of hydraulic conductance (P50leaf), leaf hydraulic safety margin (SMleaf), and leaf force to tear (Ft) and punch (Fp) of 30 co-occurring woody species in a sub-tropical evergreen broadleaved forest. Linear regression analysis was performed to examine the relationships between biomechanical resistance and other leaf hydraulic traits. KEY RESULTS We found that higher Ft and Fp values were significantly associated with a lower (more negative) P50leaf and a larger SMleaf, thereby confirming the correlation between leaf biomechanical resistance and hydraulic safety. However, leaf biomechanical resistance showed no correlation with Kleaf-max, although it was significantly and negatively correlated with leaf outside-xylem hydraulic conductance. In addition, we also found that there was a significant correlation between biomechanical resistance and the modulus of elasticity by excluding an outlier. CONCLUSIONS The findings of this study reveal leaf biomechanical-hydraulic safety correlation in sub-tropical woody species.
Collapse
Affiliation(s)
- Yong-Qiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, Nanning, Guangxi, China
| | - Ming-Yuan Ni
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, Nanning, Guangxi, China
| | - Wen-Hao Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, Nanning, Guangxi, China
| | - Dong-Liu Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, Nanning, Guangxi, China
| | - Wei Xiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, Nanning, Guangxi, China
| | - Peng-Cheng He
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Qing Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Kun-Fang Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, Nanning, Guangxi, China
| | - Shi-Dan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
10
|
Zhang T, Liang X, Ye Q, BassiriRad H, Liu H, He P, Wu G, Lu X, Mo J, Cai X, Rao X, Yan J, Fu S. Leaf hydraulic acclimation to nitrogen addition of two dominant tree species in a subtropical forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145415. [PMID: 33736159 DOI: 10.1016/j.scitotenv.2021.145415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Plant hydraulic traits have been shown to be sensitive to changes in nitrogen (N) availability in short-term studies largely using seedlings or saplings. The extent and the magnitude of N-sensitivity of the field grown mature trees in long-term experiments, however, are relatively unknown. Here, we investigated responses of leaf water relations and morphological and anatomical traits of two dominant tree species (Castanopsis chinensis and Schima superba) to a six-year canopy N addition in a subtropical forest. We found that N addition increased leaf hydraulic conductivity in both species along with higher transpiration rate and less negative water potential at 50% loss of leaf hydraulic conductivity and at leaf turgor loss point. Examination of leaf morphological and anatomical traits revealed that increased leaf hydraulic efficiency was at least in part due to increased vessel diameter which also compromised the hydraulic safety under increased water stress. Moreover, reduced vessel reinforcement and increased thickness shrinkage index further interpreted the increases in leaf hydraulic vulnerability under N addition. Our results demonstrated that N deposition may lead to increases of plant water loss to the atmosphere as well as tree vulnerability to drought.
Collapse
Affiliation(s)
- Tong Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou 510650, China
| | - Xingyun Liang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou 510650, China
| | - Qing Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou 510650, China; College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Haibin Road 1119, Nansha, Guangzhou 511458, China.
| | - Hormoz BassiriRad
- Department of Biological Sciences, University of Illinois at Chicago, 845 W. Taylor St., Chicago 60607, IL, USA
| | - Hui Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou 510650, China
| | - Pengcheng He
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou 510650, China
| | - Guilin Wu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou 510650, China
| | - Xiankai Lu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou 510650, China
| | - Jiangming Mo
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou 510650, China
| | - Xi'an Cai
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou 510650, China
| | - Xingquan Rao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou 510650, China
| | - Junhua Yan
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou 510650, China
| | - Shenglei Fu
- College of Environment and Planning, Henan University, Jinming Avenue, Kaifeng 475004, China
| |
Collapse
|
11
|
Wu T, Tissue DT, Li X, Liu S, Chu G, Zhou G, Li Y, Zheng M, Meng Z, Liu J. Long-term effects of 7-year warming experiment in the field on leaf hydraulic and economic traits of subtropical tree species. GLOBAL CHANGE BIOLOGY 2020; 26:7144-7157. [PMID: 32939936 DOI: 10.1111/gcb.15355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Rising temperature associated with climate change may have substantial impacts on forest tree functions. We conducted a 7-year warming experiment in subtropical China by translocating important native forest tree species (Machilas breviflora, Syzygium rehderianum, Schima superba and Itea chinensis) from cooler high-elevation sites (600 m) to 1-2°C warmer low-elevation sites (300 and 30 m) to investigate warming effects on leaf hydraulic and economic traits. Here, we report data from the last 3 years (Years 5-7) of the experiment. Warming increased leaf hydraulic conductance of S. superba to meet the higher evaporative demand. M. breviflora (300 m), S. rehderianum, S. superba and I. chinensis (300 and 30 m) exhibited higher area-based and mass-based maximum photosynthetic rates (Aa and Am , respectively) related to increasing stomatal conductance (gs ) and stomatal density in the wet season, which led to rapid growth; however, we observed decreased growth of M. breviflora at 30 m due to lower stomatal density and decreased Aa in the wet season. Warming increased photosynthetic nitrogen-use efficiency and photosynthetic phosphorus-use efficiency, but reduced leaf dry mass per unit area due to lower leaf thickness, suggesting that these tree species allocated more resources into upregulating photosynthesis rather than into structural investment. Our findings highlight that there was trait variation in the capacity of trees to acclimate to warmer temperatures such that I. chinensis may benefit from warming, but S. superba may be negatively influenced by warming in future climates.
Collapse
Affiliation(s)
- Ting Wu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Penrith, NSW, Australia
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Penrith, NSW, Australia
| | - Xu Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Shizhong Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Guowei Chu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Guoyi Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yuelin Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Mianhai Zheng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ze Meng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Juxiu Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
12
|
Toca A, Villar-Salvador P, Oliet JA, Jacobs DF. Normalization criteria determine the interpretation of nitrogen effects on the root hydraulics of pine seedlings. TREE PHYSIOLOGY 2020; 40:1381-1391. [PMID: 32483620 DOI: 10.1093/treephys/tpaa068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Plant hydraulics is key for plant survival and growth because it is linked to gas exchange and drought resistance. Although the environment influences plant hydraulics, there is no clear consensus on the effect of nitrogen (N) supply, which may be, in part, due to different hydraulic conductance normalization criteria and studied species. The objective of this study was to compare the variation of root hydraulic properties using several normalization criteria in four pine species in response to three contrasting N fertilization regimes. We studied four closely related, yet ecologically distinct species: Pinus nigra J.F. Arnold, Pinus pinaster Ait., Pinus pinea L. and Pinus halepensis Mill. Root hydraulic conductance (Kh) was measured with a high-pressure flow meter, and values were normalized by total leaf area (leaf specific conductance, Kl), xylem cross-section area (xylem specific conductance, Ks), total root area (root specific conductance, Kr) and the area of fine roots (fine root specific conductance, Kfr). Controlling for organ size differences allowed comparison of the hydraulic efficiency of roots to supply or absorb water among fertilization treatments and species. The effect of N on the root hydraulic efficiency depended on the normalization criteria. Increasing N availability reduced Kl and Ks, but increased Kh, Kr and especially Kfr. The positive effect of N on Kr and Kfr was positively related to seedling relative growth rate and was also consistent with published results at the interspecific level, whereby plant hydraulics is positively linked to photosynthesis and transpiration rate and fast growth. In contrast, normalization by leaf area and xylem cross-sectional area (Kl and Ks) reflected opposite responses to Kr and Kfr. This indicates that the normalization criteria determine the interpretation of the effect of N on plant hydraulics, which can limit species and treatment comparisons.
Collapse
Affiliation(s)
- Andrei Toca
- Forest Ecology and Restoration Group, Departamento de Ciencias de la Vida, Universidad de Alcalá, Apdo 20, Alcalá de Henares, Madrid 28805, Spain
- Department of Forestry and Natural Resources, Hardwood Tree Improvement and Regeneration Center, Purdue University, 715 West State Street, West Lafayette, IN 47907, USA
| | - Pedro Villar-Salvador
- Forest Ecology and Restoration Group, Departamento de Ciencias de la Vida, Universidad de Alcalá, Apdo 20, Alcalá de Henares, Madrid 28805, Spain
| | - Juan A Oliet
- Departamento de Sistemas y Recursos Naturales, E.T.S. Ingenieros de Montes, Forestal y del Medio Natural, Universidad Politécnica de Ciudad Universitaria s/n, Madrid, 28040 Madrid, Spain
| | - Douglass F Jacobs
- Department of Forestry and Natural Resources, Hardwood Tree Improvement and Regeneration Center, Purdue University, 715 West State Street, West Lafayette, IN 47907, USA
| |
Collapse
|