1
|
Wu J, Su Y, Pan Z, Wang Y, Zhang Y, Li L, Jiang J, Cao X. Identification of WRKY transcription factors in Ipomoea pes-caprae and functional role of IpWRKY16 in sweet potato salt stress response. BMC PLANT BIOLOGY 2024; 24:1190. [PMID: 39702019 DOI: 10.1186/s12870-024-05928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND WRKY transcription factors are plant-specific and play essential roles in growth, development, and stress responses, including reactions to salt, drought, and cold. Despite their significance, the WRKY genes in the wild sweet potato ancestor, Ipomoea pes-caprae, remain unexplored. RESULTS In this study, 65 WRKY genes were identified in the I. pes-caprae transcriptomic data. A phylogenetic tree incorporating Arabidopsis thaliana and Ipomoea batatas revealed seven major groups, each characterized by conserved gene structural features. Transcriptome data of I. pes-caprae under salt stress conditions identified 17 highly expressed WRKY genes, whose promoter regions contain cis-acting elements associated with plant growth, stress responses, and hormone signaling. Further analysis revealed that the 17 IpWRKY genes exhibited differential expression patterns under various abiotic stresses, suggesting their potential roles in specific stress responses. The gene IpWRKY16 was significantly up-expressed under salt stress, drought, salicylic acid (SA), and abscisic acid (ABA) treatments. Subcellular localization analysis confirmed that IpWRKY16 is located in the nucleus. Under salt stress, IpWRKY16 overexpressing roots showed high activity in superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and low content in malondialdehyde (MDA). Using non-invasive micro-test technology (NMT), a significant efflux of Na+ was observed in the elongation zones of sweet potato adventitious roots that overexpressed IpWRKY16. Quantitative reverse transcription PCR (qRT-PCR) revealed that several ion transporter genes were responsive to IpWRKY16 expression, with IbSOS3, IbAHA4-1, and IbAHA4-2 showing the highest expression levels. We hypothesize that IpWRKY16 responds to salt stress by forming a complex regulatory network involving these key genes. CONCLUSIONS This study provides a foundational understanding of WRKY transcription factors in I. pes-caprae, offering insights into their potential role in enhancing salt-tolerance in sweet potato. Our findings contribute valuable genetic knowledge that could aid in the molecular breeding of stress-resilient sweet potato varieties.
Collapse
Affiliation(s)
- Jiaying Wu
- The Key Laboratory of Biotechnology for Medicinal and Edible Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yiren Su
- The Key Laboratory of Biotechnology for Medicinal and Edible Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Zhiyuan Pan
- The Key Laboratory of Biotechnology for Medicinal and Edible Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yiming Wang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yongjing Zhang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Ludan Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Xiaoying Cao
- The Key Laboratory of Biotechnology for Medicinal and Edible Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| |
Collapse
|
2
|
Li Y, Miao Y, Yuan H, Huang F, Sun M, He L, Liu X, Luo J. Volatilome-based GWAS identifies OsWRKY19 and OsNAC021 as key regulators of rice aroma. MOLECULAR PLANT 2024; 17:1866-1882. [PMID: 39533713 DOI: 10.1016/j.molp.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/21/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Aromatic rice is globally favored for its distinctive scent, which not only increases its nutritional value but also enhances its economic importance. However, apart from 2-acetyl-1-pyrroline (2-AP), the metabolic basis of aroma remains to be clarified, and the genetic basis of the accumulation of fragrance metabolites is largely unknown. In this study, we revealed 2-AP and fatty acid-derived volatiles (FAVs) as key contributors to rice aroma by combining aroma rating with molecular docking. Using a volatilome-based genome-wide association study, we identified two regulatory genes that determine the natural variation of these fragrance metabolites. Genetic and molecular analyses showed that OsWRKY19 not only enhances fragrance by negatively regulating OsBADH2 but also improves agricultural traits in rice. Furthermore, we revealed that OsNAC021 negatively regulates FAV contents via the lipoxygenase pathway, and its knockout resulted in over-accumulation of grain FAVs without a yield penalty. Collectively, our study not only identifies two key regulators of rice aroma but also provides a compelling example about how to deciphering the genetic regulatory mechanisms that underlie rice fragrance, thereby paving the way for the creation of aromatic rice varieties.
Collapse
Affiliation(s)
- Yan Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Yuanyuan Miao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570288, China
| | - Honglun Yuan
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570288, China
| | - Fengkun Huang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570288, China
| | - Mingqi Sun
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570288, China
| | - Liqiang He
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570288, China
| | - Xianqing Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570288, China
| | - Jie Luo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; Yazhouwan National Laboratory, Sanya 572025, China.
| |
Collapse
|
3
|
Yin X, Yang H, Ding K, Luo Y, Deng W, Liao J, Pan Y, Jiang B, Yong X, Jia Y. PfERF106, a novel key transcription factor regulating the biosynthesis of floral terpenoids in Primula forbesii Franch. BMC PLANT BIOLOGY 2024; 24:851. [PMID: 39256664 PMCID: PMC11385529 DOI: 10.1186/s12870-024-05567-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Flowers can be a source of essential oils used in the manufacture of substances with high economic value. The ethylene response factor (ERF) gene family plays a key role in regulating secondary metabolite biosynthesis in plants. However, until now, little has been known about the involvement of ERF transcription factors (TFs) in floral terpenoid biosynthesis. RESULTS In this study, an aromatic plant, Primula forbesii Franch., was used as research material to explore the key regulatory effects of PfERF106 on the biosynthesis of terpenoids. PfERF106, which encodes an IXb group ERF transcription factor, exhibited a consistent expression trend in the flowers of P. forbesii and was transcriptionally induced by exogenous ethylene. Transient silencing of PfERF106 in P. forbesii significantly decreased the relative contents of key floral terpenes, including (z)-β-ocimene, sabinene, β-pinene, γ-terpinene, linalool, eremophilene, α-ionone, and α-terpineol. In contrast, constitutive overexpression of PfERF106 in transgenic tobacco significantly increased the relative contents of key floral terpenes, including cis-3-hexen-1-ol, linalool, caryophyllene, cembrene, and sclareol. RNA sequencing of petals of PfERF106-silenced plants and empty-vector control plants revealed 52,711 expressed unigenes and 9,060 differentially expressed genes (DEGs). KEGG annotation analysis revealed that the DEGs were enriched for involvement in secondary metabolic biosynthetic pathways, including monoterpene and diterpene synthesis. Notably, 10 downregulated DEGs were determined to be the downstream target genes of PfERF106 affecting the biosynthesis of terpenoids in P. forbesii. CONCLUSION This study characterized the key positive regulatory effects of PfERF106 on the biosynthesis of terpenoids, indicating high-quality genetic resources for aroma improvement in P. forbesii. Thus, this study advances the artificial and precise directional regulation of metabolic engineering of aromatic substances.
Collapse
Affiliation(s)
- Xiancai Yin
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongchen Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Keying Ding
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanzhi Luo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wanqing Deng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jianwei Liao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanzhi Pan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Beibei Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xue Yong
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yin Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
4
|
Wang Z, You L, Gong N, Li C, Li Z, Shen J, Wan L, Luo K, Su X, Feng L, Chen S, Lin W. Comprehensive Expression Analysis of the WRKY Gene Family in Phoebe bournei under Drought and Waterlogging Stresses. Int J Mol Sci 2024; 25:7280. [PMID: 39000387 PMCID: PMC11242546 DOI: 10.3390/ijms25137280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
In response to biotic and abiotic stresses, the WRKY gene family plays a crucial role in plant growth and development. This study focused on Phoebe bournei and involved genome-wide identification of WRKY gene family members, clarification of their molecular evolutionary characteristics, and comprehensive mapping of their expression profiles under diverse abiotic stress conditions. A total of 60 WRKY gene family members were identified, and their phylogenetic classification revealed three distinct groups. A conserved motif analysis underscored the significant conservation of motif 1 and motif 2 among the majority of PbWRKY proteins, with proteins within the same class sharing analogous gene structures. Furthermore, an examination of cis-acting elements and protein interaction networks revealed several genes implicated in abiotic stress responses in P. bournei. Transcriptomic data were utilized to analyze the expression patterns of WRKY family members under drought and waterlogged conditions, with subsequent validation by quantitative real-time PCR (RT-qPCR) experiments. Notably, PbWRKY55 exhibited significant expression modulation under drought stress; PbWRKY36 responded prominently to waterlogging stress; and PbWRKY18, PbWRKY38, and PbWRKY57 demonstrated altered expression under both drought and waterlogging stresses. This study revealed the PbWRKY candidate genes that potentially play a pivotal role in enhancing abiotic stress resilience in P. bournei. The findings have provided valuable insights and knowledge that can guide further research aimed at understanding and addressing the impacts of abiotic stress within this species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Shipin Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.W.); (L.Y.); (N.G.); (C.L.); (Z.L.); (J.S.); (L.W.); (K.L.); (X.S.); (L.F.)
| | - Wenjun Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.W.); (L.Y.); (N.G.); (C.L.); (Z.L.); (J.S.); (L.W.); (K.L.); (X.S.); (L.F.)
| |
Collapse
|
5
|
Guo X, Yan X, Li Y. Genome-wide identification and expression analysis of the WRKY gene family in Rhododendron henanense subsp. lingbaoense. PeerJ 2024; 12:e17435. [PMID: 38827309 PMCID: PMC11143974 DOI: 10.7717/peerj.17435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/30/2024] [Indexed: 06/04/2024] Open
Abstract
Background This work explored the characteristics of the WRKY transcription factor family in Rhododendron henanense subsp. lingbaoense (Rhl) and the expression patterns of these genes under abiotic stress by conducting bioinformatics and expression analyses. Methods RhlWRKY genes were identified from a gene library of Rhl. Various aspects of these genes were analyzed, including genetic structures, conserved sequences, physicochemical properties, cis-acting elements, and chromosomal location. RNA-seq was employed to analyze gene expression in five different tissues of Rhl: roots, stems, leaves, flowers, and hypocotyls. Additionally, qRT-PCR was used to detect changes in the expression of five RhlWRKY genes under abiotic stress. Result A total of 65 RhlWRKY genes were identified and categorized into three subfamilies based on their structural characteristics: Groups I, II, and III. Group II was further divided into five subtribes, with shared similar genetic structures and conserved motifs among members of the same subtribe. The physicochemical properties of these proteins varied, but the proteins are generally predicted to be hydrophilic. Most proteins are predicted to be in the cell nucleus, and distributed across 12 chromosomes. A total of 84 cis-acting elements were discovered, with many related to responses to biotic stress. Among the identified RhlWRKY genes, there were eight tandem duplicates and 97 segmental duplicates. The majority of duplicate gene pairs exhibited Ka/Ks values <1, indicating purification under environmental pressure. GO annotation analysis indicated that WRKY genes regulate biological processes and participate in a variety of molecular functions. Transcriptome data revealed varying expression levels of 66.15% of WRKY family genes in all five tissue types (roots, stems, leaves, flowers, and hypocotyls). Five RhlWRKY genes were selected for further characterization and there were changes in expression levels for these genes in response to various stresses. Conclusion The analysis identified 65 RhlWRKY genes, among which the expression of WRKY_42 and WRKY_17 were mainly modulated by the drought and MeJA, and WRKY_19 was regulated by the low-temperature and high-salinity conditions. This insight into the potential functions of certain genes contributes to understanding the growth regulatory capabilities of Rhl.
Collapse
Affiliation(s)
- Xiangmeng Guo
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| | - Xinyu Yan
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| | - Yonghui Li
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| |
Collapse
|
6
|
Qiu H, Chen Y, Fu J, Zhang C. Expression of ethylene biosynthetic genes during flower senescence and in response to ethephon and silver nitrate treatments in Osmanthus fragrans. Genes Genomics 2024; 46:399-408. [PMID: 38319456 DOI: 10.1007/s13258-023-01489-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/20/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Sweet osmanthus (Osmanthus fragrans) is an ornamental evergreen tree species in China, whose flowers are sensitive to ethylene. The synthesis of ethylene is controlled by key enzymes and restriction enzymes, 1-aminocyclopropane-1-carboxylic acid synthase (ACS) and 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), which are encoded by multigene families. However, the key synthase responsible for ethylene regulation in O. fragrans is still unknown. OBJECTIVE This study aims to screen the key ethylene synthase genes of sweet osmanthus flowers in response to ethylene regulation. METHODS In this study, we used the ACO and ACS sequences of Arabidopsis thaliana to search for homologous genes in the O. fragrans petal transcriptome database. These genes were also analyzed bioinformatically. Finally, the expression levels of O. fragrans were compared before and after senescence, as well as after ethephon and silver nitrate treatments. RESULTS The results showed that there are five ACO genes and one ACS gene in O. fragrans transcriptome database, and the phylogenetic tree revealed that the proteins encoded by these genes had high homology to the ACS and ACO proteins in plants. Sequence alignment shows that the OfACO1-5 proteins have the 2OG-Fe(II) oxygenase domain, while OfACS1 contains seven conserved domains, as well as conserved amino acids in transaminases and glutamate residues related to substrate specificity. Expression analysis revealed that the expression levels of OfACS1 and OfACO1-5 were significantly higher at the early senescence stage compared to the full flowering stage. The transcripts of the OfACS1, OfACO2, and OfACO5 genes were upregulated by treatment with ethephon. However, out of these three genes, only OfACO2 was significantly downregulated by treatment with AgNO3. CONCLUSION Our study found that OfACO2 is an important synthase gene in response to ethylene regulation in sweet osmanthus, which would provide valuable data for further investigation into the mechanisms of ethylene-induced senescence in sweet osmanthus flowers.
Collapse
Affiliation(s)
- Hui Qiu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China
| | - Yiwen Chen
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China
| | - Jianxin Fu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China.
| | - Chao Zhang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
7
|
Zhao Y, Chen Y, Gao M, Wang Y. Alcohol dehydrogenases regulated by a MYB44 transcription factor underlie Lauraceae citral biosynthesis. PLANT PHYSIOLOGY 2024; 194:1674-1691. [PMID: 37831423 DOI: 10.1093/plphys/kiad553] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Accepted: 09/23/2023] [Indexed: 10/14/2023]
Abstract
Lineage-specific terpenoids have arisen throughout the evolution of land plants and are believed to play a role in interactions between plants and the environment. Species-specific gene clusters in plants have provided insight on the evolution of secondary metabolism. Lauraceae is an ecologically important plant family whose members are also of considerable economic value given their monoterpene contents. However, the gene cluster responsible for the biosynthesis of monoterpenes remains yet to be elucidated. Here, a Lauraceae-specific citral biosynthetic gene cluster (CGC) was identified and investigated using a multifaceted approach that combined phylogenetic, collinearity, and biochemical analyses. The CGC comprises MYB44 as a regulator and 2 alcohol dehydrogenases (ADHs) as modifying enzymes, which derived from species-specific tandem and proximal duplication events. Activity and substrate divergence of the ADHs has resulted in the fruit of mountain pepper (Litsea cubeba), a core Lauraceae species, consisting of more than 80% citral. In addition, MYB44 negatively regulates citral biosynthesis by directly binding to the promoters of the ADH-encoding genes. The aggregation of citral biosynthetic pathways suggests that they may form the basis of important characteristics that enhance adaptability. The findings of this study provide insights into the evolution of and the regulatory mechanisms involved in plant terpene biosynthesis.
Collapse
Affiliation(s)
- Yunxiao Zhao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Yicun Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Ming Gao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Yangdong Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| |
Collapse
|
8
|
Liu X, Yan W, Liu S, Wu J, Leng P, Hu Z. LiNAC100 contributes to linalool biosynthesis by directly regulating LiLiS in Lilium 'Siberia'. PLANTA 2024; 259:73. [PMID: 38393405 DOI: 10.1007/s00425-024-04340-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/09/2024] [Indexed: 02/25/2024]
Abstract
MAIN CONCLUSION The transcription factor LiNAC100 has a novel function of regulating floral fragrance by directly regulating linalool synthase gene LiLiS. Lilium 'Siberia', an Oriental hybrid, is renowned as both a cut flower and garden plant, prized for its color and fragrance. The fragrance comprises volatile organic compounds (VOCs), primarily monoterpenes found in the plant. While the primary terpene synthases in Lilium 'Siberia' were identified, the transcriptional regulation of these terpene synthase (TPS) genes remains unclear. Thus, understanding the regulatory mechanisms of monoterpene biosynthesis is crucial for breeding flower fragrance, thereby improving ornamental and commercial values. In this study, we isolated a nuclear-localized LiNAC100 transcription factor from Lilium 'Siberia'. The virus-induced gene silencing (VIGS) of LiNAC100 was found to down-regulate the expression of linalool synthase gene (LiLiS) and significantly inhibit linalool synthesis. Conversely, transient overexpression of LiNAC100 produced opposite effects. Additionally, yeast one-hybrid and dual-luciferase assays confirmed that LiNAC100 directly activates LiLiS expression. Our findings reveal that LiNAC100 plays a key role in monoterpene biosynthesis in Lilium 'Siberia', promoting linalool synthesis through the activation of LiLiS expression. These results offer insights into the molecular mechanisms of terpene biosynthesis in Lilium 'Siberia' and open avenues for biotechnological enhancement of floral scent.
Collapse
Affiliation(s)
- Xuping Liu
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Engineering Research Center of Rural Landscape Planning and Design, Beijing, 102206, China
| | - Wenxin Yan
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Engineering Research Center of Rural Landscape Planning and Design, Beijing, 102206, China
| | - Sijia Liu
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Engineering Research Center of Rural Landscape Planning and Design, Beijing, 102206, China
| | - Jing Wu
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Engineering Research Center of Rural Landscape Planning and Design, Beijing, 102206, China
| | - Pingsheng Leng
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China.
- Beijing Engineering Research Center of Rural Landscape Planning and Design, Beijing, 102206, China.
| | - Zenghui Hu
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China.
- Beijing Engineering Research Center of Rural Landscape Planning and Design, Beijing, 102206, China.
| |
Collapse
|
9
|
Shi T, Shi M, Ye Y, Yue Y, Wang L, Yang X. Floral Volatile Organic Compounds Change the Composition and Function of the Endophytic Fungal Community in the Flowers of Osmanthus fragrans. Int J Mol Sci 2024; 25:857. [PMID: 38255929 PMCID: PMC10815108 DOI: 10.3390/ijms25020857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Endophytic fungi in flowers influence plant health and reproduction. However, whether floral volatile organic compounds (VOCs) affect the composition and function of the endophytic fungal community remains unclear. Here, gas chromatography-mass spectrometry (GC-MS) and high-throughput sequencing were used to explore the relationship between floral VOCs and the endophytic fungal community during different flower development stages in Osmanthus fragrans 'Rixiang Gui'. The results showed that the composition of the endophytic fungal community and floral VOCs shifted along with flowering development. The highest and lowest α diversity of the endophytic fungal community occurred in the flower fading stage and full blooming stage, respectively. The dominant fungi, including Dothideomycetes (class), Pleosporales (order), and Neocladophialophora, Alternaria, and Setophoma (genera), were enriched in the flower fading stage and decreased in the full blooming stage, demonstrating the enrichment of the Pathotroph, Saprotroph, and Pathotroph-Saprotroph functions in the flower fading stage and their depletion in the full blooming stage. However, the total VOC and terpene contents were highest in the full blooming stage and lowest in the flower fading stage, which was opposite to the α diversity of the endophytic fungal community and the dominant fungi during flowering development. Linalool, dihydro-β-ionone, and trans-linalool oxide(furan) were key factors affecting the endophytic fungal community composition. Furthermore, dihydro-β-ionone played an extremely important role in inhibiting endophytic fungi in the full blooming stage. Based on the above results, it is believed that VOCs, especially terpenes, changed the endophytic fungal community composition in the flowers of O. fragrans 'Rixiang Gui'. These findings improve the understanding of the interaction between endophytic fungi and VOCs in flowers and provide new insight into the mechanism of flower development.
Collapse
Affiliation(s)
- Tingting Shi
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (Y.Y.); (Y.Y.); (L.W.)
| | - Man Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yunfang Ye
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (Y.Y.); (Y.Y.); (L.W.)
| | - Yuanzheng Yue
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (Y.Y.); (Y.Y.); (L.W.)
| | - Lianggui Wang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (Y.Y.); (Y.Y.); (L.W.)
| | - Xiulian Yang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (Y.Y.); (Y.Y.); (L.W.)
| |
Collapse
|
10
|
Lan Y, Xiong R, Zhang K, Wang L, Wu M, Yan H, Xiang Y. Geranyl diphosphate synthase large subunits OfLSU1/2 interact with small subunit OfSSUII and are involved in aromatic monoterpenes production in Osmanthus fragrans. Int J Biol Macromol 2024; 256:128328. [PMID: 38000574 DOI: 10.1016/j.ijbiomac.2023.128328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/23/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023]
Abstract
Osmanthus fragrans is a famous ornamental tree species for its pleasing floral fragrance. Monoterpenoids are the core floral volatiles of O. fragrans flowers, which have tremendous commercial value. Geranyl diphosphate synthase (GPPS) is a key enzyme that catalyzes the formation of GPP, the precursor of monoterpenoids. However, there are no reports of GPPSs in O. fragrans. Here, we performed RNA sequencing on the O. fragrans flowers and identified three GPPSs. Phylogenetic tree analysis showed that OfLSU1/2 belonged to the GPPS.LSU branch, while the OfSSUII belonged to the GPPS.SSU branch. OfLSU1, OfLSU2 and OfSSUII were all localized in chloroplasts. Y2H and pull-down assays showed that OfLSU1 or OfLSU2 interacted with OfSSUII to form heteromeric GPPSs. Site mutation experiments revealed that the conserved CXXXC motifs of OfLSU1/2 and OfSSUII were essential for the interaction between OfLSU1/2 and OfSSUII. Transient expression experiments showed that OfLSU1, OfLSU2 and OfSSUII co-expressed with monoterpene synthase genes OfTPS1 or OfTPS2 improved the biosynthesis of monoterpenoids (E)-β-ocimene and linalool. The heteromeric GPPSs formed by OfLSU1/2 interacting with OfSSUII further improves the biosynthesis of monoterpenoids. Overall, these preliminary results suggested that the GPPSs play a key role in regulating the production of aromatic monoterpenes in O. fragrans.
Collapse
Affiliation(s)
- Yangang Lan
- Anhui Province Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei 230036, China
| | - Rui Xiong
- Anhui Province Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei 230036, China
| | - Kaimei Zhang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Linna Wang
- Anhui Province Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei 230036, China
| | - Min Wu
- Anhui Province Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei 230036, China
| | - Hanwei Yan
- Anhui Province Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei 230036, China
| | - Yan Xiang
- Anhui Province Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
11
|
Dötterl S, Gershenzon J. Chemistry, biosynthesis and biology of floral volatiles: roles in pollination and other functions. Nat Prod Rep 2023; 40:1901-1937. [PMID: 37661854 DOI: 10.1039/d3np00024a] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Covering: 2010 to 2023Floral volatiles are a chemically diverse group of plant metabolites that serve multiple functions. Their composition is shaped by environmental, ecological and evolutionary factors. This review will summarize recent advances in floral scent research from chemical, molecular and ecological perspectives. It will focus on the major chemical classes of floral volatiles, on notable new structures, and on recent discoveries regarding the biosynthesis and the regulation of volatile emission. Special attention will be devoted to the various functions of floral volatiles, not only as attractants for different types of pollinators, but also as defenses of flowers against enemies. We will also summarize recent findings on how floral volatiles are affected by abiotic stressors, such as increased temperatures and drought, and by other organisms, such as herbivores and flower-dwelling microbes. Finally, this review will indicate current research gaps, such as the very limited knowledge of the isomeric pattern of chiral compounds and its importance in interspecific interactions.
Collapse
Affiliation(s)
- Stefan Dötterl
- Department of Environment & Biodiversity, Paris Lodron University Salzburg, Hellbrunnerstr 34, 5020 Salzburg, Austria.
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany.
| |
Collapse
|
12
|
Lu Z, Wang X, Mostafa S, Noor I, Lin X, Ren S, Cui J, Jin B. WRKY Transcription Factors in Jasminum sambac: An Insight into the Regulation of Aroma Synthesis. Biomolecules 2023; 13:1679. [PMID: 38136552 PMCID: PMC10742223 DOI: 10.3390/biom13121679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
WRKY transcription factors are one of the largest families of transcription regulators that play essential roles in regulating the synthesis of secondary metabolites in plants. Jasmine (Jasminum sambac), renowned for its aromatic nature and fragrant blossoms, possesses a significant abundance of volatile terpene compounds. However, the role of the WRKY family in terpene synthesis in jasmine remains undetermined. In this study, 72 WRKY family genes of J. sambac were identified with their conserved WRKY domains and were categorized into three main groups based on their structural and phylogenetic characteristics. The extensive segmental duplications contributed to the expansion of the WRKY gene family. Expression profiles derived from the transcriptome data and qRT-PCR analysis showed that the majority of JsWRKY genes were significantly upregulated in fully bloomed flowers compared to buds. Furthermore, multiple correlation analyses revealed that the expression patterns of JsWRKYs (JsWRKY27/33/45/51/55/57) were correlated with both distinct terpene compounds (monoterpenes and sesquiterpenes). Notably, the majority of jasmine terpene synthase (JsTPS) genes related to terpene synthesis and containing W-box elements exhibited a significant correlation with JsWRKYs, particularly with JsWRKY51, displaying a strong positive correlation. A subcellular localization analysis showed that JsWRKY51 was localized in the nucleus. Moreover, transgenic tobacco leaves and jasmine calli experiments demonstrated that overexpression of JsWRKY51 was a key factor in enhancing the accumulation of β-ocimene, which is an important aromatic terpene component. Collectively, our findings suggest the roles of JsWRKY51 and other JsWRKYs in regulating the synthesis of aromatic compounds in J. sambac, providing a foundation for the potential utilization of JsWRKYs to facilitate the breeding of fragrant plant varieties with an improved aroma.
Collapse
Affiliation(s)
- Zhaogeng Lu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Z.L.); (X.W.)
| | - Xinwen Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Z.L.); (X.W.)
| | - Salma Mostafa
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Z.L.); (X.W.)
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Iqra Noor
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Z.L.); (X.W.)
| | - Xinyi Lin
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Z.L.); (X.W.)
| | - Shixiong Ren
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Z.L.); (X.W.)
| | - Jiawen Cui
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Z.L.); (X.W.)
| | - Biao Jin
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Z.L.); (X.W.)
| |
Collapse
|
13
|
Cai K, Zhao Q, Li H, Zhang Q, Li Y, Han R, Jiang T, Pei X, Zhang L, Zhao X. Deciphering aroma formation during flowering in nectar tree ( Tilia amurensis): insights from integrated metabolome and transcriptome analysis. FORESTRY RESEARCH 2023; 3:24. [PMID: 39526254 PMCID: PMC11524258 DOI: 10.48130/fr-2023-0024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/21/2023] [Indexed: 11/16/2024]
Abstract
Tilia amurensis is a significant ornamental and economically-important tree species, known for its fragrant flowers, which are a source of high-quality honey production. However, the regulatory mechanisms involved in aroma formation during flower development in T. amurensis remains limited. The current study revealed the detection of plant hormones at every assessed stage of flower development. Among them, auxin and brassinosteroid contents significantly increased at stage 3, potentially regulating crucial functions during T. amurensis flower development. Moreover, the study examined the levels and change patterns of secondary metabolites and employed a combination of transcriptomics and metabolomics to comprehensively assess essential structural genes implicated in the biosynthesis pathways of terpenoid and phenylpropanoid. A comprehensive set of 89,526 differentially expressed genes (DEGs) was uncovered, including candidate structural genes ACAT, HDS, TPS, 4CL, CAD, and CCOAMT, which are specifically involved in the biosynthesis of terpenoids and phenylpropanoids. Maslinic acid, 2α,3α-dihydroxyursolic acid, and betulinic acid were accumulated in the terpenoid biosynthesis pathway. In contrast, metabolites with differential accumulation, such as phenylalanine, coniferyl alcohol, and cinnamic acid, were specifically enriched in the phenylpropanoid biosynthesis pathway. The C2H2, MYB, and NAC transcription factor families are crucially associated with the terpenoid and phenylpropanoid biosynthesis pathways. Two transcription factors, C2H2-17 and MYB-24, exhibited strong co-expression with structural genes in two networks, and were identified as central regulatory factors. These findings establish a solid groundwork for elucidating the generation of floral fragrance and provide comprehensive genetic and metabolic information for further studies on T. amurensis.
Collapse
Affiliation(s)
- Kewei Cai
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qiushuang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Hanxi Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qinhui Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yan Li
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Rui Han
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiaona Pei
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Lina Zhang
- School of information technology, Jilin Agricultural University, Changchun, China
| | - Xiyang Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
14
|
Lan Y, Zhang K, Wang L, Liang X, Liu H, Zhang X, Jiang N, Wu M, Yan H, Xiang Y. The R2R3-MYB transcription factor OfMYB21 positively regulates linalool biosynthesis in Osmanthus fragrans flowers. Int J Biol Macromol 2023; 249:126099. [PMID: 37543267 DOI: 10.1016/j.ijbiomac.2023.126099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/02/2023] [Accepted: 07/22/2023] [Indexed: 08/07/2023]
Abstract
Osmanthus fragrans is a well-known landscape ornamental tree species for its pleasing floral fragrance and abundance of flowers. Linalool, the core floral volatiles of O. fragrans, has tremendous economic value in the pharmaceuticals, cleaning products and cosmetics industries. However, the transcriptional regulatory network for the biosynthesis of linalool in O. fragrans remains unclear. Here, OfMYB21, a potential transcription factor regulating the linalool synthetase OfTPS2, was identified using RNA-seq data and qRT-PCR analysis. Yeast one-hybrid, dual-luciferase and EMSA showed that OfMYB21 directly binds to the promoter of OfTPS2 and activates its expression. Overexpression of OfMYB21 in the petals of O. fragrans led to up-regulation of OfTPS2 and increased accumulation of linalool, while silencing of OfMYB21 led to down-regulation of OfTPS2 and decreased biosynthesis of linalool. Subsequently, yeast two-hybrid, pull-down and BiFC experiments showed that OfMYB21 interacts with JA signaling factors OfJAZ2/3 and OfMYC2. Interestingly, the interaction between OfMYC2 and OfMYB21 further enhanced the transcription of OfTPS2, whereas OfJAZ3 attenuated this effect. Overall, our studies provided novel finding on the regulatory mechanisms responsible for the biosynthesis of the volatile monoterpenoid linalool in O. fragrans.
Collapse
Affiliation(s)
- Yangang Lan
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Kaimei Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Linna Wang
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoyu Liang
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Honxia Liu
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoyue Zhang
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Nianqin Jiang
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Min Wu
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Hanwei Yan
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Yan Xiang
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
15
|
Liu M, Zhao Y, Fan P, Kong J, Wang Y, Xu X, Xu M, Wang L, Li S, Liang Z, Duan W, Dai Z. Grapevine plantlets respond to different monochromatic lights by tuning photosynthesis and carbon allocation. HORTICULTURE RESEARCH 2023; 10:uhad160. [PMID: 37719274 PMCID: PMC10500148 DOI: 10.1093/hr/uhad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/27/2023] [Indexed: 09/19/2023]
Abstract
The quality of planting materials is the foundation for productivity, longevity, and berry quality of perennial grapevines with a long lifespan. Manipulating the nursery light spectrum may speed up the production of healthy and high-quality planting vines but the underlying mechanisms remain elusive. Herein, the effects of different monochromatic lights (green, blue, and red) on grapevine growth, leaf photosynthesis, whole-plant carbon allocation, and transcriptome reprograming were investigated with white light as control. Results showed that blue and red lights were favorable for plantlet growth in comparison with white light. Blue light repressed excessive growth, significantly increased the maximum net photosynthetic rate (Pn) of leaves by 39.58% and leaf specific weight by 38.29%. Red light increased the dry weight of the stem by 53.60%, the starch content of the leaf by 53.63%, and the sucrose content of the stem by 230%. Green light reduced all photosynthetic indexes of the grape plantlet. Photosynthetic photon flux density (PPFD)/Ci-Pn curves indicated that blue light affected photosynthetic rate depending on the light intensity and CO2 concentration. RNA-seq analysis of different organs (leaf, stem, and root) revealed a systematic transcriptome remodeling and VvCOP1 (CONSTITUTIVELY PHOTOMORPHOGENIC 1), VvHY5 (ELONGATED HYPOCOTYL5), VvHYH (HY5 HOMOLOG), VvELIP (early light-induced protein) and VvPIF3 (PHYTOCHROME INTERACTING FACTOR 3) may play important roles in this shoot-to-root signaling. Furthermore, the correlation network between differential expression genes and physiological traits indicated that VvpsbS (photosystem II subunit S), Vvpsb28 (photosystem II subunit 28), VvHYH, VvSUS4 (sucrose synthase 4), and VvALDA (fructose-bisphosphate aldolase) were pertinent candidate genes in responses to different light qualities. Our results provide a foundation for optimizing the light recipe of grape plantlets and strengthen the understanding of light signaling and carbon metabolism under different monochromatic lights.
Collapse
Affiliation(s)
- Menglong Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peige Fan
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhua Kong
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Yongjian Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xiaobo Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meilong Xu
- Ningxia Horticulture Research Institute, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| | - Lijun Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaohua Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenchang Liang
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Duan
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Zhanwu Dai
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Chen X, Sun S, Han X, Li C, Wang F, Nie B, Hou Z, Yang S, Ji J, Li G, Wang Y, Han X, Yue J, Li C, Li W, Zhang L, Yang D, Wang L. Multiomics comparison among populations of three plant sources of Amomi Fructus. HORTICULTURE RESEARCH 2023; 10:uhad128. [PMID: 37560015 PMCID: PMC10407604 DOI: 10.1093/hr/uhad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 06/11/2023] [Indexed: 08/11/2023]
Abstract
Amomi Fructus (Sharen, AF) is a traditional Chinese medicine (TCM) from three source species (or varieties), including Wurfbainia villosa var. villosa (WVV), W. villosa var. xanthioides (WVX), or W. longiligularis (WL). Among them, WVV has been transplanted from its top-geoherb region, Guangdong, to its current main production area, Yunnan, for >50 years in China. However, the genetic and transcriptomic differentiation among multiple AF source species (or varieties) and between the origin and transplanted populations of WVV is unknown. In our study, the observed overall higher expression of terpenoid biosynthesis genes in WVV than in WVX provided possible evidence for the better pharmacological effect of WVV. We also screened six candidate borneol dehydrogenases (BDHs) that potentially catalyzed borneol into camphor in WVV and functionally verified them. Highly expressed genes at the P2 stage of WVV, Wv05G1424 and Wv05G1438, were capable of catalyzing the formation of camphor from (+)-borneol, (-)-borneol and DL-isoborneol. Moreover, the BDH genes may experience independent evolution after acquiring the ancestral copies, and the following tandem duplications might account for the abundant camphor content in WVV. Furthermore, four populations of WVV, WVX, and WL are genetically differentiated, and the gene flow from WVX to WVV in Yunnan contributed to the greater genetic diversity in the introduced population (WVV-JH) than in its top-geoherb region (WVV-YC), which showed the lowest genetic diversity and might undergo genetic degradation. In addition, terpene synthesis (TPS) and BDH genes were selected among populations of multiple AF source species (or varieties) and between the top- and non-top-geoherb regions, which might explain the difference in metabolites between these populations. Our findings provide important guidance for the conservation, genetic improvement, and industrial development of the three source species (or varieties) and for identifying top-geoherbalism with molecular markers, and proper clinical application of AF.
Collapse
Affiliation(s)
- Xinlian Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China
| | - Shichao Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China
| | - Xiaoxu Han
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China
| | - Cheng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China
| | - Fengjiao Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China
| | - Bao Nie
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China
| | - Zhuangwei Hou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China
| | - Song Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China
| | - Jiaojiao Ji
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China
| | - Ge Li
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, 666100 Jinghong, China
| | - Yanqian Wang
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, 666100 Jinghong, China
| | - Xiaoyu Han
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China
| | - Jianjun Yue
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, 666100 Jinghong, China
| | - Cui Li
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, 530023 Nanning, China
| | - Wei Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China
| | - Lixia Zhang
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, 666100 Jinghong, China
| | - Depo Yang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Li Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, 528200 Foshan, China
| |
Collapse
|
17
|
Yang J, Gu T, Lu Y, Xu Y, Gan RY, Ng SB, Sun Q, Peng Y. Edible Osmanthus fragrans flowers: aroma and functional components, beneficial functions, and applications. Crit Rev Food Sci Nutr 2023; 64:10055-10068. [PMID: 37287270 DOI: 10.1080/10408398.2023.2220130] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Osmanthus fragrans (O. fragrans) has been cultivated in China for over 2,500 years as a traditional fragrant plant. Recently, O. fragrans has drawn increasing attention due to its unique aroma and potential health benefits. In this review, the aroma and functional components of O. fragrans are summarized, and their biosynthetic mechanism is discussed. The beneficial functions and related molecular mechanism of O. fragrans extract are then highlighted. Finally, potential applications of O. fragrans are summarized, and future perspectives are proposed and discussed. According to the current research, O. fragrans extracts and components have great potential to be developed into value-added functional ingredients with preventive effects on certain chronic diseases. However, it is crucial to develop efficient, large-scale, and commercially viable extraction methods to obtain the bioactive components from O. fragrans. Furthermore, more clinical studies are highly needed to explore the beneficial functions of O. fragrans and guide its development into functional food products.
Collapse
Affiliation(s)
- Jiani Yang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ting Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yongtong Lu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | | | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Siew Bee Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| |
Collapse
|
18
|
Long L, Gu L, Wang S, Cai H, Wu J, Wang J, Yang M. Progress in the understanding of WRKY transcription factors in woody plants. Int J Biol Macromol 2023; 242:124379. [PMID: 37178519 DOI: 10.1016/j.ijbiomac.2023.124379] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023]
Abstract
The WRKY transcription factor (TF) family, named for its iconic WRKY domain, is among the largest and most functionally diverse TF families in higher plants. WRKY TFs typically interact with the W-box of the target gene promoter to activate or inhibit the expression of downstream genes; these TFs are involved in the regulation of various physiological responses. Analyses of WRKY TFs in numerous woody plant species have revealed that WRKY family members are broadly involved in plant growth and development, as well as responses to biotic and abiotic stresses. Here, we review the origin, distribution, structure, and classification of WRKY TFs, along with their mechanisms of action, the regulatory networks in which they are involved, and their biological functions in woody plants. We consider methods currently used to investigate WRKY TFs in woody plants, discuss outstanding problems, and propose several new research directions. Our objective is to understand the current progress in this field and provide new perspectives to accelerate the pace of research that enable greater exploration of the biological functions of WRKY TFs.
Collapse
Affiliation(s)
- Lianxiang Long
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Lijiao Gu
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Shijie Wang
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Hongyu Cai
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Jianghao Wu
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Jinmao Wang
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China.
| | - Minsheng Yang
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China.
| |
Collapse
|
19
|
Gao J, Chen Y, Gao M, Wu L, Zhao Y, Wang Y. LcWRKY17, a WRKY Transcription Factor from Litsea cubeba, Effectively Promotes Monoterpene Synthesis. Int J Mol Sci 2023; 24:ijms24087210. [PMID: 37108396 PMCID: PMC10138983 DOI: 10.3390/ijms24087210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The WRKY gene family is one of the most significant transcription factor (TF) families in higher plants and participates in many secondary metabolic processes in plants. Litsea cubeba (Lour.) Person is an important woody oil plant that is high in terpenoids. However, no studies have been conducted to investigate the WRKY TFs that regulate the synthesis of terpene in L. cubeba. This paper provides a comprehensive genomic analysis of the LcWRKYs. In the L. cubeba genome, 64 LcWRKY genes were discovered. According to a comparative phylogenetic study with Arabidopsis thaliana, these L. cubeba WRKYs were divided into three groups. Some LcWRKY genes may have arisen from gene duplication, but the majority of LcWRKY evolution has been driven by segmental duplication events. Based on transcriptome data, a consistent expression pattern of LcWRKY17 and terpene synthase LcTPS42 was found at different stages of L. cubeba fruit development. Furthermore, the function of LcWRKY17 was verified by subcellular localization and transient overexpression, and overexpression of LcWRKY17 promotes monoterpene synthesis. Meanwhile, dual-Luciferase and yeast one-hybrid (Y1H) experiments showed that the LcWRKY17 transcription factor binds to W-box motifs of LcTPS42 and enhances its transcription. In conclusion, this research provided a fundamental framework for future functional analysis of the WRKY gene families, as well as breeding improvement and the regulation of secondary metabolism in L. cubeba.
Collapse
Affiliation(s)
- Jing Gao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yicun Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Ming Gao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Liwen Wu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yunxiao Zhao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yangdong Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| |
Collapse
|
20
|
Moghadam A, Foroozan E, Tahmasebi A, Taghizadeh MS, Bolhassani M, Jafari M. System network analysis of Rosmarinus officinalis transcriptome and metabolome-Key genes in biosynthesis of secondary metabolites. PLoS One 2023; 18:e0282316. [PMID: 36862714 PMCID: PMC9980811 DOI: 10.1371/journal.pone.0282316] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 02/13/2023] [Indexed: 03/03/2023] Open
Abstract
Medicinal plants contain valuable compounds that have attracted worldwide interest for their use in the production of natural drugs. The presence of compounds such as rosmarinic acid, carnosic acid, and carnosol in Rosmarinus officinalis has made it a plant with unique therapeutic effects. The identification and regulation of the biosynthetic pathways and genes will enable the large-scale production of these compounds. Hence, we studied the correlation between the genes involved in biosynthesis of the secondary metabolites in R. officinalis using proteomics and metabolomics data by WGCNA. We identified three modules as having the highest potential for the metabolite engineering. Moreover, the hub genes highly connected to particular modules, TFs, PKs, and transporters were identified. The TFs of MYB, C3H, HB, and C2H2 were the most likely candidates associated with the target metabolic pathways. The results indicated that the hub genes including Copalyl diphosphate synthase (CDS), Phenylalanine ammonia lyase (PAL), Cineole synthase (CIN), Rosmarinic acid synthase (RAS), Tyrosine aminotransferase (TAT), Cinnamate 4-hydroxylase (C4H), and MYB58 are responsible for biosynthesis of important secondary metabolites. Thus, we confirmed these results using qRT-PCR after treating R. officinalis seedlings with methyl jasmonate. These candidate genes may be employed for genetic and metabolic engineering research to increase R. officinalis metabolite production.
Collapse
Affiliation(s)
- Ali Moghadam
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Eisa Foroozan
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | | | | | | | - Morteza Jafari
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| |
Collapse
|
21
|
Goyal P, Devi R, Verma B, Hussain S, Arora P, Tabassum R, Gupta S. WRKY transcription factors: evolution, regulation, and functional diversity in plants. PROTOPLASMA 2023; 260:331-348. [PMID: 35829836 DOI: 10.1007/s00709-022-01794-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The recent advancements in sequencing technologies and informatic tools promoted a paradigm shift to decipher the hidden biological mysteries and transformed the biological issues into digital data to express both qualitative and quantitative forms. The transcriptomic approach, in particular, has added new dimensions to the versatile essence of plant genomics through the large and deep transcripts generated in the process. This has enabled the mining of super families from the sequenced plants, both model and non-model, understanding their ancestry, diversity, and evolution. The elucidation of the crystal structure of the WRKY proteins and recent advancement in computational prediction through homology modeling and molecular dynamic simulation has provided an insight into the DNA-protein complex formation, stability, and interaction, thereby giving a new dimension in understanding the WRKY regulation. The present review summarizes the functional aspects of the high volume of sequence data of WRKY transcription factors studied from different species, till date. The review focuses on the dynamics of structural classification and lineage in light of the recent information. Additionally, a comparative analysis approach was incorporated to understand the functions of the identified WRKY transcription factors subjected to abiotic (heat, cold, salinity, senescence, dark, wounding, UV, and carbon starvation) stresses as revealed through various sets of studies on different plant species. The review will be instrumental in understanding the events of evolution and the importance of WRKY TFs under the threat of climate change, considering the new scientific evidences to propose a fresh perspective.
Collapse
Affiliation(s)
- Pooja Goyal
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Registered from Guru Nanak Dev University, Amritsar, India
| | - Ritu Devi
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhawana Verma
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shahnawaz Hussain
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Palak Arora
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Rubeena Tabassum
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suphla Gupta
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India.
- Faculty, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
22
|
Hu Y, Song A, Guan Z, Zhang X, Sun H, Wang Y, Yu Q, Fu X, Fang W, Chen F. CmWRKY41 activates CmHMGR2 and CmFPPS2 to positively regulate sesquiterpenes synthesis in Chrysanthemum morifolium. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:821-829. [PMID: 36868130 DOI: 10.1016/j.plaphy.2023.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/11/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Chrysanthemum morifolium is one of the most significant multipurpose crops with ornamental, medicinal, and edible value. Terpenoids, an essentials component of volatile oils, are abundant in chrysanthemum. However, the transcriptional regulation of terpenoid biosynthesis in chrysanthemums remains unclear. In the present investigation, we identified CmWRKY41, whose expression pattern is similar to that of terpenoid content in chrysanthemum floral scent, as a candidate gene that may promote terpenoid biosynthesis in chrysanthemum. Two structural genes 3-hydroxy-3-methylglutaryl-CoA reductase 2 (CmHMGR2) and farnesyl pyrophosphate synthase 2 (CmFPPS2), play key role in terpene biosynthesis in chrysanthemum. CmWRKY41 can directly bind to the promoters of CmHMGR2 or CmFPPS2 through GTGACA or CTGACG elements and activate its expression to promote sesquiterpene biosynthesis. In summary, these results indicate that CmWRKY41 targets CmHMGR2 and CmFPPS2 to positively regulate sesquiterpene biosynthesis in chrysanthemums. This study preliminarily revealed the molecular mechanism of terpenoid biosynthesis in chrysanthemum while enriching the secondary metabolism regulatory network.
Collapse
Affiliation(s)
- Yueheng Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xue Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Hainan Sun
- Jiangsu Academy of Forestry, Nanjing, 211153, China.
| | - Yuxi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qi Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xianrong Fu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Weimin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
23
|
Xi D, Yin T, Han P, Yang X, Zhang M, Du C, Zhang H, Liu X. Genome-Wide Identification of Sweet Orange WRKY Transcription Factors and Analysis of Their Expression in Response to Infection by Penicillium digitatum. Curr Issues Mol Biol 2023; 45:1250-1271. [PMID: 36826027 PMCID: PMC9954951 DOI: 10.3390/cimb45020082] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 02/08/2023] Open
Abstract
WRKY transcription factors (TFs) play a vital role in plant stress signal transduction and regulate the expression of various stress resistance genes. Sweet orange (Citrus sinensis) accounts for a large proportion of the world's citrus industry, which has high economic value, while Penicillium digitatum is a prime pathogenic causing postharvest rot of oranges. There are few reports on how CsWRKY TFs play their regulatory roles after P. digitatum infects the fruit. In this study, we performed genome-wide identification, classification, phylogenetic and conserved domain analysis of CsWRKY TFs, visualized the structure and chromosomal localization of the encoded genes, explored the expression pattern of each CsWRKY gene under P. digitatum stress by transcriptome data, and made the functional prediction of the related genes. This study provided insight into the characteristics of 47 CsWRKY TFs, which were divided into three subfamilies and eight subgroups. TFs coding genes were unevenly distributed on nine chromosomes. The visualized results of the intron-exon structure and domain are closely related to phylogeny, and widely distributed cis-regulatory elements on each gene played a global regulatory role in gene expression. The expansion of the CSWRKY TFs family was probably facilitated by twenty-one pairs of duplicated genes, and the results of Ka/Ks calculations indicated that this gene family was primarily subjected to purifying selection during evolution. Our transcriptome data showed that 95.7% of WRKY genes were involved in the transcriptional regulation of sweet orange in response to P. digitatum infection. We obtained 15 differentially expressed genes and used the reported function of AtWRKY genes as references. They may be involved in defense against P. digitatum and other pathogens, closely related to the stress responses during plant growth and development. Two interesting genes, CsWRKY2 and CsWRKY14, were expressed more than 60 times and could be used as excellent candidate genes in sweet orange genetic improvement. This study offers a theoretical basis for the response of CSWRKY TFs to P. digitatum infection and provides a vital reference for molecular breeding.
Collapse
Affiliation(s)
- Dengxian Xi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Tuo Yin
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Peichen Han
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Xiuyao Yang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Mengjie Zhang
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China
| | - Chaojin Du
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China
| | - Hanyao Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
- Correspondence: (H.Z.); (X.L.)
| | - Xiaozhen Liu
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China
- Correspondence: (H.Z.); (X.L.)
| |
Collapse
|
24
|
Ren L, Wan W, Yin D, Deng X, Ma Z, Gao T, Cao X. Genome-wide analysis of WRKY transcription factor genes in Toona sinensis: An insight into evolutionary characteristics and terpene synthesis. FRONTIERS IN PLANT SCIENCE 2023; 13:1063850. [PMID: 36743538 PMCID: PMC9895799 DOI: 10.3389/fpls.2022.1063850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
WRKY transcription factors (TFs), one of the largest TF families, serve critical roles in the regulation of secondary metabolite production. However, little is known about the expression pattern of WRKY genes during the germination and maturation processes of Toona sinensis buds. In the present study, the new assembly of the T. sinensis genome was used for the identification of 78 TsWRKY genes, including gene structures, phylogenetic features, chromosomal locations, conserved protein domains, cis-regulatory elements, synteny, and expression profiles. Gene duplication analysis revealed that gene tandem and segmental duplication events drove the expansion of the TsWRKYs family, with the latter playing a key role in the creation of new TsWRKY genes. The synteny and evolutionary constraint analyses of the WRKY proteins among T. sinensis and several distinct species provided more detailed evidence of gene evolution for TsWRKYs. Besides, the expression patterns and co-expression network analysis show TsWRKYs may multi-genes co-participate in regulating terpenoid biosynthesis. The findings revealed that TsWRKYs potentially play a regulatory role in secondary metabolite synthesis, forming the basis for further functional characterization of WRKY genes with the intention of improving T. sinensis.
Collapse
Affiliation(s)
- Liping Ren
- Key Laboratory of Horticultural Plant Biology of Biological and Food Engineering School, Fuyang Normal University, Fuyang, China
- Horticultural Institute, Fuyang Academy of Agricultural Sciences, Fuyang, China
| | - Wenyang Wan
- Key Laboratory of Horticultural Plant Biology of Biological and Food Engineering School, Fuyang Normal University, Fuyang, China
| | - Dandan Yin
- Key Laboratory of Horticultural Plant Biology of Biological and Food Engineering School, Fuyang Normal University, Fuyang, China
| | - Xianhui Deng
- Key Laboratory of Horticultural Plant Biology of Biological and Food Engineering School, Fuyang Normal University, Fuyang, China
| | - Zongxin Ma
- Horticultural Institute, Fuyang Academy of Agricultural Sciences, Fuyang, China
| | - Ting Gao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, China
| | - Xiaohan Cao
- Key Laboratory of Horticultural Plant Biology of Biological and Food Engineering School, Fuyang Normal University, Fuyang, China
| |
Collapse
|
25
|
Yang YY, Ma B, Li YY, Han MZ, Wu J, Zhou XF, Tian J, Wang WH, Leng PS, Hu ZH. Transcriptome analysis identifies key gene LiMYB305 involved in monoterpene biosynthesis in Lilium 'Siberia'. FRONTIERS IN PLANT SCIENCE 2022; 13:1021576. [PMID: 36420028 PMCID: PMC9677127 DOI: 10.3389/fpls.2022.1021576] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Lilium is a popular cut flower that is highly favored by consumers due to its snowy white color and strong fragrance, which originates from the release of monoterpenes. However, the underlying molecular mechanism of monoterpene synthesis remains poorly understood. In this study, the content of three main monoterpenes (linalool, ocimene, and myrcene) was examined in Lilium 'Siberia', and RNA sequencing of the 11 stages of flower development was conducted. The biosynthesis of the three monoterpenes increased with flower development, reaching their peak levels at the full flowering stage. Transcriptome data revealed 257,140 unigenes, with an average size of 794 bp, from which 43,934 differentially expressed genes were identified and enriched in the KEGG pathways partly involved in plant hormone signal transduction and monoterpenoid biosynthesis. Furthermore, the essential factor LiMYB305 was identified by WGCNA after the release of the flower fragrance. The transient silencing of LiMYB305 in petals using VIGS technology showed that the mRNA expression levels of LiLiS, LiOcS, and LiMyS were significantly downregulated and that the release of linalool, ocimene, and myrcene had decreased significantly. Y1H, LUC, and EMSA experiments revealed that LiMYB305 directly bound and activated the LiOcS promoter to increase the synthesis of monoterpenes. Taken together, these results provide insight into the molecular mechanism of monoterpene synthesis and provide valuable information to investigate the formation of the flower fragrance in Lilium.
Collapse
Affiliation(s)
- Yun-Yao Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Bo Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Ying-Ying Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Ming-Zheng Han
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Jing Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Xiao-Feng Zhou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Ji Tian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Wen-He Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Ping-Sheng Leng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Zeng-Hui Hu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
26
|
Duan Y, Yan J, Zhu Y, Zhang C, Tao X, Ji H, Zhang M, Wang X, Wang L. Limited accumulation of high-frequency somatic mutations in a 1700-year-old Osmanthus fragrans tree. TREE PHYSIOLOGY 2022; 42:2040-2049. [PMID: 35640149 DOI: 10.1093/treephys/tpac058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Lifespan varies greatly between and within species. Mutation accumulation is considered an important factor explaining this life-history trait. However, direct assessment of somatic mutations in long-lived species is still rare. In this study, we sequenced a 1700-year-old sweet olive tree and analysed the high-frequency somatic mutations accumulated in its six primary branches. We found the lowest per-year mutation accumulation rate in this oldest tree among those studied via the whole-genome sequencing approach. Investigation of mutation profiles suggests that this low rate of high-frequency mutation was unlikely to result from strong purifying selection. More intriguingly, on a per-branching scale, the high-frequency mutation accumulation rate was similar among the long-lived individuals such as oak, wild peach and sweet olive investigated here. We therefore suggest the possibility that the accumulation of high-frequency somatic mutations in very long-lived trees might have an upper boundary due to both the possible limited number of stem cell divisions and the early segregation of the stem cell lineage.
Collapse
Affiliation(s)
- Yifan Duan
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
- International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Jiping Yan
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
- International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Yue Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
- International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Cheng Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
- International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Xiuhua Tao
- Vegetable and Flowers Research Institute, Jiangxi Academy of Agricultural Sciences, 1738 Liantang Middle Blvd, Nanchang 330200, China
| | - Hongli Ji
- Vegetable and Flowers Research Institute, Jiangxi Academy of Agricultural Sciences, 1738 Liantang Middle Blvd, Nanchang 330200, China
| | - Min Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
- International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Xianrong Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
- International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Long Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Qixia District. Nanjing 210023, China
| |
Collapse
|
27
|
Li J, Yu X, Shan Q, Shi Z, Li J, Zhao X, Chang C, Yu J. Integrated volatile metabolomic and transcriptomic analysis provides insights into the regulation of floral scents between two contrasting varieties of Lonicera japonica. FRONTIERS IN PLANT SCIENCE 2022; 13:989036. [PMID: 36172557 PMCID: PMC9510994 DOI: 10.3389/fpls.2022.989036] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Lonicera japonica Thunb., belonging to the Caprifoliaceae family, is an important traditional Chinese medicinal plant. The L. japonica flower (LJF) is widely used in medicine, cosmetics, drinks, and food due to its medicinal and sweet-smelling properties. Considerable efforts have been devoted to investigating the pharmacological activities of LJF; however, the regulatory mechanism of the floral scents remains unknown. We previously selected and bred an elite variety of L. japonica var. chinensis Thunb. called 'Yujin2', which has a strong aroma and is used in functional drinks and cosmetics. In order to reveal the regulatory mechanism of the floral scents of LJF, volatile metabolomic and transcriptomic analyses of the LJF at the silver flowering stage of 'Yujin2' (strong aroma) and 'Fengjin1' (bland odor) were performed. Our results revealed that a total of 153 metabolites and 9,523 genes were differentially regulated in LJF between 'Yujin2' and 'Fengjin1'. The integrated analysis of omics data indicated that the biosynthetic pathways of terpenoids (i.e., monoterpenoids, including geraniol and alpha-terpineol; sesquiterpenoids, including farnesol, farnesal, and alpha-farnesene; triterpenoid squalene), tryptophan and its derivatives (methyl anthranilate), and fatty acid derivatives, were major contributors to the stronger aroma of 'Yujin2' compared to 'Fengjin1'. Moreover, several genes involved in the terpenoid biosynthetic pathway were characterized using quantitative real-time PCR. These results provide insights into the metabolic mechanisms and molecular basis of floral scents in LJF, enabling future screening of genes related to the floral scent regulation, such as alpha-terpineol synthase, geranylgeranyl diphosphate synthase, farnesyl pyrophosphate synthase, anthranilate synthase, as well as transcription factors such as MYB, WRKY, and LFY. The knowledge from this study will facilitate the breeding of quality-improved and more fragrant variety of L. japonica for ornamental purpose and functional beverages and cosmetics.
Collapse
Affiliation(s)
- Jianjun Li
- Green Medicine Biotechnology Henan Engineering Laboratory, Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xinjie Yu
- Green Medicine Biotechnology Henan Engineering Laboratory, Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Qianru Shan
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Zhaobin Shi
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Junhua Li
- Green Medicine Biotechnology Henan Engineering Laboratory, Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xiting Zhao
- Green Medicine Biotechnology Henan Engineering Laboratory, Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Cuifang Chang
- State Key Laboratory Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Juanjuan Yu
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, College of Life Sciences, Henan Normal University, Xinxiang, China
| |
Collapse
|
28
|
Identification of the WRKY Gene Family and Characterization of Stress-Responsive Genes in Taraxacum kok-saghyz Rodin. Int J Mol Sci 2022; 23:ijms231810270. [PMID: 36142183 PMCID: PMC9499643 DOI: 10.3390/ijms231810270] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
WRKY transcription factors present unusual research value because of their critical roles in plant physiological processes and stress responses. Taraxacum kok-saghyz Rodin (TKS) is a perennial herb of dandelion in the Asteraceae family. However, the research on TKS WRKY TFs is limited. In this study, 72 TKS WRKY TFs were identified and named. Further comparison of the core motifs and the structure of the WRKY motif was analyzed. These TFs were divided into three groups through phylogenetic analysis. Genes in the same group of TkWRKY usually exhibit a similar exon-intron structure and motif composition. In addition, virtually all the TKS WRKY genes contained several cis-elements related to stress response. Expression profiling of the TkWRKY genes was assessed using transcriptome data sets and Real-Time RT-PCR data in tissues during physiological development, under abiotic stress and hormonal treatments. For instance, the TkWRKY18, TkWRKY23, and TkWRKY38 genes were significantly upregulated during cold stress, whereas the TkWRKY21 gene was upregulated under heat-stress conditions. These results could provide a basis for further studies on the function of the TKS WRKY gene family and genetic amelioration of TKS germplasm.
Collapse
|
29
|
Wang X, Tang Y, Huang H, Wu D, Chen X, Li J, Zheng H, Zhan R, Chen L. Functional analysis of Pogostemon cablin farnesyl pyrophosphate synthase gene and its binding transcription factor PcWRKY44 in regulating biosynthesis of patchouli alcohol. FRONTIERS IN PLANT SCIENCE 2022; 13:946629. [PMID: 36092423 PMCID: PMC9458891 DOI: 10.3389/fpls.2022.946629] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Farnesyl pyrophosphate synthase (FPPS) plays an important role in the synthesis of plant secondary metabolites, but its function and molecular regulation mechanism remain unclear in Pogostemon cablin. In this study, the full-length cDNA of the FPP synthase gene from P. cablin (PcFPPS) was cloned and characterized. The expressions of PcFPPS are different among different tissues (highly in P. cablin flowers). Subcellular localization analysis in protoplasts indicated that PcFPPS was located in the cytoplasm. PcFPPS functionally complemented the lethal FPPS deletion mutation in yeast CC25. Transient overexpression of PcFPPS in P. cablin leaves accelerated terpene biosynthesis, with an ~47% increase in patchouli alcohol. Heterologous overexpression of PcFPPS in tobacco plants was achieved, and it was found that the FPP enzyme activity was significantly up-regulated in transgenic tobacco by ELISA analysis. In addition, more terpenoid metabolites, including stigmasterol, phytol, and neophytadiene were detected compared with control by GC-MS analysis. Furthermore, with dual-LUC assay and yeast one-hybrid screening, we found 220 bp promoter of PcFPPS can be bound by the nuclear-localized transcription factor PcWRKY44. Overexpression of PcWRKY44 in P. cablin upregulated the expression levels of PcFPPS and patchoulol synthase gene (PcPTS), and then promote the biosynthesis of patchouli alcohol. Taken together, these results strongly suggest the PcFPPS and its binding transcription factor PcWRKY44 play an essential role in regulating the biosynthesis of patchouli alcohol.
Collapse
Affiliation(s)
- Xiaobing Wang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Chinese Medicinal Resource From Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Yun Tang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Chinese Medicinal Resource From Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Huiling Huang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Chinese Medicinal Resource From Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Daidi Wu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Chinese Medicinal Resource From Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Xiuzhen Chen
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Chinese Medicinal Resource From Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Junren Li
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Chinese Medicinal Resource From Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hai Zheng
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Chinese Medicinal Resource From Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong, China
| | - Likai Chen
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Chinese Medicinal Resource From Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong, China
| |
Collapse
|
30
|
Volatile metabolomics and coexpression network analyses provide insight into the formation of the characteristic cultivar aroma of oolong tea (Camellia sinensis). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Gu H, Ding W, Shi T, Ouyang Q, Yang X, Yue Y, Wang L. Integrated transcriptome and endogenous hormone analysis provides new insights into callus proliferation in Osmanthus fragrans. Sci Rep 2022; 12:7609. [PMID: 35534621 PMCID: PMC9085794 DOI: 10.1038/s41598-022-11801-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/22/2022] [Indexed: 11/09/2022] Open
Abstract
Osmanthus fragrans is an important evergreen species with both medicinal and ornamental value in China. Given the low efficiency of callus proliferation and the difficulty of adventitious bud differentiation, tissue culture and regeneration systems have not been successfully established for this species. To understand the mechanism of callus proliferation, transcriptome sequencing and endogenous hormone content determination were performed from the initial growth stages to the early stages of senescence on O. fragrans calli. In total, 47,340 genes were identified by transcriptome sequencing, including 1798 previously unidentified genes specifically involved in callus development. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of differentially expressed genes (DEGs) was significantly enriched in plant hormone signal transduction pathways. Furthermore, our results from the orthogonal projections to latent structures discrimination analysis (OPLS-DA) of six typical hormones in five development stages of O. fragrans calli showed jasmonic acid (JA) could play important role in the initial stages of calli growth, whereas JA and auxin (IAA) were dominant in the early stages of calli senescence. Based on the weighted gene co-expression network analysis, OfSRC2, OfPP2CD5 and OfARR1, OfPYL3, OfEIL3b were selected as hub genes from the modules with the significant relevance to JA and IAA respectively. The gene regulation network and quantitative real-time PCR implied that during the initial stages of callus growth, the transcription factors (TFs) OfERF4 and OfMYC2a could down-regulate the expression of hub genes OfSRC2 and OfPP2CD5, resulting in decreased JA content and rapid callus growth; during the late stage of callus growth, the TFs OfERF4, OfMYC2a and OfTGA21c, OfHSFA1 could positively regulate the expression of hub genes OfSRC2, OfPP2CD5 and OfARR1, OfPYL3, OfEIL3b, respectively, leading to increased JA and IAA contents and inducing the senescence of O. fragrans calli. Hopefully, our results could provide new insights into the molecular mechanism of the proliferation of O. fragrans calli.
Collapse
|
32
|
Zhu M, Bin J, Ding H, Pan D, Tian Q, Yang X, Wang L, Yue Y. Insights into the trihelix transcription factor responses to salt and other stresses in Osmanthus fragrans. BMC Genomics 2022; 23:334. [PMID: 35488201 PMCID: PMC9055724 DOI: 10.1186/s12864-022-08569-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osmanthus fragrans is an evergreen plant with high ornamental and economic values. However, they are easily injured by salt stress, which severely limits their use in high salinity areas. The trihelix transcription factor (TF) family, as one of the earliest discovered TF families in plants, plays an essential part in responses to different abiotic stresses, and it has potential functions in improving the salt-tolerance capability of O. fragrans. RESULTS In this study, 56 trihelix genes (OfGTs) were first identified in O. fragrans and then divided into five subfamilies in accordance with a phylogenetic tree analysis. The OfGTs were found to be located randomly on the 20 O. fragrans chromosomes, and an analysis of gene replication events indicated that the OfGT gene family underwent strong purification selection during the evolutionary process. The analysis of conserved motifs and gene structures implied that the OfGT members in the same subfamily have similar conserved motifs and gene structures. A promoter cis-elements analysis showed that all the OfGT genes contained multiple abiotic and hormonal stress-related cis-elements. The RNA-seq data suggested that the OfGTs have specific expression patterns in different tissues, and some were induced by salt stress. The qRT-PCR analysis of 12 selected OfGTs confirmed that OfGT1/3/21/33/42/45/46/52 were induced, with OfGT3/42/46 being the most highly expressed. In addition, OfGT42/OfGT46 had a co-expression pattern under salt-stress conditions. OfGT3/42/46 were mainly localized in the nuclei and exhibited no transcriptional activities based on the analysis of the subcellular localization and transcriptional activity assay. Furthermore, the expression levels of most of the selected OfGTs were induced by multiple abiotic and hormonal stresses, and the expression patterns of some OfGTs were also highly correlated with gibberellic acid and methyl jasmonate levels. Remarkably, the transient transformation results showed lower MDA content and increased expression of ROS-related genes NbAPX in transgenic plants, which implying OfGT3/42/46 may improve the salt tolerance of tobacco. CONCLUSIONS The results implied that the OfGT genes were related to abiotic and hormonal stress responses in O. fragrans, and that the OfGT3/42/46 genes in particular might play crucial roles in responses to salt stress. This study made a comprehensive summary of the OfGT gene family, including functions and co-expression patterns in response to salt and other stresses, as well as an evolutionary perspective. Consequently, it lays a foundation for further functional characterizations of these genes.
Collapse
Affiliation(s)
- Meilin Zhu
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Jing Bin
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Huifen Ding
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Duo Pan
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Qingyin Tian
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Xiulian Yang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Lianggui Wang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China. .,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Yuanzheng Yue
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China. .,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
33
|
Wang MY, Zhang P, Zhang YZ, Yuan XY, Chen RX. Chemical fingerprinting, quantification, and antioxidant activity evaluation of Osmanthus fragrans (Thunb.) Lour. Flowers by UPLC-ECD. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2057530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ming-Yang Wang
- Department of Analytical Chemistry of College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Ping Zhang
- Analysis and Testing Center of Life Science institute, Zunyi Medical University, Zunyi, China
| | - Yu-Zhu Zhang
- Department of Analytical Chemistry of College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xiao-Yan Yuan
- Department of Analytical Chemistry of College of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Rong-Xiang Chen
- Analysis and Testing Center of Life Science institute, Zunyi Medical University, Zunyi, China
| |
Collapse
|
34
|
Mostafa S, Wang Y, Zeng W, Jin B. Floral Scents and Fruit Aromas: Functions, Compositions, Biosynthesis, and Regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:860157. [PMID: 35360336 PMCID: PMC8961363 DOI: 10.3389/fpls.2022.860157] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/09/2022] [Indexed: 05/27/2023]
Abstract
Floral scents and fruit aromas are crucial volatile organic compounds (VOCs) in plants. They are used in defense mechanisms, along with mechanisms to attract pollinators and seed dispersers. In addition, they are economically important for the quality of crops, as well as quality in the perfume, cosmetics, food, drink, and pharmaceutical industries. Floral scents and fruit aromas share many volatile organic compounds in flowers and fruits. Volatile compounds are classified as terpenoids, phenylpropanoids/benzenoids, fatty acid derivatives, and amino acid derivatives. Many genes and transcription factors regulating the synthesis of volatiles have been discovered. In this review, we summarize recent progress in volatile function, composition, biosynthetic pathway, and metabolism regulation. We also discuss unresolved issues and research perspectives, providing insight into improvements and applications of plant VOCs.
Collapse
Affiliation(s)
- Salma Mostafa
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Department of Floriculture, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Yun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Wen Zeng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
35
|
Yan X, Ding W, Wu X, Wang L, Yang X, Yue Y. Insights Into the MYB-Related Transcription Factors Involved in Regulating Floral Aroma Synthesis in Sweet Osmanthus. FRONTIERS IN PLANT SCIENCE 2022; 13:765213. [PMID: 35356120 PMCID: PMC8959829 DOI: 10.3389/fpls.2022.765213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
As an important member of the MYB transcription factor (TF) family, the MYB-related TFs play multiple roles in regulating the synthesis of secondary metabolites and developmental processes, as well as in response to numerous biotic and abiotic stressors in plants. However, little is known regarding their roles in regulating the formation of floral volatile organic compounds (VOCs). In this study, we conducted a genome-wide analysis of MYB-related proteins in sweet osmanthus; 212 OfMYB-related TFs were divided into three distinct subgroups based on the phylogenetic analysis. Additionally, we found that the expansion of the OfMYB-related genes occurred primarily through segmental duplication events, and purifying selection occurred in all duplicated gene pairs. RNA-seq data revealed that the OfMYB-related genes were widely expressed in different organs of sweet osmanthus, and some showed flower organ/development stage-preferential expression patterns. Here, three OfMYB-related genes (OfMYB1R70/114/201), which were expressed nuclearly in floral organs, were found to be significantly involved in regulating the synthesis of floral VOCs. Only, OfMYB1R201 had transcriptional activity, thus implying that this gene participates in regulating the expression of VOC synthesis related genes. Remarkably, the transient expression results suggested that OfMYB1R70, OfMYB1R114, and OfMYB1R201 are involved in the regulation of VOC synthesis; OfMYB1R114 and OfMYB1R70 are involved in accelerating β-ionone formation. In contrast, OfMYB1R201 decreases the synthesis of β-ionone. Our results deepen our knowledge of the functions of MYB-related TFs and provide critical candidate genes for the floral aroma breeding of sweet osmanthus in the future.
Collapse
Affiliation(s)
- Xin Yan
- Key Laboratory of Landscape Architecture, Nanjing Forestry University, Nanjing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Wenjie Ding
- Key Laboratory of Landscape Architecture, Nanjing Forestry University, Nanjing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xiuyi Wu
- Key Laboratory of Landscape Architecture, Nanjing Forestry University, Nanjing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Lianggui Wang
- Key Laboratory of Landscape Architecture, Nanjing Forestry University, Nanjing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xiulian Yang
- Key Laboratory of Landscape Architecture, Nanjing Forestry University, Nanjing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yuanzheng Yue
- Key Laboratory of Landscape Architecture, Nanjing Forestry University, Nanjing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
36
|
Wang Y, Zhu R, Shi M, Huang Q, Zhang S, Kai G, Guo S. Genome-Wide Identification and Comparative Analysis of WRKY Transcription Factors Related to Momilactone Biosynthesis in Calohypnum plumiforme. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.809729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Momilactones are diterpenoid phytoalexins with allelopathic functions, which have been found in the widely distributed bryophyte Calohypnum plumiforme. Clustered genes containing CpDTC1/HpDTC1, CpCYP970A14, CpCYP964A1, and CpMAS are involved in momilactone biosynthesis. Besides, momilactone concentration in C. plumiforme is affected by heavy metal treatment such as CuCl2. However, transcription factors which might regulate momilactone biosynthesis are unclear. WRKY transcription factors (TFs) regulate phytoalexin biosynthesis in many plant species. In this study, a systematic analysis of the WRKY TFs was performed according to the C. plumiforme genome. A total of 19 CpWRKY genes were identified and categorized into five subgroups based on their phylogenetic relationship. Conserved domain and motif analysis suggested that the WRKY domain was highly conserved, but there were some variations. Cis-acting elements and binding sites analysis implied that CpWRKY genes might be induced by stress and further regulate the biosynthesis of momilactones. Our study lays a foundation for further functional characterization of the candidate CpWRKY genes involved in the regulation of momilactone biosynthesis, and provides new strategies for increasing momilactone production.
Collapse
|
37
|
Chen X, Chen B, Shang X, Fang S. RNA in situ hybridization and expression of related genes regulating the accumulation of triterpenoids in Cyclocarya paliurus. TREE PHYSIOLOGY 2021; 41:2189-2197. [PMID: 33960380 DOI: 10.1093/treephys/tpab067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Cyclocarya paliurus (Batal.) Iljinskaja, a woody medicinal species in the Juglandaceae, grows extensively in subtropical areas of China. Triterpenoids in the leaves have health-promoting effects, including hypoglycemic and hypolipidemic activities. To understand triterpenoid biosynthesis, transport and accumulation in C. paliurus during the growing season, gene cloning, gene expression and RNA in situ hybridization of related genes were used, and accumulation was examined in various organs. The complete coding sequences (CDSs) of three genes, CpHMGR, CpDXR and CpSQS, were obtained from GenBank and RACE. RNA in situ hybridization signals of the three genes mainly occurred in the epidermis, palisade tissue, phloem and xylem of leaf, shoot and root, with the signals generally consistent with the accumulation of metabolites in tissues, except in the xylem. Both gene expression and triterpenoid accumulations showed seasonal variations in all organs. However, total triterpenoid content in the leaves was significantly higher than that in the shoots, with the maximum in shoots in August and in leaves in October. According to Pearson correlation analysis, triterpenoid accumulation in the leaves was significantly positively related with the relative expression of CpSQS. However, the relation between gene expression and accumulation was dependent on the role of the gene in the pathway as well as on the plant organ. The results suggested that most of the intermediates catalyzed by CpHMGR and CpDXR in young shoots and roots were used in growth and flowering in the spring, whereas subsequent triterpenoid biosynthesis in the downstream catalyzed by CpSQS mainly occurred in the leaves by using transferred and in situ intermediates as substrates. Thus, this study provides a reference to improve triterpenoid accumulation in future C. paliurus plantations.
Collapse
Affiliation(s)
- Xiaoling Chen
- College of Forestry, Nanjing Forestry University, Longpan Road, Xuanwu district, Nanjing 210037, China
| | - Biqin Chen
- College of Forestry, Nanjing Forestry University, Longpan Road, Xuanwu district, Nanjing 210037, China
| | - Xulan Shang
- College of Forestry, Nanjing Forestry University, Longpan Road, Xuanwu district, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Longpan Road, Xuanwu district, Nanjing 210037, China
| | - Shengzuo Fang
- College of Forestry, Nanjing Forestry University, Longpan Road, Xuanwu district, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Longpan Road, Xuanwu district, Nanjing 210037, China
| |
Collapse
|
38
|
Cao Z, Wu P, Gao H, Xia N, Jiang Y, Tang N, Liu G, Chen Z. Transcriptome-wide characterization of the WRKY family genes in Lonicera macranthoides and the role of LmWRKY16 in plant senescence. Genes Genomics 2021; 44:219-235. [PMID: 34110609 DOI: 10.1007/s13258-021-01118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/31/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Lonicera macranthoides is an important woody plant with high medicinal values widely cultivated in southern China. WRKY, one of the largest transcription factor families, participates in plant development, senescence, and stress responses. However, a comprehensive study of the WRKY family in L. macranthoides hasn't been reported previously. OBJECTIVE To establish an extensive overview of the WRKY family in L. macranthoides and identify senescence-responsive members of LmWRKYs. METHODS RNA-Seq and phylogenetic analysis were employed to identify the LmWRKYs and their evolutionary relationships. Quantitative real-time (qRT-PCR) and transgenic technology was utilized to investigate the roles of LmWRKYs in response to developmental-, cold-, and ethylene-induced senescence. RESULTS A total of 61 LmWRKY genes with a highly conserved motif WRKYGQK were identified. Phylogenetic analysis of LmWRKYs together with their orthologs from Arabidopsis classified them into three groups, with the number of 15, 39, and 7, respectively. 17 LmWRKYs were identified to be differentially expressed between young and aging leaves by RNA-Seq. Further qRT-PCR analysis showed 15 and 5 LmWRKY genes were significantly induced responding to tissue senescence in leaves and stems, respectively. What's more, five LmWRKYs, including LmWRKY4, LmWRKY5, LmWRKY6, LmWRKY11, and LmWRKY16 were dramatically upregulated under cold and ethylene treatment in both leaves and stems, indicating their involvements commonly in developmental- and stress-induced senescence. In addition, function analysis revealed LmWRKY16, a homolog of AtWRKY75, can accelerate plant senescence, as evidenced by leaf yellowing during reproductive growth in LmWRKY16-overexpressing tobaccos. CONCLUSION The results lay the foundation for molecular characterization of LmWRKYs in plant senescence.
Collapse
Affiliation(s)
- Zhengyan Cao
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China.,College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Peiyin Wu
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China.,College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Hongmei Gao
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Ning Xia
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Ying Jiang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Ning Tang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China. .,Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing, 400000, China. .,Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing, 400000, China.
| | - Guohua Liu
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Zexiong Chen
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China. .,Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing, 400000, China. .,Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing, 400000, China.
| |
Collapse
|
39
|
Yang X, Zhou Z, Fu M, Han M, Liu Z, Zhu C, Wang L, Zheng J, Liao Y, Zhang W, Ye J, Xu F. Transcriptome-wide identification of WRKY family genes and their expression profiling toward salicylic acid in Camellia japonica. PLANT SIGNALING & BEHAVIOR 2021; 16:1844508. [PMID: 33222651 PMCID: PMC7781758 DOI: 10.1080/15592324.2020.1844508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The ornamental plant Camellia japonica is widely distributed worldwide and is susceptible to various environmental stresses. The WRKY transcription factor (TF) is an important node of plant tolerance. However, WRKY TFs from C. japonica have not been reported yet. In this study, 48 CjWRKYs, namely, CjWRKY1 to CjWRKY48, were identified. Protein structure analysis revealed that CjWRKY proteins contain a highly conserved motif (WRKYGQK) and two variant motifs (WRKYGKK and WRKYGRK). Phylogenetic analysis indicated that the 48 CjWRKYs can be divided into three groups, which are further classified into six subgroups, namely, I-C, II-a, II-b, II-c, II-e, and III, which contain 10, 6, 8, 13, 7, and 4 members, respectively. The expression patterns of 15 CjWRKYs under salicylic acid (SA) treatment were investigated by real-time quantitative PCR (qRT-PCR). Results showed that the 15 CjWRKYs could be induced by SA treatment. This study is the first to screen CjWRKYs and identify the expression profile of CjWRKYs under SA treatment and provides a theoretical basis for analyzing the function of CjWRKY genes to SA stress tolerance in C. japonica.
Collapse
Affiliation(s)
- Xu Yang
- Hubei Ecology Polytechnic College, Department of Forestry Ecology, Wuhan, China
| | - Zhongcheng Zhou
- Hubei Ecology Polytechnic College, Department of Forestry Ecology, Wuhan, China
| | - Mingyue Fu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Muxian Han
- Hubei Ecology Polytechnic College, Department of Forestry Ecology, Wuhan, China
| | - Zhongbing Liu
- School of Horticulture and Landscape, Wuhan University of Bioengineering, Wuhan, China
| | - Changye Zhu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Ling Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Jiarui Zheng
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
- CONTACT Feng Xu College of Horticulture and Gardening, Yangtze University, Nanhuan Road 1#, Jingzhou 434025, Hubei Province, China
| |
Collapse
|
40
|
Yang QQ, Yang F, Zhao YQ, Lu XJ, Liu CY, Zhang BW, Ge J, Fan JD. Genome-wide identification and functional characterization of WRKY transcription factors involved in the response to salt and heat stress in garlic ( Allium sativum L). BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2022.2045218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Qing-Qing Yang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, PR China
| | - Feng Yang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, PR China
| | - Yong-Qiang Zhao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, PR China
| | - Xin-Juan Lu
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, PR China
| | - Can-Yu Liu
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, PR China
| | - Bi-Wei Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, PR China
| | - Jie Ge
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, PR China
| | - Ji-De Fan
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, Jiangsu, PR China
| |
Collapse
|
41
|
Yang Z, An W, Liu S, Huang Y, Xie C, Huang S, Zheng X. Mining of candidate genes involved in the biosynthesis of dextrorotatory borneol in Cinnamomum burmannii by transcriptomic analysis on three chemotypes. PeerJ 2020; 8:e9311. [PMID: 32566406 PMCID: PMC7293187 DOI: 10.7717/peerj.9311] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/17/2020] [Indexed: 12/15/2022] Open
Abstract
Background Dextrorotatory borneol (D-borneol), a cyclic monoterpene, is widely used in traditional Chinese medicine as an efficient topical analgesic drug. Fresh leaves of Cinnamomum trees, e.g., C. burmannii and C. camphor, are the main sources from which D-borneol is extracted by steam distillation, yet with low yields. Insufficient supply of D-borneol has hampered its clinical use and production of patent remedies for a long time. Biological synthesis of D-borneol offers an additional approach; however, mechanisms of D-borneol biosynthesis remain mostly unresolved. Hence, it is important and necessary to elucidate the biosynthetic pathway of D-borneol. Results Comparative analysis on the gene expression patterns of different D-borneol production C. burmannii samples facilitates elucidation on the underlying biosynthetic pathway of D-borneol. Herein, we collected three different chemotypes of C. burmannii, which harbor different contents of D-borneol.A total of 100,218 unigenes with an N50 of 1,128 bp were assembled de novo using Trinity from a total of 21.21 Gb clean bases. We used BLASTx analysis against several public databases to annotate 45,485 unigenes (45.38%) to at least one database, among which 82 unigenes were assigned to terpenoid biosynthesis pathways by KEGG annotation. In addition, we defined 8,860 unigenes as differentially expressed genes (DEGs), among which 13 DEGs were associated with terpenoid biosynthesis pathways. One 1-deoxy-D-xylulose-5-phosphate synthase (DXS) and two monoterpene synthase, designated as CbDXS9, CbTPS2 and CbTPS3, were up-regulated in the high-borneol group compared to the low-borneol and borneol-free groups, and might be vital to biosynthesis of D-borneol in C. burmannii. In addition, we identified one WRKY, two BHLH, one AP2/ERF and three MYB candidate genes, which exhibited the same expression patterns as CbTPS2 and CbTPS3, suggesting that these transcription factors might potentially regulate D-borneol biosynthesis. Finally, quantitative real-time PCR was conducted to detect the actual expression level of those candidate genes related to the D-borneol biosynthesis pathway, and the result showed that the expression patterns of the candidate genes related to D-borneol biosynthesis were basically consistent with those revealed by transcriptome analysis. Conclusions We used transcriptome sequencing to analyze three different chemotypes of C. burmannii, identifying three candidate structural genes (one DXS, two monoterpene synthases) and seven potential transcription factor candidates (one WRKY, two BHLH, one AP2/ERF and three MYB) involved in D-borneol biosynthesis. These results provide new insight into our understanding of the production and accumulation of D-borneol in C. burmannii.
Collapse
Affiliation(s)
- Zerui Yang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wenli An
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shanshan Liu
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuying Huang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chunzhu Xie
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Song Huang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiasheng Zheng
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
42
|
Li HY, Yue YZ, Ding WJ, Chen GW, Li L, Li YL, Shi TT, Yang XL, Wang LG. Genome-Wide Identification, Classification, and Expression Profiling Reveals R2R3-MYB Transcription Factors Related to Monoterpenoid Biosynthesis in Osmanthus fragrans. Genes (Basel) 2020; 11:genes11040353. [PMID: 32224874 PMCID: PMC7230838 DOI: 10.3390/genes11040353] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/18/2020] [Accepted: 03/23/2020] [Indexed: 12/16/2022] Open
Abstract
Osmanthus fragrans is widely grown for the purpose of urban greening and the pleasant aroma emitted from its flowers. The floral scent is determined by several monoterpenoid volatiles, such as linalool and its oxides, which are a few of the most common volatiles and the main components of the essential oils in most sweet osmanthus cultivars. In addition, the relative contents of cis- and trans-linalool oxide (furan) may affect the aromas and quality of the essential oils. MYB proteins represent the largest family of transcription factors in plants and participate in regulating secondary metabolites. Several cis-elements, especially AC-rich regions, are known to be bound by 2R-MYBs and could be found in the promoter of the enzyme genes in the terpenoid metabolic pathway. However, there has to date been no investigation into the 2R-MYB family genes involved in regulating terpenoid biosynthesis in O. fragrans. Here, 243 non-redundant 2R-MYB proteins were grouped into 33 clusters based on the phylogeny and exon-intron distribution. These genes were unevenly distributed on 23 chromosomes. Ka/Ks analysis showed that the major mode of 2R-MYB gene evolution was purifying selection. Expression analysis indicated that 2R-MYB genes in O. fragrans exhibited varied expression patterns. A total of 35 OfMYBs representing the highest per kilobase per million mapped reads in the flower were selected for quantitative real-time PCR analysis. The correlation analysis between the expression level and the contents of fragrant compounds at different flowering stages suggested that OfMYB19/20 exhibited remarkably positive correlation with the accumulation of cis-linalool oxides. OfMYB51/65/88/121/137/144 showed significantly negative correlations with one or more linalool oxides. Characterization of these proteins revealed that OfMYB19 and OfMYB137 were localized in the nuclei, but did not show transcriptional activation in the yeast system, which suggested that they may be bound to other transcription factors to exert regulatory functions. These findings provide useful information for further functional investigation of the 2R-MYBs and offer a foundation for clarifying the 2R-MYB transcription factors involved in the molecular mechanism of the regulation of monoterpenoid biosynthesis in Osmanthus fragrans.
Collapse
Affiliation(s)
- Hai-Yan Li
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (H.-Y.L.); (Y.-Z.Y.); (W.-J.D.); (G.-W.C.); (L.L.); (Y.-L.L.); (T.-T.S.); (X.-L.Y.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yuan-Zheng Yue
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (H.-Y.L.); (Y.-Z.Y.); (W.-J.D.); (G.-W.C.); (L.L.); (Y.-L.L.); (T.-T.S.); (X.-L.Y.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Wen-Jie Ding
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (H.-Y.L.); (Y.-Z.Y.); (W.-J.D.); (G.-W.C.); (L.L.); (Y.-L.L.); (T.-T.S.); (X.-L.Y.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Gong-Wei Chen
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (H.-Y.L.); (Y.-Z.Y.); (W.-J.D.); (G.-W.C.); (L.L.); (Y.-L.L.); (T.-T.S.); (X.-L.Y.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Ling Li
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (H.-Y.L.); (Y.-Z.Y.); (W.-J.D.); (G.-W.C.); (L.L.); (Y.-L.L.); (T.-T.S.); (X.-L.Y.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yu-Li Li
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (H.-Y.L.); (Y.-Z.Y.); (W.-J.D.); (G.-W.C.); (L.L.); (Y.-L.L.); (T.-T.S.); (X.-L.Y.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Ting-Ting Shi
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (H.-Y.L.); (Y.-Z.Y.); (W.-J.D.); (G.-W.C.); (L.L.); (Y.-L.L.); (T.-T.S.); (X.-L.Y.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xiu-Lian Yang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (H.-Y.L.); (Y.-Z.Y.); (W.-J.D.); (G.-W.C.); (L.L.); (Y.-L.L.); (T.-T.S.); (X.-L.Y.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Liang-Gui Wang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (H.-Y.L.); (Y.-Z.Y.); (W.-J.D.); (G.-W.C.); (L.L.); (Y.-L.L.); (T.-T.S.); (X.-L.Y.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel./Fax: +86-025-8542-7305
| |
Collapse
|