1
|
Sardinha-Silva A, Gazzinelli-Guimaraes PH, Ajakaye OG, Ferreira TR, Alves-Ferreira EV, Tjhin ET, Gregg B, Fink MY, Coelho CH, Singer SM, Grigg ME. Giardia intestinalis reshapes mucosal immunity toward a Type 2 response that attenuates inflammatory bowel-like diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.02.583119. [PMID: 38903060 PMCID: PMC11188066 DOI: 10.1101/2024.03.02.583119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Diarrheal diseases are the second leading cause of death in children worldwide. Epidemiological studies show that co-infection with Giardia intestinalis decreases the severity of diarrhea. Here, we show that Giardia is highly prevalent in the stools of asymptomatic school-aged children. It orchestrates a Th2 mucosal immune response, characterized by increased antigen-specific Th2 cells, IL-25, Type 2-associated cytokines, and goblet cell hyperplasia. Giardia infection expanded IL-10-producing Th2 and GATA3+ Treg cells that promoted chronic carriage, parasite transmission, and conferred protection against Toxoplasma gondii-induced lethal ileitis and DSS-driven colitis by downregulating proinflammatory cytokines, decreasing Th1/Th17 cell frequency, and preventing collateral tissue damage. Protection was dependent on STAT6 signaling, as Giardia-infected STAT6-/- mice no longer regulated intestinal bystander inflammation. Our findings demonstrate that Giardia infection reshapes mucosal immunity toward a Type 2 response, which confers a mutualistic protection against inflammatory disease processes and identifies a critical role for protists in regulating mucosal defenses.
Collapse
Affiliation(s)
- Aline Sardinha-Silva
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pedro H. Gazzinelli-Guimaraes
- Helminth Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Oluwaremilekun G. Ajakaye
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Animal and Environmental Biology, Adekunle Ajasin University, Akungba Akoko, Ondo State, Nigeria
| | - Tiago R. Ferreira
- Intracellular Parasite Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eliza V.C. Alves-Ferreira
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erick T. Tjhin
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Beth Gregg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marc Y. Fink
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Camila H. Coelho
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Steven M. Singer
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Michael E. Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Chang Y, Li J, Zhang L. Genetic diversity and molecular diagnosis of Giardia. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105482. [PMID: 37451417 DOI: 10.1016/j.meegid.2023.105482] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Giardia is a genus of flagellated protozoan parasites that infect the small intestine of humans and animals, causing the diarrheal illness known as giardiasis. Giardia exhibits significant genetic diversity among its isolates, which can have important implications for disease transmission and clinical presentation. This diversity is influenced by the coevolution of Giardia with its host, resulting in the development of unique genetic assemblages with distinct phenotypic characteristics. Although panmixia has not been observed, some assemblages appear to have a broader host range and exhibit higher transmission rates. Molecular diagnostic methods enable researchers to examine the genetic diversity of Giardia populations, enhancing our understanding of the genetic diversity, population structure, and transmission patterns of this pathogen and providing insights into clinical presentations of giardiasis.
Collapse
Affiliation(s)
- Yankai Chang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan 450046, China
| | - Junqiang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan 450046, China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan 450046, China.
| |
Collapse
|
3
|
Zajaczkowski P, Lee R, Fletcher-Lartey SM, Alexander K, Mahimbo A, Stark D, Ellis JT. The controversies surrounding Giardia intestinalis assemblages A and B. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 1:100055. [PMID: 35284870 PMCID: PMC8906113 DOI: 10.1016/j.crpvbd.2021.100055] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/09/2021] [Indexed: 11/27/2022]
Abstract
Giardia intestinalis continues to be one of the most encountered parasitic diseases around the world. Although more frequently detected in developing countries, Giardia infections nonetheless pose significant public health problems in developed countries as well. Molecular characterisation of Giardia isolates from humans and animals reveals that there are two genetically different assemblages (known as assemblage A and B) that cause human infections. However, the current molecular assays used to genotype G. intestinalis isolates are quite controversial. This is in part due to a complex phenomenon where assemblages are incorrectly typed and underreported depending on which targeted locus is sequenced. In this review, we outline current knowledge based on molecular epidemiological studies and raise questions as to the reliability of current genotyping assays and a lack of a globally accepted method. Additionally, we discuss the clinical symptoms caused by G. intestinalis infection and how these symptoms vary depending on the assemblage infecting an individual. We also introduce the host-parasite factors that play a role in the subsequent clinical presentation of an infected person, and explore which assemblages are most seen globally.
Collapse
Affiliation(s)
- Patricia Zajaczkowski
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Australia
| | - Rogan Lee
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, Westmead Hospital, Westmead, New South Wales, Australia.,Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | | | - Kate Alexander
- Public Health Unit, South Western Sydney Local Health District, Liverpool, Australia
| | - Abela Mahimbo
- Faculty of Health, School of Public Health, University of Technology Sydney, Australia
| | - Damien Stark
- Department of Microbiology, St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia
| | - John T Ellis
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Australia
| |
Collapse
|
4
|
High-fat diet increases the severity of Giardia infection in association with low-grade inflammation and gut microbiota dysbiosis. Sci Rep 2021; 11:18842. [PMID: 34552170 PMCID: PMC8458452 DOI: 10.1038/s41598-021-98262-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/01/2021] [Indexed: 12/26/2022] Open
Abstract
Exogenous factors that may influence the pathophysiology of Giardia infection remain incompletely understood. We have investigated the role of dietary fat in the pathogenesis of Giardia infection. Male 3 to 4-week-old C57BL/6 mice were fed either a low fat (LF) or a high fat (HF) diet for 12 days and challenged with G. duodenalis. In infected animals, the trophozoite burden was higher in HF + Giardia mice compared to the LF + Giardia group at day 7 post infection. Fatty acids exerted direct pro-growth effects on Giardia trophozoites. Analysis of disease parameters showed that HF + Giardia mice exhibited more mucosal infiltration by inflammatory cells, decreased villus/crypt ratios, goblet cell hyperplasia, mucus disruption, increased gut motility, and elevated fecal water content compared with LF + Giardia. HF diet-dependent exacerbation of Giardia-induced goblet cell hyperplasia was associated with elevated Atoh1 and Muc2 gene expression. Gut microbiota analysis revealed that the HF diet alone induces a taxonomic shift. HF + Giardia mice exhibited microbiota dysbiosis characterized by an increase of Firmicutes and a decrease of Bacteroidetes and significant changes in α- and β-diversity metrics. Taken together, the findings suggest that a HF diet exacerbates the outcome of Giardia infection. The data demonstrate that elevated dietary fat represents an important exogenous factor promoting the pathophysiology of giardiasis.
Collapse
|
5
|
Abstract
Giardia duodenalis captured the attention of Leeuwenhoek in 1681 while he was examining his own diarrheal stool, but, ironically, it did not really gain attention as a human pathogen until the 1960s, when outbreaks were reported. Key technological advances, including in vitro cultivation, genomic and proteomic databases, and advances in microscopic and molecular approaches, have led to an understanding that this is a eukaryotic organism with a reduced genome rather than a truly premitochondriate eukaryote. This has included the discovery of mitosomes (vestiges of mitochondria), a transport system with many of the features of the Golgi apparatus, and even evidence for a sexual or parasexual cycle. Cell biology approaches have led to a better understanding of how Giardia survives with two nuclei and how it goes through its life cycle as a noninvasive organism in the hostile environment of the lumen of the host intestine. Studies of its immunology and pathogenesis have moved past the general understanding of the importance of the antibody response in controlling infection to determining the key role of the Th17 response. This work has led to understanding of the requirement for a balanced host immune response that avoids the extremes of an excessive response with collateral damage or one that is unable to clear the organism. This understanding is especially important in view of the remarkable ranges of early manifestations, which range from asymptomatic to persistent diarrhea and weight loss, and longer-term sequelae that include growth stunting in children who had no obvious symptoms and a high frequency of postinfectious irritable bowel syndrome (IBS).
Collapse
|
6
|
Fink MY, Shapiro D, Singer SM. Giardia lamblia: Laboratory Maintenance, Lifecycle Induction, and Infection of Murine Models. ACTA ACUST UNITED AC 2021; 57:e102. [PMID: 32515871 DOI: 10.1002/cpmc.102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Giardia lamblia is a protozoan parasite that is found ubiquitously throughout the world and is a major contributor to diarrheal disease. Giardia exhibits a biphasic lifestyle existing as either a dormant cyst or a vegetative trophozoite. Infections are typically initiated through the consumption of cyst-contaminated water or food. Giardia was first axenized in the 1970s and can be readily maintained in a laboratory setting. Additionally, Giardia is one of the few protozoans that can be induced to complete its complete lifecycle using laboratory methods. In this article, we outline protocols to maintain Giardia and induce passage through its lifecycle. We also provide protocols for infecting and quantifying parasites in an animal infection model. © 2020 Wiley Periodicals LLC. Basic Protocol 1: In vitro maintenance and growth of Giardia trophozoites Basic Protocol 2: In vitro encystation of Giardia cysts Basic Protocol 3: In vivo infections using Giardia trophozoites.
Collapse
Affiliation(s)
- Marc Y Fink
- Department of Biology, Georgetown University, Washington, District of Columbia.,Center for Vascular and Inflammatory Diseases, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Danielle Shapiro
- Department of Biology, Georgetown University, Washington, District of Columbia
| | - Steven M Singer
- Department of Biology, Georgetown University, Washington, District of Columbia
| |
Collapse
|
7
|
Fekete E, Allain T, Siddiq A, Sosnowski O, Buret AG. Giardia spp. and the Gut Microbiota: Dangerous Liaisons. Front Microbiol 2021; 11:618106. [PMID: 33510729 PMCID: PMC7835142 DOI: 10.3389/fmicb.2020.618106] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Alteration of the intestinal microbiome by enteropathogens is commonly associated with gastrointestinal diseases and disorders and has far-reaching consequences for overall health. Significant advances have been made in understanding the role of microbial dysbiosis during intestinal infections, including infection with the protozoan parasite Giardia duodenalis, one of the most prevalent gut protozoa. Altered species composition and diversity, functional changes in the commensal microbiota, and changes to intestinal bacterial biofilm structure have all been demonstrated during the course of Giardia infection and have been implicated in Giardia pathogenesis. Conversely, the gut microbiota has been found to regulate parasite colonization and establishment and plays a critical role in immune modulation during mono and polymicrobial infections. These disruptions to the commensal microbiome may contribute to a number of acute, chronic, and post-infectious clinical manifestations of giardiasis and may account for variations in disease presentation within and between infected populations. This review discusses recent advances in characterizing Giardia-induced bacterial dysbiosis in the gut and the roles of dysbiosis in Giardia pathogenesis.
Collapse
Affiliation(s)
- Elena Fekete
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- Inflammation Research Network, University of Calgary, Calgary, AB, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB, Canada
| | - Thibault Allain
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- Inflammation Research Network, University of Calgary, Calgary, AB, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB, Canada
| | - Affan Siddiq
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- Inflammation Research Network, University of Calgary, Calgary, AB, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB, Canada
| | - Olivia Sosnowski
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- Inflammation Research Network, University of Calgary, Calgary, AB, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB, Canada
| | - Andre G. Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- Inflammation Research Network, University of Calgary, Calgary, AB, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Messa A, Köster PC, Garrine M, Gilchrist C, Bartelt LA, Nhampossa T, Massora S, Kotloff K, Levine MM, Alonso PL, Carmena D, Mandomando I. Molecular diversity of Giardia duodenalis in children under 5 years from the Manhiça district, Southern Mozambique enrolled in a matched case-control study on the aetiology of diarrhoea. PLoS Negl Trop Dis 2021; 15:e0008987. [PMID: 33465074 PMCID: PMC7846004 DOI: 10.1371/journal.pntd.0008987] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/29/2021] [Accepted: 11/18/2020] [Indexed: 12/23/2022] Open
Abstract
Giardia duodenalis is an enteric parasite commonly detected in children. Exposure to this organism may lead to asymptomatic or symptomatic infection. Additionally, early-life infections by this protozoan have been associated with impaired growth and cognitive function in poor resource settings. The Global Enteric Multicenter Study (GEMS) in Mozambique demonstrated that G. duodenalis was more frequent among controls than in diarrhoeal cases (≥3 loosing stools in the previous 24 hours). However, no molecular investigation was conducted to ascertain the molecular variability of the parasite. Therefore, we describe here the frequency and genetic diversity of G. duodenalis infections in children younger than five years of age with and without diarrhoea from the Manhiça district in southern Mozambique enrolled in the context of GEMS. Genomic DNA from 757 G. duodenalis-positive stool samples by immunoassay collected between 2007-2012, were reanalysed by multiplex PCR targeting the E1-HP and C1-P21 genes for the differentiation of assemblages A and B. Overall, 47% (353) of the samples were successfully amplified in at least one locus. Assemblage B accounted for 90% (319/353) of all positives, followed by assemblage A (8%, 29/353) and mixed A+B infections (1%, 5/353). No association between the presence of a given assemblage and the occurrence of diarrhoea could be demonstrated. A total of 351 samples were further analysed by a multi-locus sequence genotyping (MLSG) approach at the glutamate dehydrogenase (gdh), ß-giardin (bg) and triose phosphate isomerase (tpi) genes. Overall, 63% (222/351) of samples were genotyped and/or sub-genotyped in at least one of the three markers. Sequence analysis revealed the presence of assemblages A (10%; 23/222) and B (90%; 199/222) with high molecular diversity at the nucleotide level within the latter; no mixed infections were identified under the MLSG scheme. Assemblage A sequences were assigned to sub-assemblages AI (0.5%, 1/222), AII (7%, 15/222) or ambiguous AII/AIII (3%, 7/222). Within assemblage B, sequences were assigned to sub-assemblages BIII (13%, 28/222), BIV (14%, 31/222) and ambiguous BIII/BIV (59%, 132/222). BIII/BIV sequences accumulated the majority of the single nucleotide polymorphisms detected, particularly in the form of double peaks at chromatogram inspection. This study demonstrated that the occurrence of gastrointestinal illness (diarrhoea) was not associated to a given genotype of G. duodenalis in Mozambican children younger than five years of age. The assemblage B of the parasite was responsible for nine out of ten infections detected in this paediatric population. The extremely high genetic diversity observed within assemblage B isolates was compatible with an hyperendemic epidemiological scenario where infections and reinfections were common. The obtained molecular data may be indicative of high coinfection rates by different G. duodenalis assemblages/sub-assemblages and/or genetic recombination events, although the exact contribution of both mechanisms to the genetic diversity of the parasite remains unknown.
Collapse
Affiliation(s)
- Augusto Messa
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Pamela C. Köster
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
| | - Marcelino Garrine
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Carol Gilchrist
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Luther A. Bartelt
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Tacilta Nhampossa
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| | - Sérgio Massora
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Karen Kotloff
- Center for Vaccine Development (CVD), University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Myron M. Levine
- Center for Vaccine Development (CVD), University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Pedro L. Alonso
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - David Carmena
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
| | - Inácio Mandomando
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| |
Collapse
|
9
|
Singer SM, Angelova VV, DeLeon H, Miskovsky E. What's eating you? An update on Giardia, the microbiome and the immune response. Curr Opin Microbiol 2020; 58:87-92. [PMID: 33053502 PMCID: PMC7895496 DOI: 10.1016/j.mib.2020.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Giardia intestinalis has been observed in human stools since the invention of the microscope. However, it was not recognized as a pathogen until experimental infections in humans in the 1950s resulted in diarrheal illness [1]. We now know that this protozoan is capable of inducing a malabsorptive diarrhea and that the parasite is a major contributor to stunting in young children [2]. However, the majority of infections with this parasite are not accompanied by overt diarrhea and several studies indicate that it actually has a protective effect against moderate-severe diarrhea [3]. There is therefore significant interest in the mechanisms responsible for the wide variation observed in the clinical outcomes of infection with Giardia. This review will highlight recent work on the interactions among the parasite, the host microbiome and the immune response as contributing to this variation.
Collapse
Affiliation(s)
- Steven M Singer
- Department of Biology, Georgetown University, Washington, DC 20057, USA.
| | | | - Heriberto DeLeon
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Eleanor Miskovsky
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
10
|
Natural Infection with Giardia Is Associated with Altered Community Structure of the Human and Canine Gut Microbiome. mSphere 2020; 5:5/4/e00670-20. [PMID: 32759335 PMCID: PMC7407069 DOI: 10.1128/msphere.00670-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
While enteric parasitic infections are among the most important infections in lower- and middle-income countries, their impact on gut microbiota is poorly understood. We reasoned that clinical symptoms associated with these infections may be influenced by alterations of the microbiome that occur during infection. To explore this notion, we took a two-pronged approach. First, we studied a cohort of dogs naturally infected with various enteric parasites and found a strong association between parasite infection and altered gut microbiota composition. Giardia, one of the most prevalent parasite infections globally, had a particularly large impact on the microbiome. Second, we took a database-driven strategy to integrate microbiome data with clinical data from large human field studies and found that Giardia infection is also associated with marked alteration of the gut microbiome of children, suggesting a possible explanation for why Giardia has been reported to be associated with protection from moderate to severe diarrhea. Enteric parasitic infections are among the most prevalent infections in lower- and middle-income countries (LMICs) and have a profound impact on global public health. While the microbiome is increasingly recognized as a key determinant of gut health and human development, the impact of naturally acquired parasite infections on microbial community structure in the gut, and the extent to which parasite-induced changes in the microbiome may contribute to gastrointestinal symptoms, is poorly understood. Enteric parasites are routinely identified in companion animals in the United States, presenting a unique opportunity to leverage this animal model to investigate the impact of naturally acquired parasite infections on the microbiome. Clinical, parasitological, and microbiome profiling of a cohort of 258 dogs revealed a significant correlation between parasite infection and composition of the bacterial community in the gut. Relative to other enteric parasites, Giardia was associated with a more pronounced perturbation of the microbiome. To compare our findings to large-scale epidemiological studies of enteric diseases in humans, a database mining approach was employed to integrate clinical and microbiome data. Substantial and consistent alterations to microbiome structure were observed in Giardia-infected children. Importantly, infection was associated with a reduction in the relative abundance of potential pathobionts, including Gammaproteobacteria, and an increase in Prevotella—a profile often associated with gut health. Taken together, these data show that widespread Giardia infection in young animals and humans is associated with significant remodeling of the gut microbiome and provide a possible explanation for the high prevalence of asymptomatic Giardia infections observed across host species. IMPORTANCE While enteric parasitic infections are among the most important infections in lower- and middle-income countries, their impact on gut microbiota is poorly understood. We reasoned that clinical symptoms associated with these infections may be influenced by alterations of the microbiome that occur during infection. To explore this notion, we took a two-pronged approach. First, we studied a cohort of dogs naturally infected with various enteric parasites and found a strong association between parasite infection and altered gut microbiota composition. Giardia, one of the most prevalent parasite infections globally, had a particularly large impact on the microbiome. Second, we took a database-driven strategy to integrate microbiome data with clinical data from large human field studies and found that Giardia infection is also associated with marked alteration of the gut microbiome of children, suggesting a possible explanation for why Giardia has been reported to be associated with protection from moderate to severe diarrhea.
Collapse
|
11
|
Rebih N, Boutaiba S, Aboualchamat G, Souttou K, Hakem A, Al Nahhas S. Molecular and epidemiological characterization of Giardia Intestinalis assemblages detected in Djelfa, Algeria. J Parasit Dis 2020; 44:281-288. [PMID: 32508402 DOI: 10.1007/s12639-020-01206-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 02/19/2020] [Indexed: 12/21/2022] Open
Abstract
Giardia intestinalis is a flagellated protozoan that lives and proliferates in the small intestine of the host causing giardiasis. The route of transmission is the fecal-oral route, either directly or indirectly. Limited genetic information on G. intestinalis is known in Algeria. This study aimed to estimate the prevalence of G. intestinalis assemblages in the city of Djelfa. A total of 355 fecal samples were collected from symptomatic and asymptomatic school children aged ranged between 6 and 11 years old. Genotyping was done to the Giardia positive samples (n = 30) targeting the beta-giardin gene by applying PCR/RFLP assay. Our data showed that most of the cases were asymptomatic (56.7%). Co-infection with other intestinal parasites was found in 16.6% of cases. We obtained 28/30 positive PCR products while two samples only showed false-negative results, and only 20 samples have shown strong PCR products suitable for RFLP analysis. Assemblage A (70%) was more prevalent than assemblage B (30%) and was more expressed by signs than assemblage B. Moreover, only assemblage A was associated with close contacts with domestic animals and birds. In conclusion, this study gave the first molecular data on G. intestinalis isolates in the city of Djelfa. Further expanded studies using more genes and covering other cities in Algeria are mostly needed.
Collapse
Affiliation(s)
- Nadjat Rebih
- Laboratory for Exploration and Valorization of Steppe Ecosystems, Department of Biology, Faculty of Natural and Life Sciences, University of Zîane Achour, Djelfa, Algeria
| | - Saad Boutaiba
- Laboratory for Exploration and Valorization of Steppe Ecosystems, Department of Biology, Faculty of Natural and Life Sciences, University of Zîane Achour, Djelfa, Algeria
| | - Ghalia Aboualchamat
- Department of Animal Biology, Faculty of Science, Damascus University, Damascus, Syria
| | - Karim Souttou
- Laboratory for Exploration and Valorization of Steppe Ecosystems, Department of Biology, Faculty of Natural and Life Sciences, University of Zîane Achour, Djelfa, Algeria
| | - Ahcen Hakem
- Laboratory for Exploration and Valorization of Steppe Ecosystems, Department of Biology, Faculty of Natural and Life Sciences, University of Zîane Achour, Djelfa, Algeria
| | - Samar Al Nahhas
- Department of Animal Biology, Faculty of Science, Damascus University, Damascus, Syria
| |
Collapse
|
12
|
Buret AG. Acceptance of the 2019 Stoll-Stunkard Memorial Lectureship Award: The Study of Host-Parasite Interactions to Better Understand Fundamental Host Physiology: The Model of Giardiasis. J Parasitol 2020. [DOI: 10.1645/19-134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- André G. Buret
- Department of Biological Sciences, Host-Parasite Interactions Program, Inflammation Research Network, University of Calgary, 2500 University Drive N.W., Calgary (Alberta), T2N 1N4, Canada
| |
Collapse
|
13
|
Allain T, Buret AG. Pathogenesis and post-infectious complications in giardiasis. ADVANCES IN PARASITOLOGY 2019; 107:173-199. [PMID: 32122529 DOI: 10.1016/bs.apar.2019.12.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Giardia is an important cause of diarrhoea, and results in post-infectious and extra-intestinal complications. This chapter presents a state-of-the art of our understanding of how this parasite may cause such abnormalities, which appear to develop at least in part in Assemblage-dependent manner. Findings from prospective longitudinal cohort studies indicate that Giardia is one of the four most prevalent enteropathogens in early life, and represents a risk factor for stunting at 2 years of age. This may occur independently of diarrheal disease, in strong support of the pathophysiological significance of the intestinal abnormalities induced by this parasite. These include epithelial malabsorption and maldigestion, increased transit, mucus depletion, and disruptions of the commensal microbiota. Giardia increases epithelial permeability and facilitates the invasion of gut bacteria. Loss of intestinal barrier function is at the core of the acute and post-infectious complications associated with this infection. Recent findings demonstrate that the majority of the pathophysiological responses triggered by this parasite can be recapitulated by the effects of its membrane-bound and secreted cysteine proteases.
Collapse
Affiliation(s)
- Thibault Allain
- University of Calgary, Host-Parasite Interactions Program, Inflammation Research Network, Department of Biological Sciences, Calgary, Canada
| | - André G Buret
- University of Calgary, Host-Parasite Interactions Program, Inflammation Research Network, Department of Biological Sciences, Calgary, Canada.
| |
Collapse
|
14
|
Uiterwijk M, Nijsse R, Kooyman FNJ, Wagenaar JA, Mughini-Gras L, Ploeger HW. Host factors associated with Giardia duodenalis infection in dogs across multiple diagnostic tests. Parasit Vectors 2019; 12:556. [PMID: 31752993 PMCID: PMC6873540 DOI: 10.1186/s13071-019-3810-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/15/2019] [Indexed: 12/03/2022] Open
Abstract
Background The aim of this study was to assess potential associations between Giardia duodenalis infection in dogs, as determined by three diagnostic tests, and dog’s group of origin, fecal consistency, age, sex, neuter status, and co-infections with other gastrointestinal parasites. Methods Fecal samples from 1291 dogs from four groups (household, shelter, hunting and clinical dogs) were tested with qPCR, rapid enzyme immunochromatographic assay (IDEXX SNAP®Giardia), and direct immunofluorescence (DFA, Merifluor) for presence of G. duodenalis. Moreover, fecal samples were tested with centrifugation sedimentation flotation (CSF) coproscopical analysis for presence of gastrointestinal parasites. Associations were expressed as odds ratios (ORs). Results Several significant associations were found, of which a few were consistent for all three tests and Giardia positivity in general (positive with at least one of these tests). Dogs older than one year were significantly less likely to test positive for Giardia than younger dogs. Group-housed dogs, especially hunting dogs, were significantly more likely to test positive for Giardia compared to household and clinical dogs. A consistently significant association with Trichuris appeared to be driven by the high prevalence in hunting dogs. Although there was no significant association between loose stool and Giardia infection in the overall population, household dogs were significantly more likely to test Giardia-positive when having loose stool. Overall, Giardia-positive dogs with loose stool shed significantly more cysts, both determined semi-quantitatively with CSF and quantitatively by qPCR, than positive dogs with no loose stool. When other gastrointestinal parasites were present, significantly fewer cysts were detected with CSF, but this was not confirmed with qPCR. Conclusion Giardia is the most common gastrointestinal parasite in Dutch dogs, except for hunting dogs, in which Trichuris and strongyle-type eggs (hookworms) prevailed. Giardia infection was not significantly associated with loose stool, except for household dogs. Young dogs and group-housed dogs were significantly more often Giardia-positive. These associations were consistent across diagnostic tests. Young dogs, clinical dogs and dogs with loose stool shed Giardia cysts in the highest numbers. If another gastrointestinal parasite was present lower numbers of cysts were observed by microscope (CSF), but not with a molecular method (qPCR).
Collapse
Affiliation(s)
- Mathilde Uiterwijk
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,The Netherlands Food and Consumer Product Safety Authority (NVWA), Centre Monitoring Vectors, Wageningen, The Netherlands
| | - Rolf Nijsse
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frans N J Kooyman
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jaap A Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Lapo Mughini-Gras
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control (CIb), Bilthoven, The Netherlands.,Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Harm W Ploeger
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
15
|
Woodward SE, Krekhno Z, Finlay BB. Here, there, and everywhere: How pathogenicEscherichia colisense and respond to gastrointestinal biogeography. Cell Microbiol 2019; 21:e13107. [DOI: 10.1111/cmi.13107] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Sarah E. Woodward
- Department of Microbiology and ImmunologyUniversity of British Columbia Vancouver British Columbia Canada
- Michael Smith LaboratoriesUniversity of British Columbia Vancouver British Columbia Canada
| | - Zakhar Krekhno
- Department of Microbiology and ImmunologyUniversity of British Columbia Vancouver British Columbia Canada
- Michael Smith LaboratoriesUniversity of British Columbia Vancouver British Columbia Canada
| | - B. Brett Finlay
- Department of Microbiology and ImmunologyUniversity of British Columbia Vancouver British Columbia Canada
- Michael Smith LaboratoriesUniversity of British Columbia Vancouver British Columbia Canada
- Department of Biochemistry and Molecular BiologyUniversity of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
16
|
Fink MY, Maloney J, Keselman A, Li E, Menegas S, Staniorski C, Singer SM. Proliferation of Resident Macrophages Is Dispensable for Protection during Giardia duodenalis Infections. Immunohorizons 2019; 3:412-421. [PMID: 31455692 PMCID: PMC7033283 DOI: 10.4049/immunohorizons.1900041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/06/2019] [Indexed: 12/28/2022] Open
Abstract
Infection with the intestinal parasite Giardia duodenalis is one of the most common causes of diarrheal disease in the world. Previous work has demonstrated that the cells and mechanisms of the adaptive immune system are critical for clearance of this parasite. However, the innate system has not been as well studied in the context of Giardia infection. We have previously demonstrated that Giardia infection leads to the accumulation of a population of CD11b+, F4/80+, ARG1+, and NOS2+ macrophages in the small intestinal lamina propria. In this report, we sought to identify the accumulation mechanism of duodenal macrophages during Giardia infection and to determine if these cells were essential to the induction of protective Giardia immunity. We show that F4/80+, CD11b+, CD11cint, CX3CR1+, MHC class II+, Ly6C−, ARG1+, and NOS2+ macrophages accumulate in the small intestine during infections in mice. Consistent with this resident macrophage phenotype, macrophage accumulation does not require CCR2, and the macrophages incorporate EdU, indicating in situ proliferation rather than the recruitment of monocytes. Depletion of macrophages using anti-CSF1R did not impact parasite clearance nor development of regulatory T cell or Th17 cellular responses, suggesting that these macrophages are dispensable for protective Giardia immunity.
Collapse
Affiliation(s)
- Marc Y Fink
- Department of Biology, Georgetown University, Washington, DC 20057
| | - Jenny Maloney
- Department of Biology, Georgetown University, Washington, DC 20057
| | | | - Erqiu Li
- Department of Biology, Georgetown University, Washington, DC 20057
| | - Samantha Menegas
- Department of Biology, Georgetown University, Washington, DC 20057
| | | | - Steven M Singer
- Department of Biology, Georgetown University, Washington, DC 20057
| |
Collapse
|
17
|
Thompson RCA, Ash A. Molecular epidemiology of Giardia and Cryptosporidium infections - What's new? INFECTION GENETICS AND EVOLUTION 2019; 75:103951. [PMID: 31279819 DOI: 10.1016/j.meegid.2019.103951] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022]
Abstract
New information generated since 2016 from the application of molecular tools to infections with Giardia and Cryptosporidium is critically summarised. In the context of molecular epidemiology, nomenclature, taxonomy, in vitro culture, detection, zoonoses, population genetics and pathogenicity, are covered. Whole genome sequencing has had the greatest impact in the last three years. Future advances will provide a much better understanding of the zoonotic potential of both parasites, their diversity and how this is linked to pathogenesis in different hosts.
Collapse
Affiliation(s)
- R C A Thompson
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia.
| | - A Ash
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
18
|
Burgess SL, Oka A, Liu B, Bolick DT, Oakland DN, Guerrant RL, Bartelt L. Intestinal parasitic infection alters bone marrow derived dendritic cell inflammatory cytokine production in response to bacterial endotoxin in a diet-dependent manner. PLoS Negl Trop Dis 2019; 13:e0007515. [PMID: 31260452 PMCID: PMC6602177 DOI: 10.1371/journal.pntd.0007515] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 06/04/2019] [Indexed: 01/09/2023] Open
Abstract
Giardia lamblia is a common intestinal parasitic infection that although often acutely asymptomatic, is associated with debilitating chronic intestinal and extra-intestinal sequelae. In previously healthy adults, a primary sporadic Giardia infection can lead to gut dysfunction and fatigue. These symptoms correlate with markers of inflammation that persist well after the infection is cleared. In contrast, in endemic settings, first exposure occurs in children who are frequently malnourished and also co-infected with other enteropathogens. In these children, Giardia rarely causes symptoms and associates with several decreased markers of inflammation. Mechanisms underlying these disparate and potentially enduring outcomes following Giardia infection are not presently well understood. A body of work suggests that the outcome of experimental Giardia infection is influenced by the nutritional status of the host. Here, we explore the consequences of experimental Giardia infection under conditions of protein sufficiency or deficiency on cytokine responses of ex vivo bone marrow derived dendritic cells (BMDCs) to endotoxin stimulation. We show that BMDCs from Giardia- challenged mice on a protein sufficient diet produce more IL-23 when compared to uninfected controls whereas BMDCs from Giardia challenged mice fed a protein deficient diet do not. Further, in vivo co-infection with Giardia attenuates robust IL-23 responses in endotoxin-stimulated BMDCs from protein deficient mice harboring enteroaggregative Escherichia coli. These results suggest that intestinal Giardia infection may have extra-intestinal effects on BMDC inflammatory cytokine production in a diet dependent manner, and that Giardia may influence the severity of the innate immune response to other enteropathogens. This work supports recent findings that intestinal microbial exposure may have lasting influences on systemic inflammatory responses, and may provide better understanding of potential mechanisms of post-infectious sequelae and clinical variation during Giardia and enteropathogen co-infection.
Collapse
Affiliation(s)
- Stacey L. Burgess
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Akihiko Oka
- Center for Gastrointestinal Biology and Disease and the Departments of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Bo Liu
- Division of Infectious Diseases, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - David T. Bolick
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - David Noah Oakland
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Richard L. Guerrant
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Luther Bartelt
- Center for Gastrointestinal Biology and Disease and the Departments of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Division of Infectious Diseases, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
19
|
Rowan-Nash AD, Korry BJ, Mylonakis E, Belenky P. Cross-Domain and Viral Interactions in the Microbiome. Microbiol Mol Biol Rev 2019; 83:e00044-18. [PMID: 30626617 PMCID: PMC6383444 DOI: 10.1128/mmbr.00044-18] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The importance of the microbiome to human health is increasingly recognized and has become a major focus of recent research. However, much of the work has focused on a few aspects, particularly the bacterial component of the microbiome, most frequently in the gastrointestinal tract. Yet humans and other animals can be colonized by a wide array of organisms spanning all domains of life, including bacteria and archaea, unicellular eukaryotes such as fungi, multicellular eukaryotes such as helminths, and viruses. As they share the same host niches, they can compete with, synergize with, and antagonize each other, with potential impacts on their host. Here, we discuss these major groups making up the human microbiome, with a focus on how they interact with each other and their multicellular host.
Collapse
Affiliation(s)
- Aislinn D Rowan-Nash
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Benjamin J Korry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Eleftherios Mylonakis
- Infectious Diseases Division, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
20
|
Apparent absence of Giardia infections among children under 5-years of age with acute watery diarrhoea in Abakaliki, Nigeria. Epidemiol Infect 2018; 147:e58. [PMID: 30501684 PMCID: PMC6518545 DOI: 10.1017/s0950268818003151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Although the impact of diarrhoeal disease on paediatric health in Nigeria has decreased in recent years, it remains an important cause of morbidity and mortality in children under 5 years. Rotavirus is recognised as an important aetiological agent, but information on the contribution of intestinal protozoa to watery diarrhoea in this age group in Nigeria is scarce. In this cross-sectional study, faecal samples from children admitted to healthcare centres in Abakaliki, Nigeria with acute watery diarrhoea (N = 199) and faecal samples from age-matched controls (N = 37) were examined for Cryptosporidium and Giardia using immunofluorescent antibody testing and molecular methods. Cryptosporidium was identified in 13 case samples (6.5%) and no control samples. For three samples, molecular characterisation indicated C. hominis, GP60 subtypes IaA30R3, IaA14R3 and IdA11. Giardia was not detected in any samples. This contrast in prevalence between the two intestinal protozoa may reflect their variable epidemiologies and probably differing routes of infection. Given that these two parasitic infections are often bracketed together, it is key to realise that they not only have differing clinical spectra but also that the importance of each parasite is not the same in different age groups and/or settings.
Collapse
|
21
|
Ashour DS, Saad AE, Dawood LM, Zamzam Y. Immunological interaction between Giardia cyst extract and experimental toxoplasmosis. Parasite Immunol 2017; 40. [PMID: 29130475 DOI: 10.1111/pim.12503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022]
Abstract
Toxoplasmosis is mostly associated with other intestinal parasitic infections especially Giardia due to shared mode of peroral infection. Toxoplasma and Giardia induce a strong T-helper 1- immune response. Our aim was to induce a protective immune response that results in significant impact on intestinal and extra-intestinal phases of Toxoplasma infection. This study was conducted in experimental animals and assessment of Giardia cyst extract effect on Toxoplasma infection was investigated by histopathological examination of small intestine and brain, Toxoplasma cyst count and iNOS staining of the brain, measurement of IFN-γ and TGF-β in intestinal tissues. Results showed that the brain Toxoplasma cyst number was decreased in mice infected with Toxoplasma then received Giardia cyst extract as compared to mice infected with Toxoplasma only. This effect was produced because Giardia cyst extract augmented the immune response to Toxoplasma infection as evidenced by severe inflammatory reaction in the intestinal and brain tissues, increased levels of IFN-γ and TGF-β in intestinal tissues and strong iNOS staining of the brain. In conclusion, Giardia cyst extract generated a protective response against T. gondii infection. Therefore, Giardia antigen will be a suitable candidate for further researches as an immunomodulatory agent against Toxoplasma infection.
Collapse
Affiliation(s)
- D S Ashour
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - A E Saad
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - L M Dawood
- Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Y Zamzam
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Giardia is a common intestinal parasite worldwide, and infection can be associated with clear and sometimes persistent symptomatology. However, in children in high-prevalence settings, it is not associated with or is perhaps even protective against acute diarrhea, and the association with long-term outcomes has been difficult to discern. RECENT FINDINGS Recent studies have made progress in helping us disentangle this apparent paradox. First, prospective, well-characterized cohort studies have added to the data on the association between Giardia and diarrhea in these settings and have further characterized associations between Giardia infection and nutrition, gut function, and growth. Second, animal models have further characterized the host response to Giardia and helped elucidate mechanisms by which Giardia could impair child development. Finally, new work has shed light on the heterogeneity of human Giardia strains, which may both explain discrepant findings in the literature and help guide higher-resolution analyses of this pathogen in the future. SUMMARY The true clinical impact of endemic pediatric giardiasis remains unclear, but recent prospective studies have confirmed a high prevalence of persistent, subclinical Giardia infections and associated growth shortfalls. Integrating how nutritional, microbial, metabolic, and pathogen-strain variables influence these outcomes could sharpen delineations between pathogenic and potentially beneficial attributes of this enigmatic parasite.
Collapse
|
23
|
Kraft MR, Klotz C, Bücker R, Schulzke JD, Aebischer T. Giardia's Epithelial Cell Interaction In Vitro: Mimicking Asymptomatic Infection? Front Cell Infect Microbiol 2017; 7:421. [PMID: 29018775 PMCID: PMC5622925 DOI: 10.3389/fcimb.2017.00421] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/12/2017] [Indexed: 12/13/2022] Open
Abstract
The protozoan parasite Giardia duodenalis is responsible for more than 280 million cases of gastrointestinal complaints ("giardiasis") every year, worldwide. Infections are acquired orally, mostly via uptake of cysts in contaminated drinking water. After transformation into the trophozoite stage, parasites start to colonize the duodenum and upper jejunum where they attach to the intestinal epithelium and replicate vegetatively. Outcome of Giardia infections vary between individuals, from self-limiting to chronic, and asymptomatic to severely symptomatic infection, with unspecific gastrointestinal complaints. One proposed mechanism for pathogenesis is the breakdown of intestinal barrier function. This has been studied by analyzing trans-epithelial electric resistances (TEER) or by indicators of epithelial permeability using labeled sugar compounds in in vitro cell culture systems, mouse models or human biopsies and epidemiological studies. Here, we discuss the results obtained mainly with epithelial cell models to highlight contradictory findings. We relate published studies to our own findings that suggest a lack of barrier compromising activities of recent G. duodenalis isolates of assemblage A, B, and E in a Caco-2 model system. We propose that this epithelial cell model be viewed as mimicking asymptomatic infection. This view will likely lead to a more informative use of the model if emphasis is shifted from aiming to identify Giardia virulence factors to defining non-parasite factors that arguably appear to be more decisive for disease.
Collapse
Affiliation(s)
- Martin R Kraft
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany.,Institute of Clinical Physiology, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Christian Klotz
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Roland Bücker
- Institute of Clinical Physiology, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Jörg-Dieter Schulzke
- Institute of Clinical Physiology, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Toni Aebischer
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| |
Collapse
|
24
|
Burgess SL, Gilchrist CA, Lynn TC, Petri WA. Parasitic Protozoa and Interactions with the Host Intestinal Microbiota. Infect Immun 2017; 85:e00101-17. [PMID: 28584161 PMCID: PMC5520446 DOI: 10.1128/iai.00101-17] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Parasitic protozoan infections represent a major health burden in the developing world and contribute significantly to morbidity and mortality. These infections are often associated with considerable variability in clinical presentation. An emerging body of work suggests that the intestinal microbiota may help to explain some of these differences in disease expression. The objective of this minireview is to synthesize recent progress in this rapidly advancing field. Studies of humans and animals and in vitro studies of the contribution of the intestinal microbiota to infectious disease are discussed. We hope to provide an understanding of the human-protozoal pathogen-microbiome interaction and to speculate on how that might be leveraged for treatment.
Collapse
Affiliation(s)
- Stacey L Burgess
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Carol A Gilchrist
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Tucker C Lynn
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - William A Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
25
|
Manko A, Motta JP, Cotton JA, Feener T, Oyeyemi A, Vallance BA, Wallace JL, Buret AG. Giardia co-infection promotes the secretion of antimicrobial peptides beta-defensin 2 and trefoil factor 3 and attenuates attaching and effacing bacteria-induced intestinal disease. PLoS One 2017. [PMID: 28622393 PMCID: PMC5473565 DOI: 10.1371/journal.pone.0178647] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Our understanding of polymicrobial gastrointestinal infections and their effects on host biology remains incompletely understood. Giardia duodenalis is an ubiquitous intestinal protozoan parasite infecting animals and humans. Concomitant infections with Giardia and other gastrointestinal pathogens commonly occur. In countries with poor sanitation, Giardia infection has been associated with decreased incidence of diarrheal disease and fever, and reduced serum inflammatory markers release, via mechanisms that remain obscure. This study analyzed Giardia spp. co-infections with attaching and effacing (A/E) pathogens, and assessed whether and how the presence of Giardia modulates host responses to A/E enteropathogens, and alters intestinal disease outcome. In mice infected with the A/E pathogen Citrobacter rodentium, co-infection with Giardia muris significantly attenuated weight loss, macro- and microscopic signs of colitis, bacterial colonization and translocation, while concurrently enhancing the production and secretion of antimicrobial peptides (AMPs) mouse β-defensin 3 and trefoil factor 3 (TFF3). Co-infection of human intestinal epithelial cells (Caco-2) monolayers with G. duodenalis trophozoites and enteropathogenic Escherichia coli (EPEC) enhanced the production of the AMPs human β-defensin 2 (HBD-2) and TFF3; this effect was inhibited with treatment of G. duodenalis with cysteine protease inhibitors. Collectively, these results suggest that Giardia infections are capable of reducing enteropathogen-induced colitis while increasing production of host AMPs. Additional studies also demonstrated that Giardia was able to directly inhibit the growth of pathogenic bacteria. These results reveal novel mechanisms whereby Giardia may protect against gastrointestinal disease induced by a co-infecting A/E enteropathogen. Our findings shed new light on how microbial-microbial interactions in the gut may protect a host during concomitant infections.
Collapse
Affiliation(s)
- Anna Manko
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, Alberta, Canada
| | - Jean-Paul Motta
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, Alberta, Canada
| | - James A. Cotton
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, Alberta, Canada
| | - Troy Feener
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
| | - Ayodele Oyeyemi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, Alberta, Canada
| | - Bruce A. Vallance
- Department of Pediatrics, Division of Gastroenterology, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - John L. Wallace
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology & Pharmacology, University of Calgary, Alberta, Canada
| | - Andre G. Buret
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
26
|
Rogawski ET, Bartelt LA, Platts-Mills JA, Seidman JC, Samie A, Havt A, Babji S, Trigoso DR, Qureshi S, Shakoor S, Haque R, Mduma E, Bajracharya S, Gaffar SMA, Lima AAM, Kang G, Kosek MN, Ahmed T, Svensen E, Mason C, Bhutta ZA, Lang DR, Gottlieb M, Guerrant RL, Houpt ER, Bessong PO. Determinants and Impact of Giardia Infection in the First 2 Years of Life in the MAL-ED Birth Cohort. J Pediatric Infect Dis Soc 2017; 6:153-160. [PMID: 28204556 PMCID: PMC5907871 DOI: 10.1093/jpids/piw082] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/28/2016] [Indexed: 11/13/2022]
Abstract
BACKGROUND. Giardia are among the most common enteropathogens detected in children in low-resource settings. We describe here the epidemiology of infection with Giardia in the first 2 years of life in the Etiology, Risk Factors, and Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health and Development Project (MAL-ED), a multisite birth-cohort study. METHODS. From 2089 children, 34916 stool samples collected during monthly surveillance and episodes of diarrhea were tested for Giardia using an enzyme immunoassay. We quantified the risk of Giardia detection, identified risk factors, and assessed the associations with micronutrients, markers of gut inflammation and permeability, diarrhea, and growth using multivariable linear regression. RESULTS. The incidence of at least 1 Giardia detection varied according to site (range, 37.7%-96.4%) and was higher in the second year of life. Exclusive breastfeeding (HR for first Giardia detection in a monthly surveillance stool sample, 0.46 [95% confidence interval (CI), 0.28-0.75]), higher socioeconomic status (HR, 0.74 [95% CI, 0.56-0.97]), and recent metronidazole treatment (risk ratio for any surveillance stool detection, 0.69 [95% CI, 0.56-0.84]) were protective. Persistence of Giardia (consecutive detections) in the first 6 months of life was associated with reduced subsequent diarrheal rates in Naushahro Feroze, Pakistan but not at any other site. Giardia detection was also associated with an increased lactulose/mannitol ratio. Persistence of Giardia before 6 months of age was associated with a -0.29 (95% CI, -0.53 to -0.05) deficit in weight-for-age z score and -0.29 (95% CI, -0.64 to 0.07) deficit in length-for-age z score at 2 years. CONCLUSIONS. Infection with Giardia occurred across epidemiological contexts, and repeated detections in 40% of the children suggest that persistent infections were common. Early persistent infection with Giardia, independent of diarrhea, might contribute to intestinal permeability and stunted growth.
Collapse
Affiliation(s)
- Elizabeth T. Rogawski
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville
| | - Luther A. Bartelt
- Division of Infectious Diseases, University of North Carolina-Chapel Hill
| | - James A. Platts-Mills
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville
| | - Jessica C. Seidman
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland
| | | | - Alexandre Havt
- Clinical Research Unit and Institute of Biomedicine, Federal University of Ceara, Fortaleza, Brazil
| | | | | | | | | | - Rashidul Haque
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | | | | | | | - Aldo A. M. Lima
- Clinical Research Unit and Institute of Biomedicine, Federal University of Ceara, Fortaleza, Brazil
| | | | - Margaret N. Kosek
- Asociación Benéfica PRISMA, Iquitos, Peru;,Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | | | - Carl Mason
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand; and
| | | | - Dennis R. Lang
- Foundation for the National Institutes of Health, Bethesda, Maryland
| | - Michael Gottlieb
- Foundation for the National Institutes of Health, Bethesda, Maryland
| | - Richard L. Guerrant
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville
| | - Eric R. Houpt
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville
| | | | | |
Collapse
|
27
|
Allain T, Amat CB, Motta JP, Manko A, Buret AG. Interactions of Giardia sp. with the intestinal barrier: Epithelium, mucus, and microbiota. Tissue Barriers 2017; 5:e1274354. [PMID: 28452685 DOI: 10.1080/21688370.2016.1274354] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Understanding how intestinal enteropathogens cause acute and chronic alterations has direct animal and human health perspectives. Significant advances have been made on this field by studies focusing on the dynamic crosstalk between the intestinal protozoan parasite model Giardia duodenalis and the host intestinal mucosa. The concept of intestinal barrier function is of the highest importance in the context of many gastrointestinal diseases such as infectious enteritis, inflammatory bowel disease, and post-infectious gastrointestinal disorders. This crucial function relies on 3 biotic and abiotic components, first the commensal microbiota organized as a biofilm, then an overlaying mucus layer, and finally the tightly structured intestinal epithelium. Herein we review multiple strategies used by Giardia parasite to circumvent these 3 components. We will summarize what is known and discuss preliminary observations suggesting how such enteropathogen directly and/ or indirectly impairs commensal microbiota biofilm architecture, disrupts mucus layer and damages host epithelium physiology and survival.
Collapse
Affiliation(s)
- Thibault Allain
- a Department of Biological Sciences , University of Calgary , Calgary , AB , Canada.,b Inflammation Research Network, University of Calgary , Calgary , AB , Canada.,c Host-Parasite Interactions, University of Calgary , Calgary , AB , Canada
| | - Christina B Amat
- a Department of Biological Sciences , University of Calgary , Calgary , AB , Canada.,b Inflammation Research Network, University of Calgary , Calgary , AB , Canada.,c Host-Parasite Interactions, University of Calgary , Calgary , AB , Canada
| | - Jean-Paul Motta
- a Department of Biological Sciences , University of Calgary , Calgary , AB , Canada.,b Inflammation Research Network, University of Calgary , Calgary , AB , Canada.,c Host-Parasite Interactions, University of Calgary , Calgary , AB , Canada
| | - Anna Manko
- a Department of Biological Sciences , University of Calgary , Calgary , AB , Canada.,b Inflammation Research Network, University of Calgary , Calgary , AB , Canada.,c Host-Parasite Interactions, University of Calgary , Calgary , AB , Canada
| | - André G Buret
- a Department of Biological Sciences , University of Calgary , Calgary , AB , Canada.,b Inflammation Research Network, University of Calgary , Calgary , AB , Canada.,c Host-Parasite Interactions, University of Calgary , Calgary , AB , Canada
| |
Collapse
|
28
|
Einarsson E, Ma'ayeh S, Svärd SG. An up-date on Giardia and giardiasis. Curr Opin Microbiol 2016; 34:47-52. [PMID: 27501461 DOI: 10.1016/j.mib.2016.07.019] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 12/11/2022]
Abstract
Giardia intestinalis is a non-invasive protozoan parasite infecting the upper small intestine causing acute, watery diarrhea or giardiasis in 280 million people annually. Asymptomatic infections are equally common and recent data have suggested that infections even can be protective against other diarrheal diseases. Most symptomatic infections resolve spontaneously but infections can lead to chronic disease and treatment failures are becoming more common world-wide. Giardia infections can also result in irritable bowel syndrome (IBS) and food allergies after resolution. Until recently not much was known about the mechanism of giardiasis or the cause of post-giardiasis syndromes and treatment failures, but here we will describe the recent progress in these areas.
Collapse
Affiliation(s)
- Elin Einarsson
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Showgy Ma'ayeh
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
29
|
Donowitz JR, Alam M, Kabir M, Ma JZ, Nazib F, Platts-Mills JA, Bartelt LA, Haque R, Petri WA. A Prospective Longitudinal Cohort to Investigate the Effects of Early Life Giardiasis on Growth and All Cause Diarrhea. Clin Infect Dis 2016; 63:792-7. [PMID: 27313261 PMCID: PMC4996141 DOI: 10.1093/cid/ciw391] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/07/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Growth stunting in children under 2 years of age in low-income countries is common. Giardia is a ubiquitous pathogen in this age group but studies investigating Giardia's effect on both growth and diarrhea have produced conflicting results. METHODS We conducted a prospective longitudinal birth cohort study in Dhaka, Bangladesh, with monthly Giardia and continuous diarrheal surveillance. RESULTS 629 children were enrolled within the first 72 hours of life, and 445 completed 2 years of the study. 12% of children were stunted at birth with 57% stunted by 2 years. 7% of children had a Giardia positive surveillance stool in the first 6 months of life, whereas 74% had a positive stool by 2 years. The median time to first Giardia positive surveillance stool was 17 months. Presence of Giardia in a monthly surveillance stool within the first 6 months of life decreased length-for-age Z score at 2 years by 0.4 (95% confidence interval, -.80 to -.001; P value .05) whereas total number of Giardia positive months over the 2-year period of observation did not. Neither variable was associated with weight-for-age Z score at 2 years. In our model to examine predictors of diarrhea only exclusive breastfeeding was significantly associated with decreased diarrhea (P value <.001). Concomitant giardiasis was neither a risk factor nor protective. CONCLUSIONS Early life Giardia was a risk factor for stunting at age 2 but not poor weight gain. Presence of Giardia neither increased nor decreased odds of acute all cause diarrhea.
Collapse
Affiliation(s)
- Jeffrey R Donowitz
- Division of Pediatric Infectious Diseases, Children's Hospital of Richmond at Virginia Commonwealth University
| | - Masud Alam
- Parasitology Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka
| | - Mamun Kabir
- Parasitology Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka
| | - Jennie Z Ma
- Department of Public Health Sciences, University of Virginia, Charlottesville
| | - Forida Nazib
- Department of Medicine and Vaccine Testing Center, The University of Vermont College of Medicine, Burlington
| | - James A Platts-Mills
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville
| | - Luther A Bartelt
- Division of Infectious Diseases, University of North Carolina-Chapel Hill
| | - Rashidul Haque
- Parasitology Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka
| | - William A Petri
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville
| |
Collapse
|
30
|
Cotton JA, Amat CB, Buret AG. Disruptions of Host Immunity and Inflammation by Giardia Duodenalis: Potential Consequences for Co-Infections in the Gastro-Intestinal Tract. Pathogens 2015; 4:764-92. [PMID: 26569316 PMCID: PMC4693164 DOI: 10.3390/pathogens4040764] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 12/11/2022] Open
Abstract
Giardia duodenalis (syn. G. intestinalis, or G. lamblia) is a leading cause of waterborne diarrheal disease that infects hundreds of millions of people annually. Research on Giardia has greatly expanded within the last few years, and our understanding of the pathophysiology and immunology on this parasite is ever increasing. At peak infection, Giardia trophozoites induce pathophysiological responses that culminate in the development of diarrheal disease. However, human data has suggested that the intestinal mucosa of Giardia-infected individuals is devoid of signs of overt intestinal inflammation, an observation that is reproduced in animal models. Thus, our understanding of host inflammatory responses to the parasite remain incompletely understood and human studies and experimental data have produced conflicting results. It is now also apparent that certain Giardia infections contain mechanisms capable of modulating their host's immune responses. As the oral route of Giardia infection is shared with many other gastrointestinal (GI) pathogens, co-infections may often occur, especially in places with poor sanitation and/or improper treatment of drinking water. Moreover, Giardia infections may modulate host immune responses and have been found to protect against the development of diarrheal disease in developing countries. The following review summarizes our current understanding of the immunomodulatory mechanisms of Giardia infections and their consequences for the host, and highlights areas for future research. Potential implications of these immunomodulatory effects during GI co-infection are also discussed.
Collapse
Affiliation(s)
- James A Cotton
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Christina B Amat
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada.
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Andre G Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada.
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
31
|
Human Memory CD4+ T Cell Immune Responses against Giardia lamblia. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 23:11-8. [PMID: 26376930 DOI: 10.1128/cvi.00419-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/10/2015] [Indexed: 01/17/2023]
Abstract
The intestinal protozoan parasite Giardia lamblia may cause severe prolonged diarrheal disease or pass unnoticed as an asymptomatic infection. T cells seem to play an important role in the immune response to Giardia infection, and memory responses may last years. Recently, TH17 responses have been found in three animal studies of Giardia infection. The aim of this study was to characterize the human CD4(+) T cell responses to Giardia. Peripheral blood mononuclear cells (PBMCs) were obtained from 21 returning travelers with recent or ongoing giardiasis and 12 low-risk healthy controls and stimulated in vitro with Giardia lamblia proteins. Production of tumor necrosis factor alpha (TNF-α), gamma interferon, interleukin-17A (IL-17A), IL-10, and IL-4 was measured in CD4(+) effector memory (EM) T cells after 24 h by flow cytometry. After 6 days of culture, activation and proliferation were measured by flow cytometry, while an array of inflammatory cytokine levels in supernatants were measured with multiplex assays. We found the number of IL-17A-producing CD4(+) EM T cells, as well as that of cells simultaneously producing both IL-17A and TNF-α, to be significantly elevated in the Giardia-exposed individuals after 24 h of antigen stimulation. In supernatants of PBMCs stimulated with Giardia antigens for 6 days, we found inflammation-associated cytokines, including 1L-17A, as well as CD4(+) T cell activation and proliferation, to be significantly elevated in the Giardia-exposed individuals. We conclude that symptomatic Giardia infection in humans induces a CD4(+) EM T cell response of which IL-17A production seems to be an important component.
Collapse
|
32
|
Bartelt LA, Sartor RB. Advances in understanding Giardia: determinants and mechanisms of chronic sequelae. F1000PRIME REPORTS 2015; 7:62. [PMID: 26097735 PMCID: PMC4447054 DOI: 10.12703/p7-62] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Giardia lamblia is a flagellated protozoan that is the most common cause of intestinal parasitic infection in children living in resource-limited settings. The pathogenicity of Giardia has been debated since the parasite was first identified, and clinical outcomes vary across studies. Among recent perplexing findings are diametrically opposed associations between Giardia and acute versus persistent diarrhea and a poorly understood potential for long-term sequelae, including impaired child growth and cognitive development. The mechanisms driving these protean clinical outcomes remain elusive, but recent advances suggest that variability in Giardia strains, host nutritional status, the composition of microbiota, co-infecting enteropathogens, host genetically determined mucosal immune responses, and immune modulation by Giardia are all relevant factors influencing disease manifestations after Giardia infection.
Collapse
Affiliation(s)
- Luther A. Bartelt
- Division of Infectious Diseases and International Health, University of VirginiaBox 801340, Charlottesville, VA 22908USA
| | - R. Balfour Sartor
- Division of Gastroenterology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel HillCampus Box 7032, Chapel Hill, NC 27599-7032USA
| |
Collapse
|
33
|
Investigation of effects ofGiardia duodenalison transcellular and paracellular transport in enterocytes usingin vitroUssing chamber experiments. Parasitology 2014; 142:691-7. [DOI: 10.1017/s0031182014001772] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SUMMARYThe mechanisms by which different genotypes ofGiardia duodenalisresult in different symptoms remain unresolved. In particular, we lack detailed knowledge on which transport mechanisms (transcellular or paracellular) are affected by differentGiardiaisolates. Using horse radish peroxidase (HRP) and creatinine as transcellular and paracellular probes, respectively, we developed a robust assay that can be used with an Ussing chamber to investigate epithelial transport, as well as short-circuit current as an indicator of net ion transport. We investigated 2Giardiaisolates, both Assemblage A, one a lab-adapted strain and the other a field isolate. Results indicate that products from sonicatedGiardiatrophozoites increase both transcellular and paracellular transport. A non-significant increase in transepithelial electrical resistance (TEER) and short-circuit current were also noted. The paracellular transport was increased significantly more in the field isolate than in the lab-adapted strain. Our results indicate that while both transcellular and paracellular transport mechanisms may be increased following exposure of cells toGiardiatrophozoite sonicate, perhaps by inducing non-specific increases in cellular traffic, it is important thatin vitrostudies ofGiardiapathophysiology are conducted with differentGiardiaisolates, not just lab-attenuated strains.
Collapse
|
34
|
Tysnes KR, Skancke E, Robertson LJ. Subclinical Giardia in dogs: a veterinary conundrum relevant to human infection. Trends Parasitol 2014; 30:520-7. [DOI: 10.1016/j.pt.2014.08.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/21/2014] [Accepted: 08/26/2014] [Indexed: 01/08/2023]
|
35
|
Torabi Z, Niksirat A, Mazloomzadeh S, Ahmadiafshar A. Consistency of direct microscopic examination and ELISA in detection of Giardia in stool specimen among children. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2014. [DOI: 10.1016/s2222-1808(14)60715-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Giardia duodenalis cathepsin B proteases degrade intestinal epithelial interleukin-8 and attenuate interleukin-8-induced neutrophil chemotaxis. Infect Immun 2014; 82:2772-87. [PMID: 24733096 DOI: 10.1128/iai.01771-14] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Giardia duodenalis (syn. G. intestinalis, G. lamblia) infections are a leading cause of waterborne diarrheal disease that can also result in the development of postinfectious functional gastrointestinal disorders via mechanisms that remain unclear. Parasite numbers exceed 10(6) trophozoites per centimeter of gut at the height of an infection. Yet the intestinal mucosa of G. duodenalis-infected individuals is devoid of signs of overt inflammation. G. duodenalis infections can also occur concurrently with infections with other proinflammatory gastrointestinal pathogens. Little is known of whether and how this parasite can attenuate host inflammatory responses induced by other proinflammatory stimuli, such as a gastrointestinal pathogen. Identifying hitherto-unrecognized parasitic immunomodulatory pathways, the present studies demonstrated that G. duodenalis trophozoites attenuate secretion of the potent neutrophil chemoattractant interleukin-8 (CXCL8); these effects were observed in human small intestinal mucosal tissues and from intestinal epithelial monolayers, activated through administration of proinflammatory interleukin-1β or Salmonella enterica serovar Typhimurium. This attenuation is caused by the secretion of G. duodenalis cathepsin B cysteine proteases that degrade CXCL8 posttranscriptionally. Furthermore, the degradation of CXCL8 via G. duodenalis cathepsin B cysteine proteases attenuates CXCL8-induced chemotaxis of human neutrophils. Taken together, these data demonstrate for the first time that G. duodenalis trophozoite cathepsins are capable of attenuating a component of their host's proinflammatory response induced by a separate proinflammatory stimulus.
Collapse
|