1
|
Bai J, Xie Y, Li M, Huang X, Guo Y, Sun J, Tang Y, Liu X, Wei C, Li J, Yang Y. Ultrasound-assisted extraction of emodin from Rheum officinale Baill and its antibacterial mechanism against Streptococcus suis based on CcpA. ULTRASONICS SONOCHEMISTRY 2024; 102:106733. [PMID: 38150957 PMCID: PMC10765492 DOI: 10.1016/j.ultsonch.2023.106733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Emodin was extracted from Rheum officinale Baill by ultrasound-assisted extraction (UAE), and ethanol was chosen as the suitable solvent through SEM and molecular dynamic simulation. Under the optimum conditions (power 541 W, time 23 min, liquid to material ratio 13:1 mL/g, ethanol concentration 83 %) predicted by RSM, the yield of emodin was 2.18 ± 0.11 mg/g. Moreover, ultrasound power and time displayed the significant effects on the extraction process. Extracting dynamics analysis indicated that the extraction process of emodin by UAE conformed to Fick's second diffusion law. The results of antibacterial experiments suggested that emodin can damage cell membrane and inhibit the expression of cps2A, sao, mrp, epf, neu and the hemolytic activity of S. suis. Biolayer interferometry and FT-IR multi-peak fitting assays demonstrated that emodin induced a secondary conformational shift in CcpA. Molecular docking and molecular dynamics confirmed that emodin bound to CcpA through hydrogen bonding (ALA248, GLU249, GLY129 and ASN196) and π-π T-shaped interaction (TYR225 and TYR130), and the mutation of amino acid residues affected the affinity of CcpA to emodin. Therefore, emodin inhibited the sugar utilization of S. suis through binding to CcpA, and CcpA may be a potential target to inhibit the growth of S. suis.
Collapse
Affiliation(s)
- Jingwen Bai
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yu Xie
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Miao Li
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xianjun Huang
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yujia Guo
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jingwen Sun
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yang Tang
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xuantong Liu
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Chi Wei
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jianqiang Li
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yu Yang
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
2
|
Neila-Ibáñez C, Napp S, Casal J. Evaluation of the Economic Impact of Streptococcus suis-Associated Disease. Methods Mol Biol 2024; 2815:121-129. [PMID: 38884915 DOI: 10.1007/978-1-0716-3898-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The economic impact of Streptococcus suis-associated disease at farm level is well known by the producers, but the cost in a region or a country is more difficult to evaluate due to the lack of a centralized data system, the different incidences, and the control measures applied by each producer. In this chapter, we describe a method based on the information gathered through interviews with veterinary practitioners. A comprehensive questionnaire created specifically for the disease can help to conduct the interviews. The questions include information about the proportions of farms, batches and animals clinically affected, mortality, metaphylactic and therapeutic treatments, use of vaccines, and proportion of cases that are diagnosed at the laboratory. As the questionnaire is quite complex, the best option to obtain the data is send the questionnaire to the selected veterinarians to allow them to collect some data and make an interview with them some days later. The information allows to estimate the costs due to mortality, antimicrobial treatments, the use of autogenous vaccines, and analyses performed. Initially they are calculated per animal in each affected production phase, and later it can be extrapolated to estimate the annual cost per affected production unit and per country. The model does not consider indirect costs such as the cost as a zoonosis, the revenues forgone, or an increase of labor.
Collapse
Affiliation(s)
- Carlos Neila-Ibáñez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Diseases in Europe (IRTA-CReSA), Bellaterra, Spain
| | - Sebastián Napp
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Diseases in Europe (IRTA-CReSA), Bellaterra, Spain
| | - Jordi Casal
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.
| |
Collapse
|
3
|
Nguyen MP, Nguyen NH, Nguyen HPT, Yang CM. STREPTOCOCCUS SUIS ENDOGENOUS ENDOPHTHALMITIS IN A PATIENT WITH MENINGITIS. Retin Cases Brief Rep 2023; 17:519-523. [PMID: 37643035 DOI: 10.1097/icb.0000000000001261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
BACKGROUND Streptococcus suis is a major porcine pathogen that can cause severe systemic infection in humans. The common clinical features include meningitis, septicemia, purulent arthritis, and oftentimes deafness. However, ocular inflammation is very rare. METHODS We report the case of endogenous endophthalmitis, meningitis, and septicemia caused by S. suis. The patient received 2 months of systemic antibiotics therapy, intravitreal vancomycin, and vitrectomy combining phacoemulsification with intraocular lens without silicone oil-filled. RESULTS The result with the best-corrected visual acuity was 20/40 on the left eye and 20/25 on the right eye. CONCLUSION This case illustrates the rare presentation of endogenous endophthalmitis in a patient with meningitis due to S. suis. In patients presenting with endophthalmitis and meningitis, S. suis should be considered, especially if prominent and early visual acuity impairment is present.
Collapse
Affiliation(s)
- Minh-Phu Nguyen
- Department of Eye Trauma, Vietnam National Eye Hospital, Hanoi, Vietnam
| | - Ngan-Ha Nguyen
- Department of Ophthalmology, Hanoi Medical University, Hanoi, Vietnam
- Departments of Medicine and Ophthalmology, Boston University School of Medicine, Boston, Massachusetts; and
| | | | - Chung-May Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taiwan
| |
Collapse
|
4
|
Rayanakorn A, Katip W, Ademi Z, Chan KG. Treatment costs for patients with Streptococcus suis infection in Northern Thailand: a hospital-based observational study of 14-year data. BMC Public Health 2023; 23:737. [PMID: 37085811 PMCID: PMC10120222 DOI: 10.1186/s12889-023-15623-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 04/03/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Streptococcus suis (S.suis) is a neglected zoonotic disease that imposes a significant economic burden on healthcare and society. To our knowledge, studies estimating the cost of illness associated with S.suis treatment are limited, and no study focuses on treatment costs and potential key drivers in Thailand. This study aimed to estimate the direct medical costs associated with S.suis treatment in Thailand and identify key drivers affecting high treatment costs from the provider's perspective. METHODS A retrospective analysis of the 14-year data from 2005-2018 of confirmed S.suis patients admitted at Chiang Mai University Hospital (CMUH) was conducted. Descriptive statistics were used to summarize the data of patients' characteristics, healthcare utilization and costs. The multiple imputation with predictive mean matching strategy was employed to deal with missing Glasgow Coma Scale (GCS) data. Generalized linear models (GLMs) were used to forecast costs model and identify determinants of costs associated with S.suis treatment. The modified Park test was adopted to determine the appropriate family. All costs were inflated applying the consumer price index for medical care and presented to the year 2019. RESULTS Among 130 S.suis patients, the average total direct medical cost was 12,4675 Thai baht (THB) (US$ 4,016), of which the majority of expenses were from the "others" category (room charges, staff services and medical devices). Infective endocarditis (IE), GCS, length of stay, and bicarbonate level were significant predictors associated with high total treatment costs. Overall, marginal increases in IE and length of stay were significantly associated with increases in the total costs (standard error) by 132,443 THB (39,638 THB) and 5,490 THB (1,715 THB), respectively. In contrast, increases in GCS and bicarbonate levels were associated with decreases in the total costs (standard error) by 13,118 THB (5,026 THB) and 7,497 THB (3,430 THB), respectively. CONCLUSIONS IE, GCS, length of stay, and bicarbonate level were significant cost drivers associated with direct medical costs. Patients' clinical status during admission significantly impacts the outcomes and total treatment costs. Early diagnosis and timely treatment were paramount to alleviate long-term complications and high healthcare expenditures.
Collapse
Affiliation(s)
- Ajaree Rayanakorn
- Faculty of Public Health, Chiang Mai University, 239 Huay Kaew Road, Tambon Suthep, Muang District, Chiang Mai, 50200, Thailand.
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Selangor, 47500, Bandar Sunway, Malaysia.
| | - Wasan Katip
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Zanfina Ademi
- Centre for Medicine Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, VIC, 3052, Melbourne, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- International Genome Centre, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
5
|
Chen S, Li R, Wang X, Liu Y, Kou Z, Wang Q. Case report: One human Streptococcus suis occurred in Shandong Province, China. Medicine (Baltimore) 2022; 101:e32414. [PMID: 36595836 PMCID: PMC9794236 DOI: 10.1097/md.0000000000032414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Streptococcus suis (S suis) is a major pathogen of bacterial infectious diseases, which can be transmitted to human beings through close contact with sick pigs or carriers, and can cause toxic shock, meningitis, septicemia, pneumonia, and other complications, with an extremely high mortality and disability rate. S suis is also an emerging zoonotic agent, mainly occurring in China, Thailand, and the Netherlands. This seriously threatens the health and family economy of patients. CASE PRESENTATION A 75-year-old man presented with a 1-day history of fever, vomiting, coughing, chills, and unconsciousness. He was admitted with the diagnosis sepsis and intracranial infection. At admission, hematologic studies showed a leukocyte count of 23.45 × 109/L with 91% neutrophils. Chest computed tomography revealed double pneumonia. Blood cultures grew small colonies, which were identified as S suis. Antibiotic susceptibility testing revealed that the pathogen was susceptible to levofloxacin. And then, treatment with levofloxacin was implemented. Epidemiological investigations showed that the patient had eaten pork from a sick pig. When a patient with bacterial infection has a history of eating pork from sick pigs, human S suis infection should be taken seriously. CONCLUSION Although human S suis infection generally presents as a sporadic disease, its high burden highlights the importance of epidemiological surveillance and health education regarding human S suis infection.
Collapse
Affiliation(s)
- Shuyu Chen
- College of Public Health, Weifang Medical University, Shandong, China
| | - Renpeng Li
- Shandong Center for Disease Control and Prevention, China
| | - Xin Wang
- College of Public Health, Weifang Medical University, Shandong, China
| | - Yuwei Liu
- College of Public Health, Weifang Medical University, Shandong, China
| | - Zengqiang Kou
- Shandong Center for Disease Control and Prevention, China
| | - Qiang Wang
- Department of Epidemiology, Weifang Medical University, Shandong, China
- *Correspondence: Qiang Wang, Department of Epidemiology, Weifang Medical University, No. 7166 Baotong West street, Weifang 261053, Shandong, China (e-mail: ) and Zengqiang Kou, Shandong Center for Disease Control and Prevention, China (e-mail: )
| |
Collapse
|
6
|
Osei EK, Mahony J, Kenny JG. From Farm to Fork: Streptococcus suis as a Model for the Development of Novel Phage-Based Biocontrol Agents. Viruses 2022; 14:1996. [PMID: 36146802 PMCID: PMC9501460 DOI: 10.3390/v14091996] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Bacterial infections of livestock threaten the sustainability of agriculture and public health through production losses and contamination of food products. While prophylactic and therapeutic application of antibiotics has been successful in managing such infections, the evolution and spread of antibiotic-resistant strains along the food chain and in the environment necessitates the development of alternative or adjunct preventive and/or therapeutic strategies. Additionally, the growing consumer preference for "greener" antibiotic-free food products has reinforced the need for novel and safer approaches to controlling bacterial infections. The use of bacteriophages (phages), which can target and kill bacteria, are increasingly considered as a suitable measure to reduce bacterial infections and contamination in the food industry. This review primarily elaborates on the recent veterinary applications of phages and discusses their merits and limitations. Furthermore, using Streptococcus suis as a model, we describe the prevalence of prophages and the anti-viral defence arsenal in the genome of the pathogen as a means to define the genetic building blocks that are available for the (synthetic) development of phage-based treatments. The data and approach described herein may provide a framework for the development of therapeutics against an array of bacterial pathogens.
Collapse
Affiliation(s)
- Emmanuel Kuffour Osei
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
- Food Bioscience, Teagasc Food Research Centre Moorepark, Fermoy, P61 C996 Cork, Ireland
| | - Jennifer Mahony
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - John G. Kenny
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
- Food Bioscience, Teagasc Food Research Centre Moorepark, Fermoy, P61 C996 Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, P61 C996 Cork, Ireland
| |
Collapse
|
7
|
Khantasup K, Tungwongjulaniam C, Theerawat R, Lamaisri T, Piyalikit K, Nuengjamnong C, Nuanualsuwan S. Cross-sectional risk assessment of zoonotic Streptococcus suis in pork and swine blood in Nakhon Sawan Province in northern Thailand. Zoonoses Public Health 2022; 69:625-634. [PMID: 35504855 DOI: 10.1111/zph.12951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/04/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022]
Abstract
A cross-sectional study evaluated the risk of zoonotic Streptococcus suis (S. suis) illness from consuming raw pork and swine blood in Nakhon Sawan Province. A four-step risk assessment recommended by the Codex Alimentarius Commission was used to evaluate the risk along the pork supply chain. A total of 480 pork and swine blood samples were collected from the abattoir (n = 120) and retail (n = 360) during December 2020 and January 2021. Streptococcus suis in samples was enumerated using a culture-based technique and then confirmed by the biochemical and molecular technique. Streptococcus suis was serotyped by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Two positive swine blood samples were contaminated with non-zoonotic S. suis serotype 23 at retail. In the case of all negative samples, the deterministic prevalence becomes zero and then the risk could not be estimated. Otherwise, the beta probability distribution was used to describe the probabilistic prevalence, while the maximum likelihood estimator was applied to estimate the upper limit of a probability distribution of concentration. The district averages of probabilistic prevalences of zoonotic S. suis in pork products at abattoir and retail were 9.9% and 4.1%, respectively. The district averages of concentrations of zoonotic S. suis in pork and blood samples from abattoir were 6.8 × 10-3 cfu/g and 6.83 cfu/ml and in pork and blood samples from retail were 2.3 × 10-3 cfu/g and 2.30 cfu/ml, respectively. The overall annual risk estimate per 100,000 population in pork and swine blood from abattoir and retail were 9.8 × 10-11 , 2.2 × 10-6 , 5.4 × 10-13 , and 8.3 × 10-8 . These risk estimates were negligible (<10-6 ) except for the annual risk estimate in swine blood from the abattoir. The results from this cross-sectional risk assessment should prompt the food safety regulator to cautiously sample by taking into account the duration of sampling and sample size.
Collapse
Affiliation(s)
- Kannika Khantasup
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence for Food and Water Risk Analysis (FAWRA), Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Ratana Theerawat
- Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Taweeshock Lamaisri
- Nakhon Sawan Provincial Livestock Office, Department of Livestock Development, Ministry of Agriculture and Cooperatives, Bangkok, Thailand
| | - Kanjarat Piyalikit
- Nakhon Sawan Provincial Livestock Office, Department of Livestock Development, Ministry of Agriculture and Cooperatives, Bangkok, Thailand
| | - Chackrit Nuengjamnong
- Center of Excellence for Food and Water Risk Analysis (FAWRA), Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Suphachai Nuanualsuwan
- Center of Excellence for Food and Water Risk Analysis (FAWRA), Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
8
|
Kerdsin A, Segura M, Fittipaldi N, Gottschalk M. Sociocultural Factors Influencing Human Streptococcus suis Disease in Southeast Asia. Foods 2022; 11:foods11091190. [PMID: 35563913 PMCID: PMC9102869 DOI: 10.3390/foods11091190] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 12/29/2022] Open
Abstract
The public health systems of Southeast Asian countries are financially challenged by a comparatively higher incidence of human S. suis infections than other geographical areas. Efforts to improve practices in production settings, including improved meat inspection regulations, prevention of the slaughtering of non-healthy pigs, and enhanced hygiene practices at processing facilities, along with improvements in the pork supply chain, all appear promising for reducing food cross-contamination with S. suis. However, opportunities for intervention at the societal level are also needed to effect changes, as population behaviors such as the consumption of raw pork, blood, and offal products are important contributors to the increased incidence of human S. suis disease in Southeast Asia. A plethora of factors are associated with the consumption of these high-risk dishes, including traditional culture and knowledge, shared beliefs, socio-economic level, and personal attitudes associated with gender and/or marital status. Education and intervention in behavioral attitudes that are sensible to cultural practices and traditions may provide additional means to reduce the burden of S. suis human disease in Southeast Asia.
Collapse
Affiliation(s)
- Anusak Kerdsin
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
- Correspondence: ; Tel.: +66-42-725-023
| | - Mariela Segura
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC J2S 2M2, Canada; (M.S.); (N.F.); (M.G.)
| | - Nahuel Fittipaldi
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC J2S 2M2, Canada; (M.S.); (N.F.); (M.G.)
| | - Marcelo Gottschalk
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC J2S 2M2, Canada; (M.S.); (N.F.); (M.G.)
| |
Collapse
|
9
|
Guo Y, Ryan U, Feng Y, Xiao L. Association of Common Zoonotic Pathogens With Concentrated Animal Feeding Operations. Front Microbiol 2022; 12:810142. [PMID: 35082774 PMCID: PMC8784678 DOI: 10.3389/fmicb.2021.810142] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Animal farming has intensified significantly in recent decades, with the emergence of concentrated animal feeding operations (CAFOs) in industrialized nations. The congregation of susceptible animals in CAFOs can lead to heavy environmental contamination with pathogens, promoting the emergence of hyper-transmissible, and virulent pathogens. As a result, CAFOs have been associated with emergence of highly pathogenic avian influenza viruses, hepatitis E virus, Escherichia coli O157:H7, Streptococcus suis, livestock-associated methicillin-resistant Staphylococcus aureus, and Cryptosporidium parvum in farm animals. This has led to increased transmission of zoonotic pathogens in humans and changes in disease patterns in general communities. They are exemplified by the common occurrence of outbreaks of illnesses through direct and indirect contact with farm animals, and wide occurrence of similar serotypes or subtypes in both humans and farm animals in industrialized nations. Therefore, control measures should be developed to slow down the dispersal of zoonotic pathogens associated with CAFOs and prevent the emergence of new pathogens of epidemic and pandemic potential.
Collapse
Affiliation(s)
- Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Una Ryan
- Vector- and Water-Borne Pathogen Research Group, Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
10
|
McKenna S, Huse KK, Giblin S, Pearson M, Majid Al Shibar MS, Sriskandan S, Matthews S, Pease JE. The Role of Streptococcal Cell-Envelope Proteases in Bacterial Evasion of the Innate Immune System. J Innate Immun 2021; 14:69-88. [PMID: 34649250 PMCID: PMC9082167 DOI: 10.1159/000516956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/19/2021] [Indexed: 11/19/2022] Open
Abstract
Bacteria possess the ability to evolve varied and ingenious strategies to outwit the host immune system, instigating an evolutionary arms race. Proteases are amongst the many weapons employed by bacteria, which specifically cleave and neutralize key signalling molecules required for a coordinated immune response. In this article, we focus on a family of S8 subtilisin-like serine proteases expressed as cell-envelope proteases (CEPs) by group A and group B streptococci. Two of these proteases known as Streptococcus pyogenes CEP (SpyCEP) and C5a peptidase cleave the chemokine CXCL8 and the complement fragment C5a, respectively. Both CXCL8 and C5a are potent neutrophil-recruiting chemokines, and by neutralizing their activity, streptococci evade a key defence mechanism of innate immunity. We review the mechanisms by which CXCL8 and C5a recruit neutrophils and the characterization of SpyCEP and C5a peptidase, including both in vitro and in vivo studies. Recently described structural insights into the function of this CEP family are also discussed. We conclude by examining the progress of prototypic vaccines incorporating SpyCEP and C5a peptidase in their preparation. Since streptococci-producing SpyCEP and C5a peptidase are responsible for a considerable global disease burden, targeting these proteases by vaccination strategies or by small-molecule antagonists should provide protection from and promote the resolution of streptococcal infections.
Collapse
Affiliation(s)
- Sophie McKenna
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Kristin Krohn Huse
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Sean Giblin
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Max Pearson
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | | | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Stephen Matthews
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - James Edward Pease
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Neila-Ibáñez C, Casal J, Hennig-Pauka I, Stockhofe-Zurwieden N, Gottschalk M, Migura-García L, Pailler-García L, Napp S. Stochastic Assessment of the Economic Impact of Streptococcus suis-Associated Disease in German, Dutch and Spanish Swine Farms. Front Vet Sci 2021; 8:676002. [PMID: 34490389 PMCID: PMC8417327 DOI: 10.3389/fvets.2021.676002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/27/2021] [Indexed: 01/15/2023] Open
Abstract
The economic assessment of animal diseases is essential for decision-making, including the allocation of resources for disease control. However, that assessment is usually hampered by the lack of reliable data on disease incidence, or treatment and control measures, and that is particularly true for swine production diseases, such as infections caused by Streptococcus suis. Therefore, we deployed a questionnaire survey of clinical swine veterinarians to obtain the input data needed for a stochastic model to calculate the costs caused by S. suis, which was implemented in three of the main swine producing countries in Europe: Germany, the Netherlands and Spain. S. suis-associated disease is endemic in those countries in all production phases, though nursery was the phase most severely impacted. In affected nursery units, between 3.3 and 4.0% of pigs had S. suis-associated disease and the mortalities ranged from 0.5 to 0.9%. In Germany, the average cost of S. suis per pig (summed across all production phases) was 1.30 euros (90% CI: 0.53-2.28), in the Netherlands 0.96 euros (90% CI: 0.27-1.54), and in Spain 0.60 euros (90% CI: 0.29-0.96). In Germany, that cost was essentially influenced by the expenditure in early metaphylaxis in nursery and in autogenous vaccines in sows and nursery pigs; in the Netherlands, by expenditure on autogenous vaccines in sows and nursery pigs; and in Spain, by the expenditures in early metaphylaxis and to a lesser extent by the mortality in nursery pigs. Therefore, the differences in costs between countries can be explained to a great extent by the measures to control S. suis implemented in each country. In Spain and in Germany, use of antimicrobials, predominantly beta-lactams, is still crucial for the control of the disease.
Collapse
Affiliation(s)
- Carlos Neila-Ibáñez
- Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,Office International des Epizooties Collaborating Centre for the Research and Control of Emerging and Re-emerging Diseases in Europe, Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Bellaterra, Spain
| | - Jordi Casal
- Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,Office International des Epizooties Collaborating Centre for the Research and Control of Emerging and Re-emerging Diseases in Europe, Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Bellaterra, Spain.,Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Isabel Hennig-Pauka
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | | | - Marcelo Gottschalk
- Research Group on Infectious Diseases in Production Animals and Swine and Poultry Infectious Diseases Research Centre, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Lourdes Migura-García
- Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,Office International des Epizooties Collaborating Centre for the Research and Control of Emerging and Re-emerging Diseases in Europe, Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Bellaterra, Spain
| | - Lola Pailler-García
- Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,Office International des Epizooties Collaborating Centre for the Research and Control of Emerging and Re-emerging Diseases in Europe, Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Bellaterra, Spain
| | - Sebastián Napp
- Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,Office International des Epizooties Collaborating Centre for the Research and Control of Emerging and Re-emerging Diseases in Europe, Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Bellaterra, Spain
| |
Collapse
|
12
|
Burden of disease and productivity impact of Streptococcus suis infection in Thailand. PLoS Negl Trop Dis 2021; 15:e0008985. [PMID: 33481785 PMCID: PMC7857555 DOI: 10.1371/journal.pntd.0008985] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 02/03/2021] [Accepted: 11/12/2020] [Indexed: 01/03/2023] Open
Abstract
Background Streptoccocus suis (S.suis) infection is a neglected zoonosis disease in humans mainly affects men of working age. We estimated the health and economic burden of S.suis infection in Thailand in terms of years of life lost, quality-adjusted life years (QALYs) lost, and productivity-adjusted life years (PALYs) lost which is a novel measure that adjusts years of life lived for productivity loss attributable to disease. Methods A decision-analytic Markov model was developed to simulate the impact of S. suis infection and its major complications: death, meningitis and infective endocarditis among Thai people in 2019 with starting age of 51 years. Transition probabilities, and inputs pertaining to costs, utilities and productivity impairment associated with long-term complications were derived from published sources. A lifetime time horizon with follow-up until death or age 100 years was adopted. The simulation was repeated assuming that the cohort had not been infected with S.suis. The differences between the two set of model outputs in years of life, QALYs, and PALYs lived reflected the impact of S.suis infection. An annual discount rate of 3% was applied to both costs and outcomes. One-way sensitivity analyses and Monte Carlo simulation modeling technique using 10,000 iterations were performed to assess the impact of uncertainty in the model. Key results This cohort incurred 769 (95% uncertainty interval [UI]: 695 to 841) years of life lost (14% of predicted years of life lived if infection had not occurred), 826 (95% UI: 588 to 1,098) QALYs lost (21%) and 793 (95%UI: 717 to 867) PALYs (15%) lost. These equated to an average of 2.46 years of life, 2.64 QALYs and 2.54 PALYs lost per person. The loss in PALYs was associated with a loss of 346 (95% UI: 240 to 461) million Thai baht (US$11.3 million) in GDP, which equated to 1.1 million Thai baht (US$ 36,033) lost per person. Conclusions S.suis infection imposes a significant economic burden both in terms of health and productivity. Further research to investigate the effectiveness of public health awareness programs and disease control interventions should be mandated to provide a clearer picture for decision making in public health strategies and resource allocations. Streptoccocus suis (S.suis) infection is a potentially lethal zoonotic disease in humans. In the present study, we sought to estimate the impact of the disease in Thailand in terms of years of life lost, quality-adjusted life years (QALYs) lost, and productivity-adjusted life years (PALYs) lost. A decision-analytic Markov model was developed to simulate the impact of S.suis infection and its major complications among Thai people. In 2019, it was estimated that the infection incurred 769 years of life lost (14% of predicted years of life lived if infection had not occurred), 826 QALYs lost (21%) and 793 PALYs (15%) lost. These equated to an average of 2.5 years of life, 2.6 QALYs and 2.5 PALYs lost per person. The loss in PALYs was associated with a loss of 346 million Thai baht (US$11.3 million) in GDP, which equated to 1.1 million Thai baht (US$ 36,033) lost per person. The findings call for increased public health awareness and comprehensive efforts to control and prevent the disease.
Collapse
|
13
|
Ni H, Li M, Wang Q, Wang J, Liu X, Zheng F, Hu D, Yu X, Han Y, Zhang Q, Zhou T, Wang Y, Wang C, Gao J, Shao ZQ, Pan X. Inactivation of the htpsA gene affects capsule development and pathogenicity of Streptococcus suis. Virulence 2020; 11:927-940. [PMID: 32815473 PMCID: PMC7567435 DOI: 10.1080/21505594.2020.1792080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Streptococcus suis serotype 2 (S. suis 2) is an important swine pathogen and also an emerging zoonotic agent. HtpsA has been reported as an immunogenic cell surface protein on the bacterium. In the present study, we constructed an isogenic mutant strain of htpsA, namely ΔhtpsA, to study its role in the development and virulence of S. suis 2. Our results showed that the mutant strain lost its typical encapsulated structure with decreased concentrations of sialic acid. Furthermore, the survival rate in whole blood, the anti-phagocytosis by RAW264.7 murine macrophage, and the adherence ability to HEp-2 cells were all significantly affected in the ΔhtpsA. In addition, the deletion of htpsA sharply attenuated the virulence of S. suis 2 in an infection model of mouse. RNA-seq analysis revealed that 126 genes were differentially expressed between the ΔhtpsA and the wild-type strains, including 28 upregulated and 98 downregulated genes. Among the downregulated genes, many were involved in carbohydrate metabolism and synthesis of virulence-associated factors. Taken together, htpsA was demonstrated to play a role in the morphological development and pathogenesis of the highly virulent S. suis 2 05ZYH33 strain.
Collapse
Affiliation(s)
- Hua Ni
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China.,Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, College of Life and Geographic Sciences, Kashi University , Kashi, China
| | - Min Li
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China.,Clinical Laboratory Department of Changzhi, People's Hospital , Changzhi, China
| | - Qiaoqiao Wang
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China.,School of Life Sciences, Nanjing Normal University , Nanjing, China
| | - Jing Wang
- Department of Laboratory Medicine, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University , Wuxi, China
| | - Xumiao Liu
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China.,School of Life Sciences, Nanjing Normal University , Nanjing, China
| | - Feng Zheng
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China
| | - Dan Hu
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China
| | - Xu Yu
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China
| | - Yifang Han
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China
| | - Qi Zhang
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China
| | - Tingting Zhou
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China
| | - Yiwen Wang
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China
| | - Chunhui Wang
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China
| | - Jimin Gao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University , Wenzhou, China
| | - Zhu-Qing Shao
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University , Nanjing, China
| | - Xiuzhen Pan
- Department of Microbiology, Hua Dong Research Institute for Medicine and Biotechnics , Nanjing, China.,School of Life Sciences, Nanjing Normal University , Nanjing, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University , Wenzhou, China
| |
Collapse
|
14
|
Segura M, Aragon V, Brockmeier SL, Gebhart C, de Greeff A, Kerdsin A, O’Dea MA, Okura M, Saléry M, Schultsz C, Valentin-Weigand P, Weinert LA, Wells JM, Gottschalk M. Update on Streptococcus suis Research and Prevention in the Era of Antimicrobial Restriction: 4th International Workshop on S. suis. Pathogens 2020; 9:pathogens9050374. [PMID: 32422856 PMCID: PMC7281350 DOI: 10.3390/pathogens9050374] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/16/2022] Open
Abstract
Streptococcus suis is a swine pathogen and a zoonotic agent afflicting people in close contact with infected pigs or pork meat. Sporadic cases of human infections have been reported worldwide. In addition, S. suis outbreaks emerged in Asia, making this bacterium a primary health concern in this part of the globe. In pigs, S. suis disease results in decreased performance and increased mortality, which have a significant economic impact on swine production worldwide. Facing the new regulations in preventive use of antimicrobials in livestock and lack of effective vaccines, control of S. suis infections is worrisome. Increasing and sharing of knowledge on this pathogen is of utmost importance. As such, the pathogenesis and epidemiology of the infection, antimicrobial resistance, progress on diagnosis, prevention, and control were among the topics discussed during the 4th International Workshop on Streptococcus suis (held in Montreal, Canada, June 2019). This review gathers together recent findings on this important pathogen from lectures performed by lead researchers from several countries including Australia, Canada, France, Germany, Japan, Spain, Thailand, The Netherlands, UK, and USA. Finally, policies and recommendations for the manufacture, quality control, and use of inactivated autogenous vaccines are addressed to advance this important field in veterinary medicine.
Collapse
Affiliation(s)
- Mariela Segura
- Research Group on Infectious Diseases in Production Animals and Swine and Poultry Infectious Diseases Research Centre, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC J2S 2M2, Canada
- Correspondence: (M.S.); (M.G.); Tel.: +1-450-773-8521 (ext. 0080) (M.S.); +1-450-773-8521 (ext. 8374) (M.G.)
| | - Virginia Aragon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| | | | - Connie Gebhart
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Astrid de Greeff
- Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands;
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand;
| | - Mark A O’Dea
- Antimicrobial Resistance and Infectious Disease Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia 6150, Australia;
| | - Masatoshi Okura
- Division of Bacterial and Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan;
| | - Mariette Saléry
- French Agency for Veterinary Medicinal Products-French Agency for food, Environmental and Occupational Health Safety (Anses-ANMV), 35302 Fougères, France;
| | - Constance Schultsz
- Department of Global Health-Amsterdam Institute for Global Health and Development and Department of Medical Microbiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 BP Amsterdam, The Netherlands;
| | | | - Lucy A. Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK;
| | - Jerry M. Wells
- Host-Microbe Interactomics Group, Department Animal Sciences, Wageningen University and Research, 6709 PG Wageningen, The Netherlands;
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Marcelo Gottschalk
- Research Group on Infectious Diseases in Production Animals and Swine and Poultry Infectious Diseases Research Centre, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC J2S 2M2, Canada
- Correspondence: (M.S.); (M.G.); Tel.: +1-450-773-8521 (ext. 0080) (M.S.); +1-450-773-8521 (ext. 8374) (M.G.)
| |
Collapse
|