1
|
Mishra AK, Sudalaimuthuasari N, Hazzouri KM, Saeed EE, Shah I, Amiri KMA. Tapping into Plant-Microbiome Interactions through the Lens of Multi-Omics Techniques. Cells 2022; 11:3254. [PMID: 36291121 PMCID: PMC9600287 DOI: 10.3390/cells11203254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 10/21/2023] Open
Abstract
This review highlights the pivotal role of root exudates in the rhizosphere, especially the interactions between plants and microbes and between plants and plants. Root exudates determine soil nutrient mobilization, plant nutritional status, and the communication of plant roots with microbes. Root exudates contain diverse specialized signaling metabolites (primary and secondary). The spatial behavior of these metabolites around the root zone strongly influences rhizosphere microorganisms through an intimate compatible interaction, thereby regulating complex biological and ecological mechanisms. In this context, we reviewed the current understanding of the biological phenomenon of allelopathy, which is mediated by phytotoxic compounds (called allelochemicals) released by plants into the soil that affect the growth, survival, development, ecological infestation, and intensification of other plant species and microbes in natural communities or agricultural systems. Advances in next-generation sequencing (NGS), such as metagenomics and metatranscriptomics, have opened the possibility of better understanding the effects of secreted metabolites on the composition and activity of root-associated microbial communities. Nevertheless, understanding the role of secretory metabolites in microbiome manipulation can assist in designing next-generation microbial inoculants for targeted disease mitigation and improved plant growth using the synthetic microbial communities (SynComs) tool. Besides a discussion on different approaches, we highlighted the advantages of conjugation of metabolomic approaches with genetic design (metabolite-based genome-wide association studies) in dissecting metabolome diversity and understanding the genetic components of metabolite accumulation. Recent advances in the field of metabolomics have expedited comprehensive and rapid profiling and discovery of novel bioactive compounds in root exudates. In this context, we discussed the expanding array of metabolomics platforms for metabolome profiling and their integration with multivariate data analysis, which is crucial to explore the biosynthesis pathway, as well as the regulation of associated pathways at the gene, transcript, and protein levels, and finally their role in determining and shaping the rhizomicrobiome.
Collapse
Affiliation(s)
- Ajay Kumar Mishra
- Khalifa Centre for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Naganeeswaran Sudalaimuthuasari
- Khalifa Centre for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Khaled M. Hazzouri
- Khalifa Centre for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Esam Eldin Saeed
- Khalifa Centre for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Iltaf Shah
- Department of Chemistry (Biochemistry), College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Khaled M. A. Amiri
- Khalifa Centre for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
2
|
Dodueva IE, Lebedeva MA, Lutova LA. Phytopathogens and Molecular Mimicry. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422060035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Palberg D, Kisiała A, Jorge GL, Emery RJN. A survey of Methylobacterium species and strains reveals widespread production and varying profiles of cytokinin phytohormones. BMC Microbiol 2022; 22:49. [PMID: 35135483 PMCID: PMC8822675 DOI: 10.1186/s12866-022-02454-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/21/2022] [Indexed: 12/02/2022] Open
Abstract
Background Symbiotic Methylobacterium strains comprise a significant part of plant microbiomes. Their presence enhances plant productivity and stress resistance, prompting classification of these strains as plant growth-promoting bacteria (PGPB). Methylobacteria can synthesize unusually high levels of plant hormones, called cytokinins (CKs), including the most active form, trans-Zeatin (tZ). Results This study provides a comprehensive inventory of 46 representatives of Methylobacterium genus with respect to phytohormone production in vitro, including 16 CK forms, abscisic acid (ABA) and indole-3-acetic acid (IAA). High performance-liquid chromatography—tandem mass spectrometry (HPLC–MS/MS) analyses revealed varying abilities of Methylobacterium strains to secrete phytohormones that ranged from 5.09 to 191.47 pmol mL−1 for total CKs, and 0.46 to 82.16 pmol mL−1 for tZ. Results indicate that reduced methanol availability, the sole carbon source for bacteria in the medium, stimulates CK secretion by Methylobacterium. Additionally, select strains were able to transform L-tryptophan into IAA while no ABA production was detected. Conclusions To better understand features of CKs in plants, this study uncovers CK profiles of Methylobacterium that are instrumental in microbe selection for effective biofertilizer formulations. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02454-9.
Collapse
Affiliation(s)
- Daniel Palberg
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| | - Anna Kisiała
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada.
| | - Gabriel Lemes Jorge
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada.,Department of Technology, Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | - R J Neil Emery
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| |
Collapse
|
4
|
Dabravolski SA, Isayenkov SV. Evolution of the Cytokinin Dehydrogenase (CKX) Domain. J Mol Evol 2021; 89:665-677. [PMID: 34757471 DOI: 10.1007/s00239-021-10035-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/30/2021] [Indexed: 01/05/2023]
Abstract
Plant hormone cytokinins are important regulators of plant development, response to environmental stresses and interplay with other plant hormones. Cytokinin dehydrogenases (CKXs) are proteins responsible for the irreversible break-down of cytokinins to the adenine and aldehyde. Even though plant CKXs have been extensively studied, homologous proteins from other taxa remain mainly uncharacterised. Here we present our study on the molecular evolution and divergence of the CKX from bacteria, fungi, amoeba and viridiplantae. Although CKXs are present in eukaryotes and prokaryotes, they are missing in algae and metazoan taxa. The prevalent domain architecture consists of the FAD-binding and cytokinin binding domains, whereas some bacteria appear to have only cytokinin binding domain proteins. The CKXs play important role in the various aspects of plant life including control of plant development, response to biotic and abiotic stress, influence nutrition. Results of our study suggested that CKX originates from the FAD-linked C-terminal oxidase and has a defence-oriented function. The obtained results significantly extend the current understanding of the cytokinin dehydrogenases structure-function from the relationship to homologues from other taxa and provide a starting point baseline for their future functional characterization.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], Dovatora str. 7/11, 21002, Vitebsk, Belarus
| | - Stanislav V Isayenkov
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China.
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics, NAS of Ukraine, Osipovskogo str., 2a, Kyiv-123, Kyiv, 04123, Ukraine.
| |
Collapse
|
5
|
Dodueva I, Lebedeva M, Lutova L. Dialog between Kingdoms: Enemies, Allies and Peptide Phytohormones. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112243. [PMID: 34834606 PMCID: PMC8618561 DOI: 10.3390/plants10112243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 05/14/2023]
Abstract
Various plant hormones can integrate developmental and environmental responses, acting in a complex network, which allows plants to adjust their developmental processes to changing environments. In particular, plant peptide hormones regulate various aspects of plant growth and development as well as the response to environmental stress and the interaction of plants with their pathogens and symbionts. Various plant-interacting organisms, e.g., bacterial and fungal pathogens, plant-parasitic nematodes, as well as symbiotic and plant-beneficial bacteria and fungi, are able to manipulate phytohormonal level and/or signaling in the host plant in order to overcome plant immunity and to create the habitat and food source inside the plant body. The most striking example of such phytohormonal mimicry is the ability of certain plant pathogens and symbionts to produce peptide phytohormones of different classes. To date, in the genomes of plant-interacting bacteria, fungi, and nematodes, the genes encoding effectors which mimic seven classes of peptide phytohormones have been found. For some of these effectors, the interaction with plant receptors for peptide hormones and the effect on plant development and defense have been demonstrated. In this review, we focus on the currently described classes of peptide phytohormones found among the representatives of other kingdoms, as well as mechanisms of their action and possible evolutional origin.
Collapse
|
6
|
Nguyen HN, Nguyen TQ, Kisiala AB, Emery RJN. Beyond transport: cytokinin ribosides are translocated and active in regulating the development and environmental responses of plants. PLANTA 2021; 254:45. [PMID: 34365553 DOI: 10.1007/s00425-021-03693-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Riboside type cytokinins are key components in cytokinin metabolism, transport, and sensitivity, making them important functional signals in plant growth and development and environmental stress responses. Cytokinin (CKs) are phytohormones that regulate multiple processes in plants and are critical for agronomy, as they are involved in seed filling and plant responses to biotic and abiotic stress. Among the over 30 identified CKs, there is uncertainty about the roles of many of the individual CK structural forms. Cytokinin free bases (CKFBs), have been studied in great detail, but, by comparison, roles of riboside-type CKs (CKRs) in CK metabolism and associated signaling pathways and their distal impacts on plant physiology remain largely unknown. Here, recent findings on CKR abundance, transport and localization, are summarized, and their importance in planta is discussed. The history of CKR analyses is reviewed, in the context of the determination of CK metabolic pathways, and research on CKR affinity for CK receptors, all of which yield essential insights into their functions. Recent studies suggest that CKR forms are a lot more than a group of transport CKs and, beyond this, they play important roles in plant development and responses to environmental stress. In this context, this review discusses the involvement of CKRs in plant development, and highlight the less anticipated functions of CKRs in abiotic stress tolerance. Based on this, possible mechanisms for CKR modes of action are proposed and experimental approaches to further uncover their roles and future biotechnological applications are suggested.
Collapse
Affiliation(s)
- Hai Ngoc Nguyen
- Department of Biology, Trent University, Peterborough, ON, K9L 0G2, Canada.
| | - Thien Quoc Nguyen
- Department of Biology, Trent University, Peterborough, ON, K9L 0G2, Canada
| | - Anna B Kisiala
- Department of Biology, Trent University, Peterborough, ON, K9L 0G2, Canada
| | - R J Neil Emery
- Department of Biology, Trent University, Peterborough, ON, K9L 0G2, Canada
| |
Collapse
|
7
|
Aremu AO, Plačková L, Egbewale SO, Doležal K, Magadlela A. Soil nutrient status of KwaZulu-Natal savanna and grassland biomes causes variation in cytokinin functional groups and their levels in above-ground and underground parts of three legumes. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1337-1351. [PMID: 34220044 PMCID: PMC8212235 DOI: 10.1007/s12298-021-01021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/30/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Cytokinins (CKs) are involved in several developmental stages in the life-cycle of plants. The CK content in plants and their respective organs are susceptible to changes under different environmental conditions. In the current study, we profiled the CK content in the above and underground organs of three legumes (Lessertia frutescens, Mucuna pruriens and Pisum sativum) grown in soils collected from four locations (Ashburton, Bergville, Hluhluwe and Izingolweni) in KwaZulu-Natal province, South Africa. The quantified CK contents in the three legumes were categorized on the basis of their side chains (isoprenoid, aromatic and furfural) and modifications (e.g. free bases and glucosides). Legume and soil types as well as their interaction significantly influenced the concentrations of CKs. Lessertia frutescens, Mucuna pruriens and Pisum sativum had CK content that ranged from 124-653, 170-670 and 69-595 pmol/g DW, respectively. Substantial quantity (> 600 pmol/g DW) of CK were observed in plants grown in Bergville (above-ground part of Lessertia frutescens) and Izingolweni (underground part of Mucuna pruriens) soils. A total of 28 CK derivatives observed in the legumes comprised of isoprenoid (22), aromatic (5) and furfural (1) side-chain CKs. However, the 16 CK derivatives in Mucuna pruriens were isoprenoid-type based on the side-chain. Generally, a higher ratio of cis-zeatin (cZ) relative to the trans-zeatin (tZ) was evident in the above-ground part of Lessertia frutescens and Pisum sativum for the four soil treatments. In terms of functional and physiological importance of the CKs, the free bases (active form) and ribosides (translocation form) were the most abundant CK in Lessertia frutescens and Pisum sativum. However, N-glucoside, a deactivation/detoxicification product was the most dominant CK in Mucuna pruriens from Hluhluwe and Izingolweni soils. The total CKs in the underground parts of the legumes had a positive significant correlation with the total phosphorus and nitrogen content in the plant as well as the soil nitrogen. Overall, the CK profiles of the legumes were strongly influenced by the soil types. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01021-2.
Collapse
Affiliation(s)
- Adeyemi Oladapo Aremu
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, 4000 South Africa
- Indigenous Knowledge Systems (IKS) Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2790 South Africa
| | - Lenka Plačková
- Department of Chemical Biology, Faculty of Science, Palacký University, Slechtitelu 27, 783 71 Olomouc-Holice, Czech Republic
| | - Samson Olufemi Egbewale
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, 4000 South Africa
| | - Karel Doležal
- Department of Chemical Biology, Faculty of Science, Palacký University, Slechtitelu 27, 783 71 Olomouc-Holice, Czech Republic
| | - Anathi Magadlela
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, 4000 South Africa
| |
Collapse
|
8
|
Imran A, Hakim S, Tariq M, Nawaz MS, Laraib I, Gulzar U, Hanif MK, Siddique MJ, Hayat M, Fraz A, Ahmad M. Diazotrophs for Lowering Nitrogen Pollution Crises: Looking Deep Into the Roots. Front Microbiol 2021; 12:637815. [PMID: 34108945 PMCID: PMC8180554 DOI: 10.3389/fmicb.2021.637815] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
During and after the green revolution in the last century, agrochemicals especially nitrogen (N) were extensively used. However, it resulted in a remarkable increase in crop yield but drastically reduced soil fertility; increased the production cost, food prices, and carbon footprints; and depleted the fossil reserves with huge penalties to the environment and ecological sustainability. The groundwater, rivers, and oceans are loaded with N excess which is an environmental catastrophe. Nitrogen emissions (e.g., ammonia, nitrogen oxide, nitrous oxide) play an important role in global climate change and contribute to particulate matter and acid rain causing respiratory problems, cancers, and damage to forests and buildings. Therefore, the nitrogen-polluted planet Earth needs concerted global efforts to avoid the disaster. Improved agricultural N management focuses on the synchronization of crop N demand and N supply along with improving the N-use efficiency of the crops. However, there is very little focus on the natural sources of N available for plants in the form of diazotrophic bacteria present inside or on the root surface and the rhizosphere. These diazotrophs are the mini-nitrogen factories that convert available (78%) atmospheric N2 to ammonia through a process known as "biological nitrogen fixation" which is then taken up by the plants for its metabolic functioning. Diazotrophs also stimulate root architecture by producing plant hormones and hence improve the plant's overall ability to uptake nutrients and water. In recent years, nanotechnology has revolutionized the whole agri-industry by introducing nano-fertilizers and coated/slow-releasing fertilizers. With this in mind, we tried to explore the following questions: To what extent can the crop N requirements be met by diazotroph inoculation? Can N input to agriculture be managed in a way leading to environmental benefits and farmers saving money? Can nanotechnology help in technological advancement of diazotroph application? The review suggests that an integrated technology based on slow-releasing nano-fertilizer combined with diazotrophs should be adopted to decrease nitrogen inputs to the agricultural system. This integrated technology would minimize N pollution and N losses to much extent.
Collapse
Affiliation(s)
- Asma Imran
- Division of Soil and Environmental Biotechnology, National Institute for Biotechnology and Genetic Engineering-Campus-Pakistan Institute of Engineering and Applied Sciences (NIBGE-C-PIEAS), Faisalabad, Pakistan
| | - Sughra Hakim
- Division of Soil and Environmental Biotechnology, National Institute for Biotechnology and Genetic Engineering-Campus-Pakistan Institute of Engineering and Applied Sciences (NIBGE-C-PIEAS), Faisalabad, Pakistan
| | - Mohsin Tariq
- Division of Soil and Environmental Biotechnology, National Institute for Biotechnology and Genetic Engineering-Campus-Pakistan Institute of Engineering and Applied Sciences (NIBGE-C-PIEAS), Faisalabad, Pakistan
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Muhammad Shoib Nawaz
- Division of Soil and Environmental Biotechnology, National Institute for Biotechnology and Genetic Engineering-Campus-Pakistan Institute of Engineering and Applied Sciences (NIBGE-C-PIEAS), Faisalabad, Pakistan
| | - Iqra Laraib
- Division of Soil and Environmental Biotechnology, National Institute for Biotechnology and Genetic Engineering-Campus-Pakistan Institute of Engineering and Applied Sciences (NIBGE-C-PIEAS), Faisalabad, Pakistan
| | - Umaira Gulzar
- Division of Soil and Environmental Biotechnology, National Institute for Biotechnology and Genetic Engineering-Campus-Pakistan Institute of Engineering and Applied Sciences (NIBGE-C-PIEAS), Faisalabad, Pakistan
- Department of Botany, University of Bagh, Kotli, Pakistan
| | - Muhammad Kashif Hanif
- Division of Soil and Environmental Biotechnology, National Institute for Biotechnology and Genetic Engineering-Campus-Pakistan Institute of Engineering and Applied Sciences (NIBGE-C-PIEAS), Faisalabad, Pakistan
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, University of Lahore, Sargodha, Pakistan
| | - Muhammad Jawad Siddique
- Division of Soil and Environmental Biotechnology, National Institute for Biotechnology and Genetic Engineering-Campus-Pakistan Institute of Engineering and Applied Sciences (NIBGE-C-PIEAS), Faisalabad, Pakistan
| | - Mahnoor Hayat
- Division of Soil and Environmental Biotechnology, National Institute for Biotechnology and Genetic Engineering-Campus-Pakistan Institute of Engineering and Applied Sciences (NIBGE-C-PIEAS), Faisalabad, Pakistan
| | - Ahmad Fraz
- Division of Soil and Environmental Biotechnology, National Institute for Biotechnology and Genetic Engineering-Campus-Pakistan Institute of Engineering and Applied Sciences (NIBGE-C-PIEAS), Faisalabad, Pakistan
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Muhammad Ahmad
- Division of Soil and Environmental Biotechnology, National Institute for Biotechnology and Genetic Engineering-Campus-Pakistan Institute of Engineering and Applied Sciences (NIBGE-C-PIEAS), Faisalabad, Pakistan
| |
Collapse
|
9
|
Eichmann R, Richards L, Schäfer P. Hormones as go-betweens in plant microbiome assembly. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:518-541. [PMID: 33332645 PMCID: PMC8629125 DOI: 10.1111/tpj.15135] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 05/04/2023]
Abstract
The interaction of plants with complex microbial communities is the result of co-evolution over millions of years and contributed to plant transition and adaptation to land. The ability of plants to be an essential part of complex and highly dynamic ecosystems is dependent on their interaction with diverse microbial communities. Plant microbiota can support, and even enable, the diverse functions of plants and are crucial in sustaining plant fitness under often rapidly changing environments. The composition and diversity of microbiota differs between plant and soil compartments. It indicates that microbial communities in these compartments are not static but are adjusted by the environment as well as inter-microbial and plant-microbe communication. Hormones take a crucial role in contributing to the assembly of plant microbiomes, and plants and microbes often employ the same hormones with completely different intentions. Here, the function of hormones as go-betweens between plants and microbes to influence the shape of plant microbial communities is discussed. The versatility of plant and microbe-derived hormones essentially contributes to the creation of habitats that are the origin of diversity and, thus, multifunctionality of plants, their microbiota and ultimately ecosystems.
Collapse
Affiliation(s)
- Ruth Eichmann
- Institute of Molecular BotanyUlm UniversityUlm89069Germany
| | - Luke Richards
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUK
| | - Patrick Schäfer
- Institute of Molecular BotanyUlm UniversityUlm89069Germany
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
10
|
Swarnalakshmi K, Yadav V, Tyagi D, Dhar DW, Kannepalli A, Kumar S. Significance of Plant Growth Promoting Rhizobacteria in Grain Legumes: Growth Promotion and Crop Production. PLANTS 2020; 9:plants9111596. [PMID: 33213067 PMCID: PMC7698556 DOI: 10.3390/plants9111596] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 02/01/2023]
Abstract
Grain legumes are an important component of sustainable agri-food systems. They establish symbiotic association with rhizobia and arbuscular mycorrhizal fungi, thus reducing the use of chemical fertilizers. Several other free-living microbial communities (PGPR—plant growth promoting rhizobacteria) residing in the soil-root interface are also known to influence biogeochemical cycles and improve legume productivity. The growth and function of these microorganisms are affected by root exudate molecules secreted in the rhizosphere region. PGPRs produce the chemicals which stimulate growth and functions of leguminous crops at different growth stages. They promote plant growth by nitrogen fixation, solubilization as well as mineralization of phosphorus, and production of phytohormone(s). The co-inoculation of PGPRs along with rhizobia has shown to enhance nodulation and symbiotic interaction. The recent molecular tools are helpful to understand and predict the establishment and function of PGPRs and plant response. In this review, we provide an overview of various growth promoting mechanisms of PGPR inoculations in the production of leguminous crops.
Collapse
Affiliation(s)
| | - Vandana Yadav
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Deepti Tyagi
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Dolly Wattal Dhar
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Annapurna Kannepalli
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Shiv Kumar
- International Centre for Agricultural Research in the Dry Areas (ICARDA), Rabat 10112, Morocco
| |
Collapse
|
11
|
Dolgikh EA, Kusakin PG, Kitaeva AB, Tsyganova AV, Kirienko AN, Leppyanen IV, Dolgikh AV, Ilina EL, Demchenko KN, Tikhonovich IA, Tsyganov VE. Mutational analysis indicates that abnormalities in rhizobial infection and subsequent plant cell and bacteroid differentiation in pea (Pisum sativum) nodules coincide with abnormal cytokinin responses and localization. ANNALS OF BOTANY 2020; 125:905-923. [PMID: 32198503 PMCID: PMC7218816 DOI: 10.1093/aob/mcaa022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/26/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND AND AIMS Recent findings indicate that Nod factor signalling is tightly interconnected with phytohormonal regulation that affects the development of nodules. Since the mechanisms of this interaction are still far from understood, here the distribution of cytokinin and auxin in pea (Pisum sativum) nodules was investigated. In addition, the effect of certain mutations blocking rhizobial infection and subsequent plant cell and bacteroid differentiation on cytokinin distribution in nodules was analysed. METHODS Patterns of cytokinin and auxin in pea nodules were profiled using both responsive genetic constructs and antibodies. KEY RESULTS In wild-type nodules, cytokinins were found in the meristem, infection zone and apical part of the nitrogen fixation zone, whereas auxin localization was restricted to the meristem and peripheral tissues. We found significantly altered cytokinin distribution in sym33 and sym40 pea mutants defective in IPD3/CYCLOPS and EFD transcription factors, respectively. In the sym33 mutants impaired in bacterial accommodation and subsequent nodule differentiation, cytokinin localization was mostly limited to the meristem. In addition, we found significantly decreased expression of LOG1 and A-type RR11 as well as KNOX3 and NIN genes in the sym33 mutants, which correlated with low cellular cytokinin levels. In the sym40 mutant, cytokinins were detected in the nodule infection zone but, in contrast to the wild type, they were absent in infection droplets. CONCLUSIONS In conclusion, our findings suggest that enhanced cytokinin accumulation during the late stages of symbiosis development may be associated with bacterial penetration into the plant cells and subsequent plant cell and bacteroid differentiation.
Collapse
Affiliation(s)
- Elena A Dolgikh
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Saint Petersburg, Russia
| | - Pyotr G Kusakin
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Saint Petersburg, Russia
| | - Anna B Kitaeva
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Saint Petersburg, Russia
| | - Anna V Tsyganova
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Saint Petersburg, Russia
| | - Anna N Kirienko
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Saint Petersburg, Russia
| | - Irina V Leppyanen
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Saint Petersburg, Russia
| | - Aleksandra V Dolgikh
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Saint Petersburg, Russia
- Saint Petersburg State University, Department of Genetics and Biotechnology, Universitetskaya embankment 7–9, Saint Petersburg, Russia
| | - Elena L Ilina
- Komarov Botanical Institute, Russian Academy of Sciences, Laboratory of Cellular and Molecular Mechanisms of Plant Development, Saint Petersburg, Russia
| | - Kirill N Demchenko
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Saint Petersburg, Russia
- Komarov Botanical Institute, Russian Academy of Sciences, Laboratory of Cellular and Molecular Mechanisms of Plant Development, Saint Petersburg, Russia
| | - Igor A Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Saint Petersburg, Russia
- Saint Petersburg State University, Department of Genetics and Biotechnology, Universitetskaya embankment 7–9, Saint Petersburg, Russia
| | - Viktor E Tsyganov
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Saint Petersburg, Russia
- Saint Petersburg Scientific Center Russian Academy of Sciences, Universitetskaya embankment 5, Saint Petersburg, Russia
| |
Collapse
|
12
|
Botou M, Yalelis V, Lazou P, Zantza I, Papakostas K, Charalambous V, Mikros E, Flemetakis E, Frillingos S. Specificity profile of NAT/NCS2 purine transporters in
Sinorhizobium
(
Ensifer
)
meliloti. Mol Microbiol 2020; 114:151-171. [DOI: 10.1111/mmi.14503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/16/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Maria Botou
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences University of Ioannina Ioannina Greece
| | - Vassilis Yalelis
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences University of Ioannina Ioannina Greece
| | - Panayiota Lazou
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences University of Ioannina Ioannina Greece
| | - Iliana Zantza
- Division of Pharmaceutical Chemistry Department of Pharmacy School of Health Sciences National and Kapodistrian University of Athens Athens Greece
| | - Konstantinos Papakostas
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences University of Ioannina Ioannina Greece
| | - Vassiliki Charalambous
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences University of Ioannina Ioannina Greece
| | - Emmanuel Mikros
- Division of Pharmaceutical Chemistry Department of Pharmacy School of Health Sciences National and Kapodistrian University of Athens Athens Greece
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology Department of Biotechnology Agricultural University of Athens Athens Greece
| | - Stathis Frillingos
- Laboratory of Biological Chemistry Department of Medicine School of Health Sciences University of Ioannina Ioannina Greece
| |
Collapse
|
13
|
Andreas P, Kisiala A, Emery RJN, De Clerck-Floate R, Tooker JF, Price PW, Miller III DG, Chen MS, Connor EF. Cytokinins Are Abundant and Widespread Among Insect Species. PLANTS (BASEL, SWITZERLAND) 2020; 9:E208. [PMID: 32041320 PMCID: PMC7076654 DOI: 10.3390/plants9020208] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 01/09/2023]
Abstract
Cytokinins (CKs) are a class of compounds that have long been thought to be exclusively plant growth regulators. Interestingly, some species of phytopathogenic bacteria and fungi have been shown to, and gall-inducing insects have been hypothesized to, produce CKs and use them to manipulate their host plants. We used high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-MS/MS) to examine concentrations of a wide range of CKs in 17 species of phytophagous insects, including gall- and non-gall-inducing species from all six orders of Insecta that contain species known to induce galls: Thysanoptera, Hemiptera, Lepidoptera, Coleoptera, Diptera, and Hymenoptera. We found CKs in all six orders of insects, and they were not associated exclusively with gall-inducing species. We detected 24 different CK analytes, varying in their chemical structure and biological activity. Isoprenoid precursor nucleotide and riboside forms of trans-zeatin (tZ) and isopentenyladenine (iP) were most abundant and widespread across the surveyed insect species. Notably, the observed concentrations of CKs often markedly exceeded those reported in plants suggesting that insects are synthesizing CKs rather than obtaining them from the host plant via tissue consumption, compound sequestration, and bioaccumulation. These findings support insect-derived CKs as means for gall-inducing insects to manipulate their host plant to facilitate cell proliferation, and for both gall- and non-gall-inducing insects to modify nutrient flux and plant defenses during herbivory. Furthermore, wide distribution of CKs across phytophagous insects, including non-gall-inducing species, suggests that insect-borne CKs could be involved in manipulation of source-sink mechanisms of nutrient allocation to sustain the feeding site and altering plant defensive responses, rather than solely gall induction. Given the absence of any evidence for genes in the de novo CK biosynthesis pathway in insects, we postulate that the tRNA-ipt pathway is responsible for CK production. However, the unusually high concentrations of CKs in insects, and the tendency toward dominance of their CK profiles by tZ and iP suggest that the tRNA-ipt pathway functions differently and substantially more efficiently in insects than in plants.
Collapse
Affiliation(s)
- Peter Andreas
- Department of Biology, Trent University, Peterborough, ON K9J 7B8, Canada; (P.A.); (A.K.); (R.J.N.E.)
| | - Anna Kisiala
- Department of Biology, Trent University, Peterborough, ON K9J 7B8, Canada; (P.A.); (A.K.); (R.J.N.E.)
| | - R. J. Neil Emery
- Department of Biology, Trent University, Peterborough, ON K9J 7B8, Canada; (P.A.); (A.K.); (R.J.N.E.)
| | | | - John F. Tooker
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Peter W. Price
- Department of Ecology and Evolutionary Biology, Northern Arizona University, Flagstaff, AZ 86001, USA;
| | - Donald G. Miller III
- Department of Biological Sciences, California State University, Chico, CA 95929, USA;
| | - Ming-Shun Chen
- USDA-ARS and Department of Entomology, Kansas State University, Manhattan, KS 66506, USA;
| | - Edward F. Connor
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| |
Collapse
|
14
|
Aoki MM, Kisiala AB, Li S, Stock NL, Brunetti CR, Huber RJ, Emery RJN. Cytokinin Detection during the Dictyostelium discoideum Life Cycle: Profiles Are Dynamic and Affect Cell Growth and Spore Germination. Biomolecules 2019; 9:E702. [PMID: 31694277 PMCID: PMC6920973 DOI: 10.3390/biom9110702] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 01/18/2023] Open
Abstract
Cytokinins (CKs) are a family of evolutionarily conserved growth regulating hormones. While CKs are well-characterized in plant systems, these N6-substituted adenine derivatives are found in a variety of organisms beyond plants, including bacteria, fungi, mammals, and the social amoeba, Dictyostelium discoideum. Within Dictyostelium, CKs have only been studied in the late developmental stages of the life cycle, where they promote spore encapsulation and dormancy. In this study, we used ultra high-performance liquid chromatography-positive electrospray ionization-high resolution tandem mass spectrometry (UHPLC-(ESI+)-HRMS/MS) to profile CKs during the Dictyostelium life cycle: growth, aggregation, mound, slug, fruiting body, and germination. Comprehensive profiling revealed that Dictyostelium produces 6 CK forms (cis-Zeatin (cZ), discadenine (DA), N6-isopentenyladenine (iP), N6-isopentenyladenine-9-riboside (iPR), N6-isopentenyladenine-9-riboside-5' phosphate (iPRP), and 2-methylthio-N6-isopentenyladenine (2MeSiP)) in varying abundance across the sampled life cycle stages, thus laying the foundation for the CK biosynthesis pathway to be defined in this organism. Interestingly, iP-type CKs were the most dominant CK analytes detected during growth and aggregation. Exogenous treatment of AX3 cells with various CK types revealed that iP was the only CK to promote the proliferation of cells in culture. In support of previous studies, metabolomics data revealed that DA is one of the most significantly upregulated small molecules during Dictyostelium development, and our data indicates that total CK levels are highest during germination. While much remains to be explored in Dictyostelium, this research offers new insight into the nature of CK biosynthesis, secretion, and function during Dictyostelium growth, development, and spore germination.
Collapse
Affiliation(s)
- Megan M. Aoki
- Department of Biology, Trent University, Peterborough, ON K9L 0G2 Canada; (A.B.K.); (C.R.B.); (R.J.H.); (R.J.N.E.)
| | - Anna B. Kisiala
- Department of Biology, Trent University, Peterborough, ON K9L 0G2 Canada; (A.B.K.); (C.R.B.); (R.J.H.); (R.J.N.E.)
| | - Shaojun Li
- Noblegen, Peterborough, ON K9L 0G2, Canada;
| | - Naomi L. Stock
- Water Quality Centre, Trent University, Peterborough, ON K9L 0G2, Canada;
| | - Craig R. Brunetti
- Department of Biology, Trent University, Peterborough, ON K9L 0G2 Canada; (A.B.K.); (C.R.B.); (R.J.H.); (R.J.N.E.)
| | - Robert J. Huber
- Department of Biology, Trent University, Peterborough, ON K9L 0G2 Canada; (A.B.K.); (C.R.B.); (R.J.H.); (R.J.N.E.)
| | - R. J. Neil Emery
- Department of Biology, Trent University, Peterborough, ON K9L 0G2 Canada; (A.B.K.); (C.R.B.); (R.J.H.); (R.J.N.E.)
| |
Collapse
|
15
|
Aoki MM, Seegobin M, Kisiala A, Noble A, Brunetti C, Emery RJN. Phytohormone metabolism in human cells: Cytokinins are taken up and interconverted in HeLa cell culture. FASEB Bioadv 2019; 1:320-331. [PMID: 32123835 PMCID: PMC6996375 DOI: 10.1096/fba.2018-00032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 01/30/2023] Open
Abstract
Cytokinins (CKs) encompass a group of phytohormones, known to orchestrate many critical processes in plant development. Excluding Archaea, CKs are pervasive among all kingdoms, but much less is reported about their metabolism beyond plants. Recent evidence from mammalian tissues indicates the presence of six additional CK forms beyond the previously identified, single mammalian CK, N6-isopentenyladenosine (i6A). There is limited understanding of CK biosynthesis pathways in mammalian systems; therefore, human cervical cancer (HeLa) cells were used to further characterize CK processing by tracking the interconversion of CKs into their various structural derivatives in mammalian cells in a time-course study. Through high-performance liquid chromatography-positive electrospray ionization-tandem mass spectrometry (HPLC-(+ESI)-MS/MS), we document changes in the functional profiles of endogenous CKs in a human cell line following metabolism by HeLa cell cultures. The nucleotide CK fraction (iPRP) was found exclusively within the cell pellet (0.34 pmol/106 cells), and the active free base (FB) form (iP) and riboside fraction (iPR) were found in greater abundance extracellularly (1.67 and 0.10 nmol/L respectively). For further confirmation, we demonstrate that HeLa cells metabolize an exogenously supplied CK, N6-benzyladenosine (BAR). In the HeLa culture supernatant, a 12-fold decrease in BAR concentration was observed within the first 24 hours of incubation accompanied by a fivefold increase in the FB form, N6-benzyladenine (BA). These findings support the hypothesis that HeLa cells have the enzymatic pathways required for the metabolism of both endogenous and exogenous CKs.
Collapse
Affiliation(s)
- Megan M. Aoki
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
| | - Mark Seegobin
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
| | - Anna Kisiala
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
| | | | - Craig Brunetti
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
| | | |
Collapse
|
16
|
Daudu D, Kisiala A, Werner Ribeiro C, Mélin C, Perrot L, Clastre M, Courdavault V, Papon N, Oudin A, Courtois M, Dugé de Bernonville T, Gaucher M, Degrave A, Lanoue A, Lanotte P, Schouler C, Brisset MN, Emery RN, Pichon O, Carpin S, Giglioli-Guivarc’h N, Crèche J, Besseau S, Glévarec G. Setting-up a fast and reliable cytokinin biosensor based on a plant histidine kinase receptor expressed in Saccharomyces cerevisiae. J Biotechnol 2019; 289:103-111. [DOI: 10.1016/j.jbiotec.2018.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022]
|
17
|
Berrabah F, Ratet P, Gourion B. Legume Nodules: Massive Infection in the Absence of Defense Induction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:35-44. [PMID: 30252618 DOI: 10.1094/mpmi-07-18-0205-fi] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plants of the legume family host massive intracellular bacterial populations in the tissues of specialized organs, the nodules. In these organs, the bacteria, named rhizobia, can fix atmospheric nitrogen and transfer it to the plant. This special metabolic skill provides to the legumes an advantage when they grow on nitrogen-scarce substrates. While packed with rhizobia, the nodule cells remain alive, metabolically active, and do not develop defense reactions. Here, we review our knowledge on the control of plant immunity during the rhizobia-legume symbiosis. We present the results of an evolutionary process that selected both divergence of microbial-associated molecular motifs and active suppressors of immunity on the rhizobial side and, on the legume side, active mechanisms that contribute to suppression of immunity.
Collapse
Affiliation(s)
- Fathi Berrabah
- 1 Laboratory of Exploration and Valorization of Steppic Ecosystems, Faculty of Nature and Life Sciences, University of Ziane Achour, 17000 Djelfa, Algeria
| | - Pascal Ratet
- 2 Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- 3 Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France; and
| | - Benjamin Gourion
- 4 LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
18
|
Liu H, Zhang C, Yang J, Yu N, Wang E. Hormone modulation of legume-rhizobial symbiosis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:632-648. [PMID: 29578639 DOI: 10.1111/jipb.12653] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/23/2018] [Indexed: 05/16/2023]
Abstract
Leguminous plants can establish symbiotic associations with diazotropic rhizobia to form nitrogen-fixating nodules, which are classified as determinate or indeterminate based on the persistence of nodule meristem. The formation of nitrogen-fixing nodules requires coordinating rhizobial infection and root nodule organogenesis. The formation of an infection thread and the extent of nodule formation are largely under plant control, but vary with environmental conditions and the physiological state of the host plants. Many achievements in these two areas have been made in recent decades. Phytohormone signaling pathways have gradually emerged as important regulators of root nodule symbiosis. Cytokinin, strigolactones (SLs) and local accumulation of auxin can promote nodule development. Ethylene, jasmonic acid (JA), abscisic acid (ABA) and gibberellic acid (GA) all negatively regulate infection thread formation and nodule development. However, salicylic acid (SA) and brassinosteroids (BRs) have different effects on the formation of these two nodule types. Some peptide hormones are also involved in nodulation. This review summarizes recent findings on the roles of these plant hormones in legume-rhizobial symbiosis, and we propose that DELLA proteins may function as a node to integrate plant hormones to regulate nodulation.
Collapse
Affiliation(s)
- Huan Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chi Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Nan Yu
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
19
|
Wang FF, Cheng ST, Wu Y, Ren BZ, Qian W. A Bacterial Receptor PcrK Senses the Plant Hormone Cytokinin to Promote Adaptation to Oxidative Stress. Cell Rep 2018; 21:2940-2951. [PMID: 29212037 DOI: 10.1016/j.celrep.2017.11.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 09/18/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022] Open
Abstract
Recognition of the host plant is a prerequisite for infection by pathogenic bacteria. However, how bacterial cells sense plant-derived stimuli, especially chemicals that function in regulating plant development, remains completely unknown. Here, we have identified a membrane-bound histidine kinase of the phytopathogenic bacterium Xanthomonas campestris, PcrK, as a bacterial receptor that specifically detects the plant cytokinin 2-isopentenyladenine (2iP). 2iP binds to the extracytoplasmic region of PcrK to decrease its autokinase activity. Through a four-step phosphorelay, 2iP stimulation decreased the phosphorylation level of PcrR, the cognate response regulator of PcrK, to activate the phosphodiesterase activity of PcrR in degrading the second messenger 3',5'-cyclic diguanylic acid. 2iP perception by the PcrK-PcrR remarkably improves bacterial tolerance to oxidative stress by regulating the transcription of 56 genes, including the virulence-associated TonB-dependent receptor gene ctrA. Our results reveal an evolutionarily conserved, inter-kingdom signaling by which phytopathogenic bacteria intercept a plant hormone signal to promote adaptation to oxidative stress.
Collapse
Affiliation(s)
- Fang-Fang Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shou-Ting Cheng
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bao-Zhen Ren
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Qian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
20
|
Zhang H, Guiguet A, Dubreuil G, Kisiala A, Andreas P, Emery RJN, Huguet E, Body M, Giron D. Dynamics and origin of cytokinins involved in plant manipulation by a leaf-mining insect. INSECT SCIENCE 2017; 24:1065-1078. [PMID: 28636152 DOI: 10.1111/1744-7917.12500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/03/2017] [Accepted: 06/08/2017] [Indexed: 05/22/2023]
Abstract
Several herbivorous insects and plant-associated microorganisms control the phytohormonal balance, thus enabling them to successfully exploit the plant by inhibiting plant defenses and withdrawing plant resources for their own benefit. The leaf-mining moth Phyllonorycter blancardella modifies the cytokinin (CK) profile of mined leaf-tissues, and the insect symbiotic bacteria Wolbachia is involved in the plant manipulation to the benefit of the insect host. To gain a deeper understanding into the possible origin and dynamics of CKs, we conducted an extensive characterization of CKs in larvae and in infected apple leaves. Our results show the enhanced CK levels in mines, both on green and yellow leaves, allowing insects to control their nutritional supply under fluctuating environmental conditions. The spatial distribution of CKs within the mined leaves shows that hormone manipulation is strictly limited to the mine suggesting the absence of CK translocation from distant leaf areas toward the insect feeding site. Mass spectrometry analyses reveal that major CK types accumulating in mines and larvae are similar to what is observed for most gall-inducers, suggesting that strategies underlying the plant manipulation may be shared between herbivorous insects with distinct life histories. Results further show that CKs are detected in the highest levels in larvae, reinforcing our hypothesis that CKs accumulating in the mines originate from the insect itself. Presence of bacteria-specific methylthio-CKs is consistent with previous results suggesting that insect bacterial symbionts contribute to the observed phenotype. Our study provides key findings toward the understanding of molecular mechanisms underlying this intricate plant-insect-microbe interaction.
Collapse
Affiliation(s)
- Hui Zhang
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS/Université François-Rabelais de Tours, Tours, France
| | - Antoine Guiguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS/Université François-Rabelais de Tours, Tours, France
- Département de Biologie, École Normale Supérieure de Lyon, Lyon, France
- Department of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Géraldine Dubreuil
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS/Université François-Rabelais de Tours, Tours, France
| | - Anna Kisiala
- Department of Biology, Trent University, Peterborough, Canada
| | - Peter Andreas
- Department of Biology, Trent University, Peterborough, Canada
| | - R J Neil Emery
- Department of Biology, Trent University, Peterborough, Canada
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS/Université François-Rabelais de Tours, Tours, France
| | - Mélanie Body
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, USA
| | - David Giron
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS/Université François-Rabelais de Tours, Tours, France
| |
Collapse
|
21
|
Gamas P, Brault M, Jardinaud MF, Frugier F. Cytokinins in Symbiotic Nodulation: When, Where, What For? TRENDS IN PLANT SCIENCE 2017; 22:792-802. [PMID: 28739135 DOI: 10.1016/j.tplants.2017.06.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/12/2017] [Accepted: 06/19/2017] [Indexed: 05/21/2023]
Abstract
Substantial progress has been made in the understanding of early stages of the symbiotic interaction between legume plants and rhizobium bacteria. Those include the specific recognition of symbiotic partners, the initiation of bacterial infection in root hair cells, and the inception of a specific organ in the root cortex, the nodule. Increasingly complex regulatory networks have been uncovered in which cytokinin (CK) phytohormones play essential roles in different aspects of early symbiotic stages. Intriguingly, these roles can be either positive or negative, cell autonomous or non-cell autonomous, and vary, depending on time, root tissues, and possibly legume species. Recent developments on CK symbiotic functions and interconnections with other signaling pathways during nodule initiation are the focus of this review.
Collapse
Affiliation(s)
- Pascal Gamas
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Mathias Brault
- IPS2 (Institute of Plant Sciences - Paris Saclay), CNRS, INRA, Université Paris-Sud, Université Paris-Diderot, Université d'Evry, Université Paris-Saclay, Bâtiment 630, Gif-sur-Yvette, France
| | - Marie-Françoise Jardinaud
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France; INPT-Université de Toulouse, ENSAT, Castanet-Tolosan, France
| | - Florian Frugier
- IPS2 (Institute of Plant Sciences - Paris Saclay), CNRS, INRA, Université Paris-Sud, Université Paris-Diderot, Université d'Evry, Université Paris-Saclay, Bâtiment 630, Gif-sur-Yvette, France.
| |
Collapse
|
22
|
Abstract
Most classical plant hormones are also produced by pathogenic and symbiotic fungi. The way in which these molecules favour the invasion of plant tissues and the development of fungi inside plant tissues is still largely unknown. In this review, we examine the different roles of such hormone production by pathogenic fungi. Converging evidence suggests that these fungal-derived molecules have potentially two modes of action: (i) they may perturb plant processes, either positively or negatively, to favour invasion and nutrient uptake; and (ii) they may also act as signals for the fungi themselves to engage appropriate developmental and physiological processes adapted to their environment. Indirect evidence suggests that abscisic acid, gibberellic acid and ethylene produced by fungi participate in pathogenicity. There is now evidence that auxin and cytokinins could be positive regulators required for virulence. Further research should establish whether or not fungal-derived hormones act like other fungal effectors.
Collapse
Affiliation(s)
- Emilie Chanclud
- Université Montpellier, UMR BGPI INRA/CIRAD/SupAgro, 34398, Montpellier, France
| | | |
Collapse
|
23
|
Boivin S, Fonouni-Farde C, Frugier F. How Auxin and Cytokinin Phytohormones Modulate Root Microbe Interactions. FRONTIERS IN PLANT SCIENCE 2016; 7:1240. [PMID: 27588025 PMCID: PMC4988986 DOI: 10.3389/fpls.2016.01240] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/04/2016] [Indexed: 05/08/2023]
Abstract
A large range of microorganisms can associate with plants, resulting in neutral, friendly or hostile interactions. The ability of plants to recognize compatible and incompatible microorganisms and to limit or promote their colonization is therefore crucial for their survival. Elaborated communication networks determine the degree of association between the host plant and the invading microorganism. Central to these regulations of plant microbe interactions, phytohormones modulate microorganism plant associations and coordinate cellular and metabolic responses associated to the progression of microorganisms across different plant tissues. We review here hormonal regulations, focusing on auxin and cytokinin phytohormones, involved in the interactions between plant roots and soil microorganisms, including bacterial and fungi associations, either beneficial (symbiotic) or detrimental (pathogenic). The aim is to highlight similarities and differences in cytokinin/auxin functions amongst various compatible versus incompatible associations.
Collapse
Affiliation(s)
| | | | - Florian Frugier
- Institute of Plant Sciences – Paris Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Paris Diderot, Université d’Evry, Université Paris-SaclayGif-sur-Yvette, France
| |
Collapse
|
24
|
Chanclud E, Kisiala A, Emery NRJ, Chalvon V, Ducasse A, Romiti-Michel C, Gravot A, Kroj T, Morel JB. Cytokinin Production by the Rice Blast Fungus Is a Pivotal Requirement for Full Virulence. PLoS Pathog 2016; 12:e1005457. [PMID: 26900703 PMCID: PMC4765853 DOI: 10.1371/journal.ppat.1005457] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/25/2016] [Indexed: 12/22/2022] Open
Abstract
Plants produce cytokinin (CK) hormones for controlling key developmental processes like source/sink distribution, cell division or programmed cell-death. Some plant pathogens have been shown to produce CKs but the function of this mimicry production by non-tumor inducing pathogens, has yet to be established. Here we identify a gene required for CK biosynthesis, CKS1, in the rice blast fungus Magnaporthe oryzae. The fungal-secreted CKs are likely perceived by the plant during infection since the transcriptional regulation of rice CK-responsive genes is altered in plants infected by the mutants in which CKS1 gene was deleted. Although cks1 mutants showed normal in vitro growth and development, they were severely affected for in planta growth and virulence. Moreover, we showed that the cks1 mutant triggered enhanced induction of plant defenses as manifested by an elevated oxidative burst and expression of defense-related markers. In addition, the contents of sugars and key amino acids for fungal growth were altered in and around the infection site by the cks1 mutant in a different manner than by the control strain. These results suggest that fungal-derived CKs are key effectors required for dampening host defenses and affecting sugar and amino acid distribution in and around the infection site.
Collapse
Affiliation(s)
- Emilie Chanclud
- Université Montpellier, UMR BGPI INRA/CIRAD/SupAgro, Montpellier, France
| | - Anna Kisiala
- Biology Department, Trent University, Peterborough, Ontario, Canada
- Department of Plant Genetics, Physiology and Biotechnology, University of Technology and Life Sciences, Bydgoszcz, Poland
| | - Neil R. J Emery
- Biology Department, Trent University, Peterborough, Ontario, Canada
| | | | | | | | | | - Thomas Kroj
- INRA, UMR BGPI INRA/CIRAD/SupAgro, Montpellier, France
| | | |
Collapse
|
25
|
Yong JWH, Letham DS, Wong SC, Farquhar GD. Rhizobium-induced elevation in xylem cytokinin delivery in pigeonpea induces changes in shoot development and leaf physiology. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:1323-1335. [PMID: 32481080 DOI: 10.1071/fp14066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/11/2014] [Indexed: 06/11/2023]
Abstract
Inoculation with Rhizobium strain IC3342 induces in pigeonpea (Cajanus cajan (L) Millsp.) a leaf curl syndrome and elevated cytokinin levels in the xylem sap. High nitrogen (N) nutrition was found to inhibit onset of the syndrome which could then be induced by N-free nutrient after development of seven trifoliate leaves. This provided a new system to study the role of xylem cytokinin in shoot development and yielded plants suitable for determining the rate of delivery of xylem cytokinin to the shoot which for IC3342-inoculated plants was found to be three times that of control plants. Relative to leaves of control plants, the non-curled leaves of these IC3342 plants exhibited higher nitrogen and chlorophyll content and greater photosynthetic rate and stomatal conductance. Induction of the syndrome increased leaf thickness in developing leaves but not in expanded leaves already formed. Diameter of stems and number of laterals were also increased markedly by IC3342 inoculation which in addition induced leaf hyponasty. Exogenous cytokinins when applied directly to control leaves induced leaf curl and increased leaf thickness. The present studies are discussed in relation to the role of xylem cytokinins in plant development and especially the release of lateral buds from apical dominance.
Collapse
Affiliation(s)
- Jean W H Yong
- Singapore University of Technology and Design, 20 Dover Drive, Singapore
| | - D Stuart Letham
- Research School of Biology, Australian National University, Acton, ACT 0200, Australia
| | - S Chin Wong
- Research School of Biology, Australian National University, Acton, ACT 0200, Australia
| | - Graham D Farquhar
- Research School of Biology, Australian National University, Acton, ACT 0200, Australia
| |
Collapse
|
26
|
Suzaki T, Kawaguchi M. Root nodulation: a developmental program involving cell fate conversion triggered by symbiotic bacterial infection. CURRENT OPINION IN PLANT BIOLOGY 2014; 21:16-22. [PMID: 24996031 DOI: 10.1016/j.pbi.2014.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/29/2014] [Accepted: 06/05/2014] [Indexed: 05/11/2023]
Abstract
Root nodulation is a unique developmental process that predominantly occurs in leguminous plants. In this process, signaling initiated by symbiotic bacterial infection alters the fate of differentiated cortical cells and causes formation of new organs. Two qualitatively different regulatory events, namely bacterial infection and nodule organogenesis, need to be coordinated in the epidermis and cortical cells to establish proper nodule formation. Recent studies have determined the tissue-specific requirements of known symbiotic genes and also detailed a direct molecular link between the two regulatory pathways. Additionally, the detailed function of cytokinin signaling has been identified and the downstream genes have been isolated, providing greater understanding of the genetic mechanisms underlying nodule organogenesis.
Collapse
Affiliation(s)
- Takuya Suzaki
- National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan; School of Life Science, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan.
| | - Masayoshi Kawaguchi
- National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan; School of Life Science, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
27
|
Ferguson BJ, Mathesius U. Phytohormone regulation of legume-rhizobia interactions. J Chem Ecol 2014; 40:770-90. [PMID: 25052910 DOI: 10.1007/s10886-014-0472-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 12/16/2022]
Abstract
The symbiosis between legumes and nitrogen fixing bacteria called rhizobia leads to the formation of root nodules. Nodules are highly organized root organs that form in response to Nod factors produced by rhizobia, and they provide rhizobia with a specialized niche to optimize nutrient exchange and nitrogen fixation. Nodule development and invasion by rhizobia is locally controlled by feedback between rhizobia and the plant host. In addition, the total number of nodules on a root system is controlled by a systemic mechanism termed 'autoregulation of nodulation'. Both the local and the systemic control of nodulation are regulated by phytohormones. There are two mechanisms by which phytohormone signalling is altered during nodulation: through direct synthesis by rhizobia and through indirect manipulation of the phytohormone balance in the plant, triggered by bacterial Nod factors. Recent genetic and physiological evidence points to a crucial role of Nod factor-induced changes in the host phytohormone balance as a prerequisite for successful nodule formation. Phytohormones synthesized by rhizobia enhance symbiosis effectiveness but do not appear to be necessary for nodule formation. This review provides an overview of recent advances in our understanding of the roles and interactions of phytohormones and signalling peptides in the regulation of nodule infection, initiation, positioning, development, and autoregulation. Future challenges remain to unify hormone-related findings across different legumes and to test whether hormone perception, response, or transport differences among different legumes could explain the variety of nodules types and the predisposition for nodule formation in this plant family. In addition, the molecular studies carried out under controlled conditions will need to be extended into the field to test whether and how phytohormone contributions by host and rhizobial partners affect the long term fitness of the host and the survival and competition of rhizobia in the soil. It also will be interesting to explore the interaction of hormonal signalling pathways between rhizobia and plant pathogens.
Collapse
Affiliation(s)
- Brett J Ferguson
- Centre for Integrative Legume Research, School of Agricultural and Food Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | | |
Collapse
|
28
|
Cytokinin-induced phenotypes in plant-insect interactions: learning from the bacterial world. J Chem Ecol 2014; 40:826-35. [PMID: 24944001 DOI: 10.1007/s10886-014-0466-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/02/2014] [Accepted: 06/05/2014] [Indexed: 01/09/2023]
Abstract
Recently, a renewed interest in cytokinins (CKs) has allowed the characterization of these phytohormones as key regulatory molecules in plant biotic interactions. They have been proved to be instrumental in microbe- and insect-mediated plant phenotypes that can be either beneficial or detrimental for the host-plant. In parallel, insect endosymbiotic bacteria have emerged as key players in plant-insect interactions mediating directly or indirectly fundamental aspects of insect nutrition, such as insect feeding efficiency or the ability to manipulate plant physiology to overcome food nutritional imbalances. However, mechanisms that regulate CK production and the role played by insects and their endosymbionts remain largely unknown. Against this backdrop, studies on plant-associated bacteria have revealed fascinating and complex molecular mechanisms that lead to the production of bacterial CKs and the modulation of plant-borne CKs which ultimately result in profound metabolic and morphological plant modifications. This review highlights major strategies used by plant-associated bacteria that impact the CK homeostasis of their host-plant, to raise parallels with strategies used by phytophagous insects and to discuss the possible role played by endosymbiotic bacteria in these CK-mediated plant phenotypes. We hypothesize that insects employ a CK-mix production strategy that manipulates the phytohormonal balance of their host-plant and overtakes plant gene expression causing a metabolic and morphological habitat modification. In addition, insect endosymbiotic bacteria may prove to be instrumental in these manipulations through the production of bacterial CKs, including specific forms that challenge the CK-degrading capacity of the plant (thus ensuring persistent effects) and the CK-mediated plant defenses.
Collapse
|
29
|
Sardesai N, Lee LY, Chen H, Yi H, Olbricht GR, Stirnberg A, Jeffries J, Xiong K, Doerge RW, Gelvin SB. Cytokinins secreted by Agrobacterium promote transformation by repressing a plant myb transcription factor. Sci Signal 2013; 6:ra100. [PMID: 24255177 DOI: 10.1126/scisignal.2004518] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Agrobacterium-mediated transformation is the most widely used technique for generating transgenic plants. However, many crops remain recalcitrant. We found that an Arabidopsis myb family transcription factor (MTF1) inhibited plant transformation susceptibility. Mutating MTF1 increased attachment of several Agrobacterium strains to roots and increased both stable and transient transformation in both susceptible and transformation-resistant Arabidopsis ecotypes. Cytokinins from Agrobacterium tumefaciens decreased the expression of MTF1 through activation of the cytokinin response regulator ARR3. Mutating AHK3 and AHK4, genes that encode cytokinin-responsive kinases, increased the expression of MTF1 and impaired plant transformation. Mutant mtf1 plants also had increased expression of AT14A, which encodes a putative transmembrane receptor for cell adhesion molecules. Plants overexpressing AT14A exhibited increased susceptibility to transformation, whereas at14a mutant plants exhibited decreased attachment of bacteria to roots and decreased transformation, suggesting that AT14A may serve as an anchor point for Agrobacteria. Thus, by promoting bacterial attachment and transformation of resistant plants and increasing such processes in susceptible plants, treating roots with cytokinins may help engineer crops with improved features or yield.
Collapse
Affiliation(s)
- Nagesh Sardesai
- 1Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Podlešáková K, Fardoux J, Patrel D, Bonaldi K, Novák O, Strnad M, Giraud E, Spíchal L, Nouwen N. Rhizobial synthesized cytokinins contribute to but are not essential for the symbiotic interaction between photosynthetic Bradyrhizobia and Aeschynomene legumes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1232-8. [PMID: 23777431 DOI: 10.1094/mpmi-03-13-0076-r] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cytokinins (CK) play an important role in the formation of nitrogen-fixing root nodules. It has been known for years that rhizobia secrete CK in the extracellular medium but whether they play a role in nodule formation is not known. We have examined this question using the photosynthetic Bradyrhizobium sp. strain ORS285 which is able to nodulate Aeschynomene afraspera and A. indica using a Nod-dependent or Nod-independent symbiotic process, respectively. CK profiling showed that the most abundant CK secreted by Bradyrhizobium sp. strain ORS285 are the 2MeS (2-methylthiol) derivatives of trans-zeatin and isopentenyladenine. In their pure form, these CK can activate legume CK receptors in vitro, and their exogenous addition induced nodule-like structures on host plants. Deletion of the miaA gene showed that transfer RNA degradation is the source of CK production in Bradyrhizobium sp. strain ORS285. In nodulation studies performed with A. indica and A. afraspera, the miaA mutant had a 1-day delay in nodulation and nitrogen fixation. Moreover, A. indica plants formed considerably smaller but more abundant nodules when inoculated with the miaA mutant. These data show that CK produced by Bradyrhizobium sp. strain ORS285 are not the key signal triggering nodule formation during the Nod-independent symbiosis but they contribute positively to nodule development in Aeschynomene plants.
Collapse
MESH Headings
- Acetylene/metabolism
- Bradyrhizobium/genetics
- Bradyrhizobium/metabolism
- Bradyrhizobium/physiology
- Cytokinins/metabolism
- Cytokinins/pharmacology
- Dose-Response Relationship, Drug
- Ethylenes/metabolism
- Fabaceae/drug effects
- Fabaceae/growth & development
- Fabaceae/metabolism
- Fabaceae/microbiology
- Genes, Reporter
- Nitrogen Fixation
- Nitrogenase
- Phylogeny
- Plant Growth Regulators/metabolism
- Plant Growth Regulators/pharmacology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plant Root Nodulation
- Plant Roots/drug effects
- Plant Roots/growth & development
- Plant Roots/metabolism
- Plant Roots/microbiology
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Root Nodules, Plant/drug effects
- Root Nodules, Plant/growth & development
- Root Nodules, Plant/metabolism
- Root Nodules, Plant/microbiology
- Sequence Deletion
- Signal Transduction
- Symbiosis
Collapse
|