1
|
Park TS, Min DJ, Park JS, Hong JS. The N-Terminal Region of Cucumber Mosaic Virus 2a Protein Is Involved in the Systemic Infection in Brassica juncea. PLANTS (BASEL, SWITZERLAND) 2024; 13:1001. [PMID: 38611534 PMCID: PMC11013781 DOI: 10.3390/plants13071001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Brassica juncea belongs to the Brassicaceae family and is used as both an oilseed and vegetable crop. As only a few studies have reported on the cucumber mosaic virus (CMV) in B. juncea, we conducted this study to provide a basic understanding of the B. juncea and CMV interactions. B. juncea-infecting CMV (CMV-Co6) and non-infecting CMV (CMV-Rs1) were used. To identify the determinants of systemic infection in B. juncea, we first constructed infectious clones of CMV-Co6 and CMV-Rs1 and used them as pseudo-recombinants. RNA2 of CMV was identified as an important determinant in B. juncea because B. juncea were systemically infected with RNA2-containing pseudo-recombinants; CMV-Co6, R/6/R, and R/6/6 were systemically infected B. juncea. Subsequently, the amino acids of the 2a and 2b proteins were compared, and a chimeric clone was constructed. The chimeric virus R/6Rns/R6cp, containing the C-terminal region of the 2a protein of CMV-Rs1, still infects B. juncea. It is the 2a protein that determines the systemic CMV infection in B. juncea, suggesting that conserved 160G and 214A may play a role in systemic CMV infection in B. juncea.
Collapse
Affiliation(s)
| | | | | | - Jin-Sung Hong
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea; (T.-S.P.); (D.-J.M.); (J.-S.P.)
| |
Collapse
|
2
|
Ota E, Masuta C, Takeshita M. Generation and Retention of Defective RNA3 from Cucumber Mosaic Virus and Relevance of the 2b Protein to Generation of the Subviral RNA. THE PLANT PATHOLOGY JOURNAL 2023; 39:592-599. [PMID: 38081319 PMCID: PMC10721387 DOI: 10.5423/ppj.ft.07.2023.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 12/17/2023]
Abstract
A defective RNA3 (D3Yα) of strain Y of cucumber mosaic virus (CMV-Y) was examined on host-specific maintenance, experimental conditions, and a viral factor required for its generation in plants. D3Yα was stably maintained in cucumber but not in tomato plants for 28 days post inoculation (dpi). D3Yα was generated in Nicotiana tabacum or N. benthamiana after prolonged infection in the second and the third passages, but not in plants of N. benthamiana grown at low temperature at 28 dpi or infected with CMV-Y mutant that had the 2b gene deleted. Collectively, we suggest that generation and retention of D3Yα depends on potential host plants and experimental conditions, and that the 2b protein has a role for facilitation of generation of D3Yα.
Collapse
Affiliation(s)
- Emi Ota
- Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Chikara Masuta
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Minoru Takeshita
- Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| |
Collapse
|
3
|
Giordano A, Ferriol I, López-Moya JJ, Martín-Hernández AM. cmv1-Mediated Resistance to CMV in Melon Can Be Overcome by Mixed Infections with Potyviruses. Viruses 2023; 15:1792. [PMID: 37766198 PMCID: PMC10535032 DOI: 10.3390/v15091792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Resistance to cucumber mosaic virus (CMV) strain LS in melon is controlled by the gene cmv1, which restricts phloem entry. In nature, CMV is commonly found in mixed infections, particularly with potyviruses, where a synergistic effect is frequently produced. We have explored the possibility that this synergism could help CMV-LS to overcome cmv1-mediated resistance. We demonstrate that during mixed infection with a potyvirus, CMV-LS is able to overcome cmv1-controlled resistance and develop a systemic infection and that this ability does not depend on an increased accumulation of CMV-LS in mechanically inoculated cotyledons. Likewise, during a mixed infection initiated by aphids, the natural vector of both cucumoviruses and potyviruses that can very efficiently inoculate plants with a low number of virions, CMV-LS also overcomes cmv1-controlled resistance. This indicates that in the presence of a potyvirus, even a very low amount of inoculum, can be sufficient to surpass the resistance and initiate the infection. These results indicate that there is an important risk for this resistance to be broken in nature as a consequence of mixed infections, and therefore, its deployment in elite cultivars would not be enough to ensure a long-lasting resistance.
Collapse
Affiliation(s)
- Andrea Giordano
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain; (A.G.); (I.F.); (J.J.L.-M.)
| | - Inmaculada Ferriol
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain; (A.G.); (I.F.); (J.J.L.-M.)
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain; (A.G.); (I.F.); (J.J.L.-M.)
| | - Ana Montserrat Martín-Hernández
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain; (A.G.); (I.F.); (J.J.L.-M.)
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
4
|
Kwon MJ, Kwon SJ, Kim MH, Choi B, Byun HS, Kwak HR, Seo JK. Visual tracking of viral infection dynamics reveals the synergistic interactions between cucumber mosaic virus and broad bean wilt virus 2. Sci Rep 2023; 13:7261. [PMID: 37142679 PMCID: PMC10160061 DOI: 10.1038/s41598-023-34553-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/03/2023] [Indexed: 05/06/2023] Open
Abstract
Cucumber mosaic virus (CMV) is one of the most prevalent plant viruses in the world, and causes severe damage to various crops. CMV has been studied as a model RNA virus to better understand viral replication, gene functions, evolution, virion structure, and pathogenicity. However, CMV infection and movement dynamics remain unexplored due to the lack of a stable recombinant virus tagged with a reporter gene. In this study, we generated a CMV infectious cDNA construct tagged with a variant of the flavin-binding LOV photoreceptor (iLOV). The iLOV gene was stably maintained in the CMV genome after more than four weeks of three serial passages between plants. Using the iLOV-tagged recombinant CMV, we visualized CMV infection and movement dynamics in living plants in a time course manner. We also examined whether CMV infection dynamics is influenced by co-infection with broad bean wilt virus 2 (BBWV2). Our results revealed that no spatial interference occurred between CMV and BBWV2. Specifically, BBWV2 facilitated the cell-to-cell movement of CMV in the upper young leaves. In addition, the BBWV2 accumulation level increased after co-infection with CMV.
Collapse
Affiliation(s)
- Min-Jun Kwon
- Department of International Agricultural Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Sun-Jung Kwon
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Myung-Hwi Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Boram Choi
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Hee-Seong Byun
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Hae-Ryun Kwak
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Jang-Kyun Seo
- Department of International Agricultural Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea.
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea.
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
5
|
Moya-Ruiz CD, Gómez P, Juárez M. Occurrence, Distribution, and Management of Aphid-Transmitted Viruses in Cucurbits in Spain. Pathogens 2023; 12:422. [PMID: 36986344 PMCID: PMC10057868 DOI: 10.3390/pathogens12030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
The effectiveness of pest and disease management in crops relies on knowledge about their presence and distribution in crop-producing areas. Aphids and whiteflies are among the main threats to vegetable crops since these hemipterans feed on plants, causing severe damage, and are also able to transmit a large number of devastating plant viral diseases. In particular, the widespread occurrence of aphid-transmitted viruses in cucurbit crops, along with the lack of effective control measures, makes surveillance programs and virus epidemiology necessary for providing sound advice and further integration into the management strategies that can ensure sustainable food production. This review describes the current presence and distribution of aphid-transmitted viruses in cucurbits in Spain, providing valuable epidemiological information, including symptom expressions of virus-infected plants for further surveillance and viral detection. We also provide an overview of the current measures for virus infection prevention and control strategies in cucurbits and indicate the need for further research and innovative strategies against aphid pests and their associated viral diseases.
Collapse
Affiliation(s)
- Celia De Moya-Ruiz
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, Departamento de Biología del Estrés y Patología Vegetal, 30100 Murcia, Spain
| | - Pedro Gómez
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, Departamento de Biología del Estrés y Patología Vegetal, 30100 Murcia, Spain
| | - Miguel Juárez
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Universidad Miguel Hernández de Elche, 03312 Orihuela, Spain
| |
Collapse
|
6
|
Abebe DA, van Bentum S, Suzuki M, Ando S, Takahashi H, Miyashita S. Plant death caused by inefficient induction of antiviral R-gene-mediated resistance may function as a suicidal population resistance mechanism. Commun Biol 2021; 4:947. [PMID: 34373580 PMCID: PMC8352862 DOI: 10.1038/s42003-021-02482-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 07/23/2021] [Indexed: 11/15/2022] Open
Abstract
Land plant genomes carry tens to hundreds of Resistance (R) genes to combat pathogens. The induction of antiviral R-gene-mediated resistance often results in a hypersensitive response (HR), which is characterized by virus containment in the initially infected tissues and programmed cell death (PCD) of the infected cells. Alternatively, systemic HR (SHR) is sometimes observed in certain R gene-virus combinations, such that the virus systemically infects the plant and PCD induction follows the spread of infection, resulting in systemic plant death. SHR has been suggested to be the result of inefficient resistance induction; however, no quantitative comparison has been performed to support this hypothesis. In this study, we report that the average number of viral genomes that establish cell infection decreased by 28.7% and 12.7% upon HR induction by wild-type cucumber mosaic virus and SHR induction by a single-amino acid variant, respectively. These results suggest that a small decrease in the level of resistance induction can change an HR to an SHR. Although SHR appears to be a failure of resistance at the individual level, our simulations imply that suicidal individual death in SHR may function as an antiviral mechanism at the population level, by protecting neighboring uninfected kin plants.
Collapse
Affiliation(s)
- Derib A Abebe
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Sietske van Bentum
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Machi Suzuki
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Sugihiro Ando
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hideki Takahashi
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shuhei Miyashita
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.
| |
Collapse
|
7
|
Vinodhini J, Rajendran L, Abirami R, Karthikeyan G. Co-existence of chlorosis inducing strain of Cucumber mosaic virus with tospoviruses on hot pepper (Capsicum annuum) in India. Sci Rep 2021; 11:8796. [PMID: 33888846 PMCID: PMC8062535 DOI: 10.1038/s41598-021-88282-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/03/2021] [Indexed: 02/02/2023] Open
Abstract
Cucumo- and tospoviruses are the most destructive viruses infecting hot pepper (chilli). A diagnostic survey was conducted to assess the prevalence of cucumo and tospoviruses in chilli growing tracts of Tamil Nadu. Infected plants showing mosaic with chlorotic and necrotic rings, veinal necrosis, mosaic mottling, leaf filiformity and malformation were collected. Molecular indexing carried out through reverse transcription polymerase chain reaction (RT-PCR) with coat protein gene specific primer of Cucumber mosaic virus (CMV) and tospovirus degenerate primer corresponding to the L segment (RdRp). Ostensibly, amplifications were observed for both CMV and tospoviruses as sole as well for mixed infections. The sequence analysis indicated that the Capsicum chlorosis virus (CaCV) and Groundnut bud necrosis virus (GBNV) to be involved with CMV in causing combined infections. The co-infection of CMV with CaCV was detected in 10.41% of the symptomatic plant samples and combined infection of CMV with GBNV was recorded in around 6.25% of the symptomatic plants surveyed. The amino acid substitution of Ser129 over conserved Pro129 in coat protein of CMV implies that CMV strain involved in mixed infection as chlorosis inducing strain. Further, the electron microscopy of symptomatic plant samples explicated the presence of isometric particles of CMV and quasi spherical particles of tospoviruses. This is the first molecular evidence for the natural co-existence of chlorosis inducing CMV strain with CaCV and GBNV on hot pepper in India.
Collapse
Affiliation(s)
- J. Vinodhini
- grid.412906.80000 0001 2155 9899Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| | - L. Rajendran
- grid.412906.80000 0001 2155 9899Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| | - R. Abirami
- grid.412906.80000 0001 2155 9899Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| | - G. Karthikeyan
- grid.412906.80000 0001 2155 9899Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| |
Collapse
|
8
|
Tahmasebi A, Khahani B, Tavakol E, Afsharifar A, Shahid MS. Microarray analysis of Arabidopsis thaliana exposed to single and mixed infections with Cucumber mosaic virus and turnip viruses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:11-27. [PMID: 33627959 PMCID: PMC7873207 DOI: 10.1007/s12298-021-00925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/16/2020] [Accepted: 01/03/2021] [Indexed: 05/05/2023]
Abstract
UNLABELLED Cucumber mosaic virus (CMV), Turnip mosaic virus (TuMV) and Turnip crinkle virus (TCV) are important plant infecting viruses. In the present study, whole transcriptome alteration of Arabidopsis thaliana in response to CMV, TuMV and TCV, individual as well as mixed infections of CMV and TuMV/CMV and TCV were investigated using microarray data. In response to CMV, TuMV and TCV infections, a total of 2517, 3985 and 277 specific differentially expressed genes (DEGs) were up-regulated, while 2615, 3620 and 243 specific DEGs were down-regulated, respectively. The number of 1222 and 30 common DEGs were up-regulated during CMV and TuMV as well as CMV and TCV infections, while 914 and 24 common DEGs were respectively down-regulated. Genes encoding immune response mediators, signal transducer activity, signaling and stress response functions were among the most significantly upregulated genes during CMV and TuMV or CMV and TCV mixed infections. The NAC, C3H, C2H2, WRKY and bZIP were the most commonly presented transcription factor (TF) families in CMV and TuMV infection, while AP2-EREBP and C3H were the TF families involved in CMV and TCV infections. Moreover, analysis of miRNAs during CMV and TuMV and CMV and TCV infections have demonstrated the role of miRNAs in the down regulation of host genes in response to viral infections. These results identified the commonly expressed virus-responsive genes and pathways during plant-virus interaction which might develop novel antiviral strategies for improving plant resistance to mixed viral infections. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00925-3.
Collapse
Affiliation(s)
- Aminallah Tahmasebi
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, 7916193145 Iran
- Plant Protection Research Group, University of Hormozgan, Bandar Abbas, Iran
| | - Bahman Khahani
- Department of Plant Genetics and Production, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Elahe Tavakol
- Department of Plant Genetics and Production, College of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
9
|
Minicka J, Zarzyńska-Nowak A, Budzyńska D, Borodynko-Filas N, Hasiów-Jaroszewska B. High-Throughput Sequencing Facilitates Discovery of New Plant Viruses in Poland. PLANTS 2020; 9:plants9070820. [PMID: 32610678 PMCID: PMC7411967 DOI: 10.3390/plants9070820] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 11/17/2022]
Abstract
Viruses cause epidemics on all major crops of agronomic importance, and a timely and accurate identification is essential for control. High throughput sequencing (HTS) is a technology that allows the identification of all viruses without prior knowledge on the targeted pathogens. In this paper, we used HTS technique for the detection and identification of different viral species occurring in single and mixed infections in plants in Poland. We analysed various host plants representing different families. Within the 20 tested samples, we identified a total of 13 different virus species, including those whose presence has not been reported in Poland before: clover yellow mosaic virus (ClYMV) and melandrium yellow fleck virus (MYFV). Due to this new finding, the obtained sequences were compared with others retrieved from GenBank. In addition, cucurbit aphid-borne yellows virus (CABYV) was also detected, and due to the recent occurrence of this virus in Poland, a phylogenetic analysis of these new isolates was performed. The analysis revealed that CABYV population is highly diverse and the Polish isolates of CABYV belong to two different phylogenetic groups. Our results showed that HTS-based technology is a valuable diagnostic tool for the identification of different virus species originating from variable hosts, and can provide rapid information about the spectrum of plant viruses previously not detected in a region.
Collapse
Affiliation(s)
- Julia Minicka
- Department of Virology and Bacteriology, Institute of Plant Protection–National Research Institute, Wegorka 20, 60-318 Poznan, Poland; (A.Z.-N.); (D.B.)
- Correspondence: (J.M.); (B.H.-J.)
| | - Aleksandra Zarzyńska-Nowak
- Department of Virology and Bacteriology, Institute of Plant Protection–National Research Institute, Wegorka 20, 60-318 Poznan, Poland; (A.Z.-N.); (D.B.)
| | - Daria Budzyńska
- Department of Virology and Bacteriology, Institute of Plant Protection–National Research Institute, Wegorka 20, 60-318 Poznan, Poland; (A.Z.-N.); (D.B.)
| | - Natasza Borodynko-Filas
- Plant Disease Clinic and Bank of Pathogens, Institute of Plant Protection–National Research Institute, Wegorka 20, 60-318 Poznan, Poland;
| | - Beata Hasiów-Jaroszewska
- Department of Virology and Bacteriology, Institute of Plant Protection–National Research Institute, Wegorka 20, 60-318 Poznan, Poland; (A.Z.-N.); (D.B.)
- Correspondence: (J.M.); (B.H.-J.)
| |
Collapse
|
10
|
Kobayashi Y, Fukuzawa N, Hyodo A, Kim H, Mashiyama S, Ogihara T, Yoshioka H, Matsuura H, Masuta C, Matsumura T, Takeshita M. Role of salicylic acid glucosyltransferase in balancing growth and defence for optimum plant fitness. MOLECULAR PLANT PATHOLOGY 2020; 21:429-442. [PMID: 31965700 PMCID: PMC7036366 DOI: 10.1111/mpp.12906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 05/22/2023]
Abstract
Salicylic acid (SA), an essential secondary messenger for plant defence responses, plays a role in maintaining a balance (trade-off) between plant growth and resistance induction, but the detailed mechanism has not been explored. Because the SA mimic benzothiadiazole (BTH) is a more stable inducer of plant defence than SA after exogenous application, we analysed expression profiles of defence genes after BTH treatment to better understand SA-mediated immune induction. Transcript levels of the salicylic acid glucosyltransferase (SAGT) gene were significantly lower in BTH-treated Nicotiana tabacum (Nt) plants than in SA-treated Nt control plants, suggesting that SAGT may play an important role in SA-related host defence responses. Treatment with BTH followed by SA suppressed SAGT transcription, indicating that the inhibitory effect of BTH is not reversible. In addition, in BTH-treated Nt and Nicotiana benthamiana (Nb) plants, an early high accumulation of SA and SA 2-O-β-d-glucoside was only transient compared to the control. This observation agreed well with the finding that SAGT-overexpressing (OE) Nb lines contained less SA and jasmonic acid (JA) than in the Nb plants. When inoculated with a virus, the OE Nb plants showed more severe symptoms and accumulated higher levels of virus, while resistance increased in SAGT-silenced (IR) Nb plants. In addition, the IR plants restricted bacterial spread to the inoculated leaves. After the BTH treatment, OE Nb plants were slightly larger than the Nb plants. These results together indicate that SAGT has a pivotal role in the balance between plant growth and SA/JA-mediated defence for optimum plant fitness.
Collapse
Affiliation(s)
- Yudai Kobayashi
- Laboratory of Plant PathologyFaculty of AgricultureDepartment of Agricultural and Environmental SciencesUniversity of MiyazakiJapan
| | - Noriho Fukuzawa
- Bioproduction Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)SapporoJapan
| | - Ayaka Hyodo
- Laboratory of Plant PathologyGraduate School of AgricultureKyushu UniversityFukuokaJapan
- Present address:
Ehime Research Institute of Agriculture, Forestry and FisheriesFruit Tree Research CenterMatsuyamaEhimeJapan
| | - Hangil Kim
- Graduate School of AgricultureHokkaido UniversitySapporoJapan
| | - Shota Mashiyama
- Graduate School of AgricultureHokkaido UniversitySapporoJapan
| | | | - Hirofumi Yoshioka
- Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan
| | | | - Chikara Masuta
- Graduate School of AgricultureHokkaido UniversitySapporoJapan
| | - Takeshi Matsumura
- Bioproduction Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)SapporoJapan
| | - Minoru Takeshita
- Laboratory of Plant PathologyFaculty of AgricultureDepartment of Agricultural and Environmental SciencesUniversity of MiyazakiJapan
| |
Collapse
|
11
|
Abstract
The pathological importance of mixed viral infections in plants might be underestimated except for a few well-characterized synergistic combinations in certain crops. Considering that the host ranges of many viruses often overlap and that most plant species can be infected by several unrelated viruses, it is not surprising to find more than one virus simultaneously in the same plant. Furthermore, dispersal of the majority of plant viruses relies on efficient transmission mechanisms mediated by vector organisms, mainly but not exclusively insects, which can contribute to the occurrence of multiple infections in the same plant. Recent work using different experimental approaches has shown that mixed viral infections can be remarkably frequent, up to the point that they could be considered the rule more than the exception. The purpose of this review is to describe the impact of multiple infections not only on the participating viruses themselves but also on their vectors and on the common host. From this standpoint, mixed infections arise as complex events that involve several cross-interacting players, and they consequently require a more general perspective than the analysis of single-virus/single-host approaches for a full understanding of their relevance.
Collapse
Affiliation(s)
- Ana Beatriz Moreno
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
- Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| |
Collapse
|
12
|
Matsuo Y, Novianti F, Takehara M, Fukuhara T, Arie T, Komatsu K. Acibenzolar- S-Methyl Restricts Infection of Nicotiana benthamiana by Plantago Asiatica Mosaic Virus at Two Distinct Stages. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1475-1486. [PMID: 31298967 DOI: 10.1094/mpmi-03-19-0087-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plant activators, including acibenzolar-S-methyl (ASM), are chemical compounds that stimulate plant defense responses to pathogens. ASM treatment inhibits infection by a variety of plant viruses, however, the mechanisms of this broad-spectrum and strong effect remain poorly understood. We employed green fluorescent protein (GFP)-expressing viruses and Nicotiana benthamiana plants to identify the infection stages that are restricted by ASM. ASM suppressed infection by three viral species, plantago asiatica mosaic virus (PlAMV), potato virus X (PVX), and turnip mosaic virus (TuMV), in inoculated cells. Furthermore, ASM delayed the long-distance movement of PlAMV and PVX, and the cell-to-cell (short range) movement of TuMV. The ASM-mediated delay of long-distance movement of PlAMV was not due to the suppression of viral accumulation in the inoculated leaves, indicating that ASM restricts PlAMV infection in at least two independent steps. We used Arabidopsis thaliana mutants to show that the ASM-mediated restriction of PlAMV infection requires the NPR1 gene but was independent of the dicer-like genes essential for RNA silencing. Furthermore, experiments using protoplasts showed that ASM treatment inhibited PlAMV replication without cell death. Our approach, using GFP-expressing viruses, will be useful for the analysis of mechanisms underlying plant activator-mediated virus restriction.
Collapse
Affiliation(s)
- Yuki Matsuo
- Plant Pathology Laboratory, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Fawzia Novianti
- Plant Pathology Laboratory, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Miki Takehara
- Plant Pathology Laboratory, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Toshiyuki Fukuhara
- Molecular and Cellular Biology Laboratory, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Tsutomu Arie
- Plant Pathology Laboratory, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Ken Komatsu
- Plant Pathology Laboratory, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
13
|
Sheng Y, Yang L, Li C, Wang Y, Guo H. Transcriptomic changes in Nicotiana tabacum leaves during mosaic virus infection. 3 Biotech 2019; 9:220. [PMID: 31114744 DOI: 10.1007/s13205-019-1740-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/08/2019] [Indexed: 02/04/2023] Open
Abstract
To provide a detailed insight into the early biological process of tobacco mosaic disease, transcriptomic changes in tobacco leaves were surveyed at 1, 3 and 5 days after mono-infected by Tobacco mosaic virus (TMV) and co-infected by Cucumber mosaic virus (CMV) and TMV. At the three different stages, there were 2372, 3168 and 2045 differentially expressed genes (DEGs) in mono-infected leaves, and 2388, 3281 and 3417 DEGs were identified in co-infected leaves. There were 836, 1538 and 1185 common DEGs between the mono-infection and co-infection at the three time points, respectively. These common DEGs were enriched in the pathways, such as photosynthesis, biosynthesis of secondary metabolites, plant-pathogen interaction, porphyrin and chlorophyll metabolism, phenylalanine metabolism and phenylpropanoid biosynthesis. Photosynthesis pathway was observably down-regulated, and defense response pathways were markedly up-regulated. These pathways have been found to be related to tobacco mosaic disease. Of these common DEGs, the changes in expression of argonaute proteins, thioredoxins and peroxidases showed that the activation of RNA silencing and the destruction of redox balance can be induced by tobacco mosaic virus infection, resulting in the reset of biology process and damage in tobacco plants. Additionally, the occurrence of symptoms in co-infected tobacco plants was more early and serious than mono-infection, indicating that there is synergy between TMV and CMV in co-infected tobacco plants. The timely usage of antiviral agents and plant resistance inducers can decrease the incidence of tobacco mosaic disease through changing the expression of some DEGs, indicating that these genes can be used to screen novel plant resistance inducers and antiviral agents. Overall, our results were helpful in clarifying the mechanism of tobacco mosaic disease and provided novel strategies for the prevention of tobacco mosaic disease.
Collapse
Affiliation(s)
- Yangyang Sheng
- 1College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Lijun Yang
- Zhumadian Branch of Henan Province Tobacco Company, Zhumadian, 463000 Henan China
| | - Chunfu Li
- 1College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Yuping Wang
- 1College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Hongxiang Guo
- 1College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002 Henan China
| |
Collapse
|
14
|
Fukuzawa N, Masuta C, Matsumura T. Rapid transient protein production by the coat protein-deficient cucumber mosaic virus vector: non-packaged CMV system, NoPaCS. PLANT CELL REPORTS 2018; 37:1513-1522. [PMID: 30039464 DOI: 10.1007/s00299-018-2322-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
KEY MESSAGE We developed a non-packaged CMV system (NoPaCS) for CMV-agroinfection with a virus-inescapable transgenic plant platform, enabling rapid, high production of a large-sequence target protein. For rapidly producing high levels of a desirable protein, many plant virus vectors have been developed. However, there is always a concern that such recombinant viruses may escape into the environment. Especially for insect-transmissible viruses, certain measures must be taken. We here developed a new cucumber mosaic virus (CMV) RNA 3-based vector that is not transmitted by aphids because we deleted the coat protein (CP) gene responsible for aphid transmission and replaced it with a foreign gene. Transgenic Nicotiana benthamiana plants expressing CMV RNA 1 (CR1Tg) were found to be the most suitable platform for producing a recombinant protein using the CMV vector. By agroinfiltrating CR1Tg plants with the RNA 2 construct and the CMV vector harboring the green fluorescence protein (GFP) gene instead of the CP gene, we achieved a high yield of GFP (e.g., ~ 750 mg/kg FW) throughout the bacteria-infiltrated tissues at 2-3 days after infiltration. Furthermore, with this CMV-agroinfection system, a large gene such as the β-glucuronidase (GUS) gene can be expressed because the viral RNAs are not necessarily encapsidated for replication. The system is designated "non-packaged CMV system (NoPaCS)".
Collapse
Affiliation(s)
- Noriho Fukuzawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan
| | - Chikara Masuta
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Takeshi Matsumura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan.
| |
Collapse
|
15
|
Co-infection of two reoviruses increases both viruses accumulation in rice by up-regulating of viroplasm components and movement proteins bilaterally and RNA silencing suppressor unilaterally. Virol J 2017; 14:150. [PMID: 28789694 PMCID: PMC5549333 DOI: 10.1186/s12985-017-0819-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/04/2017] [Indexed: 11/26/2022] Open
Abstract
Background Synergism between southern rice black-streaked dwarf virus (SRBSDV) and rice ragged stunt virus (RRSV) not only aggravates disease symptoms but also enhances their vector acquisition efficiencies by increasing both viruses’ titers in co-infected rice plants, which may exacerbate the epidemic of both viruses and cause significant damage to rice production. The molecular mechanism of viral synergism of these two viruses remains unexplored. Methods Single and double infection of SRBSDV and RRSV were obtained with the viruliferous white-backed planthopper and brown planthopper inoculation on four-leaf stage rice seedlings, respectively, under experimental condition. The second upper leaf from each inoculated rice plants were collected at 9, 15, and 20 days post inoculation (dpi) and used for relative quantification of 13 SRBSDV genes and 11 RRSV genes by the reverse-transcription quantitative PCR. Viral gene expression levels were compared between singly and doubly infected samples at the same stage. Results The movement protein and viroplasm matrix-related genes as well as the structural (capsid) protein genes of both viruses were remarkably up-regulated at different time points in the co-infected rice plants compared with the samples singly infected with SRBSDV or RRSV, however, the RNA silencing suppressor (P6) of only RRSV, but not of both the viruses, was up-regulated. Conclusions The SRBSDV-RRSV synergism promoted replication and movement of both viruses and inhibited the host immunity by enhancing the gene suppressing effect exerted by one of them (RRSV). Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0819-0) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Murota K, Shimura H, Takeshita M, Masuta C. Interaction between Cucumber mosaic virus 2b protein and plant catalase induces a specific necrosis in association with proteasome activity. PLANT CELL REPORTS 2017; 36:37-47. [PMID: 27659495 PMCID: PMC5206265 DOI: 10.1007/s00299-016-2055-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/06/2016] [Indexed: 05/20/2023]
Abstract
Cucumber mosaic virus (CMV) can induce a specific necrosis on Arabidopsis through the interaction between the CMV 2b protein and host catalase, in which the ubiquitin-proteasome pathway may be involved. We previously reported that the CMV 2b protein, the viral RNA silencing suppressor, interacted with the H2O2 scavenger catalase (CAT3), leading to necrosis on CMV-inoculated Arabidopsis leaves. We here confirmed that CMV could more abundantly accumulate in the CAT3-knockout mutant (cat3), and that CAT3 makes host plants a little more tolerant to CMV. We also found that the necrosis severity is not simply explained by a high level of H2O2 given by the lack of CAT3, because the recombinant CMV, CMV-N, induced much milder necrosis in cat3 than in the wild type, suggesting some specific mechanism for the necrosis induction. To further characterize the 2b-inducing necrosis in relation to its binding to CAT3, we conducted the agroinfiltration experiments to overexpress CAT3 and 2b in N. benthamiana leaves. The accumulation levels of CAT3 were higher when co-expressed with the CMV-N 2b (N2b) than with CMV-Y 2b (Y2b). We infer that N2b made a more stable complex with CAT3 than Y2b did, and the longevity of the 2b-CAT3 complex seemed to be important to induce necrosis. By immunoprecipitation (IP) with an anti-ubiquitin antibody followed by the detection with anti-CAT3 antibodies, we detected a higher molecular-weight smear and several breakdown products of CAT3 among the IP-proteins. In addition, the proteasome inhibitor MG132 treatment could actually increase the accumulation levels of CAT3. This study suggests that the host proteasome pathway is, at least partially, responsible for the degradation of CAT3, which is manifested in CMV-infected tissues.
Collapse
Affiliation(s)
- Katsunori Murota
- Research Faculty of Agriculture, Hokkaido University, Kita-ku kita 9, Nishi 9, Sapporo, 060-8589, Japan
| | - Hanako Shimura
- Research Faculty of Agriculture, Hokkaido University, Kita-ku kita 9, Nishi 9, Sapporo, 060-8589, Japan.
| | - Minoru Takeshita
- Laboratory of Plant Pathology, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Chikara Masuta
- Research Faculty of Agriculture, Hokkaido University, Kita-ku kita 9, Nishi 9, Sapporo, 060-8589, Japan.
| |
Collapse
|
17
|
Ohshima K, Nomiyama R, Mitoma S, Honda Y, Yasaka R, Tomimura K. Evolutionary rates and genetic diversities of mixed potyviruses in Narcissus. INFECTION GENETICS AND EVOLUTION 2016; 45:213-223. [PMID: 27590715 DOI: 10.1016/j.meegid.2016.08.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/12/2016] [Accepted: 08/29/2016] [Indexed: 01/09/2023]
Abstract
There is no attempt to evaluate evolutionary rates, timescales and diversities of viruses collected from mixedly infected hosts in nature. Plants of the genus Narcissus are a monocotyledon and are susceptible to several viruses. In this study, narcissus plants (Narcissus tazetta var. chinensis) showing mosaic or striping leaves were collected in Japan, and these were investigated for potyvirus infections using potyvirus-specific primers. Individual narcissus plants were found frequently to be mixedly infected with different potyviruses, different isolates and quasispecies of same virus. The viruses were potyviruses and a macluravirus in the family Potyviridae, namely Narcissus late season yellows virus (NLSYV), Narcissus yellow stripe virus (NYSV), Narcissus degeneration virus (NDV), Cyrtanthus elatus virus A (CyEVA) and Narcissus latent virus (NLV). Genetic diversities of coat protein coding region of different virus species were different; NYSV and CyEVA were most diverse whereas NDV was least. Evolutionary rates of all five narcissus viruses were 1.33-7.15×10-3nt/site/year and were similar. The most recent common ancestors (TMRCAs) varied between virus species; NYSV and CyEVA were the oldest whereas NDV was the youngest. Thus, the oldness of TMRCAs of the viruses correlated well with the greatness of nucleotide diversities.
Collapse
Affiliation(s)
- Kazusato Ohshima
- Laboratory of Plant Virology, Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, 1-banchi, Honjo-machi, Saga 840-8502, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| | - Rei Nomiyama
- Laboratory of Plant Virology, Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, 1-banchi, Honjo-machi, Saga 840-8502, Japan
| | - Shinichiro Mitoma
- Laboratory of Plant Virology, Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, 1-banchi, Honjo-machi, Saga 840-8502, Japan
| | - Yuki Honda
- Laboratory of Plant Virology, Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, 1-banchi, Honjo-machi, Saga 840-8502, Japan
| | - Ryosuke Yasaka
- Laboratory of Plant Virology, Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, 1-banchi, Honjo-machi, Saga 840-8502, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Kenta Tomimura
- Division of Citrus Research, Institute of Fruit Tree and Tea Science, NARO (National Agriculture and Food Research Organization), 485-6 Okitsu Nakacho, Shimizu, Shizuoka 424-0292, Japan
| |
Collapse
|
18
|
Krenz B, Bronikowski A, Lu X, Ziebell H, Thompson JR, Perry KL. Visual monitoring of Cucumber mosaic virus infection in Nicotiana benthamiana following transmission by the aphid vector Myzus persicae. J Gen Virol 2015; 96:2904-2912. [PMID: 25979730 DOI: 10.1099/vir.0.000185] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The single-stranded, positive-sense and tripartite RNA virus Cucumber mosaic virus (CMV) was used in this study as a method for monitoring the initial stages of virus infection following aphid transmission. The RNA2 of CMV was modified to incorporate, in a variety of arrangements, an open reading frame (ORF) encoding an enhanced green fluorescent protein (eGFP). The phenotypes of five engineered RNA2s were tested in Nicotiana tabacum, Nicotiana clevelandii and Nicotiana benthamiana. Only one construct (F4), in which the 2b ORF was truncated at the 3' end and fused in-frame with the eGFP ORF, was able to systemically infect N. benthamiana plants, express eGFP and be transmitted by the aphid Myzus persicae. The utility of this construct was demonstrated following infection as early as one day post-transmission (dpt) continuing through to systemic infection. Comparisons of the inoculation sites in different petiole sections one to three dpt clearly showed that the onset of infection and eGFP expression always occurred in the epidermal or collenchymatous tissue just below the epidermis; an observation consistent with the rapid time frame characteristic of the non-persistent mode of aphid transmission.
Collapse
Affiliation(s)
- Bjoern Krenz
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Building, Ithaca, NY 14853-5904, USA
- Lehrstuhl Biochemie, Department Biologie - Universität Erlangen-Nürnberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Agathe Bronikowski
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Building, Ithaca, NY 14853-5904, USA
- Institute for Microbiology, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Xiaoyun Lu
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Building, Ithaca, NY 14853-5904, USA
| | - Heiko Ziebell
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Building, Ithaca, NY 14853-5904, USA
- Julius Kühn-Institut Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Jeremy R Thompson
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Building, Ithaca, NY 14853-5904, USA
| | - Keith L Perry
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Building, Ithaca, NY 14853-5904, USA
| |
Collapse
|
19
|
Hu SF, Huang YH, Lin CP, Liu LYD, Hong SF, Yang CY, Lo HF, Tseng TY, Chen WY, Lin SS. Development of a Mild Viral Expression System for Gain-Of-Function Study of Phytoplasma Effector In Planta. PLoS One 2015; 10:e0130139. [PMID: 26076458 PMCID: PMC4468105 DOI: 10.1371/journal.pone.0130139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/18/2015] [Indexed: 11/19/2022] Open
Abstract
PHYL1 and SAP54 are orthologs of pathogenic effectors of Aster yellow witches'-broom (AYWB) phytoplasma and Peanut witches'-broom (PnWB) phytoplasma, respectively. These effectors cause virescence and phyllody symptoms (hereafter leafy flower) in phytoplasma-infected plants. T0 lines of transgenic Arabidopsis expressing the PHYL1 or SAP54 genes (PHYL1 or SAP54 plants) show a leafy flower phenotype and result in seedless, suggesting that PHYL1 and SAP54 interfere with reproduction stage that restrict gain-of-function studies in the next generation of transgenic plants. Turnip mosaic virus (TuMV) mild strain (TuGK) has an Arg182Lys mutation in the helper-component proteinase (HC-ProR182K) that blocks suppression of the miRNA pathway and prevents symptom development in TuGK-infected plants. We exploited TuGK as a viral vector for gain-of-function studies of PHYL1 and SAP54 in Arabidopsis plants. TuGK-PHYL1- and TuGK-SAP54-infected Arabidopsis plants produced identical leafy flower phenotypes and similar gene expression profiles as PHYL1 and SAP54 plants. In addition, the leafy flower formation rate was enhanced in TuGK-PHYL1- or TuGK-SAP54-infected Arabidopsis plants that compared with the T0 lines of PHYL1 plants. These results provide more evidence and novel directions for further studying the mechanism of PHYL1/SAP54-mediated leafy flower development. In addition, the TuGK vector is a good alternative in transgenic plant approaches for rapid gene expression in gain-of-function studies.
Collapse
Affiliation(s)
- Sin-Fen Hu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsin Huang
- Departement of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Chan-Pin Lin
- Departement of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Li-Yu Daisy Liu
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Syuan-Fei Hong
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| | - Chiao-Yin Yang
- Departement of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Feng Lo
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| | - Ting-Yu Tseng
- Joint Center for Instruments and Researches, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Wei-Yao Chen
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
20
|
Elena SF, Bernet GP, Carrasco JL. The games plant viruses play. Curr Opin Virol 2014; 8:62-7. [DOI: 10.1016/j.coviro.2014.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/21/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
|
21
|
The capsid protein p38 of turnip crinkle virus is associated with the suppression of cucumber mosaic virus in Arabidopsis thaliana co-infected with cucumber mosaic virus and turnip crinkle virus. Virology 2014; 462-463:71-80. [DOI: 10.1016/j.virol.2014.05.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/09/2014] [Accepted: 05/27/2014] [Indexed: 11/20/2022]
|
22
|
Li S, Wang H, Zhou G. Synergism between southern rice black-streaked dwarf virus and rice ragged stunt virus enhances their insect vector acquisition. PHYTOPATHOLOGY 2014; 104:794-9. [PMID: 24915431 DOI: 10.1094/phyto-11-13-0319-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Southern rice black-streaked dwarf virus (SRBSDV), a tentative species in the genus Fijivirus, family Reoviridae, is a novel rice virus transmitted by the white-backed planthopper (Sogatella furcifera). Since its discovery in 2001, SRBSDV has spread rapidly throughout eastern and southeastern Asia and caused large rice losses in China and Vietnam. Rice ragged stunt virus (RRSV) (genus Oryzavirus, family Reoviridae) is a common rice virus vectored by the brown planthopper (Nilaparvata lugens). RRSV is also widely distributed in eastern and southeastern Asia but has not previously caused serious problems in China owing to its low incidence. With SRBSDV's spread, however, RRSV has become increasingly common in China, and is frequently found in co-infection with SRBSDV. In this study, we show that SRBSDV and RRSV interact synergistically, the first example of synergism between plant viruses in the family Reoviridae. Rice plants co-infected with both viruses displayed enhanced stunting, earlier symptoms, and higher virus titers compared with singly infected plants. Furthermore, white-backed and brown planthoppers acquired SRBSDV and RRSV, respectively, from co-infected plants at higher rates. We propose that increased RRSV incidence in Chinese fields is partly due to synergism between SRBSDV and RRSV.
Collapse
|
23
|
Minato N, Komatsu K, Okano Y, Maejima K, Ozeki J, Senshu H, Takahashi S, Yamaji Y, Namba S. Efficient foreign gene expression in planta using a plantago asiatica mosaic virus-based vector achieved by the strong RNA-silencing suppressor activity of TGBp1. Arch Virol 2014; 159:885-96. [PMID: 24154949 DOI: 10.1007/s00705-013-1860-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 09/24/2013] [Indexed: 01/04/2023]
Abstract
Plant virus expression vectors provide a powerful tool for basic research as well as for practical applications. Here, we report the construction of an expression vector based on plantago asiatica mosaic virus (PlAMV), a member of the genus Potexvirus. Modification of a vector to enhance the expression of a foreign gene, combined with the use of the foot-and-mouth disease virus 2A peptide, allowed efficient expression of the foreign gene in two model plant species, Arabidopsis thaliana and Nicotiana benthamiana. Comparison with the widely used potato virus X (PVX) vector demonstrated that the PlAMV vector retains an inserted foreign gene for a longer period than PVX. Moreover, our results showed that the GFP expression construct PlAMV-GFP exhibits stronger RNA silencing suppression activity than PVX-GFP, which is likely to contribute to the stability of the PlAMV vector.
Collapse
Affiliation(s)
- Nami Minato
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hisa Y, Suzuki H, Atsumi G, Choi SH, Nakahara KS, Uyeda I. P3N-PIPO of Clover yellow vein virus exacerbates symptoms in pea infected with white clover mosaic virus and is implicated in viral synergism. Virology 2014; 449:200-6. [PMID: 24418553 DOI: 10.1016/j.virol.2013.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/08/2013] [Accepted: 11/07/2013] [Indexed: 11/25/2022]
Abstract
Mixed infection of pea (Pisum sativum) with Clover yellow vein virus (ClYVV) and White clover mosaic virus (WClMV) led to more severe disease symptoms (a phenomenon called viral synergism). Similar to the mixed ClYVV/WClMV infection, a WClMV-based vector encoding P3N-PIPO of ClYVV exacerbated the disease symptoms. Infection with the WClMV vector encoding ClYVV HC-Pro (a suppressor of RNA silencing involved in potyviral synergisms), also resulted in more severe symptoms, although to a lesser extent than infection with the vector encoding P3N-PIPO. Viral genomic RNA accumulated soon after inoculation (at 2 and 4 days) at higher levels in leaves inoculated with WClMV encoding HC-Pro but at lower levels in leaves inoculated with WClMV encoding P3N-PIPO than in peas infected with WClMV encoding GFP. Our results suggest that ClYVV P3N-PIPO is involved in the synergism between ClYVV and WClMV during pea infection through an unknown mechanism different from suppression of RNA silencing.
Collapse
Affiliation(s)
- Yusuke Hisa
- Pathogen-Plant Interactions Group, Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Haruka Suzuki
- Pathogen-Plant Interactions Group, Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Go Atsumi
- Iwate Biotechnology Research Center, Kitakami 024-0003, Iwate, Japan
| | - Sun Hee Choi
- Pathogen-Plant Interactions Group, Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Kenji S Nakahara
- Pathogen-Plant Interactions Group, Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| | - Ichiro Uyeda
- Pathogen-Plant Interactions Group, Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
25
|
Mollov D, Lockhart B, Zlesak D. Complete nucleotide sequence of rose yellow mosaic virus, a novel member of the family Potyviridae. Arch Virol 2013; 158:1917-23. [PMID: 23553457 DOI: 10.1007/s00705-013-1686-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/21/2013] [Indexed: 10/27/2022]
Abstract
The complete genomic sequence of rose yellow mosaic virus (RoYMV) was determined and found to have all the features that are characteristic of members of the family Potyviridae. The RoYMV genome is 9508 nucleotides long excluding the 3'-poly-(A) tail and contains a single open reading frame encoding a polyprotein of 3067 amino acids. The RoYMV P3 and CI cistrons are shorter than those of other members of the family Potyviridae, and the 6K1 cistron is completely absent. Comparative sequence analysis revealed that RoYMV had highest amino acid sequence identity across the entire genome sequence to brome streak mosaic virus (33 %) and to turnip mosaic virus (30 %) at the coat protein level. Based on its low sequence similarity to known members of the family Potyviridae and phylogenetic analysis, RoYMV appears to be a distinct, previously undescribed, member of this family.
Collapse
Affiliation(s)
- Dimitre Mollov
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA.
| | | | | |
Collapse
|
26
|
Takahashi H, Shoji H, Ando S, Kanayama Y, Kusano T, Takeshita M, Suzuki M, Masuta C. RCY1-mediated resistance to Cucumber mosaic virus is regulated by LRR domain-mediated interaction with CMV(Y) following degradation of RCY1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1171-85. [PMID: 22852808 DOI: 10.1094/mpmi-04-12-0076-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RCY1, which encodes a coiled coil nucleotide-binding site leucine-rich repeat (LRR) class R protein, confers the hypersensitive response (HR) to a yellow strain of Cucumber mosaic virus (CMV[Y]) in Arabidopsis thaliana. Nicotiana benthamiana transformed with hemagglutinin (HA) epitope-tagged RCY1 (RCY1-HA) also exhibited a defense response accompanied by HR cell death and induction of defense-related gene expression in response to CMV(Y). Following transient expression of RCY1-HA by agroinfiltration, the defense reaction was induced in N. benthamiana leaves infected with CMV(Y) but not in virulent CMV(B2)-infected N. benthamiana leaves transiently expressing RCY1-HA or CMV(Y)-infected N. benthamiana leaves transiently expressing HA-tagged RPP8 (RPP8-HA), which is allelic to RCY1. This result suggests that Arabidopsis RCY1-conferred resistance to CMV(Y) could be reproduced in N. benthamiana leaves in a gene-for-gene manner. Expression of a series of chimeric constructs between RCY1-HA and RPP8-HA in CMV(Y)-infected N. benthamiana indicated that induction of defense responses to CMV(Y) is regulated by the LRR domain of RCY1. Interestingly, in CMV(Y)-infected N. benthamiana manifesting the defense response, the levels of both RCY1 and chimeric proteins harboring the RCY1 LRR domain were significantly reduced. Taken together, these data indicate that the RCY1-conferred resistance response to CMV(Y) is regulated by an LRR domain-mediated interaction with CMV(Y) and seems to be tightly associated with the degradation of RCY1 in response to CMV(Y).
Collapse
|
27
|
Kang WH, Seo JK, Chung BN, Kim KH, Kang BC. Helicase domain encoded by Cucumber mosaic virus RNA1 determines systemic infection of Cmr1 in pepper. PLoS One 2012; 7:e43136. [PMID: 22905216 PMCID: PMC3419664 DOI: 10.1371/journal.pone.0043136] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/17/2012] [Indexed: 11/24/2022] Open
Abstract
The Cmr1 gene in peppers confers resistance to Cucumber mosaic virus isolate-P0 (CMV-P0). Cmr1 restricts the systemic spread of CMV strain-Fny (CMV-Fny), whereas this gene cannot block the spread of CMV isolate-P1 (CMV-P1) to the upper leaves, resulting in systemic infection. To identify the virulence determinant of CMV-P1, six reassortant viruses and six chimeric viruses derived from CMV-Fny and CMV-P1 cDNA clones were used. Our results demonstrate that the C-terminus of the helicase domain encoded by CMV-P1 RNA1 determines susceptibility to systemic infection, and that the helicase domain contains six different amino acid substitutions between CMV-Fny and CMV-P1(.) To identify the key amino acids of the helicase domain determining systemic infection with CMV-P1, we then constructed amino acid substitution mutants. Of the mutants tested, amino acid residues at positions 865, 896, 957, and 980 in the 1a protein sequence of CMV-P1 affected the systemic infection. Virus localization studies with GFP-tagged CMV clones and in situ localization of virus RNA revealed that these four amino acid residues together form the movement determinant for CMV-P1 movement from the epidermal cell layer to mesophyll cell layers. Quantitative real-time PCR revealed that CMV-P1 and a chimeric virus with four amino acid residues of CMV-P1 accumulated more genomic RNA in inoculated leaves than did CMV-Fny, indicating that those four amino acids are also involved in virus replication. These results demonstrate that the C-terminal region of the helicase domain is responsible for systemic infection by controlling virus replication and cell-to-cell movement. Whereas four amino acids are responsible for acquiring virulence in CMV-Fny, six amino acid (positions at 865, 896, 901, 957, 980 and 993) substitutions in CMV-P1 were required for complete loss of virulence in 'Bukang'.
Collapse
Affiliation(s)
- Won-Hee Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Jang-Kyun Seo
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Bong Nam Chung
- National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon, Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|