1
|
Pozharskiy A, Mendybayeva A, Moisseyev R, Khusnitdinova M, Nizamdinova G, Gritsenko D. Molecular detection and sequencing of beet necrotic yellow vein virus and beet cryptic virus 2 in sugar beet from Kazakhstan. Front Microbiol 2024; 15:1461988. [PMID: 39600569 PMCID: PMC11588710 DOI: 10.3389/fmicb.2024.1461988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Beet necrotic yellow vein virus (BNYVV) is a common viral pathogen that causes considerable economic loss globally. In the present study, a commercial realtime PCR test system and custom loop mediated amplification primers were used to detect the virus in asymptomatic sugar beet samples. Methods A total of 107 of 124 samples tested positive for the presence of the A type BNYVV coat protein gene. Near complete sequences of RNA-3 and RNA-4 were obtained using reverse transcription, followed by nanopore sequencing of 14 samples. Results and discussion A comparison with available sequences, including previously published isolates Kas2 and Kas3 from Kazakhstan, identified RNA-3 as similar to such of the P-type isolates Puthiviers and Kas3. RNA-5 was not detected using real-time PCR or cDNA amplification. Unique variable sites were identified in the p25 protein sequence translated from RNA-3. Another virus, beet cryptic virus 2 (BCV2), was identified and sequenced in samples infected with BNYVV. With 85.28% genome coverage, the identified BCV2 samples were very similar to the previously reported isolates from Hungary and Germany.
Collapse
Affiliation(s)
- Alexandr Pozharskiy
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - Aruzhan Mendybayeva
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - Ruslan Moisseyev
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Marina Khusnitdinova
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - Gulnaz Nizamdinova
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - Dilyara Gritsenko
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| |
Collapse
|
2
|
Yue N, Jiang Z, Pi Q, Yang M, Gao Z, Wang X, Zhang H, Wu F, Jin X, Li M, Wang Y, Zhang Y, Li D. Zn2+-dependent association of cysteine-rich protein with virion orchestrates morphogenesis of rod-shaped viruses. PLoS Pathog 2024; 20:e1012311. [PMID: 38885273 PMCID: PMC11213338 DOI: 10.1371/journal.ppat.1012311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 06/28/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
The majority of rod-shaped and some filamentous plant viruses encode a cysteine-rich protein (CRP) that functions in viral virulence; however, the roles of these CRPs in viral infection remain largely unknown. Here, we used barley stripe mosaic virus (BSMV) as a model to investigate the essential role of its CRP in virus morphogenesis. The CRP protein γb directly interacts with BSMV coat protein (CP), the mutations either on the His-85 site in γb predicted to generate a potential CCCH motif or on the His-13 site in CP exposed to the surface of the virions abolish the zinc-binding activity and their interaction. Immunogold-labeling assays show that γb binds to the surface of rod-shaped BSMV virions in a Zn2+-dependent manner, which enhances the RNA binding activity of CP and facilitates virion assembly and stability, suggesting that the Zn2+-dependent physical association of γb with the virion is crucial for BSMV morphogenesis. Intriguingly, the tightly binding of diverse CRPs to their rod-shaped virions is a general feature employed by the members in the families Virgaviridae (excluding the genus Tobamovirus) and Benyviridae. Together, these results reveal a hitherto unknown role of CRPs in the assembly and stability of virus particles, and expand our understanding of the molecular mechanism underlying virus morphogenesis.
Collapse
Affiliation(s)
- Ning Yue
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhihao Jiang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qinglin Pi
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Meng Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zongyu Gao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xueting Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - He Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fengtong Wu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuejiao Jin
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Menglin Li
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Ying Wang
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Lukhovitskaya N, Brown K, Hua L, Pate AE, Carr JP, Firth AE. A novel ilarvirus protein CP-RT is expressed via stop codon readthrough and suppresses RDR6-dependent RNA silencing. PLoS Pathog 2024; 20:e1012034. [PMID: 38814986 PMCID: PMC11166343 DOI: 10.1371/journal.ppat.1012034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/11/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
Ilarviruses are a relatively understudied but important group of plant RNA viruses that includes a number of crop pathogens. Their genomes comprise three RNA segments encoding two replicase subunits, movement protein, coat protein (CP), and (in some ilarvirus subgroups) a protein that suppresses RNA silencing. Here we report that, in many ilarviruses, RNA3 encodes an additional protein (termed CP-RT) as a result of ribosomal readthrough of the CP stop codon into a short downstream readthrough (RT) ORF. Using asparagus virus 2 as a model, we find that CP-RT is expressed in planta where it functions as a weak suppressor of RNA silencing. CP-RT expression is essential for persistent systemic infection in leaves and shoot apical meristem. CP-RT function is dependent on a putative zinc-finger motif within RT. Replacing the asparagus virus 2 RT with the RT of an ilarvirus from a different subgroup restored the ability to establish persistent infection. These findings open up a new avenue for research on ilarvirus silencing suppression, persistent meristem invasion and vertical transmission.
Collapse
Affiliation(s)
- Nina Lukhovitskaya
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Katherine Brown
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Lei Hua
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Adrienne E. Pate
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - John P. Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Andrew E. Firth
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Nemes K, Gil JF, Liebe S, Mansi M, Poimenopoulou E, Lennefors BL, Varrelmann M, Savenkov EI. Intermolecular base-pairing interactions, a unique topology and exoribonuclease-resistant noncoding RNAs drive formation of viral chimeric RNAs in plants. THE NEW PHYTOLOGIST 2024; 241:861-877. [PMID: 37897070 DOI: 10.1111/nph.19346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023]
Abstract
In plants, exoribonuclease-resistant RNAs (xrRNAs) are produced by many viruses. Whereas xrRNAs contribute to the pathogenicity of these viruses, the role of xrRNAs in the virus infectious cycle remains elusive. Here, we show that xrRNAs produced by a benyvirus (a multipartite RNA virus with four genomic segments) in plants are involved in the formation of monocistronic coat protein (CP)-encoding chimeric RNAs. Naturally occurring chimeric RNAs, we discovered, are composed of 5'-end of RNA 2 and 3'-end of either RNA 3 or RNA 4 bearing conservative exoribonuclease-resistant 'coremin' region. Using computational tools and site-directed mutagenesis, we show that de novo formation of chimeric RNAs requires intermolecular base-pairing interaction between 'coremin' and 3'-proximal part of the CP gene of RNA 2 as well as a stem-loop structure immediately adjacent to the CP gene. Moreover, knockdown of the expression of the XRN4 gene, encoding 5'→3' exoribonuclease, inhibits biogenesis of both xrRNAs and chimeric RNAs. Our findings suggest a novel mechanism involving a unique tropology of the intermolecular base-pairing complex between xrRNAs and RNA2 to promote formation of chimeric RNAs in plants. XrRNAs, essential for chimeric RNA biogenesis, are generated through the action of cytoplasmic Xrn 4 5'→3' exoribonuclease conserved in all plant species.
Collapse
Affiliation(s)
- Katalin Nemes
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, 75007, Sweden
| | - Jose F Gil
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, 75007, Sweden
- VEDAS Corporación de Investigación e Innovación (VEDAS CII), Medellín, 050024, Colombia
| | - Sebastian Liebe
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, 37079, Germany
| | - Mansi Mansi
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, 75007, Sweden
| | - Efstratia Poimenopoulou
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, 75007, Sweden
| | | | - Mark Varrelmann
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, 37079, Germany
| | - Eugene I Savenkov
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, 75007, Sweden
| |
Collapse
|
5
|
Liebe S, Maiss E, Varrelmann M. The arms race between beet necrotic yellow vein virus and host resistance in sugar beet. FRONTIERS IN PLANT SCIENCE 2023; 14:1098786. [PMID: 37063189 PMCID: PMC10102433 DOI: 10.3389/fpls.2023.1098786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Beet necrotic yellow vein virus (BNYVV) causes rhizomania disease in sugar beet (Beta vulgaris), which is controlled since more than two decades by cultivars harboring the Rz1 resistance gene. The development of resistance-breaking strains has been favored by a high selection pressure on the soil-borne virus population. Resistance-breaking is associated with mutations at amino acid positions 67-70 (tetrad) in the RNA3 encoded pathogenicity factor P25 and the presence of an additional RNA component (RNA5). However, natural BNYVV populations are highly diverse making investigations on the resistance-breaking mechanism rather difficult. Therefore, we applied a reverse genetic system for BNYVV (A type) to study Rz1 resistance-breaking by direct agroinoculation of sugar beet seedlings. The bioassay allowed a clear discrimination between susceptible and Rz1 resistant plants already four weeks after infection, and resistance-breaking was independent of the sugar beet Rz1 genotype. A comprehensive screen of natural tetrads for resistance-breaking revealed several new mutations allowing BNYVV to overcome Rz1. The supplementation of an additional RNA5 encoding the pathogenicity factor P26 allowed virus accumulation in the Rz1 genotype independent of the P25 tetrad. This suggests the presence of two distinct resistance-breaking mechanisms allowing BNYVV to overcome Rz1. Finally, we showed that the resistance-breaking effect of the tetrad and the RNA5 is specific to Rz1 and has no effect on the stability of the second resistance gene Rz2. Consequently, double resistant cultivars (Rz1+Rz2) should provide effective control of Rz1 resistance-breaking strains. Our study highlights the flexibility of the viral genome allowing BNYVV to overcome host resistance, which underlines the need for a continuous search for alternative resistance genes.
Collapse
Affiliation(s)
- Sebastian Liebe
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, Germany
| | - Edgar Maiss
- Department of Phytomedicine, Plant Virology, Institute of Horticultural Production Systems, Leibniz University, Hannover, Germany
| | - Mark Varrelmann
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, Germany
| |
Collapse
|
6
|
Solovyev AG, Morozov SY. Uncovering Plant Virus Species Forming Novel Provisional Taxonomic Units Related to the Family Benyviridae. Viruses 2022; 14:v14122680. [PMID: 36560684 PMCID: PMC9781952 DOI: 10.3390/v14122680] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Based on analyses of recent open-source data, this paper describes novel horizons in the diversity and taxonomy of beny-like viruses infecting hosts of the plant kingdom (Plantae or Archaeplastida). First, our data expand the known host range of the family Benyviridae to include red algae. Second, our phylogenetic analysis suggests that the evolution of this virus family may have involved cross-kingdom host change events and gene recombination/exchanges between distant taxa. Third, the identification of gene blocks encoding known movement proteins in beny-like RNA viruses infecting non-vascular plants confirms other evidence that plant virus genomic RNAs may have acquired movement proteins simultaneously or even prior to the evolutionary emergence of the plant vascular system. Fourth, novel data on plant virus diversity highlight that molecular evolution gave rise to numerous provisional species of land-plant-infecting viruses, which encode no known potential movement genetic systems.
Collapse
Affiliation(s)
- Andrey G. Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
- All Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
- Correspondence: ; Tel.: +7-(495)-9393198
| |
Collapse
|
7
|
Decroës A, Mahillon M, Genard M, Lienard C, Lima-Mendez G, Gilmer D, Bragard C, Legrève A. Rhizomania: Hide and Seek of Polymyxa betae and the Beet Necrotic Yellow Vein Virus with Beta vulgaris. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:989-1005. [PMID: 35816413 DOI: 10.1094/mpmi-03-22-0063-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The molecular interactions between Polymyxa betae, the protist vector of sugar beet viruses, beet necrotic yellow vein virus (BNYVV), the causal agent of rhizomania, and Beta vulgaris have not been extensively studied. Here, the transmission of BNYVV to sugar beet by P. betae zoospores was optimized using genetically characterized organisms. Molecular interactions of aviruliferous and viruliferous protist infection on sugar beet were highlighted by transcriptomic analysis. P. betae alone induced limited gene expression changes in sugar beet, as a biotrophic asymptomatic parasite. Most differentially expressed plant genes were down-regulated and included resistance gene analogs and cell wall peroxidases. Several enzymes involved in stress regulation, such as the glutathione-S-transferases, were significantly induced. With BNYVV, the first stages of the P. betae life cycle on sugar beet were accelerated with a faster increase of relative protist DNA level and an earlier appearance of sporangia and sporosori in plants roots. A clear activation of plant defenses and the modulation of genes involved in plant cell wall metabolism were observed. The P. betae transcriptome in the presence of BNYVV revealed induction of genes possibly involved in the switch to the survival stage. The interactions were different depending on the presence or absence of the virus. P. betae alone alleviates plant defense response, playing hide-and-seek with sugar beet and allowing for their mutual development. Conversely, BNYVV manipulates plant defense and promotes the rapid invasion of plant roots by P. betae. This accelerated colonization is accompanied by the development of thick-walled resting spores, supporting the virus survival. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Alain Decroës
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | | | - Margaux Genard
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - Charlotte Lienard
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - Gipsi Lima-Mendez
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - David Gilmer
- Institut de biologie moléculaire des plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, 67084, France
| | - Claude Bragard
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - Anne Legrève
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| |
Collapse
|
8
|
Müllender MM, Varrelmann M, Maiss E, Liebe S. Comparative analysis of virus pathogenicity and resistance-breaking between the P- and A-type from the beet necrotic yellow vein virus using infectious cDNA clones. J Gen Virol 2022; 103. [PMID: 35947097 DOI: 10.1099/jgv.0.001777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The A-type of beet necrotic yellow vein virus (BNYVV) is widely distributed in Europe and is one of the major virus types causing rhizomania disease in sugar beet. The closely related P-type is mainly limited to a small region in France (Pithiviers). Both virus types possess four RNAs (RNA1-4), but the P-type harbours an additional fifth RNA species (RNA5). The P-type is associated with stronger disease symptoms and resistance-breaking of Rz1, one of the two resistance genes which are used to control BNYVV infection. These characteristics are presumably due to the presence of RNA5, but experimental evidence for this is lacking. We generated the first infectious cDNA clone of BNYVV P-type to study its pathogenicity in sugar beet in comparison to a previously developed A-type clone. Using this tool, we confirmed the pathogenicity of the P-type clone in the experimental host Nicotiana benthamiana and two Beta species, B. macrocarpa and B. vulgaris. Independent of RNA5, both the A- and the P-type accumulated in lateral roots and reduced the taproot weight of a susceptible sugar beet genotype to a similar extent. In contrast, only the P-type clone was able to accumulate a virus titre in an Rz1-resistant variety whereas the A-type clone failed to infect this variety. The efficiency of the P-type to overcome Rz1 resistance was strongly associated with the presence of RNA5. Only a double resistant variety, harbouring Rz1 and Rz2, prevented an infection with the P-type. Reassortment experiments between the P- and A-type clones demonstrated that both virus types can exchange whole RNA components without losing the ability to replicate and to move systemically in sugar beet. Although our study highlights the close evolutionary relationship between the two virus types, we were able to demonstrate distinct pathogenicity properties that are attributed to the presence of RNA5 in the P-type.
Collapse
Affiliation(s)
| | - Mark Varrelmann
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, Germany
| | - Edgar Maiss
- Institute of Horticultural Production Systems, Plant Virology, Department of Phytomedicine, Leibniz University, Hannover, Germany
| | - Sebastian Liebe
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, Germany
| |
Collapse
|
9
|
Poignavent V, Hoh F, Terral G, Yang Y, Gillet FX, Kim JH, Allemand F, Lacombe E, Brugidou C, Cianferani S, Déméné H, Vignols F. A flexible and original architecture of two unrelated zinc fingers underlies the role of the multitask P1 in RYMV spread. J Mol Biol 2022; 434:167715. [DOI: 10.1016/j.jmb.2022.167715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
|
10
|
Bioinformatic Analysis Predicts a Novel Genetic Module Related to Triple Gene and Binary Movement Blocks of Plant Viruses: Tetra-Cistron Movement Block. Biomolecules 2022; 12:biom12070861. [PMID: 35883420 PMCID: PMC9313169 DOI: 10.3390/biom12070861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Previous studies have shown that the RNA genomes of some plant viruses encode two related genetic modules required for virus movement over the host body, containing two or three genes and named the binary movement block (BMB) and triple gene block (TGB), respectively. In this paper, we predict a novel putative-related movement gene module, called the tetra-cistron movement block (TCMB), in the virus-like transcriptome assemblies of the moss Dicranum scoparium and the Antarctic flowering plant Colobanthus quitensis. These TCMBs are encoded by smaller RNA components of putative two-component viruses related to plant benyviruses. Similar to the RNA2 of benyviruses, TCMB-containing RNAs have the 5′-terminal coat protein gene and include the RNA helicase gene which is followed by two small overlapping cistrons encoding hydrophobic proteins with a distant sequence similarity to the TGB2 and TGB3 proteins. Unlike TGB, TCMB also includes a fourth 5′-terminal gene preceding the helicase gene and coding for a protein showing a similarity to the double-stranded RNA-binding proteins of the DSRM AtDRB-like superfamily. Additionally, based on phylogenetic analysis, we suggest the involvement of replicative beny-like helicases in the evolution of the BMB and TCMB movement genetic modules.
Collapse
|
11
|
Zhang X, Rashid MO, Zhao TY, Li YY, He MJ, Wang Y, Li DW, Yu JL, Han CG. The Carboxyl Terminal Regions of P0 Protein Are Required for Systemic Infections of Poleroviruses. Int J Mol Sci 2022; 23:1945. [PMID: 35216065 PMCID: PMC8875975 DOI: 10.3390/ijms23041945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
P0 proteins encoded by poleroviruses Brassica yellows virus (BrYV) and Potato leafroll virus (PLRV) are viral suppressors of RNA silencing (VSR) involved in abolishing host RNA silencing to assist viral infection. However, other roles that P0 proteins play in virus infection remain unclear. Here, we found that C-terminal truncation of P0 resulted in compromised systemic infection of BrYV and PLRV. C-terminal truncation affected systemic but not local VSR activities of P0 proteins, but neither transient nor ectopic stably expressed VSR proteins could rescue the systemic infection of BrYV and PLRV mutants. Moreover, BrYV mutant failed to establish systemic infection in DCL2/4 RNAi or RDR6 RNAi plants, indicating that systemic infection might be independent of the VSR activity of P0. Partially rescued infection of BrYV mutant by the co-infected PLRV implied the functional conservation of P0 proteins within genus. However, although C-terminal truncation mutant of BrYV P0 showed weaker interaction with its movement protein (MP) when compared to wild-type P0, wild-type and mutant PLRV P0 showed similar interaction with its MP. In sum, our findings revealed the role of P0 in virus systemic infection and the requirement of P0 carboxyl terminal region for the infection.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.Z.); (M.-O.R.); (Y.-Y.L.); (M.-J.H.); (Y.W.); (D.-W.L.); (J.-L.Y.)
| | - Mamun-Or Rashid
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.Z.); (M.-O.R.); (Y.-Y.L.); (M.-J.H.); (Y.W.); (D.-W.L.); (J.-L.Y.)
| | - Tian-Yu Zhao
- China National Center for Biotechnology Development, Beijing 100039, China;
| | - Yuan-Yuan Li
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.Z.); (M.-O.R.); (Y.-Y.L.); (M.-J.H.); (Y.W.); (D.-W.L.); (J.-L.Y.)
| | - Meng-Jun He
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.Z.); (M.-O.R.); (Y.-Y.L.); (M.-J.H.); (Y.W.); (D.-W.L.); (J.-L.Y.)
| | - Ying Wang
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.Z.); (M.-O.R.); (Y.-Y.L.); (M.-J.H.); (Y.W.); (D.-W.L.); (J.-L.Y.)
| | - Da-Wei Li
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.Z.); (M.-O.R.); (Y.-Y.L.); (M.-J.H.); (Y.W.); (D.-W.L.); (J.-L.Y.)
| | - Jia-Lin Yu
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.Z.); (M.-O.R.); (Y.-Y.L.); (M.-J.H.); (Y.W.); (D.-W.L.); (J.-L.Y.)
| | - Cheng-Gui Han
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.Z.); (M.-O.R.); (Y.-Y.L.); (M.-J.H.); (Y.W.); (D.-W.L.); (J.-L.Y.)
| |
Collapse
|
12
|
Muellender MM, Savenkov EI, Reichelt M, Varrelmann M, Liebe S. The Virulence Factor p25 of Beet Necrotic Yellow Vein Virus Interacts With Multiple Aux/IAA Proteins From Beta vulgaris: Implications for Rhizomania Development. Front Microbiol 2022; 12:809690. [PMID: 35140697 PMCID: PMC8819154 DOI: 10.3389/fmicb.2021.809690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) is characterized by excessive lateral root (LR) formation. Auxin-mediated degradation of Aux/IAA transcriptional repressors stimulates gene regulatory networks leading to LR organogenesis and involves several Aux/IAA proteins acting at distinctive stages of LR development. Previously, we showed that BNYVV p25 virulence factor interacts with BvIAA28, a transcriptional repressor acting at early stages of LR initiation. The evidence suggested that p25 inhibits BvIAA28 nuclear localization, thus, de-repressing transcriptional network leading to LR initiation. However, it was not clear whether p25 interacts with other Aux/IAA proteins. Here, by adopting bioinformatics, in vitro and in vivo protein interaction approaches we show that p25 interacts also with BvIAA2 and BvIAA6. Moreover, we confirmed that the BNYVV infection is, indeed, accompanied by an elevated auxin level in the infected LRs. Nevertheless, expression levels of BvIAA2 and BvIAA6 remained unchanged upon BNYVV infection. Mutational analysis indicated that interaction of p25 with either BvIAA2 or BvIAA6 requires full-length proteins as even single amino acid residue substitutions abolished the interactions. Compared to p25-BvIAA28 interaction that leads to redistribution of BvIAA28 into cytoplasm, both BvIAA2 and BvIAA6 remained confined into the nucleus regardless of the presence of p25 suggesting their stabilization though p25 interaction. Overexpression of p25-interacting partners (BvIAA2, BvIAA6 and BvIAA28) in Nicotiana benthamiana induced an auxin-insensitive phenotype characterized by plant dwarfism and dramatically reduced LR development. Thus, our work reveals a distinct class of transcriptional repressors targeted by p25.
Collapse
Affiliation(s)
| | - Eugene I. Savenkov
- Department of Plant Biology, Uppsala BioCenter SLU, Swedish University of Agricultural Sciences, Linnean Center for Plant Biology, Uppsala, Sweden
| | - Michael Reichelt
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Jena, Germany
| | - Mark Varrelmann
- Institute of Sugar Beet Research, Department of Phytopathology, Göttingen, Germany
| | - Sebastian Liebe
- Institute of Sugar Beet Research, Department of Phytopathology, Göttingen, Germany
- *Correspondence: Sebastian Liebe,
| |
Collapse
|
13
|
Clavel M, Lechner E, Incarbone M, Vincent T, Cognat V, Smirnova E, Lecorbeiller M, Brault V, Ziegler-Graff V, Genschik P. Atypical molecular features of RNA silencing against the phloem-restricted polerovirus TuYV. Nucleic Acids Res 2021; 49:11274-11293. [PMID: 34614168 PMCID: PMC8565345 DOI: 10.1093/nar/gkab802] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/25/2021] [Accepted: 10/04/2021] [Indexed: 11/12/2022] Open
Abstract
In plants and some animal lineages, RNA silencing is an efficient and adaptable defense mechanism against viruses. To counter it, viruses encode suppressor proteins that interfere with RNA silencing. Phloem-restricted viruses are spreading at an alarming rate and cause substantial reduction of crop yield, but how they interact with their hosts at the molecular level is still insufficiently understood. Here, we investigate the antiviral response against phloem-restricted turnip yellows virus (TuYV) in the model plant Arabidopsis thaliana. Using a combination of genetics, deep sequencing, and mechanical vasculature enrichment, we show that the main axis of silencing active against TuYV involves 22-nt vsiRNA production by DCL2, and their preferential loading into AGO1. Moreover, we identify vascular secondary siRNA produced from plant transcripts and initiated by DCL2-processed AGO1-loaded vsiRNA. Unexpectedly, and despite the viral encoded VSR P0 previously shown to mediate degradation of AGO proteins, vascular AGO1 undergoes specific post-translational stabilization during TuYV infection. Collectively, our work uncovers the complexity of antiviral RNA silencing against phloem-restricted TuYV and prompts a re-assessment of the role of its suppressor of silencing P0 during genuine infection.
Collapse
Affiliation(s)
- Marion Clavel
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Esther Lechner
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Marco Incarbone
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Timothée Vincent
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Valerie Cognat
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Ekaterina Smirnova
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Maxime Lecorbeiller
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | | | - Véronique Ziegler-Graff
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
14
|
Niu E, Liu H, Zhou H, Luo L, Wu Y, Andika IB, Sun L. Autophagy Inhibits Intercellular Transport of Citrus Leaf Blotch Virus by Targeting Viral Movement Protein. Viruses 2021; 13:2189. [PMID: 34834995 PMCID: PMC8619118 DOI: 10.3390/v13112189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an evolutionarily conserved cellular-degradation mechanism implicated in antiviral defense in plants. Studies have shown that autophagy suppresses virus accumulation in cells; however, it has not been reported to specifically inhibit viral spread in plants. This study demonstrated that infection with citrus leaf blotch virus (CLBV; genus Citrivirus, family Betaflexiviridae) activated autophagy in Nicotiana benthamiana plants as indicated by the increase of autophagosome formation. Impairment of autophagy through silencing of N. benthamiana autophagy-related gene 5 (NbATG5) and NbATG7 enhanced cell-to-cell and systemic movement of CLBV; however, it did not affect CLBV accumulation when the systemic infection had been fully established. Treatment using an autophagy inhibitor or silencing of NbATG5 and NbATG7 revealed that transiently expressed movement protein (MP), but not coat protein, of CLBV was targeted by selective autophagy for degradation. Moreover, we identified that CLBV MP directly interacted with NbATG8C1 and NbATG8i, the isoforms of autophagy-related protein 8 (ATG8), which are key factors that usually bind cargo receptors for selective autophagy. Our results present a novel example in which autophagy specifically targets a viral MP to limit the intercellular spread of the virus in plants.
Collapse
Affiliation(s)
- Erbo Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (E.N.); (H.Z.); (L.L.)
| | - Huan Liu
- School of Modern Agriculture and Biotechnology, Ankang University, Ankang 725000, China;
| | - Hongsheng Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (E.N.); (H.Z.); (L.L.)
| | - Lian Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (E.N.); (H.Z.); (L.L.)
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (E.N.); (H.Z.); (L.L.)
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (E.N.); (H.Z.); (L.L.)
| |
Collapse
|
15
|
Wetzel V, Willlems G, Darracq A, Galein Y, Liebe S, Varrelmann M. The Beta vulgaris-derived resistance gene Rz2 confers broad-spectrum resistance against soilborne sugar beet-infecting viruses from different families by recognizing triple gene block protein 1. MOLECULAR PLANT PATHOLOGY 2021; 22:829-842. [PMID: 33951264 PMCID: PMC8232027 DOI: 10.1111/mpp.13066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 05/03/2023]
Abstract
Sugar beet cultivation is dependent on an effective control of beet necrotic yellow vein virus (BNYVV, family Benyviridae), which causes tremendous economic losses in sugar production. As the virus is transmitted by a soilborne protist, the use of resistant cultivars is currently the only way to control the disease. The Rz2 gene product belongs to a family of proteins conferring resistance towards diverse pathogens in plants. These proteins contain coiled-coil and leucine-rich repeat domains. After artificial inoculation of homozygous Rz2 resistant sugar beet lines, BNYVV and beet soilborne mosaic virus (BSBMV, family Benyviridae) were not detected. Analysis of the expression of Rz2 in naturally infected plants indicated constitutive expression in the root system. In a transient assay, coexpression of Rz2 and the individual BNYVV-encoded proteins revealed that only the combination of Rz2 and triple gene block protein 1 (TGB1) resulted in a hypersensitive reaction (HR)-like response. Furthermore, HR was also triggered by the TGB1 homologues from BSBMV as well as from the more distantly related beet soilborne virus (family Virgaviridae). This is the first report of an R gene providing resistance across different plant virus families.
Collapse
|
16
|
Morozov SY, Solovyev AG. Small hydrophobic viral proteins involved in intercellular movement of diverse plant virus genomes. AIMS Microbiol 2020; 6:305-329. [PMID: 33134746 PMCID: PMC7595835 DOI: 10.3934/microbiol.2020019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022] Open
Abstract
Most plant viruses code for movement proteins (MPs) targeting plasmodesmata to enable cell-to-cell and systemic spread in infected plants. Small membrane-embedded MPs have been first identified in two viral transport gene modules, triple gene block (TGB) coding for an RNA-binding helicase TGB1 and two small hydrophobic proteins TGB2 and TGB3 and double gene block (DGB) encoding two small polypeptides representing an RNA-binding protein and a membrane protein. These findings indicated that movement gene modules composed of two or more cistrons may encode the nucleic acid-binding protein and at least one membrane-bound movement protein. The same rule was revealed for small DNA-containing plant viruses, namely, viruses belonging to genus Mastrevirus (family Geminiviridae) and the family Nanoviridae. In multi-component transport modules the nucleic acid-binding MP can be viral capsid protein(s), as in RNA-containing viruses of the families Closteroviridae and Potyviridae. However, membrane proteins are always found among MPs of these multicomponent viral transport systems. Moreover, it was found that small membrane MPs encoded by many viruses can be involved in coupling viral replication and cell-to-cell movement. Currently, the studies of evolutionary origin and functioning of small membrane MPs is regarded as an important pre-requisite for understanding of the evolution of the existing plant virus transport systems. This paper represents the first comprehensive review which describes the whole diversity of small membrane MPs and presents the current views on their role in plant virus movement.
Collapse
Affiliation(s)
- Sergey Y Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.,Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia
| | - Andrey G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.,Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
17
|
Ramos-González PL, Dos Santos GF, Chabi-Jesus C, Harakava R, Kitajima EW, Freitas-Astúa J. Passion Fruit Green Spot Virus Genome Harbors a New Orphan ORF and Highlights the Flexibility of the 5'-End of the RNA2 Segment Across Cileviruses. Front Microbiol 2020; 11:206. [PMID: 32117189 PMCID: PMC7033587 DOI: 10.3389/fmicb.2020.00206] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/29/2020] [Indexed: 01/02/2023] Open
Abstract
Passion fruit green spot and passion fruit sudden death are two reportedly distinct viral diseases that recurrently affect passion fruit (Passiflora spp.) groves in Brazil. Here we used a systematic approach that interconnects symptoms, transmission electron microscopy, RT-PCR detection assays followed by Sanger sequencing, and high-throughput sequencing of the RNA of affected passion fruit plants to gain insights about these diseases. Our data confirmed not only the involvement of cileviruses in these two pathologies, as previously suggested, but also that these viruses belong to the same tentative species: passion fruit green spot virus (PfGSV). Results revealed that PfGSV has a positive-sense RNA genome split into two molecules of approximately 9 kb (RNA1) and 5 kb (RNA2), which share about 50–70% nucleotide sequence identity with other viruses in the genus Cilevirus. Genome sequences of five PfGSV isolates suggest that they have more conserved RNA1 (<5% of nucleotide sequence variability) compared to RNA2 (up to 7% of variability) molecules. The highest nucleotide sequence divergence among PfGSV isolates and other cileviruses is in the genomic segment covering from the 5′-end of the RNA2 until the 5′-end of the open reading frame (ORF) p61, which includes the ORF p15 and the intergenic region. This genomic stretch also harbors a novel orphan ORF encoding a 13 kDa protein presenting a cysteine-rich domain. High variability of 5′-end of the RNA2 in cileviruses is discussed in an evolutionary context assuming that they share putative common ancestors with unclassified arthropod-infecting single-strand positive RNA viruses, including mosquito-specific viruses of the group Negevirus (clades Nelorpivirus and Sandwavirus), and other viruses in the family Kitaviridae.
Collapse
Affiliation(s)
- Pedro Luis Ramos-González
- Instituto Biológico, Unidade Laboratorial de Referência em Biologia Molecular Aplicada, São Paulo, Brazil
| | | | - Camila Chabi-Jesus
- Instituto Biológico, Unidade Laboratorial de Referência em Biologia Molecular Aplicada, São Paulo, Brazil.,PPG Microbiologia Agrícola Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Ricardo Harakava
- Instituto Biológico, Unidade Laboratorial de Referência em Biologia Molecular Aplicada, São Paulo, Brazil
| | - Elliot W Kitajima
- Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada a Agricultura, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Juliana Freitas-Astúa
- Instituto Biológico, Unidade Laboratorial de Referência em Biologia Molecular Aplicada, São Paulo, Brazil.,Embrapa Cassava and Fruits, Cruz das Almas, Brazil
| |
Collapse
|
18
|
Liebe S, Wibberg D, Maiss E, Varrelmann M. Application of a Reverse Genetic System for Beet Necrotic Yellow Vein Virus to Study Rz1 Resistance Response in Sugar Beet. FRONTIERS IN PLANT SCIENCE 2020; 10:1703. [PMID: 32010172 PMCID: PMC6978805 DOI: 10.3389/fpls.2019.01703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/03/2019] [Indexed: 05/20/2023]
Abstract
Beet necrotic yellow vein virus (BNYVV) is causal agent of rhizomania disease, which is the most devastating viral disease in sugar beet production leading to a dramatic reduction in beet yield and sugar content. The virus is transmitted by the ubiquitous distributed soil-borne plasmodiophoromycete Polymyxa betae that infects the root tissue of young sugar beet plants. Rz1 is the major resistance gene widely used in most sugar beet varieties to control BNYVV. The strong selection pressure on the virus population promoted the development of strains that can overcome Rz1 resistance. Resistance-breaking has been associated with mutations in the RNA3-encoded pathogenicity factor P25 at amino acid positions 67-70 (tetrad) as well as with the presence of an additional RNA component (RNA5). However, respective studies investigating the resistance-breaking mechanism by a reverse genetic system are rather scarce. Therefore, we studied Rz1 resistance-breaking in sugar beet using a recently developed infectious clone of BNYVV A-type. A vector free infection system for the inoculation of young sugar beet seedlings was established. This assay allowed a clear separation between a susceptible and a Rz1 resistant genotype by measuring the virus content in lateral roots at 52 dpi. However, mechanical inoculation of sugar beet leaves led to the occurrence of genotype independent local lesions, suggesting that Rz1 mediates a root specific resistance toward BNYVV that is not active in leaves. Mutation analysis demonstrated that different motifs within the P25 tetrad enable increased virus replication in roots of the resistant genotype. The resistance-breaking ability was further confirmed by the visualization of BNYVV in lateral roots and leaves using a fluorescent-labeled complementary DNA clone of RNA2. Apart from that, reassortment experiments evidenced that RNA5 enables Rz1 resistance-breaking independent of the P25 tetrad motif. Finally, we could identify a new resistance-breaking mutation, which was selected by high-throughput sequencing of a clonal virus population after one host passage in a resistant genotype. Our results demonstrate the feasibility of the reverse genetic system for resistance-breaking analysis and illustrates the genome plasticity of BNYVV allowing the virus to adapt rapidly to sugar beet resistance traits.
Collapse
Affiliation(s)
- Sebastian Liebe
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, Germany
| | - Daniel Wibberg
- Genome Research of Industrial Microorganisms, CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Edgar Maiss
- Plant Virology, Department of Phytomedicine, Institute of Horticultural Production Systems, Leibniz University, Hannover, Germany
| | - Mark Varrelmann
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, Germany
| |
Collapse
|
19
|
Comparative Transcriptome Analysis Provides Molecular Insights into the Interaction of Beet necrotic yellow vein virus and Beet soil-borne mosaic virus with Their Host Sugar Beet. Viruses 2020; 12:v12010076. [PMID: 31936258 PMCID: PMC7019549 DOI: 10.3390/v12010076] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/18/2019] [Accepted: 12/29/2019] [Indexed: 01/10/2023] Open
Abstract
Beet necrotic yellow vein virus (BNYVV) and Beet soil-borne mosaic virus (BSBMV) are closely related species, but disease development induced in their host sugar beet displays striking differences. Beet necrotic yellow vein virus induces excessive lateral root (LR) formation, whereas BSBMV-infected roots appear asymptomatic. A comparative transcriptome analysis was performed to elucidate transcriptomic changes associated with disease development. Many differentially expressed genes (DEGs) were specific either to BNYVV or BSBMV, although both viruses shared a high number of DEGs. Auxin biosynthesis pathways displayed a stronger activation by BNYVV compared to BSBMV-infected plants. Several genes regulated by auxin signalling and required for LR formation were exclusively altered by BNYVV. Both viruses reprogrammed the transcriptional network, but a large number of transcription factors involved in plant defence were upregulated in BNYVV-infected plants. A strong activation of pathogenesis-related proteins by both viruses suggests a salicylic acid or jasmonic acid mediated-defence response, but the data also indicate that both viruses counteract the SA-mediated defence. The ethylene signal transduction pathway was strongly downregulated which probably increases the susceptibility of sugar beet to Benyvirus infection. Our study provides a deeper insight into the interaction of BNYVV and BSBMV with the economically important crop sugar beet.
Collapse
|
20
|
Jiang N, Zhang C, Liu J, Guo Z, Zhang Z, Han C, Wang Y. Development of Beet necrotic yellow vein virus-based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1302-1315. [PMID: 30565826 PMCID: PMC6576094 DOI: 10.1111/pbi.13055] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 05/18/2023]
Abstract
Many plant viruses with monopartite or bipartite genomes have been developed as efficient expression vectors of foreign recombinant proteins. Nonetheless, due to lack of multiple insertion sites in these plant viruses, it is still a big challenge to simultaneously express multiple foreign proteins in single cells. The genome of Beet necrotic yellow vein virus (BNYVV) offers an attractive system for expression of multiple foreign proteins owning to a multipartite genome composed of five positive-stranded RNAs. Here, we have established a BNYVV full-length infectious cDNA clone under the control of the Cauliflower mosaic virus 35S promoter. We further developed a set of BNYVV-based vectors that permit efficient expression of four recombinant proteins, including some large proteins with lengths up to 880 amino acids in the model plant Nicotiana benthamiana and native host sugar beet plants. These vectors can be used to investigate the subcellular co-localization of multiple proteins in leaf, root and stem tissues of systemically infected plants. Moreover, the BNYVV-based vectors were used to deliver NbPDS guide RNAs for genome editing in transgenic plants expressing Cas9, which induced a photobleached phenotype in systemically infected leaves. Collectively, the BNYVV-based vectors will facilitate genomic research and expression of multiple proteins, in sugar beet and related crop plants.
Collapse
Affiliation(s)
- Ning Jiang
- State Key Laboratory for Agro‐biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Chao Zhang
- State Key Laboratory for Agro‐biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Jun‐Ying Liu
- State Key Laboratory for Agro‐biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
- College of Chemistry Biology and EnvironmentYuxi Normal UniversityYuxiChina
| | - Zhi‐Hong Guo
- State Key Laboratory for Agro‐biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Zong‐Ying Zhang
- State Key Laboratory for Agro‐biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Cheng‐Gui Han
- State Key Laboratory for Agro‐biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Ying Wang
- State Key Laboratory for Agro‐biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| |
Collapse
|
21
|
Gilmer D, Ratti C, Michel F. Long-distance movement of helical multipartite phytoviruses: keep connected or die? Curr Opin Virol 2018; 33:120-128. [PMID: 30199788 DOI: 10.1016/j.coviro.2018.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/26/2018] [Accepted: 07/29/2018] [Indexed: 12/28/2022]
Abstract
All living organisms have to preserve genome integrity to ensure the survival of progeny generations. Viruses, though often regarded as 'non living', protect their nucleic acids from biotic and abiotic stresses, ranging from nuclease action to radiation-induced adducts. When the viral genome is split into multiple segments, preservation of at least one copy of each segment is required. While segmented and monopartite viruses use an all-in-one strategy, multipartite viruses have to address in the cell at least one of each viral particle in which the split positive stranded RNA genome is individually packaged. Here, we review and discuss the biology of multipartite helical RNA phytoviruses to outline our current hypothesis on a coordinated genomic RNA network RNP complex that preserves an all-in-one strategy and genome integrity.
Collapse
Affiliation(s)
- David Gilmer
- Université de Strasbourg, CNRS, IBMP UPR 2357, F-67000 Strasbourg, France
| | - Claudio Ratti
- Università di Bologna, Dipartimento di Scienze e Tecnologie Agroambientali, Viale G. Fanin 40, 40127 Bologna, Italy
| | - Fabrice Michel
- Université de Strasbourg, CNRS, IBMP UPR 2357, F-67000 Strasbourg, France.
| |
Collapse
|
22
|
Laufer M, Mohammad H, Christ DS, Riedel D, Maiss E, Varrelmann M, Liebe S. Fluorescent labelling of Beet necrotic yellow vein virus and Beet soil-borne mosaic virus for co- and superinfection experiments in Nicotiana benthamiana. J Gen Virol 2018; 99:1321-1330. [PMID: 30058995 DOI: 10.1099/jgv.0.001122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Infectious full-length clones of Beet necrotic yellow vein virus (BNYVV) and Beet soil-borne mosaic virus (BSBMV), both genus Benyvirus, were used for fluorescent labelling with the objective to study their interaction in coinfection and superinfection experiments. Fluorescent labelling was achieved by replacing a part of the RNA2 encoded coat protein read-through domain with either GFP or mRFP fluorescent marker proteins. This resulted in a translational fusion comprising the coat and the fluorescent protein. The labelled viruses were infectious and moved systemically in Nicotiana benthamiana, producing wild-type-like symptoms. Virus particles could be observed by electron microscopy, demonstrating that the viral read-through domain is dispensable for particle formation. Coinfection experiments revealed a spatial separation of differentially labelled populations of both identical and different Benyvirus species after N. benthamiana agro-inoculation. Identical observations were obtained when Tobacco rattle virus (TRV) was differentially labelled and used for coinfection. In contrast, coinfections of BSBMV with Potato virus X (PVX) or TRV resulted in many co-infected cells lacking spatial separation. Micro-projectile co-bombardment of N. benthamiana leaves revealed that two differently labelled populations of the same virus co-infected only a few cells before starting to separate. In superinfection experiments with N. benthamiana, BSBMV and BNYVV were unable to establish a secondary infection in plants that were previously infected with BNYVV or BSBMV. Taken together, this is the first work to describe the interaction between two economically important Benyviruses using fluorescence-labelled full-length clones.
Collapse
Affiliation(s)
- Marlene Laufer
- 1Department of Phytopathology, Institute of Sugar Beet Research, 37079 Göttingen, Germany
| | - Hamza Mohammad
- 2Department of Phytomedicine, Plant Virology, Institute of Horticultural Production Systems, Leibniz University, 30419 Hannover, Germany
| | - Daniela S Christ
- 1Department of Phytopathology, Institute of Sugar Beet Research, 37079 Göttingen, Germany
| | - Dietmar Riedel
- 3Laboratory of Electron Microscopy, Max-Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Edgar Maiss
- 2Department of Phytomedicine, Plant Virology, Institute of Horticultural Production Systems, Leibniz University, 30419 Hannover, Germany
| | - Mark Varrelmann
- 1Department of Phytopathology, Institute of Sugar Beet Research, 37079 Göttingen, Germany
| | - Sebastian Liebe
- 1Department of Phytopathology, Institute of Sugar Beet Research, 37079 Göttingen, Germany
| |
Collapse
|
23
|
Flobinus A, Chevigny N, Charley PA, Seissler T, Klein E, Bleykasten-Grosshans C, Ratti C, Bouzoubaa S, Wilusz J, Gilmer D. Beet Necrotic Yellow Vein Virus Noncoding RNA Production Depends on a 5'→3' Xrn Exoribonuclease Activity. Viruses 2018; 10:v10030137. [PMID: 29562720 PMCID: PMC5869530 DOI: 10.3390/v10030137] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/28/2018] [Accepted: 03/17/2018] [Indexed: 12/27/2022] Open
Abstract
The RNA3 species of the beet necrotic yellow vein virus (BNYVV), a multipartite positive-stranded RNA phytovirus, contains the 'core' nucleotide sequence required for its systemic movement in Beta macrocarpa. Within this 'core' sequence resides a conserved "coremin" motif of 20 nucleotides that is absolutely essential for long-distance movement. RNA3 undergoes processing steps to yield a noncoding RNA3 (ncRNA3) possessing "coremin" at its 5' end, a mandatory element for ncRNA3 accumulation. Expression of wild-type (wt) or mutated RNA3 in Saccharomyces cerevisiae allows for the accumulation of ncRNA3 species. Screening of S.cerevisiae ribonuclease mutants identified the 5'-to-3' exoribonuclease Xrn1 as a key enzyme in RNA3 processing that was recapitulated both in vitro and in insect cell extracts. Xrn1 stalled on ncRNA3-containing RNA substrates in these decay assays in a similar fashion as the flavivirus Xrn1-resistant structure (sfRNA). Substitution of the BNYVV-RNA3 'core' sequence by the sfRNA sequence led to the accumulation of an ncRNA species in yeast in vitro but not in planta and no viral long distance occurred. Interestingly, XRN4 knockdown reduced BNYVV RNA accumulation suggesting a dual role for the ribonuclease in the viral cycle.
Collapse
Affiliation(s)
- Alyssa Flobinus
- Institut de biologie moléculaire des plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France.
| | - Nicolas Chevigny
- Institut de biologie moléculaire des plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France.
| | - Phillida A Charley
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO 80523-168, USA.
| | - Tanja Seissler
- Institut de biologie moléculaire des plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France.
| | - Elodie Klein
- Institut de biologie moléculaire des plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France.
- SESVanderHave, B3300 Tienen, Belgium.
| | | | - Claudio Ratti
- DipSA-Plant Pathology, University of Bologna, 40127 Bologna, Italy.
| | - Salah Bouzoubaa
- Institut de biologie moléculaire des plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France.
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO 80523-168, USA.
| | - David Gilmer
- Institut de biologie moléculaire des plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France.
| |
Collapse
|
24
|
Laufer M, Mohammad H, Maiss E, Richert-Pöggeler K, Dall'Ara M, Ratti C, Gilmer D, Liebe S, Varrelmann M. Biological properties of Beet soil-borne mosaic virus and Beet necrotic yellow vein virus cDNA clones produced by isothermal in vitro recombination: Insights for reassortant appearance. Virology 2018; 518:25-33. [PMID: 29453056 DOI: 10.1016/j.virol.2018.01.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/15/2022]
Abstract
Two members of the Benyviridae family and genus Benyvirus, Beet soil-borne mosaic virus (BSBMV) and Beet necrotic yellow vein virus (BNYVV), possess identical genome organization, host range and high sequence similarity; they infect Beta vulgaris with variable symptom expression. In the US, mixed infections are described with limited information about viral interactions. Vectors suitable for agroinoculation of all genome components of both viruses were constructed by isothermal in vitro recombination. All 35S promoter-driven cDNA clones allowed production of recombinant viruses competent for Nicotiana benthamiana and Beta macrocarpa systemic infection and Polymyxa betae transmission and were compared to available BNYVV B-type clone. BNYVV and BSBMV RNA1 + 2 reassortants were viable and spread long-distance in N. benthamiana with symptoms dependent on the BNYVV type. Small genomic RNAs were exchangeable and systemically infected B. macrocarpa. These infectious clones represent a powerful tool for the identification of specific molecular host-pathogen determinants.
Collapse
Affiliation(s)
- Marlene Laufer
- Institute of Sugar Beet Research, Dept. of Phytopathology, 37079 Göttingen, Germany
| | - Hamza Mohammad
- Institute of Horticultural Production Systems, Dept. Phytomedicine, Plant Virology, Leibniz University, 30419 Hannover, Germany
| | - Edgar Maiss
- Institute of Horticultural Production Systems, Dept. Phytomedicine, Plant Virology, Leibniz University, 30419 Hannover, Germany
| | - Katja Richert-Pöggeler
- Julius-Kühn-Institute, Institute for Epidemiology and Pathogen Diagnostics, 38104 Braunschweig, Germany
| | - Mattia Dall'Ara
- DipSA-Plant pathology, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy; Institut de biologie moléculaire des plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
| | - Claudio Ratti
- DipSA-Plant pathology, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy.
| | - David Gilmer
- Institut de biologie moléculaire des plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France.
| | - Sebastian Liebe
- Institute of Sugar Beet Research, Dept. of Phytopathology, 37079 Göttingen, Germany
| | - Mark Varrelmann
- Institute of Sugar Beet Research, Dept. of Phytopathology, 37079 Göttingen, Germany.
| |
Collapse
|
25
|
Fujita N, Komatsu K, Ayukawa Y, Matsuo Y, Hashimoto M, Netsu O, Teraoka T, Yamaji Y, Namba S, Arie T. N-terminal region of cysteine-rich protein (CRP) in carlaviruses is involved in the determination of symptom types. MOLECULAR PLANT PATHOLOGY 2018; 19:180-190. [PMID: 27868376 PMCID: PMC6638135 DOI: 10.1111/mpp.12513] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 10/19/2016] [Accepted: 11/14/2016] [Indexed: 05/04/2023]
Abstract
Plant viruses in the genus Carlavirus include more than 65 members. Plants infected with carlaviruses exhibit various symptoms, including leaf malformation and plant stunting. Cysteine-rich protein (CRP) encoded by carlaviruses has been reported to be a pathogenicity determinant. Carlavirus CRPs contain two motifs in their central part: a nuclear localization signal (NLS) and a zinc finger motif (ZF). In addition to these two conserved motifs, carlavirus CRPs possess highly divergent, N-terminal, 34 amino acid residues with unknown function. In this study, to analyse the role of these distinct domains, we tested six carlavirus CRPs for their RNA silencing suppressor activity, ability to enhance the pathogenicity of a heterologous virus and effects on virus accumulation levels. Although all six tested carlavirus CRPs showed RNA silencing suppressor activity at similar levels, symptoms induced by the Potato virus X (PVX) heterogeneous system exhibited two different patterns: leaf malformation and whole-plant stunting. The expression of each carlavirus CRP enhanced PVX accumulation levels, which were not correlated with symptom patterns. PVX-expressing CRP with mutations in either NLS or ZF did not induce symptoms, suggesting that both motifs play critical roles in symptom expression. Further analysis using chimeric CRPs, in which the N-terminal region was replaced with the corresponding region of another CRP, suggested that the N-terminal region of carlavirus CRPs determined the exhibited symptom types. The up-regulation of a plant gene upp-L, which has been reported in a previous study, was also observed in this study; however, the expression level was not responsible for symptom types.
Collapse
Affiliation(s)
- Naoko Fujita
- Laboratory of Plant Pathology, Graduate School of AgricultureTokyo University of Agriculture and Technology (TUAT)183‐8509 FuchuJapan
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of Tokyo113‐8657 TokyoJapan
| | - Ken Komatsu
- Laboratory of Plant Pathology, Graduate School of AgricultureTokyo University of Agriculture and Technology (TUAT)183‐8509 FuchuJapan
| | - Yu Ayukawa
- Laboratory of Plant Pathology, Graduate School of AgricultureTokyo University of Agriculture and Technology (TUAT)183‐8509 FuchuJapan
- United Graduate School of Agricultural ScienceTokyo University of Agriculture and TechnologyFuchu183‐8509Japan
| | - Yuki Matsuo
- Laboratory of Plant Pathology, Graduate School of AgricultureTokyo University of Agriculture and Technology (TUAT)183‐8509 FuchuJapan
| | - Masayoshi Hashimoto
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of Tokyo113‐8657 TokyoJapan
| | - Osamu Netsu
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of Tokyo113‐8657 TokyoJapan
| | - Tohru Teraoka
- Laboratory of Plant Pathology, Graduate School of AgricultureTokyo University of Agriculture and Technology (TUAT)183‐8509 FuchuJapan
| | - Yasuyuki Yamaji
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of Tokyo113‐8657 TokyoJapan
| | - Shigetou Namba
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of Tokyo113‐8657 TokyoJapan
| | - Tsutomu Arie
- Laboratory of Plant Pathology, Graduate School of AgricultureTokyo University of Agriculture and Technology (TUAT)183‐8509 FuchuJapan
| |
Collapse
|
26
|
Kenesi E, Carbonell A, Lózsa R, Vértessy B, Lakatos L. A viral suppressor of RNA silencing inhibits ARGONAUTE 1 function by precluding target RNA binding to pre-assembled RISC. Nucleic Acids Res 2017; 45:7736-7750. [PMID: 28499009 PMCID: PMC5737661 DOI: 10.1093/nar/gkx379] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 11/23/2022] Open
Abstract
In most eukaryotes, RNA silencing is an adaptive immune system regulating key biological processes including antiviral defense. To evade this response, viruses of plants, worms and insects have evolved viral suppressors of RNA silencing proteins (VSRs). Various VSRs, such as P1 from Sweet potato mild mottle virus (SPMMV), inhibit the activity of RNA-induced silencing complexes (RISCs) including an ARGONAUTE (AGO) protein loaded with a small RNA. However, the specific mechanisms explaining this class of inhibition are unknown. Here, we show that SPMMV P1 interacts with AGO1 and AGO2 from Arabidopsis thaliana, but solely interferes with AGO1 function. Moreover, a mutational analysis of a newly identified zinc finger domain in P1 revealed that this domain could represent an effector domain as it is required for P1 suppressor activity but not for AGO1 binding. Finally, a comparative analysis of the target RNA binding capacity of AGO1 in the presence of wild-type or suppressor-defective P1 forms revealed that P1 blocks target RNA binding to AGO1. Our results describe the negative regulation of RISC, the small RNA containing molecular machine.
Collapse
Affiliation(s)
- Erzsébet Kenesi
- Department of Dermatology and Allergology, University of Szeged, Szeged H-6720, Hungary
| | - Alberto Carbonell
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia 46022, Spain
| | - Rita Lózsa
- Department of Physics of Complex Systems, Eötvös Loránd University, Budapest H-1116, Hungary
| | - Beáta Vértessy
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest H-1114, Hungary
- Institutes of Enzymology and Organic Chemistry, RCNS, Hungarian Academy of Sciences, Budapest H-1114, Hungary
| | - Lóránt Lakatos
- Department of Dermatology and Allergology, University of Szeged, Szeged H-6720, Hungary
- MTA-SZTE Dermatological Research Group
- Department of Pharmacognosy, University of Szeged, Szeged H-6720, Hungary
| |
Collapse
|
27
|
Abstract
The Benyviridae is a family of multipartite plant viruses with rod-shaped virions. Genomes are segmented and comprised of single-stranded, positive-sense RNAs, each with a 5' m7G cap. Unlike rod-shaped viruses classified in the Virgaviridae family, the genome segments have a 3' polyA tract and there is post-translational cleavage of the viral replicase. The better-known members are transmitted by root-infecting vectors in the Plasmodiphorales family, once described as fungi but now classified as Cercozoa. The family has a single genus. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of Benyviridae, which is available at www.ictv.global/report/benyviridae.
Collapse
Affiliation(s)
- David Gilmer
- Integrative Virology, Université de Strasbourg, CNRS, IBMP UPR 2357, F-67000 Strasbourg, France
| | | | | |
Collapse
|
28
|
Flobinus A, Hleibieh K, Klein E, Ratti C, Bouzoubaa S, Gilmer D. A Viral Noncoding RNA Complements a Weakened Viral RNA Silencing Suppressor and Promotes Efficient Systemic Host Infection. Viruses 2016; 8:E272. [PMID: 27782046 PMCID: PMC5086608 DOI: 10.3390/v8100272] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/27/2016] [Indexed: 12/24/2022] Open
Abstract
Systemic movement of beet necrotic yellow vein virus (BNYVV) in Beta macrocarpa depends on viral RNA3, whereas in Nicotiana benthamiana this RNA is dispensable. RNA3 contains a coremin motif of 20 nucleotides essential for the stabilization of noncoding RNA3 (ncRNA3) and for long-distance movement in Beta species. Coremin mutants that are unable to accumulate ncRNA3 also do not achieve systemic movement in Beta species. A mutant virus carrying a mutation in the p14 viral suppressor of RNA silencing (VSR), unable to move long distances, can be complemented with the ncRNA3 in the lesion phenotype, viral RNA accumulation, and systemic spread. Analyses of the BNYVV VSR mechanism of action led to the identification of the RNA-dependent RNA polymerase 6 (RDR6) pathway as a target of the virus VSR and the assignment of a VSR function to the ncRNA3.
Collapse
Affiliation(s)
- Alyssa Flobinus
- Institut de Biologie Moléculaire des Plantes, Integrative Virology, CNRS UPR2367, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Kamal Hleibieh
- Institut de Biologie Moléculaire des Plantes, Integrative Virology, CNRS UPR2367, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Elodie Klein
- Institut de Biologie Moléculaire des Plantes, Integrative Virology, CNRS UPR2367, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
- SESVanderHave, Industriepark soldatenplein, Z2nr15, Tienen B3300, Belgium.
| | - Claudio Ratti
- Dipartimento di Scienze Agrarie, Area Patologia Vegetale, Università di Bologna, Viale Fanin 40, 40127 Bologna, Italy.
| | - Salah Bouzoubaa
- Institut de Biologie Moléculaire des Plantes, Integrative Virology, CNRS UPR2367, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - David Gilmer
- Institut de Biologie Moléculaire des Plantes, Integrative Virology, CNRS UPR2367, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| |
Collapse
|
29
|
Andika IB, Kondo H, Sun L. Interplays between Soil-Borne Plant Viruses and RNA Silencing-Mediated Antiviral Defense in Roots. Front Microbiol 2016; 7:1458. [PMID: 27695446 PMCID: PMC5023674 DOI: 10.3389/fmicb.2016.01458] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/31/2016] [Indexed: 12/18/2022] Open
Abstract
Although the majority of plant viruses are transmitted by arthropod vectors and invade the host plants through the aerial parts, there is a considerable number of plant viruses that infect roots via soil-inhabiting vectors such as plasmodiophorids, chytrids, and nematodes. These soil-borne viruses belong to diverse families, and many of them cause serious diseases in major crop plants. Thus, roots are important organs for the life cycle of many viruses. Compared to shoots, roots have a distinct metabolism and particular physiological characteristics due to the differences in development, cell composition, gene expression patterns, and surrounding environmental conditions. RNA silencing is an important innate defense mechanism to combat virus infection in plants, but the specific information on the activities and molecular mechanism of RNA silencing-mediated viral defense in root tissue is still limited. In this review, we summarize and discuss the current knowledge regarding RNA silencing aspects of the interactions between soil-borne viruses and host plants. Overall, research evidence suggests that soil-borne viruses have evolved to adapt to the distinct mechanism of antiviral RNA silencing in roots.
Collapse
Affiliation(s)
- Ida Bagus Andika
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
- Group of Plant-Microbe Interactions, Institute of Plant Science and Resources, Okayama UniversityKurashiki, Japan
| | - Hideki Kondo
- Group of Plant-Microbe Interactions, Institute of Plant Science and Resources, Okayama UniversityKurashiki, Japan
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| |
Collapse
|
30
|
Dall'Ara M, Ratti C, Bouzoubaa SE, Gilmer D. Ins and Outs of Multipartite Positive-Strand RNA Plant Viruses: Packaging versus Systemic Spread. Viruses 2016; 8:E228. [PMID: 27548199 PMCID: PMC4997590 DOI: 10.3390/v8080228] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/29/2016] [Accepted: 08/09/2016] [Indexed: 11/16/2022] Open
Abstract
Viruses possessing a non-segmented genome require a specific recognition of their nucleic acid to ensure its protection in a capsid. A similar feature exists for viruses having a segmented genome, usually consisting of viral genomic segments joined together into one viral entity. While this appears as a rule for animal viruses, the majority of segmented plant viruses package their genomic segments individually. To ensure a productive infection, all viral particles and thereby all segments have to be present in the same cell. Progression of the virus within the plant requires as well a concerted genome preservation to avoid loss of function. In this review, we will discuss the "life aspects" of chosen phytoviruses and argue for the existence of RNA-RNA interactions that drive the preservation of viral genome integrity while the virus progresses in the plant.
Collapse
Affiliation(s)
- Mattia Dall'Ara
- Institut de Biologie Moléculaire des Plantes, Integrative Virology, CNRS UPR2367, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
- Dipartimento di Scienze Agrarie, Area Patologia Vegetale, Università di Bologna, Viale Fanin 40, 40127 Bologna, Italy.
| | - Claudio Ratti
- Dipartimento di Scienze Agrarie, Area Patologia Vegetale, Università di Bologna, Viale Fanin 40, 40127 Bologna, Italy.
| | - Salah E Bouzoubaa
- Institut de Biologie Moléculaire des Plantes, Integrative Virology, CNRS UPR2367, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - David Gilmer
- Institut de Biologie Moléculaire des Plantes, Integrative Virology, CNRS UPR2367, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| |
Collapse
|
31
|
Landeo-Ríos Y, Navas-Castillo J, Moriones E, Cañizares MC. The p22 RNA silencing suppressor of the crinivirus Tomato chlorosis virus preferentially binds long dsRNAs preventing them from cleavage. Virology 2016; 488:129-36. [PMID: 26629953 PMCID: PMC7111720 DOI: 10.1016/j.virol.2015.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 09/19/2015] [Accepted: 11/10/2015] [Indexed: 12/04/2022]
Abstract
Viruses encode silencing suppressor proteins to counteract RNA silencing. Because dsRNA plays a key role in silencing, a general silencing suppressor strategy is dsRNA binding. The p22 suppressor of the plant virus Tomato chlorosis virus (ToCV; genus Crinivirus, family Closteroviridae) has been described as having one of the longest lasting local suppressor activities. However, the mechanism of action of p22 has not been characterized. Here, we show that ToCV p22 binds long dsRNAs in vitro, thus interfering with their processing into small RNAs (sRNAs) by an RNase III-type Dicer homolog enzyme. Additionally, we have studied whether a putative zinc finger motif found in p22 has a role in dsRNA binding and suppressor function. The efficient ability of p22 to suppress RNA silencing, triggered by hairpin transcripts transiently expressed in planta, supports the relationship between its ability to bind dsRNA in vitro and its ability to inhibit RNA silencing in vivo.
Collapse
Affiliation(s)
- Yazmín Landeo-Ríos
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"- Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", 29750 Algarrobo-Costa, Málaga, Spain
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"- Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", 29750 Algarrobo-Costa, Málaga, Spain
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"- Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", 29750 Algarrobo-Costa, Málaga, Spain
| | - M Carmen Cañizares
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"- Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", 29750 Algarrobo-Costa, Málaga, Spain.
| |
Collapse
|
32
|
Fan H, Zhang Y, Sun H, Liu J, Wang Y, Wang X, Li D, Yu J, Han C. Transcriptome Analysis of Beta macrocarpa and Identification of Differentially Expressed Transcripts in Response to Beet Necrotic Yellow Vein Virus Infection. PLoS One 2015; 10:e0132277. [PMID: 26196682 PMCID: PMC4719419 DOI: 10.1371/journal.pone.0132277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 06/11/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Rhizomania is one of the most devastating diseases of sugar beet. It is caused by Beet necrotic yellow vein virus (BNYVV) transmitted by the obligate root-infecting parasite Polymyxa betae. Beta macrocarpa, a wild beet species widely used as a systemic host in the laboratory, can be rub-inoculated with BNYVV to avoid variation associated with the presence of the vector P. betae. To better understand disease and resistance between beets and BNYVV, we characterized the transcriptome of B. macrocarpa and analyzed global gene expression of B. macrocarpa in response to BNYVV infection using the Illumina sequencing platform. RESULTS The overall de novo assembly of cDNA sequence data generated 75,917 unigenes, with an average length of 1054 bp. Based on a BLASTX search (E-value ≤ 10-5) against the non-redundant (NR, NCBI) protein, Swiss-Prot, the Gene Ontology (GO), Clusters of Orthologous Groups of proteins (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, there were 39,372 unigenes annotated. In addition, 4,834 simple sequence repeats (SSRs) were also predicted, which could serve as a foundation for various applications in beet breeding. Furthermore, comparative analysis of the two transcriptomes revealed that 261 genes were differentially expressed in infected compared to control plants, including 128 up- and 133 down-regulated genes. GO analysis showed that the changes in the differently expressed genes were mainly enrichment in response to biotic stimulus and primary metabolic process. CONCLUSION Our results not only provide a rich genomic resource for beets, but also benefit research into the molecular mechanisms of beet- BNYV Vinteraction.
Collapse
Affiliation(s)
- Huiyan Fan
- State Key Laboratory for Agrobiotechnology and Department of Plant
Pathology, China Agricultural University, Beijing, 100193,
China
- College of Pharmacy, Zhejiang Chinese Medicine University, Hangzhou,
310053, Zhejiang, China
| | - Yongliang Zhang
- State Key Laboratory for Agrobiotechnology and Department of Plant
Pathology, China Agricultural University, Beijing, 100193,
China
| | - Haiwen Sun
- State Key Laboratory for Agrobiotechnology and Department of Plant
Pathology, China Agricultural University, Beijing, 100193,
China
| | - Junying Liu
- State Key Laboratory for Agrobiotechnology and Department of Plant
Pathology, China Agricultural University, Beijing, 100193,
China
| | - Ying Wang
- State Key Laboratory for Agrobiotechnology and Department of Plant
Pathology, China Agricultural University, Beijing, 100193,
China
| | - Xianbing Wang
- State Key Laboratory for Agrobiotechnology and Department of Plant
Pathology, China Agricultural University, Beijing, 100193,
China
| | - Dawei Li
- State Key Laboratory for Agrobiotechnology and Department of Plant
Pathology, China Agricultural University, Beijing, 100193,
China
| | - Jialin Yu
- State Key Laboratory for Agrobiotechnology and Department of Plant
Pathology, China Agricultural University, Beijing, 100193,
China
| | - Chenggui Han
- State Key Laboratory for Agrobiotechnology and Department of Plant
Pathology, China Agricultural University, Beijing, 100193,
China
| |
Collapse
|
33
|
Sõmera M, Sarmiento C, Truve E. Overview on Sobemoviruses and a Proposal for the Creation of the Family Sobemoviridae. Viruses 2015; 7:3076-115. [PMID: 26083319 PMCID: PMC4488728 DOI: 10.3390/v7062761] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/18/2015] [Accepted: 06/02/2015] [Indexed: 12/26/2022] Open
Abstract
The genus Sobemovirus, unassigned to any family, consists of viruses with single-stranded plus-oriented single-component RNA genomes and small icosahedral particles. Currently, 14 species within the genus have been recognized by the International Committee on Taxonomy of Viruses (ICTV) but several new species are to be recognized in the near future. Sobemovirus genomes are compact with a conserved structure of open reading frames and with short untranslated regions. Several sobemoviruses are important pathogens. Moreover, over the last decade sobemoviruses have become important model systems to study plant virus evolution. In the current review we give an overview of the structure and expression of sobemovirus genomes, processing and functions of individual proteins, particle structure, pathology and phylogenesis of sobemoviruses as well as of satellite RNAs present together with these viruses. Based on a phylogenetic analysis we propose that a new family Sobemoviridae should be recognized including the genera Sobemovirus and Polemovirus. Finally, we outline the future perspectives and needs for the research focusing on sobemoviruses.
Collapse
Affiliation(s)
- Merike Sõmera
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| | - Cecilia Sarmiento
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| | - Erkki Truve
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| |
Collapse
|
34
|
Csorba T, Kontra L, Burgyán J. viral silencing suppressors: Tools forged to fine-tune host-pathogen coexistence. Virology 2015; 479-480:85-103. [DOI: 10.1016/j.virol.2015.02.028] [Citation(s) in RCA: 373] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/31/2015] [Accepted: 02/16/2015] [Indexed: 12/27/2022]
|
35
|
Pérez-Cañamás M, Hernández C. Key importance of small RNA binding for the activity of a glycine-tryptophan (GW) motif-containing viral suppressor of RNA silencing. J Biol Chem 2014; 290:3106-20. [PMID: 25505185 DOI: 10.1074/jbc.m114.593707] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Viruses express viral suppressors of RNA silencing (VSRs) to counteract RNA silencing-based host defenses. Although virtually all stages of the antiviral silencing pathway can be inhibited by VSRs, small RNAs (sRNAs) and Argonaute (AGO) proteins seem to be the most frequent targets. Recently, GW/WG motifs of some VSRs have been proposed to dictate their suppressor function by mediating interaction with AGO(s). Here we have studied the VSR encoded by Pelargonium line pattern virus (family Tombusviridae). The results show that p37, the viral coat protein, blocks RNA silencing. Site-directed mutagenesis of some p37 sequence traits, including a conserved GW motif, allowed generation of suppressor-competent and -incompetent molecules and uncoupling of the VSR and particle assembly capacities. The engineered mutants were used to assess the importance of p37 functions for viral infection and the relative contribution of diverse molecular interactions to suppressor activity. Two main conclusions can be drawn: (i) the silencing suppression and encapsidation functions of p37 are both required for systemic Pelargonium line pattern virus infection, and (ii) the suppressor activity of p37 relies on the ability to bind sRNAs rather than on interaction with AGOs. The data also caution against potential misinterpretations of results due to overlap of sequence signals related to distinct protein properties. This is well illustrated by mutation of the GW motif in p37 that concurrently affects nucleolar localization, efficient interaction with AGO1, and sRNA binding capability. These concomitant effects could have been overlooked in other GW motif-containing suppressors, as we exemplify with the orthologous p38 of turnip crinkle virus.
Collapse
Affiliation(s)
- Miryam Pérez-Cañamás
- From the Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| | - Carmen Hernández
- From the Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
36
|
On the interaction and localization of the beet necrotic yellow vein virus replicase. Virus Res 2014; 196:94-104. [PMID: 25445349 DOI: 10.1016/j.virusres.2014.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/02/2014] [Accepted: 11/04/2014] [Indexed: 01/08/2023]
Abstract
Beet necrotic yellow vein virus (BNYVV) is a multipartite positive-strand RNA virus. BNYVV RNA-1 encodes a non-structural p237 polyprotein processed in two proteins (p150 and p66) by a cis-acting protease activity. BNYVV non-structural proteins are closely related to replication proteins of positive strand RNA viruses such as hepeviruses rather to other plant virus replicases. The p237 and dsRNA have been localized by TEM in ER structures of infected leaf cells whereas dsRNA was immunolabeled in infected protoplasts. The p150 contains domains with methyltransferase, protease, helicase and two domains of unknown function whereas p66 encompasses the RNA-dependent RNA-polymerase signature. We report the existing interactions between functional domains of the p150 and p66 proteins and the addressing of the benyvirus replicase to the endoplasmic reticulum. Yeast two-hybrid approach, colocalization with FRET-FLIM analyses and co-immunoprecipitation highlighted existing interactions that suggest the presence of a multimeric complex at the vicinity of the cellular membranous web.
Collapse
|
37
|
Wu WQ, Fan HY, Jiang N, Wang Y, Zhang ZY, Zhang YL, Wang XB, Li DW, Yu JL, Han CG. Infection of Beet necrotic yellow vein virus with RNA4-encoded P31 specifically up-regulates pathogenesis-related protein 10 in Nicotiana benthamiana. Virol J 2014; 11:118. [PMID: 24961274 PMCID: PMC4078943 DOI: 10.1186/1743-422x-11-118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 06/09/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Beet necrotic yellow vein virus (BNYVV) is the infectious agent of sugar beet rhizomania, which consists of four or five plus-sense RNAs. RNA4 of BNYVV is not essential for virus propagation in Nicotiana benthamiana but has a major effect on symptom expression. Early reports showed that RNA4-encoded P31 was associated with severe symptoms, such as curling and dwarfing, in N. benthamiana. RESULTS We discovered that the pathogenesis-related protein 10 (PR-10) gene can be up-regulated in BNYVV-infected N. benthamiana in the presence of RNA4 and that it had a close link with symptom development. Our frame-shift, deletion and substitution analysis showed that only the entire P31 could induce PR-10 up-regulation during BNYVV infection and that all the tryptophans and six cysteines (C174, C183, C186, C190, C197 and C199) in the cysteine-rich P31 had significant effects on PR-10 expression. However, P31 could not interact directly with PR-10 in yeast. CONCLUSIONS Our data demonstrated that only integrated P31 specifically induced PR-10 transcription, which coincided closely with the appearance of severe symptoms in BNYVV-infected N. benthamiana, although they could not interact directly with each other in yeast.
Collapse
Affiliation(s)
- Wen-Qi Wu
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Hui-Yan Fan
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Ning Jiang
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Ying Wang
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Zong-Ying Zhang
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Yong-Liang Zhang
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xian-Bing Wang
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Da-Wei Li
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Jia-Lin Yu
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Cheng-Gui Han
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
38
|
Rossi M, Genre A, Turina M. Genetic dissection of a putative nucleolar localization signal in the coat protein of ourmia melon virus. Arch Virol 2014; 159:1187-92. [PMID: 24248258 DOI: 10.1007/s00705-013-1923-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/07/2013] [Indexed: 10/26/2022]
Abstract
Ourmiaviruses became the object of recent attention for their unusual taxonomic placements among plant viruses. The ourmia melon virus (OuMV) RNA3 encodes a 22-kDa coat protein (CP). Besides its role in virion formation, the OuMV CP facilitates systemic virus spread. In Nicotiana benthamiana, an eGFP-CP fusion protein was localized in the nucleus and preferentially in the nucleolus. By bioinformatics analysis, we identified an arginine- and lysine-rich region at the N-terminus of the CP. Here, we demonstrate by deletion and alanine scanning mutagenesis that this region in the CP is responsible for its preferential accumulation in the nucleolus of host cells.
Collapse
Affiliation(s)
- M Rossi
- Sez. di Torino, CNR, Istituto di Virologia Vegetale, Strada delle Cacce 73, 10135, Torino, Italy
| | | | | |
Collapse
|
39
|
Sun L, Andika IB, Shen J, Yang D, Ratti C, Chen J. The CUG-initiated larger form coat protein of Chinese wheat mosaic virus binds to the cysteine-rich RNA silencing suppressor. Virus Res 2013; 177:66-74. [DOI: 10.1016/j.virusres.2013.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 12/19/2022]
|
40
|
Kondo H, Hirano S, Chiba S, Andika IB, Hirai M, Maeda T, Tamada T. Characterization of burdock mottle virus, a novel member of the genus Benyvirus, and the identification of benyvirus-related sequences in the plant and insect genomes. Virus Res 2013; 177:75-86. [PMID: 23911632 DOI: 10.1016/j.virusres.2013.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/17/2013] [Accepted: 07/18/2013] [Indexed: 11/30/2022]
Abstract
The complete nucleotide sequence of the burdock mottle virus (BdMoV) isolated from an edible burdock plant (Arctium lappa) in Japan has been determined. BdMoV has a bipartite genome, whose organization is similar to RNA1 and RNA2 of benyviruses, beet necrotic yellow vein virus (BNYVV), beet soil-borne mosaic virus (BSBMV), and rice stripe necrosis virus (RSNV). BdMoV RNA1 (7038 nt) contains a single open reading frame (ORF) encoding a 249-kDa polypeptide that consists of methyl-transferase, helicase, papain-like protease, AlkB-like, and RNA-dependent RNA polymerase domains. The AlkB-like domain sequence is not present in the proteins encoded by other known benyviruses, but is found in replication-associated proteins of viruses mainly belonging to the families Alfaflexiviridae and Betaflexiviridae. BdMoV RNA2 (4315 nt) contains six ORFs that are similar to those of benyviruses: these are coat protein (CP), CP readthrough, triple gene block movement and cysteine-rich proteins. Phylogenetic analyses showed that BdMoV is more closely related to BNYVV and BSBMV than to RSNV. Database searches showed that benyvirus replicase-related sequences are present in the chromosomes of a chickpea plant (Cicer arietinum) and a blood-sucking insect (Rhodnius prolixus). Some other benyvirus-related sequences are found in the transcriptome shotgun libraries of a few species of plants and a bark beetle. Our results show that BdMoV is a distinct species of the genus Benyvirus and that ancestral and extant benyviruses may have infected or currently infect a wide range of hosts, including plants and insects.
Collapse
Affiliation(s)
- Hideki Kondo
- Institute of Plant Science and Resources (IPSR), Okayama University, 2-20-1, Chuo, Kurashiki 710-0046, Japan.
| | | | | | | | | | | | | |
Collapse
|
41
|
Hipper C, Brault V, Ziegler-Graff V, Revers F. Viral and cellular factors involved in Phloem transport of plant viruses. FRONTIERS IN PLANT SCIENCE 2013; 4:154. [PMID: 23745125 PMCID: PMC3662875 DOI: 10.3389/fpls.2013.00154] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 05/05/2013] [Indexed: 05/03/2023]
Abstract
Phloem transport of plant viruses is an essential step in the setting-up of a complete infection of a host plant. After an initial replication step in the first cells, viruses spread from cell-to-cell through mesophyll cells, until they reach the vasculature where they rapidly move to distant sites in order to establish the infection of the whole plant. This last step is referred to as systemic transport, or long-distance movement, and involves virus crossings through several cellular barriers: bundle sheath, vascular parenchyma, and companion cells for virus loading into sieve elements (SE). Viruses are then passively transported within the source-to-sink flow of photoassimilates and are unloaded from SE into sink tissues. However, the molecular mechanisms governing virus long-distance movement are far from being understood. While most viruses seem to move systemically as virus particles, some viruses are transported in SE as viral ribonucleoprotein complexes (RNP). The nature of the cellular and viral factors constituting these RNPs is still poorly known. The topic of this review will mainly focus on the host and viral factors that facilitate or restrict virus long-distance movement.
Collapse
Affiliation(s)
| | | | - Véronique Ziegler-Graff
- Laboratoire Propre du CNRS (UPR 2357), Virologie Végétale, Institut de Biologie Moléculaire des Plantes, Université de StrasbourgStrasbourg, France
| | - Frédéric Revers
- UMR 1332 de Biologie du Fruit et Pathologie, INRA, Université de BordeauxVillenave d’Ornon, France
| |
Collapse
|
42
|
Flores R, Ruiz-Ruiz S, Soler N, Sánchez-Navarro J, Fagoaga C, López C, Navarro L, Moreno P, Peña L. Citrus tristeza virus p23: a unique protein mediating key virus-host interactions. Front Microbiol 2013; 4:98. [PMID: 23653624 PMCID: PMC3642503 DOI: 10.3389/fmicb.2013.00098] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/06/2013] [Indexed: 11/13/2022] Open
Abstract
The large RNA genome of Citrus tristeza virus (CTV; ca. 20 kb) contains 12 open reading frames, with the 3′-terminal one corresponding to a protein of 209 amino acids (p23) that is expressed from an abundant subgenomic RNA. p23, an RNA-binding protein with a putative zinc-finger domain and some basic motifs, is unique to CTV because no homologs have been found in other closteroviruses, including the type species of the genus Beet yellows virus (despite both viruses having many homologous genes). Consequently, p23 might have evolved for the specific interaction of CTV with its citrus hosts. From a functional perspective p23 has been involved in many roles: (i) regulation of the asymmetrical accumulation of CTV RNA strands, (ii) induction of the seedling yellows syndrome in sour orange and grapefruit, (iii) intracellular suppression of RNA silencing, (iv) elicitation of CTV-like symptoms when expressed ectopically as a transgene in several Citrus spp., and (v) enhancement of systemic infection (and virus accumulation) in sour orange and CTV release from the phloem in p23-expressing transgenic sweet and sour orange. Moreover, transformation of Mexican lime with intron-hairpin constructs designed for the co-inactivation of p23 and the two other CTV silencing suppressors results in complete resistance against the homologous virus. From a cellular point of view, recent data indicate that p23 accumulates preferentially in the nucleolus, being the first closterovirus protein with such a subcellular localization, as well as in plasmodesmata. These major accumulation sites most likely determine some of the functional roles of p23.
Collapse
Affiliation(s)
- Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de investigaciones Científicas-Universidad Politécnica de Valencia Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Delbianco A, Lanzoni C, Klein E, Rubies Autonell C, Gilmer D, Ratti C. Agroinoculation of Beet necrotic yellow vein virus cDNA clones results in plant systemic infection and efficient Polymyxa betae transmission. MOLECULAR PLANT PATHOLOGY 2013; 14:422-8. [PMID: 23384276 PMCID: PMC6638874 DOI: 10.1111/mpp.12018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Agroinoculation is a quick and easy method for the infection of plants with viruses. This method involves the infiltration of tissue with a suspension of Agrobacterium tumefaciens carrying binary plasmids harbouring full-length cDNA copies of viral genome components. When transferred into host cells, transcription of the cDNA produces RNA copies of the viral genome that initiate infection. We produced full-length cDNA corresponding to Beet necrotic yellow vein virus (BNYVV) RNAs and derived replicon vectors expressing viral and fluorescent proteins in pJL89 binary plasmid under the control of the Cauliflower mosaic virus 35S promoter. We infected Nicotiana benthamiana and Beta macrocarpa plants with BNYVV by leaf agroinfiltration of combinations of agrobacteria carrying full-length cDNA clones of BNYVV RNAs. We validated the ability of agroclones to reproduce a complete viral cycle, from replication to cell-to-cell and systemic movement and, finally, plant-to-plant transmission by its plasmodiophorid vector. We also showed successful root agroinfection of B. vulgaris, a new tool for the assay of resistance to rhizomania, the sugar beet disease caused by BNYVV.
Collapse
Affiliation(s)
- Alice Delbianco
- DipSA-Plant Pathology, University of Bologna, 40-40127, Bologna, Italy; Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 67084, Strasbourg Cedex, France
| | | | | | | | | | | |
Collapse
|
44
|
Ruiz-Ruiz S, Soler N, Sánchez-Navarro J, Fagoaga C, López C, Navarro L, Moreno P, Peña L, Flores R. Citrus tristeza virus p23: determinants for nucleolar localization and their influence on suppression of RNA silencing and pathogenesis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:306-18. [PMID: 23387469 DOI: 10.1094/mpmi-08-12-0201-r] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Citrus tristeza virus (CTV) encodes a singular protein (p23, 209 amino acids) with multiple functions, including RNA silencing suppression (RSS). Confocal laser-scanning microscopy of green fluorescent protein (GFP)-p23 agroexpressed in Nicotiana benthamiana revealed its accumulation in the nucleolus, Cajal bodies, and plasmodesmata. To dissect the nucleolar localization signal (NoLS) typically associated with basic motifs, seven truncated and 10 point-mutated versions of p23 were assayed. Deletion mutants showed that regions 50 to 86 and 100 to 157 (excluding fragment 106 to 114), both with basic motifs and the first with a zinc-finger, contain the (bipartite) NoLS. Alanine substitutions delimited this signal to three cysteines of the Zn-finger and some basic amino acids. RSS activity of p23 in N. benthamiana was abolished by essentially all mutants, indicating that it involves most p23 regions. The necrotic-inducing ability of p23 when launched in N. benthamiana from Potato virus X was only retained by deletion mutant 158-209 and one substitution mutant, showing that the Zn-finger and flanking basic motifs form part of the pathogenic determinant. Ectopic expression of p23 and some deletion mutants in transgenic Mexican lime demarcated a similar determinant, suggesting that p23 affects related pathways in citrus and N. benthamiana. Both RSS activity and pathogenicity of p23 appear related to its nucleolar localization.
Collapse
Affiliation(s)
- Susana Ruiz-Ruiz
- Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|