1
|
O’Rourke JA, Graham MA. Investigating the Role of Known Arabidopsis Iron Genes in a Stress Resilient Soybean Line. Int J Mol Sci 2024; 25:11480. [PMID: 39519033 PMCID: PMC11545859 DOI: 10.3390/ijms252111480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Genes involved in iron deficiency responses have been well characterized in Arabidopsis thaliana, but their roles in crop species have not been well explored. Reliance on model species may fail to identify novel iron stress mechanisms present within crop species, likely selected by hundreds of years of selection. Fiskeby III (PI 438471) is a soybean line from Sweden that demonstrates high levels of resilience to numerous stresses. Earlier Fiskeby III studies have identified a suite of genes responding to iron deficiency stress in Fiskeby III that are also associated with Arabidopsis iron deficiency responses. We were interested in determining how canonical iron genes function in Fiskeby III under normal and iron stress conditions. To investigate this, we used virus-induced gene silencing to knock down gene expression of three iron deficiency response genes (FER-like iron deficiency induced transcription factor (FIT), elongated hypocotyl 5 (HY5) and popeye (PYE)) in Fiskeby III. Analyses of RNAseq data generated from silenced plants in iron-sufficient and -deficient conditions found silencing FIT and HY5 altered general stress responses but did not impact iron deficiency tolerance, confirming Fiskeby III utilizes novel mechanisms to tolerate iron deficiency stress.
Collapse
Affiliation(s)
- Jamie A. O’Rourke
- Agricultural Research Service, Corn Insects, and Crop Genetics Research Unit, United States Department of Agriculture, Ames, IA 50010, USA;
| | | |
Collapse
|
2
|
Aoyagi LN, Ferreira EGC, da Silva DCG, Dos Santos AB, Avelino BB, Lopes-Caitar VS, de Oliveira MF, Abdelnoor RV, de Souto ER, Arias CA, Belzile F, Marcelino-Guimarães FC. Allelic variability in the Rpp1 locus conferring resistance to Asian soybean rust revealed by genome-wide association. BMC PLANT BIOLOGY 2024; 24:743. [PMID: 39095733 PMCID: PMC11297723 DOI: 10.1186/s12870-024-05454-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Soybean is a crucial crop for the Brazilian economy, but it faces challenges from the biotrophic fungus Phakopsora pachyrhizi, which causes Asian Soybean Rust (ASR). In this study, we aimed to identify SNPs associated with resistance within the Rpp1 locus, which is effective against Brazilian ASR populations. We employed GWAS and re-sequencing analyzes to pinpoint SNP markers capable of differentiating between soybean accessions harboring the Rpp1, Rpp1-b and other alternative alleles in the Rpp1 locus and from susceptible soybean cultivars. Seven SNP markers were found to be associated with ASR resistance through GWAS, with three of them defining haplotypes that efficiently distinguished the accessions based on their ASR resistance and source of the Rpp gene. These haplotypes were subsequently validated using a bi-parental population and a diverse set of Rpp sources, demonstrating that the GWAS markers co-segregate with ASR resistance. We then examined the presence of these haplotypes in a diverse set of soybean genomes worldwide, finding a few new potential sources of Rpp1/Rpp1-b. Further genomic sequence analysis revealed nucleotide differences within the genes present in the Rpp1 locus, including the ULP1-NBS-LRR genes, which are potential R gene candidates. These results provide valuable insights into ASR resistance in soybean, thus helping the development of resistant soybean varieties through genetic breeding programs.
Collapse
Affiliation(s)
- Luciano Nobuhiro Aoyagi
- National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan
- Maringá State University (UEM), Colombo Avenue, No. 5790, Maringá, PR, Brazil
| | | | - Danielle C Gregorio da Silva
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil
| | - Adriana Brombini Dos Santos
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil
| | - Bruna Barbosa Avelino
- Department of Computer Science, Federal University of Technology of Paraná (UTFPR), Paraná, Brazil
| | | | - Marcelo Fernandes de Oliveira
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil
| | - Ricardo V Abdelnoor
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil
| | | | - Carlos Arrabal Arias
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil
| | - François Belzile
- Department of Plant Sciences and Institute of Integrative Biology and Systems (IBIS), Université Laval, Quebec City, Quebec, G1V 0A6, Canada
| | - Francismar C Marcelino-Guimarães
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil.
| |
Collapse
|
3
|
Kohlhase DR, O’Rourke JA, Graham MA. GmGLU1 and GmRR4 contribute to iron deficiency tolerance in soybean. FRONTIERS IN PLANT SCIENCE 2024; 15:1295952. [PMID: 38476685 PMCID: PMC10927968 DOI: 10.3389/fpls.2024.1295952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Iron deficiency chlorosis (IDC) is a form of abiotic stress that negatively impacts soybean yield. In a previous study, we demonstrated that the historical IDC quantitative trait locus (QTL) on soybean chromosome Gm03 was composed of four distinct linkage blocks, each containing candidate genes for IDC tolerance. Here, we take advantage of virus-induced gene silencing (VIGS) to validate the function of three high-priority candidate genes, each corresponding to a different linkage block in the Gm03 IDC QTL. We built three single-gene constructs to target GmGLU1 (GLUTAMATE SYNTHASE 1, Glyma.03G128300), GmRR4 (RESPONSE REGULATOR 4, Glyma.03G130000), and GmbHLH38 (beta Helix Loop Helix 38, Glyma.03G130400 and Glyma.03G130600). Given the polygenic nature of the iron stress tolerance trait, we also silenced the genes in combination. We built two constructs targeting GmRR4+GmGLU1 and GmbHLH38+GmGLU1. All constructs were tested on the iron-efficient soybean genotype Clark grown in iron-sufficient conditions. We observed significant decreases in soil plant analysis development (SPAD) measurements using the GmGLU1 construct and both double constructs, with potential additive effects in the GmRR4+GmGLU1 construct. Whole genome expression analyses (RNA-seq) revealed a wide range of affected processes including known iron stress responses, defense and hormone signaling, photosynthesis, and cell wall structure. These findings highlight the importance of GmGLU1 in soybean iron stress responses and provide evidence that IDC is truly a polygenic trait, with multiple genes within the QTL contributing to IDC tolerance. Finally, we conducted BLAST analyses to demonstrate that the Gm03 IDC QTL is syntenic across a broad range of plant species.
Collapse
Affiliation(s)
| | - Jamie A. O’Rourke
- United States Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit and Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Michelle A. Graham
- United States Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit and Department of Agronomy, Iowa State University, Ames, IA, United States
| |
Collapse
|
4
|
Chicowski AS, Bredow M, Utiyama AS, Marcelino-Guimarães FC, Whitham SA. Soybean-Phakopsora pachyrhizi interactions: towards the development of next-generation disease-resistant plants. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:296-315. [PMID: 37883664 PMCID: PMC10826999 DOI: 10.1111/pbi.14206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/19/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023]
Abstract
Soybean rust (SBR), caused by the obligate biotrophic fungus Phakopsora pachyrhizi, is a devastating foliar disease threatening soybean production. To date, no commercial cultivars conferring durable resistance to SBR are available. The development of long-lasting SBR resistance has been hindered by the lack of understanding of this complex pathosystem, encompassing challenges posed by intricate genetic structures in both the host and pathogen, leading to a gap in the knowledge of gene-for-gene interactions between soybean and P. pachyrhizi. In this review, we focus on recent advancements and emerging technologies that can be used to improve our understanding of the P. pachyrhizi-soybean molecular interactions. We further explore approaches used to combat SBR, including conventional breeding, transgenic approaches and RNA interference, and how advances in our understanding of plant immune networks, the availability of new molecular tools, and the recent sequencing of the P. pachyrhizi genome could be used to aid in the development of better genetic resistance against SBR. Lastly, we discuss the research gaps of this pathosystem and how new technologies can be used to shed light on these questions and to develop durable next-generation SBR-resistant soybean plants.
Collapse
Affiliation(s)
- Aline Sartor Chicowski
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Melissa Bredow
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Alice Satiko Utiyama
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Londrina, Paraná, Brazil
- Department of Agronomy, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Steven A Whitham
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
5
|
Xiong H, Chen Y, Pan YB, Wang J, Lu W, Shi A. A genome-wide association study and genomic prediction for Phakopsora pachyrhizi resistance in soybean. FRONTIERS IN PLANT SCIENCE 2023; 14:1179357. [PMID: 37313252 PMCID: PMC10258334 DOI: 10.3389/fpls.2023.1179357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/25/2023] [Indexed: 06/15/2023]
Abstract
Soybean brown rust (SBR), caused by Phakopsora pachyrhizi, is a devastating fungal disease that threatens global soybean production. This study conducted a genome-wide association study (GWAS) with seven models on a panel of 3,082 soybean accessions to identify the markers associated with SBR resistance by 30,314 high quality single nucleotide polymorphism (SNPs). Then five genomic selection (GS) models, including Ridge regression best linear unbiased predictor (rrBLUP), Genomic best linear unbiased predictor (gBLUP), Bayesian least absolute shrinkage and selection operator (Bayesian LASSO), Random Forest (RF), and Support vector machines (SVM), were used to predict breeding values of SBR resistance using whole genome SNP sets and GWAS-based marker sets. Four SNPs, namely Gm18_57,223,391 (LOD = 2.69), Gm16_29,491,946 (LOD = 3.86), Gm06_45,035,185 (LOD = 4.74), and Gm18_51,994,200 (LOD = 3.60), were located near the reported P. pachyrhizi R genes, Rpp1, Rpp2, Rpp3, and Rpp4, respectively. Other significant SNPs, including Gm02_7,235,181 (LOD = 7.91), Gm02_7234594 (LOD = 7.61), Gm03_38,913,029 (LOD = 6.85), Gm04_46,003,059 (LOD = 6.03), Gm09_1,951,644 (LOD = 10.07), Gm10_39,142,024 (LOD = 7.12), Gm12_28,136,735 (LOD = 7.03), Gm13_16,350,701(LOD = 5.63), Gm14_6,185,611 (LOD = 5.51), and Gm19_44,734,953 (LOD = 6.02), were associated with abundant disease resistance genes, such as Glyma.02G084100, Glyma.03G175300, Glyma.04g189500, Glyma.09G023800, Glyma.12G160400, Glyma.13G064500, Glyma.14g073300, and Glyma.19G190200. The annotations of these genes included but not limited to: LRR class gene, cytochrome 450, cell wall structure, RCC1, NAC, ABC transporter, F-box domain, etc. The GWAS based markers showed more accuracies in genomic prediction than the whole genome SNPs, and Bayesian LASSO model was the ideal model in SBR resistance prediction with 44.5% ~ 60.4% accuracies. This study aids breeders in predicting selection accuracy of complex traits such as disease resistance and can shorten the soybean breeding cycle by the identified markers.
Collapse
Affiliation(s)
- Haizheng Xiong
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| | - Yilin Chen
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| | - Yong-Bao Pan
- Sugarcane Research Unit, Untied State Department of Agriculture – Agriculture Research Service (USDA-ARS), Houma, LA, United States
| | - Jinshe Wang
- Henan Academy of Crops Molecular Breeding, National Centre for Plant Breeding, Zhengzhou, China
| | - Weiguo Lu
- Henan Academy of Crops Molecular Breeding, National Centre for Plant Breeding, Zhengzhou, China
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
6
|
Almeida-Silva F, Venancio TM. Integration of genome-wide association studies and gene coexpression networks unveils promising soybean resistance genes against five common fungal pathogens. Sci Rep 2021; 11:24453. [PMID: 34961779 PMCID: PMC8712514 DOI: 10.1038/s41598-021-03864-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/03/2021] [Indexed: 12/15/2022] Open
Abstract
Soybean is one of the most important legume crops worldwide. However, soybean yield is dramatically affected by fungal diseases, leading to economic losses of billions of dollars yearly. Here, we integrated publicly available genome-wide association studies and transcriptomic data to prioritize candidate genes associated with resistance to Cadophora gregata, Fusarium graminearum, Fusarium virguliforme, Macrophomina phaseolina, and Phakopsora pachyrhizi. We identified 188, 56, 11, 8, and 3 high-confidence candidates for resistance to F. virguliforme, F. graminearum, C. gregata, M. phaseolina and P. pachyrhizi, respectively. The prioritized candidate genes are highly conserved in the pangenome of cultivated soybeans and are heavily biased towards fungal species-specific defense responses. The vast majority of the prioritized candidate resistance genes are related to plant immunity processes, such as recognition, signaling, oxidative stress, systemic acquired resistance, and physical defense. Based on the number of resistance alleles, we selected the five most resistant accessions against each fungal species in the soybean USDA germplasm. Interestingly, the most resistant accessions do not reach the maximum theoretical resistance potential. Hence, they can be further improved to increase resistance in breeding programs or through genetic engineering. Finally, the coexpression network generated here is available in a user-friendly web application ( https://soyfungigcn.venanciogroup.uenf.br/ ) and an R/Shiny package ( https://github.com/almeidasilvaf/SoyFungiGCN ) that serve as a public resource to explore soybean-pathogenic fungi interactions at the transcriptional level.
Collapse
Affiliation(s)
- Fabricio Almeida-Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego 2000, P5, sala 217, Campos dos Goytacazes, RJ, Brazil.
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego 2000, P5, sala 217, Campos dos Goytacazes, RJ, Brazil.
| |
Collapse
|
7
|
Beyer SF, Bel PS, Flors V, Schultheiss H, Conrath U, Langenbach CJG. Disclosure of salicylic acid and jasmonic acid-responsive genes provides a molecular tool for deciphering stress responses in soybean. Sci Rep 2021; 11:20600. [PMID: 34663865 PMCID: PMC8523552 DOI: 10.1038/s41598-021-00209-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/07/2021] [Indexed: 11/09/2022] Open
Abstract
Hormones orchestrate the physiology of organisms. Measuring the activity of defense hormone-responsive genes can help understanding immune signaling and facilitate breeding for plant health. However, different from model species like Arabidopsis, genes that respond to defense hormones salicylic acid (SA) and jasmonic acid (JA) have not been disclosed in the soybean crop. We performed global transcriptome analyses to fill this knowledge gap. Upon exogenous application, endogenous levels of SA and JA increased in leaves. SA predominantly activated genes linked to systemic acquired resistance and defense signaling whereas JA mainly activated wound response-associated genes. In general, SA-responsive genes were activated earlier than those responding to JA. Consistent with the paradigm of biotrophic pathogens predominantly activating SA responses, free SA and here identified most robust SA marker genes GmNIMIN1, GmNIMIN1.2 and GmWRK40 were induced upon inoculation with Phakopsora pachyrhizi, whereas JA marker genes did not respond to infection with the biotrophic fungus. Spodoptera exigua larvae caused a strong accumulation of JA-Ile and JA-specific mRNA transcripts of GmBPI1, GmKTI1 and GmAAT whereas neither free SA nor SA-marker gene transcripts accumulated upon insect feeding. Our study provides molecular tools for monitoring the dynamic accumulation of SA and JA, e.g. in a given stress condition.
Collapse
Affiliation(s)
- Sebastian F Beyer
- Plant Biochemistry & Molecular Biology Unit, Department of Plant Physiology, RWTH Aachen University, 52074, Aachen, Germany
| | - Paloma Sánchez Bel
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Department of CAMN, Universitat Jaume I, 12071, Castellón, Spain
| | - Victor Flors
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Department of CAMN, Universitat Jaume I, 12071, Castellón, Spain
| | - Holger Schultheiss
- Agricultural Center, BASF Plant Science Company GmbH, 67117, Limburgerhof, Germany
| | - Uwe Conrath
- Plant Biochemistry & Molecular Biology Unit, Department of Plant Physiology, RWTH Aachen University, 52074, Aachen, Germany
| | - Caspar J G Langenbach
- Plant Biochemistry & Molecular Biology Unit, Department of Plant Physiology, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
8
|
dos Santos IMO, Abe VY, de Carvalho K, Barazetti AR, Simionato AS, de Almeida Pega GE, Matis SH, Cano BG, Cely MVT, Marcelino-Guimarães FC, Chryssafidis AL, Andrade G. Secondary Metabolites of Pseudomonas aeruginosa LV Strain Decrease Asian Soybean Rust Severity in Experimentally Infected Plants. PLANTS 2021; 10:plants10081495. [PMID: 34451540 PMCID: PMC8400991 DOI: 10.3390/plants10081495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022]
Abstract
Asian Soybean Rust (ASR), a disease caused by Phakopsora pachyrhizi, causing yield losses up to 90%. The control is based on the fungicides which may generate resistant fungi. The activation of the plant defense system, should help on ASR control. In this study, secondary metabolites of Pseudomonas aeruginosa LV strain were applied on spore germination and the expression of defense genes in infected soybean plants. The F4A fraction and the pure metabolites were used. In vitro, 10 µg mL−1 of F4A reduced spore germination by 54%, while 100 µg mL−1 completely inhibited. Overexpression of phenylalanine ammonia lyase (PAL), O-methyltransferase (OMT) and pathogenesis related protein-2 (PR-2; glucanases) defense-related genes were detected 24 and 72 h after soybean sprouts were sprayed with an organocopper antimicrobial compound (OAC). Under greenhouse conditions, the best control was observed in plants treated with 60 µg mL−1 of PCA, which reduced ASR severity and lesion frequency by 75% and 43%, respectively. Plants sprayed with 2 and 20 µg mL−1 of F4A also decreased severity (41%) and lesion frequency (32%). The significant reduction in spore germination ASR in plant suggested that the strain of these metabolites are effective against P. pachyrhizi, and they can be used for ASR control.
Collapse
Affiliation(s)
- Igor Matheus Oliveira dos Santos
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, PR, Brazil; (I.M.O.d.S.); (A.R.B.); (A.S.S.); (G.E.d.A.P.); (S.H.M.); (B.G.C.)
| | - Valéria Yukari Abe
- Laboratory of Plant Biotechnology and Bioinformatics, Embrapa Soja, Londrina 86057-970, PR, Brazil; (V.Y.A.); (K.d.C.); (F.C.M.-G.)
| | - Kenia de Carvalho
- Laboratory of Plant Biotechnology and Bioinformatics, Embrapa Soja, Londrina 86057-970, PR, Brazil; (V.Y.A.); (K.d.C.); (F.C.M.-G.)
| | - André Riedi Barazetti
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, PR, Brazil; (I.M.O.d.S.); (A.R.B.); (A.S.S.); (G.E.d.A.P.); (S.H.M.); (B.G.C.)
| | - Ane Stéfano Simionato
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, PR, Brazil; (I.M.O.d.S.); (A.R.B.); (A.S.S.); (G.E.d.A.P.); (S.H.M.); (B.G.C.)
| | - Guilherme E. de Almeida Pega
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, PR, Brazil; (I.M.O.d.S.); (A.R.B.); (A.S.S.); (G.E.d.A.P.); (S.H.M.); (B.G.C.)
| | - Sergio Henrique Matis
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, PR, Brazil; (I.M.O.d.S.); (A.R.B.); (A.S.S.); (G.E.d.A.P.); (S.H.M.); (B.G.C.)
| | - Barbara Gionco Cano
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, PR, Brazil; (I.M.O.d.S.); (A.R.B.); (A.S.S.); (G.E.d.A.P.); (S.H.M.); (B.G.C.)
| | - Martha Viviana Torres Cely
- Agricultural and Environmental Sciences Institute, Federal University of Mato Grosso, Sinop 78550-728, MT, Brazil;
| | | | | | - Galdino Andrade
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, PR, Brazil; (I.M.O.d.S.); (A.R.B.); (A.S.S.); (G.E.d.A.P.); (S.H.M.); (B.G.C.)
- Correspondence: ; Tel.: +55-43-999-175-758
| |
Collapse
|
9
|
Silva E, Perez da Graça J, Porto C, Martin do Prado R, Nunes E, Corrêa Marcelino-Guimarães F, Conrado Meyer M, Jorge Pilau E. Untargeted Metabolomics Analysis by UHPLC-MS/MS of Soybean Plant in a Compatible Response to Phakopsora pachyrhizi Infection. Metabolites 2021; 11:metabo11030179. [PMID: 33808519 PMCID: PMC8003322 DOI: 10.3390/metabo11030179] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 01/11/2023] Open
Abstract
Phakopsora pachyrhizi is a biotrophic fungus, causer of the disease Asian Soybean Rust, a severe crop disease of soybean and one that demands greater investment from producers. Thus, research efforts to control this disease are still needed. We investigated the expression of metabolites in soybean plants presenting a resistant genotype inoculated with P. pachyrhizi through the untargeted metabolomics approach. The analysis was performed in control and inoculated plants with P. pachyrhizi using UHPLC-MS/MS. Principal component analysis (PCA) and the partial least squares discriminant analysis (PLS-DA), was applied to the data analysis. PCA and PLS-DA resulted in a clear separation and classification of groups between control and inoculated plants. The metabolites were putative classified and identified using the Global Natural Products Social Molecular Networking platform in flavonoids, isoflavonoids, lipids, fatty acyls, terpenes, and carboxylic acids. Flavonoids and isoflavonoids were up-regulation, while terpenes were down-regulated in response to the soybean–P. pachyrhizi interaction. Our data provide insights into the potential role of some metabolites as flavonoids and isoflavonoids in the plant resistance to ASR. This information could result in the development of resistant genotypes of soybean to P. pachyrhizi, and effective and specific products against the pathogen.
Collapse
Affiliation(s)
- Evandro Silva
- Laboratory of Biomolecules and Mass Spectrometry, Department of Chemistry, State University of Maringá, 5790, Colombo Av, Maringá 87020-080, PR, Brazil; (E.S.); (C.P.); (R.M.d.P.)
| | - José Perez da Graça
- Brazilian Agricultural Research Corporation Soybean, Carlos João Strass Rd, Londrina 86001-970, PR, Brazil; (J.P.d.G.); (F.C.M.-G.); (M.C.M.)
| | - Carla Porto
- Laboratory of Biomolecules and Mass Spectrometry, Department of Chemistry, State University of Maringá, 5790, Colombo Av, Maringá 87020-080, PR, Brazil; (E.S.); (C.P.); (R.M.d.P.)
- MsBioscience, Quintino Bocaiúva 298, Street, Maringá 87020-160, PR, Brazil
| | - Rodolpho Martin do Prado
- Laboratory of Biomolecules and Mass Spectrometry, Department of Chemistry, State University of Maringá, 5790, Colombo Av, Maringá 87020-080, PR, Brazil; (E.S.); (C.P.); (R.M.d.P.)
| | - Estela Nunes
- Brazilian Agricultural Research Corporation Swine & Poultry, BR-153, Km 110 Rd, Concórdia 89715-899, SC, Brazil;
| | | | - Mauricio Conrado Meyer
- Brazilian Agricultural Research Corporation Soybean, Carlos João Strass Rd, Londrina 86001-970, PR, Brazil; (J.P.d.G.); (F.C.M.-G.); (M.C.M.)
| | - Eduardo Jorge Pilau
- Laboratory of Biomolecules and Mass Spectrometry, Department of Chemistry, State University of Maringá, 5790, Colombo Av, Maringá 87020-080, PR, Brazil; (E.S.); (C.P.); (R.M.d.P.)
- Correspondence:
| |
Collapse
|
10
|
Parmezan TR, Brito Júnior SL, Carvalho KD, Aquino MD, Birkett M, Pickett J, Nunes EDO, Abdelnor RV, Campo CBH, Marcelino-Guimarães FC. Transcriptional profile of genes involved in the production of terpenes and glyceollins in response to biotic stresses in soybean. Genet Mol Biol 2020; 43:e20190388. [PMID: 33174975 PMCID: PMC7644969 DOI: 10.1590/1678-4685-gmb-2019-0388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 07/08/2020] [Indexed: 11/21/2022] Open
Abstract
Terpenes produced by plants comprise a diverse range of secondary metabolites, including volatile organic compounds (VOCs). Terpene VOC production may be altered after damage or by biological stimuli such as bacterial, fungal and insects, and subsequent triggering of plant defense responses. These VOCs originate in plants from two independent pathways: the mevalonate and the methylerythritol phosphate pathways, which utilize dimethylallyl and isopentenyl diphosphates to form the terpenoidal precursors. Phakopsora pachyrhizi fungi causes Asian soybean rust, limiting soybean production and resulting in losses of up to 80% if no control strategies are applied. By using a transcriptome datasets, we investigated the regulation of genes of the mevalonate pathway under different biotic stresses. We studied the impact of P. pachyrhizi infection in vivo expression profile of genes involved in terpenoid and glyceollin biosynthesis in genotypes harboring different resistance genes (Rpp), and across the infection cycle. In addition, we used UPLC and UPGC analysis to evaluate glyceollin and VOC production, respectively, to identify metabolites associated with soybean responses to pathogen infection. The regulation of soybean genes involved in terpene production was influenced by genotypes, depending on the Rpp gene, while glyceollin was induced in all genotypes. Furthermore, a sesquiterpene was identified as a potential marker associated with rust symptoms on soybean.
Collapse
Affiliation(s)
- Talitta Regina Parmezan
- Universidade Estadual de Londrina, Departamento de Bioquímica e Biotecnologia, Londrina, PR, Brazil
| | | | - Kenia de Carvalho
- Universidade Estadual de Londrina, Departamento de Genética e Biologia Molecular, Londrina, PR, Brazil
| | - Moisés de Aquino
- Empresa Brasileira de Pesquisa Agropecuária-EMBRAPA Soja, Londrina, PR, Brazil
| | - Michael Birkett
- Rothamsted Research, Biointeractions and Crop Protection Department, Harpenden, UK
| | - John Pickett
- Cardiff University, School of Chemistry, Wales, UK
| | | | | | | | | |
Collapse
|
11
|
McCabe CE, Graham MA. New tools for characterizing early brown stem rot disease resistance signaling in soybean. THE PLANT GENOME 2020; 13:e20037. [PMID: 33217212 DOI: 10.1002/tpg2.20037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 05/11/2020] [Accepted: 05/26/2020] [Indexed: 05/12/2023]
Abstract
Brown stem rot (BSR) reduces soybean [Glycine max (L.) Merr.] yield by up to 38%. The BSR causal agent is Phialophora gregata f. sp. sojae, a slow-growing, necrotrophic fungus whose life cycle includes latent and pathogenic phases, each lasting several weeks. Brown stem rot foliar symptoms are often misdiagnosed as other soybean diseases or nutrient stress, making BSR resistance especially difficult to phenotype. To shed light on the genes and networks contributing to P. gregata resistance, we conducted RNA sequencing (RNA-seq) of a resistant genotype (PI 437970, Rbs3). Leaf, stem, and root tissues were collected 12, 24, and 36 h after stab inoculation with P. gregata, or mock infection, in the plant stem. By using multiple tissues and time points, we could see that leaves, stems, and roots use the same defense pathways. Our analyses suggest that P. gregata induces a biphasic defense response, with pathogen-associated molecular pattern (PAMP) triggered immunity observed in leaves at 12 and 24 h after infection (HAI) and effector triggered immunity detected at 36 h after infection in the stems. Gene networks associated with defense, photosynthesis, nutrient homeostasis, DNA replication, and growth are the hallmarks of resistance to P. gregata. While P. gregata is a slow-growing pathogen, our results demonstrate that pathogen recognition occurs hours after infection. By exploiting the genes and networks described here, we will be able to develop novel diagnostic tools to facilitate breeding and screening for BSR resistance.
Collapse
Affiliation(s)
- Chantal E McCabe
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, 50011-1010, USA
| | - Michelle A Graham
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, 50011-1010, USA
- Department of Agronomy, Iowa State University, Ames, IA, 50011-1010, USA
| |
Collapse
|
12
|
Martins D, Araújo SDS, Rubiales D, Vaz Patto MC. Legume Crops and Biotrophic Pathogen Interactions: A Continuous Cross-Talk of a Multilayered Array of Defense Mechanisms. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1460. [PMID: 33137969 PMCID: PMC7692723 DOI: 10.3390/plants9111460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022]
Abstract
Legume species are recognized for their nutritional benefits and contribution to the sustainability of agricultural systems. However, their production is threatened by biotic constraints with devastating impacts on crop yield. A deep understanding of the molecular and genetic architecture of resistance sources culminating in immunity is critical to assist new biotechnological approaches for plant protection. In this review, the current knowledge regarding the major plant immune system components of grain and forage legumes challenged with obligate airborne biotrophic fungi will be comprehensively evaluated and discussed while identifying future directions of research. To achieve this, we will address the multi-layered defense strategies deployed by legume crops at the biochemical, molecular, and physiological levels, leading to rapid pathogen recognition and carrying the necessary information to sub-cellular components, on-setting a dynamic and organized defense. Emphasis will be given to recent approaches such as the identification of critical components of host decentralized immune response negatively regulated by pathogens while targeting the loss-of-function of susceptibility genes. We conclude that advances in gene expression analysis in both host and pathogen, protocols for effectoromics pipelines, and high-throughput disease phenomics platforms are rapidly leading to a deeper understanding of the intricate host-pathogen interaction, crucial for efficient disease resistance breeding initiatives.
Collapse
Affiliation(s)
- Davide Martins
- Instituto de Tecnologia Química e Biologia António Xavier, Universidade Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal; (S.d.S.A.); (M.C.V.P.)
| | - Susana de Sousa Araújo
- Instituto de Tecnologia Química e Biologia António Xavier, Universidade Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal; (S.d.S.A.); (M.C.V.P.)
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, Rua Nossa Senhora da Conceição, 2, Lagares, 3405-155 Oliveira do Hospital, Portugal
| | - Diego Rubiales
- Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain;
| | - Maria Carlota Vaz Patto
- Instituto de Tecnologia Química e Biologia António Xavier, Universidade Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal; (S.d.S.A.); (M.C.V.P.)
| |
Collapse
|
13
|
Ren H, Bai M, Sun J, Liu J, Ren M, Dong Y, Wang N, Ning G, Wang C. RcMYB84 and RcMYB123 mediate jasmonate-induced defense responses against Botrytis cinerea in rose (Rosa chinensis). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1839-1849. [PMID: 32524706 DOI: 10.1111/tpj.14871] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 05/02/2023]
Abstract
Jasmonates (JAs) are important for pathogen resistance in many plants, but the role of these phytohormones in fungal pathogen resistance in rose is unclear. Here, we determined that exogenous application of methyl jasmonate increased resistance to the important fungal pathogen Botrytis cinerea in Rosa chinensis 'Old blush', whereas silencing the JA biosynthetic pathway gene Allene Oxide Synthase (AOS) and JA co-receptor gene CORONATINE INSENSITIVE 1 (COI1) suppressed this response. Transcriptome profiling identified various MYB transcription factor genes that responded to both JA and B. cinerea treatment. Silencing Ri-RcMYB84/Ri-RcMYB123 increased the susceptibility of rose plants to B. cinerea and inhibited the protective effects of JA treatment, confirming the crucial roles of these genes in JA-induced responses to B. cinerea. JAZ1, a key repressor of JA signaling, directly interacts with RcMYB84 and RcMYB123 to deplete their free pools. The JAZ1-RcMYB84 complex binds to the RcMYB123 promoter via the CAACTG motifs to block its transcription. Upon JA treatment, the expression of RcMYB123 is de-repressed, and free forms of RcMYB84 and RcMYB123 are released due to JAZ1 degradation, thereby activating the defense responses of plants to B. cinerea. These findings shed light on the molecular mechanisms underlying JA-induced pathogen resistance in roses.
Collapse
Affiliation(s)
- Haoran Ren
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Mengjuan Bai
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingjing Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinyi Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Ren
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuwei Dong
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Na Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Guogui Ning
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changquan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
14
|
Cooper B, Beard HS, Garrett WM, Campbell KB. Benzothiadiazole Conditions the Bean Proteome for Immunity to Bean Rust. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:600-611. [PMID: 31999214 DOI: 10.1094/mpmi-09-19-0250-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The common bean rust fungus reduces harvests of the dry, edible common bean. Natural resistance genes in the plant can provide protection until a fungal strain that breaks resistance emerges. In this study, we demonstrate that benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH) sprayed on susceptible beans induces resistance to common bean rust. Protection occurred as soon as 72 h after treatment and resulted in no signs of disease 10 days after inoculation with rust spores. By contrast, the susceptible control plants sustained heavy infections and died. To understand the effect BTH has on the bean proteome, we measured the changes of accumulation for 3,973 proteins using mass spectrometry. The set of 409 proteins with significantly increased accumulation in BTH-treated leaves included receptor-like kinases SOBIR1, CERK1, and LYK5, which perceive pathogens, and EDS1, a regulator of the salicylic acid defense pathway. Other proteins that likely contributed to resistance included pathogenesis-related proteins, a full complement of enzymes that catalyze phenylpropanoid biosynthesis, and protein receptors, transporters, and enzymes that modulate other defense responses controlled by jasmonic acid, ethylene, brassinosteroid, abscisic acid, and auxin. Increases in the accumulation of proteins required for vesicle-mediated protein secretion and RNA splicing occurred as well. By contrast, more than half of the 168 decreases belonged to chloroplast proteins and proteins involved in cell expansion. These results reveal a set of proteins needed for rust resistance and reaffirm the utility of BTH to control disease by amplifying the natural immune system of the bean plant.
Collapse
Affiliation(s)
- Bret Cooper
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, U.S.A
| | - Hunter S Beard
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, U.S.A
| | - Wesley M Garrett
- Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, MD, U.S.A
| | - Kimberly B Campbell
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, U.S.A
| |
Collapse
|
15
|
Cui X, Yan Q, Gan S, Xue D, Wang H, Xing H, Zhao J, Guo N. GmWRKY40, a member of the WRKY transcription factor genes identified from Glycine max L., enhanced the resistance to Phytophthora sojae. BMC PLANT BIOLOGY 2019; 19:598. [PMID: 31888478 PMCID: PMC6937711 DOI: 10.1186/s12870-019-2132-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 11/12/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND The WRKY proteins are a superfamily of transcription factors and members play essential roles in the modulation of diverse physiological processes, such as growth, development, senescence and response to biotic and abiotic stresses. However, the biological roles of the majority of the WRKY family members remains poorly understood in soybean relative to the research progress in model plants. RESULTS In this study, we identified and characterized GmWRKY40, which is a group IIc WRKY gene. Transient expression analysis revealed that the GmWRKY40 protein is located in the nucleus of plant cells. Expression of GmWRKY40 was strongly induced in soybean following infection with Phytophthora sojae, or treatment with methyl jasmonate, ethylene, salicylic acid, and abscisic acid. Furthermore, soybean hairy roots silencing GmWRKY40 enhanced susceptibility to P. sojae infection compared with empty vector transgenic roots. Moreover, suppression of GmWRKY40 decreased the accumulation of reactive oxygen species (ROS) and modified the expression of several oxidation-related genes. Yeast two-hybrid experiment combined with RNA-seq analysis showed that GmWRKY40 interacted with 8 JAZ proteins with or without the WRKY domain or zinc-finger domain of GmWRKY40, suggesting there were different interaction patterns among these interacted proteins. CONCLUSIONS Collectively, these results suggests that GmWRKY40 functions as a positive regulator in soybean plants response to P. sojae through modulating hydrogen peroxide accumulation and JA signaling pathway.
Collapse
Affiliation(s)
- Xiaoxia Cui
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qiang Yan
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shuping Gan
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Dong Xue
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Haitang Wang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Han Xing
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jinming Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Na Guo
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
16
|
Kankanala P, Nandety RS, Mysore KS. Genomics of Plant Disease Resistance in Legumes. FRONTIERS IN PLANT SCIENCE 2019; 10:1345. [PMID: 31749817 PMCID: PMC6842968 DOI: 10.3389/fpls.2019.01345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/27/2019] [Indexed: 05/15/2023]
Abstract
The constant interactions between plants and pathogens in the environment and the resulting outcomes are of significant importance for agriculture and agricultural scientists. Disease resistance genes in plant cultivars can break down in the field due to the evolution of pathogens under high selection pressure. Thus, the protection of crop plants against pathogens is a continuous arms race. Like any other type of crop plant, legumes are susceptible to many pathogens. The dawn of the genomic era, in which high-throughput and cost-effective genomic tools have become available, has revolutionized our understanding of the complex interactions between legumes and pathogens. Genomic tools have enabled a global view of transcriptome changes during these interactions, from which several key players in both the resistant and susceptible interactions have been identified. This review summarizes some of the large-scale genomic studies that have clarified the host transcriptional changes during interactions between legumes and their plant pathogens while highlighting some of the molecular breeding tools that are available to introgress the traits into breeding programs. These studies provide valuable insights into the molecular basis of different levels of host defenses in resistant and susceptible interactions.
Collapse
|
17
|
Beyer SF, Beesley A, Rohmann PF, Schultheiss H, Conrath U, Langenbach CJ. The Arabidopsis non-host defence-associated coumarin scopoletin protects soybean from Asian soybean rust. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:397-413. [PMID: 31148306 PMCID: PMC6852345 DOI: 10.1111/tpj.14426] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 05/10/2023]
Abstract
The fungus Phakopsora pachyrhizi (Pp) causes Asian soybean rust (SBR) disease which provokes tremendous losses in global soybean production. Pp is mainly controlled with synthetic fungicides to which the fungus swiftly develops fungicide resistance. To substitute or complement synthetic fungicides in Asian soybean rust control, we aimed to identify antifungal metabolites in Arabidopsis which is not a host for Pp. Comparative transcriptional and metabolic profiling of the Pp-inoculated Arabidopsis non-host and the soybean host revealed induction of phenylpropanoid metabolism-associated genes in both species but activation of scopoletin biosynthesis only in the resistant non-host. Scopoletin is a coumarin and an antioxidant. In vitro experiments disclosed fungistatic activity of scopoletin against Pp, associated with reduced accumulation of reactive oxygen species (ROS) in fungal pre-infection structures. Non-antioxidant and antioxidant molecules including coumarins with a similar structure to scopoletin were inactive or much less effective at inhibiting fungal accumulation of ROS and germination of Pp spores. When sprayed onto Arabidopsis leaves, scopoletin also suppressed the formation of Pp pre-infection structures and penetration of the plant. However, scopoletin neither directly activated defence nor did it prime Arabidopsis for enhanced defence, therefore emphasizing fungistatic activity as the exclusive mode of action of scopoletin against Pp. Because scopletin also protected soybean from Pp infection, the coumarin may serve as a natural fungicide or as a lead for the development of near-to-nature fungicides against Asian soybean rust.
Collapse
Affiliation(s)
| | - Alexander Beesley
- Department of Plant PhysiologyRWTH Aachen UniversityAachen52074Germany
| | | | - Holger Schultheiss
- Agricultural CenterBASF Plant Science Company GmbHLimburgerhof67117Germany
| | - Uwe Conrath
- Department of Plant PhysiologyRWTH Aachen UniversityAachen52074Germany
| | | |
Collapse
|
18
|
Pedley KF, Pandey AK, Ruck A, Lincoln LM, Whitham SA, Graham MA. Rpp1 Encodes a ULP1-NBS-LRR Protein That Controls Immunity to Phakopsora pachyrhizi in Soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:120-133. [PMID: 30303765 DOI: 10.1094/mpmi-07-18-0198-fi] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phakopsora pachyrhizi is the causal agent of Asian soybean rust. Susceptible soybean plants infected by virulent isolates of P. pachyrhizi are characterized by tan-colored lesions and erumpent uredinia on the leaf surface. Germplasm screening and genetic analyses have led to the identification of seven loci, Rpp1 to Rpp7, that provide varying degrees of resistance to P. pachyrhizi (Rpp). Two genes, Rpp1 and Rpp1b, map to the same region on soybean chromosome 18. Rpp1 is unique among the Rpp genes in that it confers an immune response (IR) to avirulent P. pachyrhizi isolates. The IR is characterized by a lack of visible symptoms, whereas resistance provided by Rpp1b to Rpp7 results in red-brown foliar lesions. Rpp1 maps to a region spanning approximately 150 kb on chromosome 18 between markers Sct_187 and Sat_064 in L85-2378 (Rpp1), an isoline developed from Williams 82 and PI 200492 (Rpp1). To identify Rpp1, we constructed a bacterial artificial chromosome library from soybean accession PI 200492. Sequencing of the Rpp1 locus identified three homologous nucleotide binding site-leucine rich repeat (NBS-LRR) candidate resistance genes between Sct_187 and Sat_064. Each candidate gene is also predicted to encode an N-terminal ubiquitin-like protease 1 (ULP1) domain. Cosilencing of the Rpp1 candidates abrogated the immune response in the Rpp1 resistant soybean accession PI 200492, indicating that Rpp1 is a ULP1-NBS-LRR protein and plays a key role in the IR.
Collapse
Affiliation(s)
- Kerry F Pedley
- 1 United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Foreign Disease-Weed Science Research Unit, Ft. Detrick, MD 21702, U.S.A
| | - Ajay K Pandey
- 1 United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Foreign Disease-Weed Science Research Unit, Ft. Detrick, MD 21702, U.S.A
- 3 Iowa State University, Department of Plant Pathology and Microbiology, Ames, IA 50011, U.S.A
| | - Amy Ruck
- 1 United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Foreign Disease-Weed Science Research Unit, Ft. Detrick, MD 21702, U.S.A
| | - Lori M Lincoln
- 2 USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, U.S.A.; and
| | - Steven A Whitham
- 3 Iowa State University, Department of Plant Pathology and Microbiology, Ames, IA 50011, U.S.A
| | - Michelle A Graham
- 2 USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, U.S.A.; and
| |
Collapse
|
19
|
Hossain MZ, Ishiga Y, Yamanaka N, Ogiso-Tanaka E, Yamaoka Y. Soybean leaves transcriptomic data dissects the phenylpropanoid pathway genes as a defence response against Phakopsora pachyrhizi. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:424-433. [PMID: 30290334 DOI: 10.1016/j.plaphy.2018.09.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 05/02/2023]
Abstract
Asian soybean rust (ASR), caused by the obligate biotrophic fungus Phakopsora pachyrhizi, is responsible for severe yield losses of up to 90% in all soybean producing countries. Till today, eight resistance to Phakopsora pachyrhizi (Rpp) loci have been mapped in soybean. Their resistance mechanism is race specific but largely unknown. The transcriptomes of susceptible BRS184 and Rpp3 with ASR isolates T1-2 at 24 h after inoculation (hai) and without ASR inoculation (mock) were annotated by similarity searching with different databases. A total of 4518 differentially expressed genes were identified. We found 70.89%, 56.61%, 32.13%, and 56.04% genes in the protein family databases (PFAM), Gene Ontology (GO), Eukaryotic clusters of Orthologous Groups (KOG), and Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG), respectively. KEGG disclosed that 52% of the phenylpropanoid pathway related genes were up-regulated. The relative gene expression study for selected genes of that pathway was conducted by RT-qPCR using Rpp1-Rpp4 carrying lines with T1-2 infection. The RT-qPCR results revealed that the Rpp lines utilized these genes in a rate limiting manner as a defence response. With the exception of glycinol 4-dimethylallyltransferase (G4DT) and chalcone reductase (CHR), all the genes showed the greatest expression at 12 hai, but the gene expressions which occur between 24 and 96 hai make these Rpp lines unique to their respective ASR isolates. Moreover, functional coordination of arogenate dehydratase 6 (ADT6) and 4-hydroxy-3-methylbut-2-enyl diphosphate synthase (ispG), chalcone synthase (CHS) and CHR, and G4DT and phytyltransferase 3 (PT3) may have a great impact on soybean resistance against ASR.
Collapse
Affiliation(s)
- Md Zakir Hossain
- Bangladesh Jute Research Institute, Dhaka, 1207, Bangladesh; Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yasuhiro Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Naoki Yamanaka
- Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
| | - Eri Ogiso-Tanaka
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Yuichi Yamaoka
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| |
Collapse
|
20
|
Whitham SA, Qi M, Innes RW, Ma W, Lopes-Caitar V, Hewezi T. Molecular Soybean-Pathogen Interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:443-68. [PMID: 27359370 DOI: 10.1146/annurev-phyto-080615-100156] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Soybean hosts a wide variety of pathogens that cause significant yield losses. The importance of soybean as a major oilseed crop has led to research focused on its interactions with pathogens, such as Soybean mosaic virus, Pseudomonas syringae, Phytophthora sojae, Phakopsora pachyrhizi, and Heterodera glycines. Pioneering work on soybean's interactions with these organisms, which represent the five major pathogen groups (viruses, bacteria, oomycetes, fungi, and nematodes), has contributed to our understanding of the molecular mechanisms underlying virulence and immunity. These mechanisms involve conserved and unique features that validate the need for research in both soybean and homologous model systems. In this review, we discuss identification of effectors and their functions as well as resistance gene-mediated recognition and signaling. We also point out areas in which model systems and recent advances in resources and tools have provided opportunities to gain deeper insights into soybean-pathogen interactions.
Collapse
Affiliation(s)
- Steven A Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011; ,
| | - Mingsheng Qi
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011; ,
| | - Roger W Innes
- Department of Biology, Indiana University, Bloomington, Indiana 47405;
| | - Wenbo Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521;
| | - Valéria Lopes-Caitar
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996; ,
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996; ,
| |
Collapse
|
21
|
Meziadi C, Blanchet S, Richard MMS, Pilet-Nayel ML, Geffroy V, Pflieger S. Bean pod mottle virus: a new powerful tool for functional genomics studies in Pisum sativum. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1777-87. [PMID: 26896301 PMCID: PMC5067550 DOI: 10.1111/pbi.12537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/13/2015] [Accepted: 01/06/2016] [Indexed: 05/08/2023]
Abstract
Pea (Pisum sativum L.) is an important legume worldwide. The importance of pea in arable rotations and nutritional value for both human and animal consumption have fostered sustained production and different studies to improve agronomic traits of interest. Moreover, complete sequencing of the pea genome is currently underway and will lead to the identification of a large number of genes potentially associated with important agronomic traits. Because stable genetic transformation is laborious for pea, virus-induced gene silencing (VIGS) appears as a powerful alternative technology for determining the function of unknown genes. In this work, we present a rapid and efficient viral inoculation method using DNA infectious plasmids of Bean pod mottle virus (BPMV)-derived VIGS vector. Six pea genotypes with important genes controlling biotic and/or abiotic stresses were found susceptible to BPMV carrying a GFP reporter gene and showed fluorescence in both shoots and roots. In a second step, we investigated 37 additional pea genotypes and found that 30 were susceptible to BPMV and only 7 were resistant. The capacity of BPMV to induce silencing of endogenes was investigated in the most susceptible genotype using two visual reporter genes: PsPDS and PsKORRIGAN1 (PsKOR1) encoding PHYTOENE DESATURASE and a 1,4-β-D-glucanase, respectively. The features of the 'one-step' BPMV-derived VIGS vector include (i) the ease of rub-inoculation, without any need for biolistic or agro-inoculation procedures, (ii) simple cost-effective procedure and (iii) noninterference of viral symptoms with silencing. These features make BPMV the most adapted VIGS vector in pea to make low- to high-throughput VIGS studies.
Collapse
Affiliation(s)
- Chouaib Meziadi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot Sorbonne Paris-Cité, Université Paris-Saclay, Orsay, France
| | - Sophie Blanchet
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot Sorbonne Paris-Cité, Université Paris-Saclay, Orsay, France
| | - Manon M S Richard
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot Sorbonne Paris-Cité, Université Paris-Saclay, Orsay, France
| | | | - Valérie Geffroy
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot Sorbonne Paris-Cité, Université Paris-Saclay, Orsay, France
| | - Stéphanie Pflieger
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot Sorbonne Paris-Cité, Université Paris-Saclay, Orsay, France
| |
Collapse
|
22
|
Langenbach C, Campe R, Beyer SF, Mueller AN, Conrath U. Fighting Asian Soybean Rust. FRONTIERS IN PLANT SCIENCE 2016; 7:797. [PMID: 27375652 PMCID: PMC4894884 DOI: 10.3389/fpls.2016.00797] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/22/2016] [Indexed: 05/18/2023]
Abstract
Phakopsora pachyrhizi is a biotrophic fungus provoking SBR disease. SBR poses a major threat to global soybean production. Though several R genes provided soybean immunity to certain P. pachyrhizi races, the pathogen swiftly overcame this resistance. Therefore, fungicides are the only current means to control SBR. However, insensitivity to fungicides is soaring in P. pachyrhizi and, therefore, alternative measures are needed for SBR control. In this article, we discuss the different approaches for fighting SBR and their potential, disadvantages, and advantages over other measures. These encompass conventional breeding for SBR resistance, transgenic approaches, exploitation of transcription factors, secondary metabolites, and antimicrobial peptides, RNAi/HIGS, and biocontrol strategies. It seems that an integrating approach exploiting different measures is likely to provide the best possible means for the effective control of SBR.
Collapse
Affiliation(s)
- Caspar Langenbach
- Department of Plant Physiology, RWTH Aachen UniversityAachen, Germany
| | - Ruth Campe
- BASF Plant Science Company GmbHLimburgerhof, Germany
| | | | - André N. Mueller
- Department of Plant Physiology, RWTH Aachen UniversityAachen, Germany
| | - Uwe Conrath
- Department of Plant Physiology, RWTH Aachen UniversityAachen, Germany
| |
Collapse
|
23
|
Kim KH, Lim S, Kang YJ, Yoon MY, Nam M, Jun TH, Seo MJ, Baek SB, Lee JH, Moon JK, Lee SH, Lee SH, Lim HS, Moon JS, Park CH. Optimization of a Virus-Induced Gene Silencing System with Soybean yellow common mosaic virus for Gene Function Studies in Soybeans. THE PLANT PATHOLOGY JOURNAL 2016; 32:112-22. [PMID: 27147931 PMCID: PMC4853101 DOI: 10.5423/ppj.oa.04.2015.0063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 11/27/2015] [Accepted: 12/02/2015] [Indexed: 05/24/2023]
Abstract
Virus-induced gene silencing (VIGS) is an effective tool for the study of soybean gene function. Successful VIGS depends on the interaction between virus spread and plant growth, which can be influenced by environmental conditions. Recently, we developed a new VIGS system derived from the Soybean yellow common mosaic virus (SYCMV). Here, we investigated several environmental and developmental factors to improve the efficiency of a SYCMV-based VIGS system to optimize the functional analysis of the soybean. Following SYCMV: Glycine max-phytoene desaturase (GmPDS) infiltration, we investigated the effect of photoperiod, inoculation time, concentration of Agrobacterium inoculm, and growth temperature on VIGS efficiency. In addition, the relative expression of GmPDS between non-silenced and silenced plants was measured by qRT-PCR. We found that gene silencing efficiency was highest at a photoperiod of 16/8 h (light/dark) at a growth temperature of approximately 27°C following syringe infiltration to unrolled unifoliolate leaves in cotyledon stage with a final SYCMV:GmPDS optimal density (OD)600 of 2.0. Using this optimized protocol, we achieved high efficiency of GmPDS-silencing in various soybean germplasms including cultivated and wild soybeans. We also confirmed that VIGS occurred in the entire plant, including the root, stem, leaves, and flowers, and could transmit GmPDS to other soybean germplasms via mechanical inoculation. This optimized protocol using a SYCMV-based VIGS system in the soybean should provide a fast and effective method to elucidate gene functions and for use in large-scale screening experiments.
Collapse
Affiliation(s)
- Kil Hyun Kim
- National Institute of Crop Science, Rural Development Administration, Suwon 441-707,
Korea
| | - Seungmo Lim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
- Biosystems and Bioengineering Program, University of Science and Technology, Daejeon 305-350,
Korea
| | - Yang Jae Kang
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
| | - Min Young Yoon
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
| | - Moon Nam
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701,
Korea
| | - Tae Hwan Jun
- Department of Plant Bioscience, College of Natural Resources & Life Science, Pusan National University, Pusan 627-706,
Korea
| | - Min-Jung Seo
- National Institute of Crop Science, Rural Development Administration, Suwon 441-707,
Korea
| | - Seong-Bum Baek
- National Institute of Crop Science, Rural Development Administration, Suwon 441-707,
Korea
| | - Jeom-Ho Lee
- National Institute of Crop Science, Rural Development Administration, Suwon 441-707,
Korea
| | - Jung-Kyung Moon
- National Institute of Crop Science, Rural Development Administration, Suwon 441-707,
Korea
| | - Suk-Ha Lee
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
| | - Su-Heon Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701,
Korea
| | - Hyoun-Sub Lim
- Department of Applied Biology, Chungnam National University, Daejeon 305-764,
Korea
| | - Jae Sun Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
- Biosystems and Bioengineering Program, University of Science and Technology, Daejeon 305-350,
Korea
| | - Chang-Hwan Park
- National Institute of Crop Science, Rural Development Administration, Suwon 441-707,
Korea
| |
Collapse
|
24
|
Langenbach C, Schultheiss H, Rosendahl M, Tresch N, Conrath U, Goellner K. Interspecies gene transfer provides soybean resistance to a fungal pathogen. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:699-708. [PMID: 26096357 PMCID: PMC4745023 DOI: 10.1111/pbi.12418] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/07/2015] [Accepted: 05/13/2015] [Indexed: 05/03/2023]
Abstract
Fungal pathogens pose a major challenge to global crop production. Crop varieties that resist disease present the best defence and offer an alternative to chemical fungicides. Exploiting durable nonhost resistance (NHR) for crop protection often requires identification and transfer of NHR-linked genes to the target crop. Here, we identify genes associated with NHR of Arabidopsis thaliana to Phakopsora pachyrhizi, the causative agent of the devastating fungal disease called Asian soybean rust. We transfer selected Arabidopsis NHR-linked genes to the soybean host and discover enhanced resistance to rust disease in some transgenic soybean lines in the greenhouse. Interspecies NHR gene transfer thus presents a promising strategy for genetically engineered control of crop diseases.
Collapse
Affiliation(s)
- Caspar Langenbach
- Department of Plant Physiology, RWTH Aachen University, Aachen, Germany
| | - Holger Schultheiss
- BASF Plant Science Company GmbH, Agricultural Center, Limburgerhof, Germany
| | - Martin Rosendahl
- Department of Plant Physiology, RWTH Aachen University, Aachen, Germany
| | - Nadine Tresch
- BASF Plant Science Company GmbH, Agricultural Center, Limburgerhof, Germany
| | - Uwe Conrath
- Department of Plant Physiology, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
25
|
Reem NT, Pogorelko G, Lionetti V, Chambers L, Held MA, Bellincampi D, Zabotina OA. Decreased Polysaccharide Feruloylation Compromises Plant Cell Wall Integrity and Increases Susceptibility to Necrotrophic Fungal Pathogens. FRONTIERS IN PLANT SCIENCE 2016; 7:630. [PMID: 27242834 PMCID: PMC4862258 DOI: 10.3389/fpls.2016.00630] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/25/2016] [Indexed: 05/18/2023]
Abstract
The complexity of cell wall composition and structure determines the strength, flexibility, and function of the primary cell wall in plants. However, the contribution of the various components to cell wall integrity (CWI) and function remains unclear. Modifications of cell wall composition can induce plant responses known as CWI control. In this study, we used transgenic expression of the fungal feruloyl esterase AnFAE to examine the effect of post-synthetic modification of Arabidopsis and Brachypodium cell walls. Transgenic Arabidopsis plants expressing AnFAE showed a significant reduction of monomeric ferulic acid, decreased amounts of wall-associated extensins, and increased susceptibility to Botrytis cinerea, compared with wild type. Transgenic Brachypodium showed reductions in monomeric and dimeric ferulic acids and increased susceptibility to Bipolaris sorokiniana. Upon infection, transgenic Arabidopsis and Brachypodium plants also showed increased expression of several defense-related genes compared with wild type. These results demonstrate a role, in both monocot and dicot plants, of polysaccharide feruloylation in plant CWI, which contributes to plant resistance to necrotrophic pathogens.
Collapse
Affiliation(s)
- Nathan T. Reem
- Roy J. Carver Department of Biochemistry,
Biophysiscs and Molecular Biology, Iowa State University, Ames, IAUSA
| | - Gennady Pogorelko
- Roy J. Carver Department of Biochemistry,
Biophysiscs and Molecular Biology, Iowa State University, Ames, IAUSA
| | - Vincenzo Lionetti
- Dipartmento di Biologia e Biotechnologie
“Charles Darwin,” Sapienza Universita di Roma, RomeItaly
| | - Lauran Chambers
- Roy J. Carver Department of Biochemistry,
Biophysiscs and Molecular Biology, Iowa State University, Ames, IAUSA
| | - Michael A. Held
- Department of Chemistry and Biochemistry, Ohio
University, Athens, OHUSA
| | - Daniela Bellincampi
- Dipartmento di Biologia e Biotechnologie
“Charles Darwin,” Sapienza Universita di Roma, RomeItaly
| | - Olga A. Zabotina
- Roy J. Carver Department of Biochemistry,
Biophysiscs and Molecular Biology, Iowa State University, Ames, IAUSA
- *Correspondence: Olga A. Zabotina,
| |
Collapse
|
26
|
Escobar-Bravo R, Alba JM, Pons C, Granell A, Kant MR, Moriones E, Fernández-Muñoz R. A Jasmonate-Inducible Defense Trait Transferred from Wild into Cultivated Tomato Establishes Increased Whitefly Resistance and Reduced Viral Disease Incidence. FRONTIERS IN PLANT SCIENCE 2016; 7:1732. [PMID: 27920785 PMCID: PMC5118631 DOI: 10.3389/fpls.2016.01732] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/03/2016] [Indexed: 05/21/2023]
Abstract
Whiteflies damage tomatoes mostly via the viruses they transmit. Cultivated tomatoes lack many of the resistances of their wild relatives. In order to increase protection to its major pest, the whitefly Bemisia tabaci and its transmitted Tomato Yellow Leaf Curl Virus (TYLCV), we introgressed a trichome-based resistance trait from the wild tomato Solanum pimpinellifolium into cultivated tomato, Solanum lycopersicum. The tomato backcross line BC5S2 contains acylsucrose-producing type-IV trichomes, unlike cultivated tomatoes, and exhibits increased, yet limited protection to whiteflies at early development stages. Treatment of young plants with methyl jasmonate (MeJA) resulted in a 60% increase in type-IV trichome density, acylsucrose production, and enhanced resistance to whiteflies, leading to 50% decrease in the virus disease incidence compared to cultivated tomato. Using transcriptomics, metabolite analysis, and insect bioassays we established the basis of this inducible resistance. We found that MeJA activated the expression of the genes involved in the biosynthesis of the defensive acylsugars in young BC5S2 plants leading to enhanced chemical defenses in their acquired type-IV trichomes. Our results show that not only constitutive but also these inducible defenses can be transferred from wild into cultivated crops to aid sustainable protection, suggesting that conventional breeding strategies provide a feasible alternative to increase pest resistance in tomato.
Collapse
Affiliation(s)
- Rocío Escobar-Bravo
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga – Consejo Superior de Investigaciones CientíficasAlgarrobo-Costa, Spain
| | - Juan M. Alba
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
| | - Clara Pons
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas – Universidad Politécnica de ValenciaValencia, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas – Universidad Politécnica de ValenciaValencia, Spain
| | - Merijn R. Kant
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga – Consejo Superior de Investigaciones CientíficasAlgarrobo-Costa, Spain
| | - Rafael Fernández-Muñoz
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga – Consejo Superior de Investigaciones CientíficasAlgarrobo-Costa, Spain
- *Correspondence: Rafael Fernández-Muñoz,
| |
Collapse
|
27
|
Alves MS, Soares ZG, Vidigal PMP, Barros EG, Poddanosqui AMP, Aoyagi LN, Abdelnoor RV, Marcelino-Guimarães FC, Fietto LG. Differential expression of four soybean bZIP genes during Phakopsora pachyrhizi infection. Funct Integr Genomics 2015; 15:685-96. [PMID: 26013145 DOI: 10.1007/s10142-015-0445-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 05/07/2015] [Accepted: 05/18/2015] [Indexed: 11/26/2022]
Abstract
Asian soybean rust (ASR), caused by the obligate biotrophic fungus Phakopsora pachyrhizi, is one of most important diseases in the soybean (Glycine max (L.) Merr.) agribusiness. The identification and characterization of genes related to plant defense responses to fungal infection are essential to develop ASR-resistant plants. In this work, we describe four soybean genes, GmbZIP62, GmbZIP105, GmbZIPE1, and GmbZIPE2, which encode transcription factors containing a basic leucine zipper (bZIP) domain from two divergent classes, and that are responsive to P. pachyrhizi infection. Molecular phylogenetic analyses demonstrated that these genes encode proteins similar to bZIP factors responsive to pathogens. Yeast transactivation assays showed that only GmbZIP62 has strong transactivation activity in yeast. In addition, three of the bZIP transcription factors analyzed were also differentially expressed by plant defense hormones, and all were differentially expressed by fungal attack, indicating that these proteins might participate in response to ASR infection. The results suggested that these bZIP proteins are part of the plant defense response to P. pachyrhizi infection, by regulating the gene expression related to ASR infection responses. These bZIP genes are potential targets to obtain new soybean genotypes resistant to ASR.
Collapse
Affiliation(s)
- Murilo S Alves
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Zamira G Soares
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Pedro M P Vidigal
- Núcleo de Análise de Biomoléculas, NuBioMol, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Everaldo G Barros
- Universidade Católica de Brasília, 70790-160, Brasília, Distrito Federal, Brazil
| | | | | | | | | | - Luciano G Fietto
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil.
| |
Collapse
|
28
|
Ishiga Y, Rao Uppalapati S, Gill US, Huhman D, Tang Y, Mysore KS. Transcriptomic and metabolomic analyses identify a role for chlorophyll catabolism and phytoalexin during Medicago nonhost resistance against Asian soybean rust. Sci Rep 2015; 5:13061. [PMID: 26267598 PMCID: PMC4533520 DOI: 10.1038/srep13061] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/13/2015] [Indexed: 01/05/2023] Open
Abstract
Asian soybean rust (ASR) caused by Phakopsora pachyrhizi is a devastating foliar disease affecting soybean production worldwide. Understanding nonhost resistance against ASR may provide an avenue to engineer soybean to confer durable resistance against ASR. We characterized a Medicago truncatula-ASR pathosystem to study molecular mechanisms of nonhost resistance. Although urediniospores formed appressoria and penetrated into epidermal cells of M. truncatula, P. pachyrhizi failed to sporulate. Transcriptomic analysis revealed the induction of phenylpropanoid, flavonoid and isoflavonoid metabolic pathway genes involved in the production of phytoalexin medicarpin in M. truncatula upon infection with P. pachyrhizi. Furthermore, genes involved in chlorophyll catabolism were induced during nonhost resistance. We further characterized one of the chlorophyll catabolism genes, Stay-green (SGR), and demonstrated that the M. truncatula sgr mutant and alfalfa SGR-RNAi lines showed hypersensitive-response-like enhanced cell death upon inoculation with P. pachyrhizi. Consistent with transcriptomic analysis, metabolomic analysis also revealed the accumulation of medicarpin and its intermediate metabolites. In vitro assay showed that medicarpin inhibited urediniospore germination and differentiation. In addition, several triterpenoid saponin glycosides accumulated in M. truncatula upon inoculation with P. pachyrhizi. In summary, using multi-omic approaches, we identified a correlation between phytoalexin production and M. truncatula defense responses against ASR.
Collapse
Affiliation(s)
- Yasuhiro Ishiga
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | | | - Upinder S. Gill
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - David Huhman
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Yuhong Tang
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Kirankumar S. Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| |
Collapse
|
29
|
Liu JZ, Graham MA, Pedley KF, Whitham SA. Gaining insight into soybean defense responses using functional genomics approaches. Brief Funct Genomics 2015; 14:283-90. [PMID: 25832523 DOI: 10.1093/bfgp/elv009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Soybean pathogens significantly impact yield, resulting in over $4 billion dollars in lost revenue annually in the United States. Despite the deployment of improved soybean cultivars, pathogens continue to evolve to evade plant defense responses. Thus, there is an urgent need to identify and characterize gene networks controlling defense responses to harmful pathogens. In this review, we focus on major advances that have been made in identifying the genes and gene networks regulating defense responses with an emphasis on soybean-pathogen interactions that have been amenable to gene function analyses using gene silencing technologies. Further we describe new research striving to identify genes involved in durable broad-spectrum resistance. Finally, we consider future prospects for functional genomic studies in soybean and demonstrate that understanding soybean disease and stress tolerance will be expedited at an unprecedented pace.
Collapse
|
30
|
Yu N, Kim M, King ZR, Harris DK, Buck JW, Li Z, Diers BW. Fine mapping of the Asian soybean rust resistance gene Rpp2 from soybean PI 230970. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:387-96. [PMID: 25504467 DOI: 10.1007/s00122-014-2438-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/27/2014] [Indexed: 06/04/2023]
Abstract
KEY MESSAGE Asian soybean rust (ASR) resistance gene Rpp2 has been fine mapped into a 188.1 kb interval on Glyma.Wm82.a2, which contains a series of plant resistance ( R ) genes. Asian soybean rust (ASR), caused by the fungus Phakopsora pachyrihizi Syd. & P. Syd., is a serious disease in major soybean [Glycine max (L.) Merr.] production countries worldwide and causes yield losses up to 75 %. Defining the exact chromosomal position of ASR resistance genes is critical for improving the effectiveness of marker-assisted selection (MAS) for resistance and for cloning these genes. The objective of this study was to fine map the ASR resistance gene Rpp2 from the plant introduction (PI) 230970. Rpp2 was previously mapped within a 12.9-cM interval on soybean chromosome 16. The fine mapping was initiated by identifying recombination events in F2 and F3 plants using simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers that flank the gene. Seventeen recombinant plants were identified and then tested with additional genetic markers saturating the gene region to localize the positions of each recombination. The progeny of these selected plants were tested for resistance to ASR and with SSR markers resulting in the mapping of Rpp2 to a 188.1 kb interval on the Williams 82 reference genome (Glyma.Wm82.a2). Twelve genes including ten toll/interleukin-1 receptor (TIR)-nucleotide-binding site (NBS)-leucine-rich repeat (LRR) genes were predicted to exist in this interval on the Glyma.Wm82.a2.v1 gene model map. Eight of these ten genes were homologous to the Arabidopsis TIR-NBS-LRR gene AT5G17680.1. The identified SSR and SNP markers close to Rpp2 and the candidate gene information presented in this study will be significant resources for MAS and gene cloning research.
Collapse
Affiliation(s)
- Neil Yu
- Department of Crop Sciences, University of Illinois, 1101 W. Peabody Drive, Urbana, IL, 61801, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Bencke-Malato M, Cabreira C, Wiebke-Strohm B, Bücker-Neto L, Mancini E, Osorio MB, Homrich MS, Turchetto-Zolet AC, De Carvalho MCCG, Stolf R, Weber RLM, Westergaard G, Castagnaro AP, Abdelnoor RV, Marcelino-Guimarães FC, Margis-Pinheiro M, Bodanese-Zanettini MH. Genome-wide annotation of the soybean WRKY family and functional characterization of genes involved in response to Phakopsora pachyrhizi infection. BMC PLANT BIOLOGY 2014; 14:236. [PMID: 25201117 PMCID: PMC4172953 DOI: 10.1186/s12870-014-0236-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 08/29/2014] [Indexed: 05/07/2023]
Abstract
BACKGROUND Many previous studies have shown that soybean WRKY transcription factors are involved in the plant response to biotic and abiotic stresses. Phakopsora pachyrhizi is the causal agent of Asian Soybean Rust, one of the most important soybean diseases. There are evidences that WRKYs are involved in the resistance of some soybean genotypes against that fungus. The number of WRKY genes already annotated in soybean genome was underrepresented. In the present study, a genome-wide annotation of the soybean WRKY family was carried out and members involved in the response to P. pachyrhizi were identified. RESULTS As a result of a soybean genomic databases search, 182 WRKY-encoding genes were annotated and 33 putative pseudogenes identified. Genes involved in the response to P. pachyrhizi infection were identified using superSAGE, RNA-Seq of microdissected lesions and microarray experiments. Seventy-five genes were differentially expressed during fungal infection. The expression of eight WRKY genes was validated by RT-qPCR. The expression of these genes in a resistant genotype was earlier and/or stronger compared with a susceptible genotype in response to P. pachyrhizi infection. Soybean somatic embryos were transformed in order to overexpress or silence WRKY genes. Embryos overexpressing a WRKY gene were obtained, but they were unable to convert into plants. When infected with P. pachyrhizi, the leaves of the silenced transgenic line showed a higher number of lesions than the wild-type plants. CONCLUSIONS The present study reports a genome-wide annotation of soybean WRKY family. The participation of some members in response to P. pachyrhizi infection was demonstrated. The results contribute to the elucidation of gene function and suggest the manipulation of WRKYs as a strategy to increase fungal resistance in soybean plants.
Collapse
Affiliation(s)
- Marta Bencke-Malato
- />Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Caroline Cabreira
- />Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Beatriz Wiebke-Strohm
- />Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Lauro Bücker-Neto
- />Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Marina B Osorio
- />Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Milena S Homrich
- />Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Andreia Carina Turchetto-Zolet
- />Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Renata Stolf
- />Empresa Brasileira de Pesquisa Agropecuária (Embrapa Soja), Londrina, Brazil
| | - Ricardo LM Weber
- />Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Atílio P Castagnaro
- />Estación Experimental Agroindustrial Obispo Colombres (EEAOC), Tucumán, Argentina
| | - Ricardo V Abdelnoor
- />Empresa Brasileira de Pesquisa Agropecuária (Embrapa Soja), Londrina, Brazil
| | | | - Márcia Margis-Pinheiro
- />Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Maria Helena Bodanese-Zanettini
- />Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
32
|
Pflieger S, Blanchet S, Meziadi C, Richard MMS, Thareau V, Mary F, Mazoyer C, Geffroy V. The "one-step" Bean pod mottle virus (BPMV)-derived vector is a functional genomics tool for efficient overexpression of heterologous protein, virus-induced gene silencing and genetic mapping of BPMV R-gene in common bean (Phaseolus vulgaris L.). BMC PLANT BIOLOGY 2014; 14:232. [PMID: 25168520 PMCID: PMC4163167 DOI: 10.1186/s12870-014-0232-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/20/2014] [Indexed: 05/11/2023]
Abstract
BACKGROUND Over the last two years, considerable advances have been made in common bean (Phaseolus vulgaris L.) genomics, especially with the completion of the genome sequence and the availability of RNAseq data. However, as common bean is recalcitrant to stable genetic transformation, much work remains to be done for the development of functional genomics tools adapted to large-scale studies. RESULTS Here we report the successful implementation of an efficient viral vector system for foreign gene expression, virus-induced gene silencing (VIGS) and genetic mapping of a BPMV resistance gene in common bean, using a "one-step" BPMV vector originally developed in soybean. With the goal of developing this vector for high-throughput VIGS studies in common bean, we optimized the conditions for rub-inoculation of infectious BPMV-derived plasmids in common bean cv. Black Valentine. We then tested the susceptibility to BPMV of six cultivars, and found that only Black Valentine and JaloEEP558 were susceptible to BPMV. We used a BPMV-GFP construct to detect the spatial and temporal infection patterns of BPMV in vegetative and reproductive tissues. VIGS of the PHYTOENE DESATURASE (PvPDS) marker gene was successfully achieved with recombinant BPMV vectors carrying fragments ranging from 132 to 391 bp. Finally, we mapped a gene for resistance to BPMV (R-BPMV) at one end of linkage group 2, in the vicinity of a locus (I locus) previously shown to be involved in virus resistance. CONCLUSIONS The "one-step" BPMV vector system therefore enables rapid and simple functional studies in common bean, and could be suitable for large-scale analyses. In the post-genomic era, these advances are timely for the common bean research community.
Collapse
Affiliation(s)
- Stéphanie Pflieger
- />CNRS, Institut de Biologie des Plantes, UMR 8618, Université Paris Sud, Saclay Plant Sciences (SPS), 91405 Orsay, France
- />Univ Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Sophie Blanchet
- />CNRS, Institut de Biologie des Plantes, UMR 8618, Université Paris Sud, Saclay Plant Sciences (SPS), 91405 Orsay, France
| | - Chouaib Meziadi
- />CNRS, Institut de Biologie des Plantes, UMR 8618, Université Paris Sud, Saclay Plant Sciences (SPS), 91405 Orsay, France
| | - Manon MS Richard
- />CNRS, Institut de Biologie des Plantes, UMR 8618, Université Paris Sud, Saclay Plant Sciences (SPS), 91405 Orsay, France
| | - Vincent Thareau
- />CNRS, Institut de Biologie des Plantes, UMR 8618, Université Paris Sud, Saclay Plant Sciences (SPS), 91405 Orsay, France
| | - Fanny Mary
- />CNRS, Institut de Biologie des Plantes, UMR 8618, Université Paris Sud, Saclay Plant Sciences (SPS), 91405 Orsay, France
| | - Céline Mazoyer
- />CNRS, Institut de Biologie des Plantes, UMR 8618, Université Paris Sud, Saclay Plant Sciences (SPS), 91405 Orsay, France
| | - Valérie Geffroy
- />CNRS, Institut de Biologie des Plantes, UMR 8618, Université Paris Sud, Saclay Plant Sciences (SPS), 91405 Orsay, France
- />INRA, Unité Mixte de Recherche de Génétique Végétale, Université Paris Sud, IDEEV FR3284, Ferme du Moulon, 91190 Gif-sur-Yvette, France
| |
Collapse
|
33
|
Yan Q, Cui X, Su L, Xu N, Guo N, Xing H, Dou D. GmSGT1 is differently required for soybean Rps genes-mediated and basal resistance to Phytophthora sojae. PLANT CELL REPORTS 2014; 33:1275-88. [PMID: 24763608 DOI: 10.1007/s00299-014-1615-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/25/2014] [Accepted: 04/01/2014] [Indexed: 05/10/2023]
Abstract
KEY MESSAGE Using RNAi approach, we demonstrate that GmSGT1 is an essential component in soybean against Phytophthora sojae, but not required for Rps 2 or Rps 3a-mediated resistance. Utilization of disease resistance in soybean is a major approach to combat root and stem rot disease, which is caused by Phytophthora sojae and poses a growing threat to soybean safety production. The SGT1 protein is essential for disease resistance in many plant species. Here, we analyzed and characterized functions of GmSGT1 gene family in R protein-mediated resistance and basal defense in this important crop. Five candidate genes of GmSGT1 were identified and they were grouped into three clades. Transcriptional levels of all the tested genes were highly induced upon P. sojae infection in four soybean cultivars that confer different resistant levels. Using a gene silencing system in soybean cotyledons, we demonstrated that silencing GmSGT1 genes comprised race-specific resistance in soybean lines carrying genes at the following loci for race-specific resistance to P. sojae: Rps1a, Rps1c, Rps1d, Rps1k, and Rps8. In contrast, the resistance mediated by Rps2 or Rps3a was not affected. Silencing GmSGT1 genes in cotyledons also reduced resistance to this pathogen in a moderately partial resistant cultivar. We further showed that transient overexpression of GmSGT1-1 in Nicotiana benthamiana could enhance the resistance to P. capsici. These results suggest that GmSGT1 is an essential component for soybean in resisting the pathogen and pathways of Rps-mediated disease resistance are diverse in soybean.
Collapse
Affiliation(s)
- Qiang Yan
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Ali AK, Lin J, Han J, Ibrahim KM, Jarjees MM, Qu F. The 5' untranslated region of Bean pod mottle virus RNA2 tolerates unusually large deletions or insertions. Virus Res 2014; 179:247-50. [PMID: 24211666 DOI: 10.1016/j.virusres.2013.10.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 10/26/2022]
Abstract
Bean pod mottle virus (BPMV) is a bipartite, positive-sense (+) RNA virus of Secoviridae. We recently reported that a 137 nucleotide (nt) stretch (#263-399) of the 466 nt 5' untranslated region (5' UTR) of BPMV RNA2 can be deleted without compromising BPMV propagation in host plants [Lin et al., J. Gen. Virol. 94 (2013) 1415-1420]. Here we demonstrate that nonviral insertions of up to 625 nt is tolerated by the same region. Furthermore, one insertion mutant underwent recombination in infected plants, leading to the truncation of nt #250-361, thus extending the dispensable sequence to 150 nt (nt #250-399). We are unaware of any other (+) RNA virus that tolerates insertion/deletion of these sizes (625 nt/150 nt) within its 5' UTR. Importantly, tolerance of large insertions within the RNA2 5' UTR offers a novel, more convenient site for incorporating host gene fragments, making BPMV a more versatile vector of virus-induced gene silencing.
Collapse
Affiliation(s)
- Ahmed Khamis Ali
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Ave., Wooster, OH 44691, USA; Department of Biology, College of Science, The University of Mustansiriyah, Iraq
| | - Junyan Lin
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Ave., Wooster, OH 44691, USA
| | - Junping Han
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Ave., Wooster, OH 44691, USA
| | | | - Mysire Majeed Jarjees
- Plant Protection Department, College of Agriculture, University of Baghdad, Abu-Ghraib, Iraq
| | - Feng Qu
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Ave., Wooster, OH 44691, USA.
| |
Collapse
|
35
|
Abstract
Soybean, one of the world's most important sources of animal feed and vegetable oil, can be infected by numerous viruses. However, only a small number of the viruses that can potentially infect soybean are considered as major economic problems to soybean production. Therefore, we consider management options available to control diseases caused by eight viruses that cause, or have the potential to cause, significant economic loss to producers. We summarize management tactics in use and suggest direction for the future. Clearly, the most important tactic is disease resistance. Several resistance genes are available for three of the eight viruses discussed. Other options include use of virus-free seed and avoidance of alternative virus hosts when planting. Attempts at arthropod vector control have generally not provided consistent disease management. In the future, disease management will be considerably enhanced by knowledge of the interaction between soybean and viral proteins. Identification of genes required for soybean defense may represent key regulatory hubs that will enhance or broaden the spectrum of basal resistance to viruses. It may be possible to create new recessive or dominant negative alleles of host proteins that do not support viral functions but perform normal cellular function. The future approach to virus control based on gene editing or exploiting allelic diversity points to necessary research into soybean-virus interactions. This will help to generate the knowledge needed for rational design of durable resistance that will maximize global production.
Collapse
Affiliation(s)
- John H Hill
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA.
| | - Steven A Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
36
|
Atwood SE, O'Rourke JA, Peiffer GA, Yin T, Majumder M, Zhang C, Cianzio SR, Hill JH, Cook D, Whitham SA, Shoemaker RC, Graham MA. Replication protein A subunit 3 and the iron efficiency response in soybean. PLANT, CELL & ENVIRONMENT 2014; 37:213-34. [PMID: 23742135 DOI: 10.1111/pce.12147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/09/2013] [Accepted: 05/28/2013] [Indexed: 05/20/2023]
Abstract
In soybean [Glycine max (L.) Merr.], iron deficiency results in interveinal chlorosis and decreased photosynthetic capacity, leading to stunting and yield loss. In this study, gene expression analyses investigated the role of soybean replication protein A (RPA) subunits during iron stress. Nine RPA homologs were significantly differentially expressed in response to iron stress in the near isogenic lines (NILs) Clark (iron efficient) and Isoclark (iron inefficient). RPA homologs exhibited opposing expression patterns in the two NILs, with RPA expression significantly repressed during iron deficiency in Clark but induced in Isoclark. We used virus induced gene silencing (VIGS) to repress GmRPA3 expression in the iron inefficient line Isoclark and mirror expression in Clark. GmRPA3-silenced plants had improved IDC symptoms and chlorophyll content under iron deficient conditions and also displayed stunted growth regardless of iron availability. RNA-Seq comparing gene expression between GmRPA3-silenced and empty vector plants revealed massive transcriptional reprogramming with differential expression of genes associated with defense, immunity, aging, death, protein modification, protein synthesis, photosynthesis and iron uptake and transport genes. Our findings suggest the iron efficient genotype Clark is able to induce energy controlling pathways, possibly regulated by SnRK1/TOR, to promote nutrient recycling and stress responses in iron deficient conditions.
Collapse
Affiliation(s)
- Sarah E Atwood
- Interdepartmental Genetics Program, Iowa State University, Ames, IA, 50011, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cooper B, Campbell KB, McMahon MB, Luster DG. Disruption of Rpp1-mediated soybean rust immunity by virus-induced gene silencing. PLANT SIGNALING & BEHAVIOR 2013; 8:e27543. [PMID: 24401541 PMCID: PMC4091232 DOI: 10.4161/psb.27543] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/16/2013] [Accepted: 12/16/2013] [Indexed: 05/23/2023]
Abstract
Phakopsora pachyrhizi, a fungus that causes rust disease on soybean, has potential to impart significant yield loss and disrupt food security and animal feed production. Rpp1 is a soybean gene that confers immunity to soybean rust, and it is important to understand how it regulates the soybean defense system and to use this knowledge to protect commercial crops. It was previously discovered that some soybean proteins resembling transcription factors accumulate in the nucleus of Rpp1 soybeans. To determine if they contribute to immunity, Bean pod mottle virus was used to attenuate or silence the expression of their genes. Rpp1 plants subjected to virus-induced gene silencing exhibited reduced amounts of RNA for 5 of the tested genes, and the plants developed rust-like symptoms after subsequent inoculation with fungal spores. Symptoms were associated with the accumulation of rust fungal RNA and protein. Silenced plants also had reduced amounts of RNA for the soybean Myb84 transcription factor and soybean isoflavone O-methyltransferase, both of which are important to phenylpropanoid biosynthesis and lignin formation, crucial components of rust resistance. These results help resolve some of the genes that contribute to Rpp1-mediated immunity and improve upon the knowledge of the soybean defense system. It is possible that these genes could be manipulated to enhance rust resistance in otherwise susceptible soybean cultivars.
Collapse
Affiliation(s)
- Bret Cooper
- Soybean Genomics and Improvement Laboratory; USDA-ARS; Beltsville, MD USA
| | | | | | | |
Collapse
|
38
|
Pflieger SP, Richard MMS, Blanchet S, Meziadi C, Geffroy VR. VIGS technology: an attractive tool for functional genomics studies in legumes. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:1234-1248. [PMID: 32481191 DOI: 10.1071/fp13089] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/14/2013] [Indexed: 05/20/2023]
Abstract
Legume species are among the most important crops worldwide. In recent years, six legume genomes have been completely sequenced, and there is now an urgent need for reverse-genetics tools to validate genes affecting yield and product quality. As most legumes are recalcitrant to stable genetic transformation, virus-induced gene silencing (VIGS) appears to be a powerful alternative technology for determining the function of unknown genes. VIGS technology is based on the property of plant viruses to trigger a defence mechanism related to post-transcriptional gene silencing (PTGS). Infection by a recombinant virus carrying a fragment of a plant target gene will induce homology-dependent silencing of the endogenous target gene. Several VIGS systems have been developed for legume species since 2004, including those based on Bean pod mottle virus, Pea early browning virus, and Apple latent spherical virus, and used in reverse-genetics studies of a wide variety of plant biological processes. In this work, we give an overview of the VIGS systems available for legumes, and present their successful applications in functional genomics studies. We also discuss the limitations of these VIGS systems and the future challenges to be faced in order to use VIGS to its full potential in legume species.
Collapse
Affiliation(s)
- St Phanie Pflieger
- Institut de Biologie des Plantes, UMR8618, CNRS Université Paris-Sud, Saclay Plant Sciences, Rue Noetzlin, 91405 Orsay, France
| | - Manon M S Richard
- Institut de Biologie des Plantes, UMR8618, CNRS Université Paris-Sud, Saclay Plant Sciences, Rue Noetzlin, 91405 Orsay, France
| | - Sophie Blanchet
- Institut de Biologie des Plantes, UMR8618, CNRS Université Paris-Sud, Saclay Plant Sciences, Rue Noetzlin, 91405 Orsay, France
| | - Chouaib Meziadi
- Institut de Biologie des Plantes, UMR8618, CNRS Université Paris-Sud, Saclay Plant Sciences, Rue Noetzlin, 91405 Orsay, France
| | - Val Rie Geffroy
- Institut de Biologie des Plantes, UMR8618, CNRS Université Paris-Sud, Saclay Plant Sciences, Rue Noetzlin, 91405 Orsay, France
| |
Collapse
|
39
|
Morales AMAP, O Rourke JA, van de Mortel M, Scheider KT, Bancroft TJ, Bor M AZ, Nelson RT, Nettleton D, Baum TJ, Shoemaker RC, Frederick RD, Abdelnoor RV, Pedley KF, Whitham SA, Graham MA. Transcriptome analyses and virus induced gene silencing identify genes in the Rpp4-mediated Asian soybean rust resistance pathway. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:1029-1047. [PMID: 32481171 DOI: 10.1071/fp12296] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 01/12/2013] [Indexed: 05/24/2023]
Abstract
Rpp4 (Resistance to Phakopsora pachyrhizi 4) confers resistance to Phakopsora pachyrhizi Sydow, the causal agent of Asian soybean rust (ASR). By combining expression profiling and virus induced gene silencing (VIGS), we are developing a genetic framework for Rpp4-mediated resistance. We measured gene expression in mock-inoculated and P. pachyrhizi-infected leaves of resistant soybean accession PI459025B (Rpp4) and the susceptible cultivar (Williams 82) across a 12-day time course. Unexpectedly, two biphasic responses were identified. In the incompatible reaction, genes induced at 12h after infection (hai) were not differentially expressed at 24 hai, but were induced at 72 hai. In contrast, genes repressed at 12 hai were not differentially expressed from 24 to 144 hai, but were repressed 216 hai and later. To differentiate between basal and resistance-gene (R-gene) mediated defence responses, we compared gene expression in Rpp4-silenced and empty vector-treated PI459025B plants 14 days after infection (dai) with P. pachyrhizi. This identified genes, including transcription factors, whose differential expression is dependent upon Rpp4. To identify differentially expressed genes conserved across multiple P. pachyrhizi resistance pathways, Rpp4 expression datasets were compared with microarray data previously generated for Rpp2 and Rpp3-mediated defence responses. Fourteen transcription factors common to all resistant and susceptible responses were identified, as well as fourteen transcription factors unique to R-gene-mediated resistance responses. These genes are targets for future P. pachyrhizi resistance research.
Collapse
Affiliation(s)
- Aguida M A P Morales
- Universidade Federal de Viçosa, Departamento de Fitotecnia, 36.570-000, Viçosa, MG, Brazil
| | - Jamie A O Rourke
- USDA-Agricultural Research Service, Plant Science Research Unit, Saint Paul, MN 55108, USA
| | - Martijn van de Mortel
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50014, USA
| | - Katherine T Scheider
- USDA- Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Fort Detrick, MA 21702, USA
| | | | - Alu Zio Bor M
- Universidade Federal de Viçosa, Departamento de Fitotecnia, 36.570-000, Viçosa, MG, Brazil
| | - Rex T Nelson
- USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50014, USA
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, IA 50014, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50014, USA
| | - Randy C Shoemaker
- USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50014, USA
| | - Reid D Frederick
- USDA- Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Fort Detrick, MA 21702, USA
| | - Ricardo V Abdelnoor
- Laboratório de Biotecnologia Vegetal e Bioinformática, Embrapa Soja, Rod. Carlos João Strass, 86001-970, Londrina - PR, Brazil
| | - Kerry F Pedley
- USDA- Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Fort Detrick, MA 21702, USA
| | - Steven A Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50014, USA
| | - Michelle A Graham
- USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50014, USA
| |
Collapse
|
40
|
Kandoth PK, Heinz R, Yeckel G, Gross NW, Juvale PS, Hill J, Whitham SA, Baum TJ, Mitchum MG. A virus-induced gene silencing method to study soybean cyst nematode parasitism in Glycine max. BMC Res Notes 2013; 6:255. [PMID: 23830484 PMCID: PMC3708766 DOI: 10.1186/1756-0500-6-255] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 07/03/2013] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Bean pod mottle virus (BPMV) based virus-induced gene silencing (VIGS) vectors have been developed and used in soybean for the functional analysis of genes involved in disease resistance to foliar pathogens. However, BPMV-VIGS protocols for studying genes involved in disease resistance or symbiotic associations with root microbes have not been developed. FINDINGS Here we describe a BPMV-VIGS protocol suitable for reverse genetic studies in soybean roots. We use this method for analyzing soybean genes involved in resistance to soybean cyst nematode (SCN). A detailed SCN screening pipeline is described. CONCLUSIONS The VIGS method described here provides a new tool to identify genes involved in soybean-nematode interactions. This method could be adapted to study genes associated with any root pathogenic or symbiotic associations.
Collapse
Affiliation(s)
- Pramod K Kandoth
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Robert Heinz
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Greg Yeckel
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
- Current address: Pioneer Hi-Bred, Johnston IA, 50131, USA
| | - Nathan W Gross
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
- Current address: Beadle Center for Biotechnology, University of Nebraska, Lincoln NE, 68588, USA
| | - Parijat S Juvale
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - John Hill
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Steven A Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Melissa G Mitchum
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
41
|
Homrich MS, Wiebke-Strohm B, Weber RLM, Bodanese-Zanettini MH. Soybean genetic transformation: A valuable tool for the functional study of genes and the production of agronomically improved plants. Genet Mol Biol 2012; 35:998-1010. [PMID: 23412849 PMCID: PMC3571417 DOI: 10.1590/s1415-47572012000600015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Transgenic plants represent an invaluable tool for molecular, genetic, biochemical and physiological studies by gene overexpression or silencing, transposon-based mutagenesis, protein sub-cellular localization and/or promoter characterization as well as a breakthrough for breeding programs, allowing the production of novel and genetically diverse genotypes. However, the stable transformation of soybean cannot yet be considered to be routine because it depends on the ability to combine efficient transformation and regeneration techniques. Two methods have been used with relative success to produce completely and stably transformed plants: particle bombardment and the Agrobacterium tumefaciens system. In addition, transformation by Agrobacterium rhizogenes has been used as a powerful tool for functional studies. Most available information on gene function is based on heterologous expression systems. However, as the activity of many promoters or proteins frequently depends on specific interactions that only occur in homologous backgrounds, a final confirmation based on a homologous expression system is desirable. With respect to soybean biotech improvement, transgenic lines with agronomical, nutritional and pharmaceutical traits have been obtained, including herbicide-tolerant soybeans, which represented the principal biotech crop in 2011, occupying 47% of the global biotech area.
Collapse
Affiliation(s)
- Milena Schenkel Homrich
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Beatriz Wiebke-Strohm
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Centro de Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ricardo Luís Mayer Weber
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Helena Bodanese-Zanettini
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
42
|
Meng Y, Wise RP. HvWRKY10, HvWRKY19, and HvWRKY28 regulate Mla-triggered immunity and basal defense to barley powdery mildew. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1492-505. [PMID: 22809275 DOI: 10.1094/mpmi-04-12-0082-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
WRKY proteins represent a large family of transcription factors (TF), involved in plant development and defense. In all, 60 unique barley TF have been annotated that contain the WRKY domain; 26 of these are represented on the Barley1 GeneChip. Time-course expression profiles of these 26 HvWRKY TF were analyzed to investigate their role in mildew locus a (Mla)-mediated immunity to Blumeria graminis f. sp. hordei, causal agent of powdery mildew disease. Inoculation-responsive, Mla-specified interactions with B. graminis f. sp. hordei revealed that 12 HvWRKY were differentially expressed: 10 highly upregulated and two significantly downregulated. Barley stripe mosaic virus-induced gene silencing of HvWRKY10, HvWRKY19, and HvWRKY28 compromised resistance-gene-mediated defense to powdery mildew in genotypes harboring both Rar1-dependent and Rar1-independent Mla alleles, indicating that these WRKY TF play key roles in effector-triggered immunity. Comprehensive yeast two-hybrid analyses, however, did not reveal a direct interaction between these three nuclear-localized WRKY TF and MLA. Transient overexpression of all three WRKY TF in single cells expressing Mlo, which encodes a negative regulator of penetration resistance, significantly decreased susceptibility. Taken together, these loss- and gain-of-function studies demonstrate that HvWRKY10, HvWRKY19, and HvWRKY28 positively regulate the barley transcriptome in response to invasion by B. graminis f. sp. hordei.
Collapse
Affiliation(s)
- Yan Meng
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | | |
Collapse
|
43
|
Zhang C, Grosic S, Whitham SA, Hill JH. The requirement of multiple defense genes in soybean Rsv1-mediated extreme resistance to soybean mosaic virus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1307-13. [PMID: 22712511 DOI: 10.1094/mpmi-02-12-0046-r] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Soybean mosaic virus (SMV) is a major viral pathogen of soybean. Among the three SMV resistance genes, Rsv1 mediates extreme resistance (ER) against most SMV strains, including the β-glucuronidase-tagged G2 isolate that was previously used in studies of Rsv1. Using virus-induced gene silencing (VIGS), we screened 82 VIGS constructs to identify genes that play a role in Rsv1-mediated ER to SMV infection. The target genes included putative Rsv1 candidate genes, soybean orthologs to known defense-signaling genes, and 62 WRKY transcription factors. We identified eight VIGS constructs that compromised Rsv1-mediated resistance when the target genes were silenced, including GmEDR1, GmEDS1, GmHSP90, GmJAR1, GmPAD4, and two WRKY transcription factors. Together, our results provide new insight into the soybean signaling network required for ER against SMV.
Collapse
Affiliation(s)
- Chunquan Zhang
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA, USA.
| | | | | | | |
Collapse
|
44
|
Studham ME, MacIntosh GC. Phytohormone signaling pathway analysis method for comparing hormone responses in plant-pest interactions. BMC Res Notes 2012; 5:392. [PMID: 22846705 PMCID: PMC3460778 DOI: 10.1186/1756-0500-5-392] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/19/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phytohormones mediate plant defense responses to pests and pathogens. In particular, the hormones jasmonic acid, ethylene, salicylic acid, and abscisic acid have been shown to dictate and fine-tune defense responses, and identification of the phytohormone components of a particular defense response is commonly used to characterize it. Identification of phytohormone regulation is particularly important in transcriptome analyses. Currently there is no computational tool to determine the relative activity of these hormones that can be applied to transcriptome analyses in soybean. FINDINGS We developed a pathway analysis method that provides a broad measure of the activation or suppression of individual phytohormone pathways based on changes in transcript expression of pathway-related genes. The magnitude and significance of these changes are used to determine a pathway score for a phytohormone for a given comparison in a microarray experiment. Scores for individual hormones can then be compared to determine the dominant phytohormone in a given defense response. To validate this method, it was applied to publicly available data from previous microarray experiments that studied the response of soybean plants to Asian soybean rust and soybean cyst nematode. The results of the analyses for these experiments agreed with our current understanding of the role of phytohormones in these defense responses. CONCLUSIONS This method is useful in providing a broad measure of the relative induction and suppression of soybean phytohormones during a defense response. This method could be used as part of microarray studies that include individual transcript analysis, gene set analysis, and other methods for a comprehensive defense response characterization.
Collapse
Affiliation(s)
- Matthew E Studham
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, 50011, USA
| | - Gustavo C MacIntosh
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
45
|
Freire MCM, da Silva MR, Zhang X, Almeida ÁMR, Stacey G, de Oliveira LO. Nucleotide polymorphism in the 5.8S nrDNA gene and internal transcribed spacers in Phakopsora pachyrhizi viewed from structural models. Fungal Genet Biol 2012; 49:95-100. [PMID: 22233882 DOI: 10.1016/j.fgb.2011.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 11/30/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
Abstract
The assessment of nucleotide polymorphisms in environmental samples of obligate pathogens requires DNA amplification through the polymerase chain reaction (PCR) and bacterial cloning of PCR products prior to sequencing. The drawback of this strategy is that it can give rise to false polymorphisms owing to DNA polymerase misincorporation during PCR or bacterial cloning. We investigated patterns of nucleotide polymorphism in the internal transcribed spacer (ITS) region for Phakopsora pachyrhizi, an obligate biotrophic fungus that causes the Asian soybean rust. Field-collected samples of P. pachyrhizi were obtained from all major soybean production areas worldwide, including Brazil and the United States. Bacterially-cloned, PCR products were obtained using a high fidelity DNA polymerase. A total of 370 ITS sequences that were subjected to an array of complementary sequence analyses, which included analyses of secondary structure stability, the pattern of nucleotide polymorphisms, GC content, and the presence of conserved motifs. The sequences exhibited features of functional rRNAs. Overall, polymorphisms took place within less conserved motives, such as loops and bulges; alternatively, they gave rise to non-canonical G-U pairs within conserved regions of double stranded helices. We discuss the usefulness of structural analyses to filter out putative 'suspicious' bacterially cloned ITS sequences, thus keeping artificially-induced sequence variation to a minimum.
Collapse
|
46
|
Kasai M, Kanazawa A. RNA silencing as a tool to uncover gene function and engineer novel traits in soybean. BREEDING SCIENCE 2012; 61:468-79. [PMID: 23136487 PMCID: PMC3406797 DOI: 10.1270/jsbbs.61.468] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 09/14/2011] [Indexed: 05/10/2023]
Abstract
RNA silencing refers collectively to diverse RNA-mediated pathways of nucleotide-sequence-specific inhibition of gene expression. It has been used to analyze gene function and engineer novel traits in various organisms. Here, we review the application of RNA silencing in soybean. To produce soybean lines, in which a particular gene is stably silenced, researchers have frequently used a transgene that transcribes inverted repeats of a target gene segment. Suppression of gene expression in developing soybean embryos has been one of the main focuses of metabolic engineering using transgene-induced silencing. Plants that have enhanced resistance against diseases caused by viruses or cyst nematode have also been produced. Meanwhile, Agrobacterium rhizogenes-mediated transformation has been used to induce RNA silencing in roots, which enabled analysis of the roles of gene products in nodulation or disease resistance. RNA silencing has also been induced using viral vectors, which is particularly useful for gene function analysis. So far, three viral vectors for virus-induced gene silencing have been developed for soybean. One of the features of the soybean genome is the presence of a large number of duplicated genes. Potential use of RNA silencing technology in combination with forward genetic approaches for analyzing duplicated genes is discussed.
Collapse
Affiliation(s)
- Megumi Kasai
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Akira Kanazawa
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| |
Collapse
|
47
|
Liu JZ, Horstman HD, Braun E, Graham MA, Zhang C, Navarre D, Qiu WL, Lee Y, Nettleton D, Hill JH, Whitham SA. Soybean homologs of MPK4 negatively regulate defense responses and positively regulate growth and development. PLANT PHYSIOLOGY 2011; 157:1363-78. [PMID: 21878550 PMCID: PMC3252160 DOI: 10.1104/pp.111.185686] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 08/25/2011] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play important roles in disease resistance in model plant species such as Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum). However, the importance of MAPK signaling pathways in the disease resistance of crops is still largely uninvestigated. To better understand the role of MAPK signaling pathways in disease resistance in soybean (Glycine max), 13, nine, and 10 genes encoding distinct MAPKs, MAPKKs, and MAPKKKs, respectively, were silenced using virus-induced gene silencing mediated by Bean pod mottle virus. Among the plants silenced for various MAPKs, MAPKKs, and MAPKKKs, those in which GmMAPK4 homologs (GmMPK4s) were silenced displayed strong phenotypes including stunted stature and spontaneous cell death on the leaves and stems, the characteristic hallmarks of activated defense responses. Microarray analysis showed that genes involved in defense responses, such as those in salicylic acid (SA) signaling pathways, were significantly up-regulated in GmMPK4-silenced plants, whereas genes involved in growth and development, such as those in auxin signaling pathways and in cell cycle and proliferation, were significantly down-regulated. As expected, SA and hydrogen peroxide accumulation was significantly increased in GmMPK4-silenced plants. Accordingly, GmMPK4-silenced plants were more resistant to downy mildew and Soybean mosaic virus compared with vector control plants. Using bimolecular fluorescence complementation analysis and in vitro kinase assays, we determined that GmMKK1 and GmMKK2 might function upstream of GmMPK4. Taken together, our results indicate that GmMPK4s negatively regulate SA accumulation and defense response but positively regulate plant growth and development, and their functions are conserved across plant species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Steven A. Whitham
- Department of Plant Pathology (J.-Z.L., H.D.H., E.B., C.Z., W.-L.Q., Y.L., J.H.H., S.A.W.), Department of Agronomy (M.A.G.), and Department of Statistics (D.N.), Iowa State University, Ames, Iowa 50011; Corn Insects and Crop Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Ames, Iowa 50011 (M.A.G.); United States Department of Agriculture-Agricultural Research Service, Department of Plant Pathology, Washington State University, Prosser, Washington 99350 (D.N.)
| |
Collapse
|