1
|
Huang Z, Nie Y, Huang Y, Liu L, Liu B. Elucidating the role of monoacetylphlorogulcinol in the pathogenicity of Pseudomonas 'gingeri' against Agaricus bisporus. PEST MANAGEMENT SCIENCE 2024; 80:3526-3539. [PMID: 38446123 DOI: 10.1002/ps.8057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Agaricus bisporus is a globally important edible fungus. The occurrence of ginger blotch caused by Pseudomonas 'gingeri' during A. bisporus growth and post-harvest stages results in significant economic losses. The biotoxin monoacetylphloroglucinol (MAPG) produced by P. 'gingeri' is responsible for inducing ginger blotch on A. bisporus. However, the understanding of the toxic mechanisms of MAPG on A. bisporus remains limited, which hinders the precise control of ginger blotch disease in A. bisporus and the breeding of disease-resistant varieties. RESULTS Integrating transcriptomic, metabolomic, and physiological data revealed that MAPG led to an increase in intracellular superoxide anion (O2 -) levels and lipid peroxidation in A. bisporus. MAPG changed the cellular membrane composition of A. bisporus, causing to damage membrane permeability. MAPG inhibited the expression of genes associated with the 19s subunit of the proteasome, thereby impeding cellular waste degradation in A. bisporus. Unlike melanin, MAPG stimulated the synthesis of flavonoids in A. bisporus, which might explain the manifestation of ginger-colored symptoms rather than browning. Meanwhile, the glutathione metabolism pathway in A. bisporus played a pivotal role in counteracting the cytotoxic effects of MAPG. Additionally, enhanced catalase activity and up-regulation of defense-related genes, including cytochrome P450s, Major Facilitator Superfamily (MFS), and ABC transporters, were observed. CONCLUSION This study provides comprehensive insights into MAPG toxicity in A. bisporus and uncovers the detoxification strategies of A. bisporus against MAPG. The findings offer valuable evidence for precise control and breeding of resistant varieties against ginger blotch in A. bisporus. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zaixing Huang
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning, China
| | - Yulu Nie
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning, China
| | - Yiyun Huang
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning, China
| | - Lizhen Liu
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning, China
| | - Bin Liu
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, China
| |
Collapse
|
2
|
Quezada-D’Angelo T, San Martín J, Ruiz B, Oyarzúa P, Vargas M, Fischer S, Cortés P, Astete P, Moya-Elizondo E. Use of Pseudomonas protegens to Control Root Rot Disease Caused by Boeremia exigua var. exigua in Industrial Chicory ( Cichorium intybus var. sativum Bisch.). PLANTS (BASEL, SWITZERLAND) 2024; 13:263. [PMID: 38256816 PMCID: PMC10818772 DOI: 10.3390/plants13020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024]
Abstract
Boeremia exigua var. exigua is a recurrent pathogen causing root rot in industrial chicory. Currently, there is no chemical or varietal control for this disease, and thus, management strategies need to be developed. This study determined the biocontrol effect of strains of Pseudomonas protegens bacteria with antimicrobial compounds on the fungus B. exigua var. exigua under in vitro, in vivo, and field conditions. In addition, root colonization by these bacteria was estimated by the phlD-specific PCR-based dilution end point assay. Eighteen isolates of Pseudomonas spp were evaluated, and the strains that showed the greatest in vitro inhibition of fungal mycelial growth (mm), Ca10A and ChB7, were selected. Inoculation with the strain ChB7 showed less severity (necrotic area) under in vivo conditions (root trials) compared with the control inoculated with the pathogen (p ≤ 0.05). The molecular analysis revealed that the root colonization of plants grown in pots was equal to or greater than 70%. Similar levels were observed in the field trials conducted at the Selva Negra and Canteras experimental stations (2015-2016 season), with values ranging from 85.7 to 70.5% and from 75.0 to 79.5%, respectively. Regarding yield (ton ha-1), values were higher in the treatments inoculated with strains Ca10A and ChB7 (p ≤ 0.05) at both experimental sites, while a lower incidence and severity of root rot were observed at Selva Negra. These results suggest that the Chilean strains of P. protegens are a promising tool for the control of root diseases in industrial chicory.
Collapse
Affiliation(s)
- Tamara Quezada-D’Angelo
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Chillán, Chile; (T.Q.-D.); (J.S.M.); (B.R.); (P.O.); (M.V.); (S.F.); (P.C.)
| | - Juan San Martín
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Chillán, Chile; (T.Q.-D.); (J.S.M.); (B.R.); (P.O.); (M.V.); (S.F.); (P.C.)
| | - Braulio Ruiz
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Chillán, Chile; (T.Q.-D.); (J.S.M.); (B.R.); (P.O.); (M.V.); (S.F.); (P.C.)
| | - Pía Oyarzúa
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Chillán, Chile; (T.Q.-D.); (J.S.M.); (B.R.); (P.O.); (M.V.); (S.F.); (P.C.)
| | - Marisol Vargas
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Chillán, Chile; (T.Q.-D.); (J.S.M.); (B.R.); (P.O.); (M.V.); (S.F.); (P.C.)
| | - Susana Fischer
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Chillán, Chile; (T.Q.-D.); (J.S.M.); (B.R.); (P.O.); (M.V.); (S.F.); (P.C.)
| | - Pamela Cortés
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Chillán, Chile; (T.Q.-D.); (J.S.M.); (B.R.); (P.O.); (M.V.); (S.F.); (P.C.)
| | - Patricio Astete
- Departamento de Investigación y Desarrollo, Orafti-Beneo S.A., Pemuco, Chile
| | - Ernesto Moya-Elizondo
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Chillán, Chile; (T.Q.-D.); (J.S.M.); (B.R.); (P.O.); (M.V.); (S.F.); (P.C.)
| |
Collapse
|
3
|
Huang Z, Liang X, Wang Y, Mo M, Qiu Y, Liu B. Ginger blotches on Agaricus bisporus due to monoacetylphloroglucinol production by the pathogen Pseudomonas 'gingeri'. PEST MANAGEMENT SCIENCE 2023; 79:5197-5207. [PMID: 37591799 DOI: 10.1002/ps.7725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Agaricus bisporus is the most widely cultivated and consumed mushroom worldwide. Pseudomonas 'gingeri' is the only pathogenic causative agent of ginger blotch in A. bisporus. Current research on mushroom pathogenic biotoxins is limited to P. tolaasii, which causes brown blotch, while understanding of P. 'gingeri' is lacking, therefore identifying the toxins produced by P. 'gingeri' and evaluating their toxicity on A. bisporus is essential for understanding its pathogenic mechanisms. RESULTS A pathogenic bacterium isolated from fruiting bodies of A. bisporus with ginger blotch was identified as P. 'gingeri', and its main toxin identified as 2', 4', 6'-trihydroxyacetophenone monohydrate, also known as monoacetylphloroglucinol (MAPG). Its first known extraction from a mushroom pathogen is reported here. MAPG at 250 μg/mL significantly inhibited the host's mycelial growth, increased branching, caused the structure to become dense and resulted in folds appearing on the surface. An MAPG concentration of 750 μg/mL MAPG led to mycelial death. P. 'gingeri' had high MAPG production in medium containing 0.1 mol/L of either glucose or mannitol (4.30 and 1.85 μg/mL, respectively), and mycelia were inhibited by 69.6% and 41.1%, respectively. The MAPG content was significantly lower in other carbon source media. CONCLUSION This work provides a detailed description of the structure and virulence of the P. 'gingeri' biotoxin, which has implications for understanding its pathogenic mechanism and for exploring precise control strategies for A. bisporus ginger blotch disease, such as the development of MAPG inhibitory factors. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zaixing Huang
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning, China
| | - Xishen Liang
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning, China
| | - Yifan Wang
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning, China
| | - Minqi Mo
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning, China
| | - Ying Qiu
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning, China
| | - Bin Liu
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, China
| |
Collapse
|
4
|
Hamidizade M, Taghavi SM, Moallem M, Aeini M, Fazliarab A, Abachi H, Herschlag RA, Hockett KL, Bull CT, Osdaghi E. Ewingella americana: An Emerging Multifaceted Pathogen of Edible Mushrooms. PHYTOPATHOLOGY 2023; 113:150-159. [PMID: 36131391 DOI: 10.1094/phyto-08-22-0299-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mycopathogenic bacteria play a pivotal role in the productivity of edible mushrooms grown under controlled conditions. In this study, we carried out a comprehensive farm survey and sampling (2018 to 2021) on button mushroom (Agaricus bisporus) farms in 15 provinces in Iran to monitor the status of bacterial pathogens infecting the crop. Mycopathogenic bacterial strains were isolated from pins, stems, and caps, as well as the casing layer on 38 mushroom farms. The bacterial strains incited symptoms on mushroom caps ranging from faint discoloration to dark brown and blotch of the inoculated surfaces. Among the bacterial strains inciting disease symptoms on bottom mushroom, 40 were identified as Ewingella americana based on biochemical assays and phylogeny of 16S rRNA and the gyrB gene. E. americana strains differed in their aggressiveness on mushroom caps and stipes, where the corresponding symptoms ranged from deep yellow to dark brown. In the phylogenetic analyses, all E. americana strains isolated in this study were clustered in a monophyletic clade closely related to the nonpathogenic and environmental strains of the species. BOX-PCR-based fingerprinting revealed intraspecific diversity. Using the cutoff level of 73 to 76% similarity, the strains formed six clusters. A chronological pattern was observed, where the strains isolated in 2018 were differentiated from those isolated in 2020 and 2021. Taken together, due to the multifaceted nature of the pathogen, such a widespread occurrence of E. americana on mushroom farms in Iran could be an emerging threat for the mushroom industry in the country.
Collapse
Affiliation(s)
- Mozhde Hamidizade
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
| | - S Mohsen Taghavi
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mahsa Moallem
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Milad Aeini
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Amal Fazliarab
- Iranian Sugarcane Research and Training Institute (ISCRTI), Ahvaz, Khuzestan, Iran
| | - Hamid Abachi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - Rachel A Herschlag
- Plant Pathology & Environmental Microbiology Department, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Kevin L Hockett
- Plant Pathology & Environmental Microbiology Department, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Carolee T Bull
- Plant Pathology & Environmental Microbiology Department, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| |
Collapse
|
5
|
Balthazar C, St-Onge R, Léger G, Lamarre SG, Joly DL, Filion M. Pyoluteorin and 2,4-diacetylphloroglucinol are major contributors to Pseudomonas protegens Pf-5 biocontrol against Botrytis cinerea in cannabis. Front Microbiol 2022; 13:945498. [PMID: 36016777 PMCID: PMC9395707 DOI: 10.3389/fmicb.2022.945498] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas protegens Pf-5 is an effective biocontrol agent that protects many crops against pathogens, including the fungal pathogen Botrytis cinerea causing gray mold disease in Cannabis sativa crops. Previous studies have demonstrated the important role of antibiotics pyoluteorin (PLT) and 2,4-diacetylphloroglucinol (DAPG) in Pf-5-mediated biocontrol. To assess the potential involvement of PLT and DAPG in the biocontrol exerted by Pf-5 against B. cinerea in the phyllosphere of C. sativa, two knockout Pf-5 mutants were generated by in-frame deletion of genes pltD or phlA, required for the synthesis of PLT or DAPG respectively, using a two-step allelic exchange method. Additionally, two complemented mutants were constructed by introducing a multicopy plasmid carrying the deleted gene into each deletion mutant. In vitro confrontation assays revealed that deletion mutant ∆pltD inhibited B. cinerea growth significantly less than wild-type Pf-5, supporting antifungal activity of PLT. However, deletion mutant ∆phlA inhibited mycelial growth significantly more than the wild-type, hypothetically due to a co-regulation of PLT and DAPG biosynthesis pathways. Both complemented mutants recovered in vitro inhibition levels similar to that of the wild-type. In subsequent growth chamber inoculation trials, characterization of gray mold disease symptoms on infected cannabis plants revealed that both ∆pltD and ∆phlA significantly lost a part of their biocontrol capabilities, achieving only 10 and 19% disease reduction respectively, compared to 40% achieved by inoculation with the wild-type. Finally, both complemented mutants recovered biocontrol capabilities in planta similar to that of the wild-type. These results indicate that intact biosynthesis pathways for production of PLT and DAPG are required for the optimal antagonistic activity of P. protegens Pf-5 against B. cinerea in the cannabis phyllosphere.
Collapse
Affiliation(s)
- Carole Balthazar
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Renée St-Onge
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Geneviève Léger
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Simon G. Lamarre
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - David L. Joly
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Martin Filion
- Department of Biology, Université de Moncton, Moncton, NB, Canada
- Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu Research and Development Center, Saint-Jean-sur-Richelieu, QC, Canada
- *Correspondence: Martin Filion,
| |
Collapse
|
6
|
Lai X, Niroula D, Burrows M, Wu X, Yan Q. Identification and Characterization of Bacteria-Derived Antibiotics for the Biological Control of Pea Aphanomyces Root Rot. Microorganisms 2022; 10:microorganisms10081596. [PMID: 36014014 PMCID: PMC9416638 DOI: 10.3390/microorganisms10081596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/30/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
Antibiosis has been proposed to contribute to the beneficial bacteria-mediated biocontrol against pea Aphanomyces root rot caused by the oomycete pathogen Aphanomyces euteiches. However, the antibiotics required for disease suppression remain unknown. In this study, we found that the wild type strains of Pseudomonas protegens Pf-5 and Pseudomonas fluorescens 2P24, but not their mutants that lack 2,4-diacetylphloroglucinol, strongly inhibited A. euteiches on culture plates. Purified 2,4-diacetylphloroglucinol compound caused extensive hyphal branching and stunted hyphal growth of A. euteiches. Using a GFP-based transcriptional reporter assay, we found that expression of the 2,4-diacetylphloroglucinol biosynthesis gene phlAPf-5 is activated by germinating pea seeds. The 2,4-diacetylphloroglucinol producing Pf-5 derivative, but not its 2,4-diacetylphloroglucinol non-producing mutant, reduced disease severity caused by A. euteiches on pea plants in greenhouse conditions. This is the first report that 2,4-diacetylphloroglucinol produced by strains of Pseudomonas species plays an important role in the biocontrol of pea Aphanomyces root rot.
Collapse
Affiliation(s)
- Xiao Lai
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
| | - Dhirendra Niroula
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
| | - Mary Burrows
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
| | - Xiaogang Wu
- College of Agriculture, Guangxi University, Nanning 530004, China
- Correspondence: (X.W.); (Q.Y.)
| | - Qing Yan
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
- Correspondence: (X.W.); (Q.Y.)
| |
Collapse
|
7
|
Ibrar M, Khan S, Hasan F, Yang X. Biosurfactants and chemotaxis interplay in microbial consortium-based hydrocarbons degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24391-24410. [PMID: 35061186 DOI: 10.1007/s11356-022-18492-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Hydrocarbons are routinely detected at low concentrations, despite the degrading metabolic potential of ubiquitous microorganisms. The potential drivers of hydrocarbons persistence are lower bioavailability and mass transfer limitation. Recently, bioremediation strategies have developed rapidly, but still, the solution is not resilient. Biosurfactants, known to increase bioavailability and augment biodegradation, are tightly linked to bacterial surface motility and chemotaxis, while chemotaxis help bacteria to locate aromatic compounds and increase the mass transfer. Harassing the biosurfactant production and chemotaxis properties of degrading microorganisms could be a possible approach for the complete degradation of hydrocarbons. This review provides an overview of interplay between biosurfactants and chemotaxis in bioremediation. Besides, we discuss the chemical surfactants and biosurfactant-mediated biodegradation by microbial consortium.
Collapse
Affiliation(s)
- Muhammad Ibrar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, 430074, Hubei, People's Republic of China
| | - Salman Khan
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Fariha Hasan
- Department of Microbiology, Applied, Environmental and Geomicrobiology Laboratory, Quaid-I-Azam University, Islamabad, Pakistan
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China.
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
8
|
Rose MM, Scheer D, Hou Y, Hotter VS, Komor AJ, Aiyar P, Scherlach K, Vergara F, Yan Q, Loper JE, Jakob T, van Dam NM, Hertweck C, Mittag M, Sasso S. The bacterium Pseudomonas protegens antagonizes the microalga Chlamydomonas reinhardtii using a blend of toxins. Environ Microbiol 2021; 23:5525-5540. [PMID: 34347373 DOI: 10.1111/1462-2920.15700] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/24/2021] [Accepted: 07/31/2021] [Indexed: 11/27/2022]
Abstract
The unicellular alga Chlamydomonas reinhardtii and the bacterium Pseudomonas protegens serve as a model to study the interactions between photosynthetic and heterotrophic microorganisms. P. protegens secretes the cyclic lipopeptide orfamide A that interferes with cytosolic Ca2+ homeostasis in C. reinhardtii resulting in deflagellation of the algal cells. Here, we studied the roles of additional secondary metabolites secreted by P. protegens using individual compounds and co-cultivation of algae with bacterial mutants. Rhizoxin S2, pyrrolnitrin, pyoluteorin, 2,4-diacetylphloroglucinol (DAPG) and orfamide A all induce changes in cell morphology and inhibit the growth of C. reinhardtii. Rhizoxin S2 exerts the strongest growth inhibition, and its action depends on the spatial structure of the environment (agar versus liquid culture). Algal motility is unaffected by rhizoxin S2 and is most potently inhibited by orfamide A (IC50 = 4.1 μM). Pyrrolnitrin and pyoluteorin both interfere with algal cytosolic Ca2+ homeostasis and motility whereas high concentrations of DAPG immobilize C. reinhardtii without deflagellation or disturbance of Ca2+ homeostasis. Co-cultivation with a regulatory mutant of bacterial secondary metabolism (ΔgacA) promotes algal growth under spatially structured conditions. Our results reveal how a single soil bacterium uses an arsenal of secreted antialgal compounds with complementary and partially overlapping activities.
Collapse
Affiliation(s)
- Magdalena M Rose
- Institute of Biology, Leipzig University, Leipzig, Germany.,Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, Germany
| | - Daniel Scheer
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, Germany
| | - Yu Hou
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, Germany
| | - Vivien S Hotter
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, Germany
| | - Anna J Komor
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Prasad Aiyar
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, Germany
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Fredd Vergara
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Qing Yan
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, USA
| | - Joyce E Loper
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Torsten Jakob
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, Germany
| | - Severin Sasso
- Institute of Biology, Leipzig University, Leipzig, Germany.,Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
9
|
Yan Q, Liu M, Kidarsa T, Johnson CP, Loper JE. Two Pathway-Specific Transcriptional Regulators, PltR and PltZ, Coordinate Autoinduction of Pyoluteorin in Pseudomonas protegens Pf-5. Microorganisms 2021; 9:microorganisms9071489. [PMID: 34361923 PMCID: PMC8305169 DOI: 10.3390/microorganisms9071489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/02/2022] Open
Abstract
Antibiotic biosynthesis by microorganisms is commonly regulated through autoinduction, which allows producers to quickly amplify the production of antibiotics in response to environmental cues. Antibiotic autoinduction generally involves one pathway-specific transcriptional regulator that perceives an antibiotic as a signal and then directly stimulates transcription of the antibiotic biosynthesis genes. Pyoluteorin is an autoregulated antibiotic produced by some Pseudomonas spp. including the soil bacterium Pseudomonas protegens Pf-5. In this study, we show that PltR, a known pathway-specific transcriptional activator of pyoluteorin biosynthesis genes, is necessary but not sufficient for pyoluteorin autoinduction in Pf-5. We found that pyoluteorin is perceived as an inducer by PltZ, a second pathway-specific transcriptional regulator that directly represses the expression of genes encoding a transporter in the pyoluteorin gene cluster. Mutation of pltZ abolished the autoinducing effect of pyoluteorin on the transcription of pyoluteorin biosynthesis genes. Overall, our results support an alternative mechanism of antibiotic autoinduction by which the two pathway-specific transcriptional regulators PltR and PltZ coordinate the autoinduction of pyoluteorin in Pf-5. Possible mechanisms by which PltR and PltZ mediate the autoinduction of pyoluteorin are discussed.
Collapse
Affiliation(s)
- Qing Yan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA;
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA;
- Correspondence:
| | - Mary Liu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA;
| | - Teresa Kidarsa
- Horticultural Crops Research Laboratory, US Department of Agriculture, Agricultural Research Service, Corvallis, OR 97330, USA;
| | - Colin P. Johnson
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA;
| | - Joyce E. Loper
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA;
- Horticultural Crops Research Laboratory, US Department of Agriculture, Agricultural Research Service, Corvallis, OR 97330, USA;
| |
Collapse
|
10
|
Storey N, Rabiey M, Neuman BW, Jackson RW, Mulley G. Genomic Characterisation of Mushroom Pathogenic Pseudomonads and Their Interaction with Bacteriophages. Viruses 2020; 12:E1286. [PMID: 33182769 PMCID: PMC7696170 DOI: 10.3390/v12111286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 01/16/2023] Open
Abstract
Bacterial diseases of the edible white button mushroom Agaricus bisporus caused by Pseudomonas species cause a reduction in crop yield, resulting in considerable economic loss. We examined bacterial pathogens of mushrooms and bacteriophages that target them to understand the disease and opportunities for control. The Pseudomonastolaasii genome encoded a single type III protein secretion system (T3SS), but contained the largest number of non-ribosomal peptide synthase (NRPS) genes, multimodular enzymes that can play a role in pathogenicity, including a putative tolaasin-producing gene cluster, a toxin causing blotch disease symptom. However, Pseudomonasagarici encoded the lowest number of NRPS and three putative T3SS while non-pathogenic Pseudomonas sp. NS1 had intermediate numbers. Potential bacteriophage resistance mechanisms were identified in all three strains, but only P. agarici NCPPB 2472 was observed to have a single Type I-F CRISPR/Cas system predicted to be involved in phage resistance. Three novel bacteriophages, NV1, ϕNV3, and NV6, were isolated from environmental samples. Bacteriophage NV1 and ϕNV3 had a narrow host range for specific mushroom pathogens, whereas phage NV6 was able to infect both mushroom pathogens. ϕNV3 and NV6 genomes were almost identical and differentiated within their T7-like tail fiber protein, indicating this is likely the major host specificity determinant. Our findings provide the foundations for future comparative analyses to study mushroom disease and phage resistance.
Collapse
Affiliation(s)
- Nathaniel Storey
- School of Biological Sciences, Whiteknights Campus, University of Reading, Reading RG6 6AJ, UK; (N.S.); (R.W.J.); (G.M.)
| | - Mojgan Rabiey
- School of Biological Sciences, Whiteknights Campus, University of Reading, Reading RG6 6AJ, UK; (N.S.); (R.W.J.); (G.M.)
- School of Biosciences and Birmingham Institute of Forest Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Benjamin W. Neuman
- Biology Department, College of Arts, Sciences and Education, TAMUT, Texarkana, TX 75503, USA;
| | - Robert W. Jackson
- School of Biological Sciences, Whiteknights Campus, University of Reading, Reading RG6 6AJ, UK; (N.S.); (R.W.J.); (G.M.)
- School of Biosciences and Birmingham Institute of Forest Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Geraldine Mulley
- School of Biological Sciences, Whiteknights Campus, University of Reading, Reading RG6 6AJ, UK; (N.S.); (R.W.J.); (G.M.)
| |
Collapse
|
11
|
Götze S, Stallforth P. Structure, properties, and biological functions of nonribosomal lipopeptides from pseudomonads. Nat Prod Rep 2020; 37:29-54. [DOI: 10.1039/c9np00022d] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bacteria of the genusPseudomonasdisplay a fascinating metabolic diversity. In this review, we focus our attention on the natural product class of nonribosomal lipopeptides, which help pseudomonads to colonize a wide range of ecological niches.
Collapse
Affiliation(s)
- Sebastian Götze
- Faculty 7: Natural and Environmental Sciences
- Institute for Environmental Sciences
- University Koblenz Landau
- 76829 Landau
- Germany
| | - Pierre Stallforth
- Junior Research Group Chemistry of Microbial Communication
- Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI)
- 07745 Jena
- Germany
| |
Collapse
|
12
|
Osdaghi E, Martins SJ, Ramos-Sepulveda L, Vieira FR, Pecchia JA, Beyer DM, Bell TH, Yang Y, Hockett KL, Bull CT. 100 Years Since Tolaas: Bacterial Blotch of Mushrooms in the 21 st Century. PLANT DISEASE 2019; 103:2714-2732. [PMID: 31560599 DOI: 10.1094/pdis-03-19-0589-fe] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Among the biotic constraints of common mushroom (Agaricus bisporus) production, bacterial blotch is considered the most important mushroom disease in terms of global prevalence and economic impact. Etiology and management of bacterial blotch has been a major concern since its original description in 1915. Although Pseudomonas tolaasii is thought to be the main causal agent, various Pseudomonas species, as well as organisms from other genera have been reported to cause blotch symptoms on mushroom caps. In this review, we provide an updated overview on the etiology, epidemiology, and management strategies of bacterial blotch disease. First, diversity of the causal agent(s) and utility of high throughput sequencing-based approaches in the precise characterization and identification of blotch pathogen(s) is explained. Further, due to the limited options for use of conventional pesticides in mushroom farms against blotch pathogen(s), we highlight the role of balanced threshold of relative humidity and temperature in mushroom farms to combat the disease in organic and conventional production. Additionally, we discuss the possibility of the use of biological control agents (either antagonistic mushroom-associated bacterial strains or bacteriophages) for blotch management as one of the sustainable approaches for 21st century agriculture. Finally, we aim to elucidate the association of mushroom microbiome in cap development and productivity on one hand, and blotch incidence/outbreaks on the other hand.
Collapse
Affiliation(s)
- Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Samuel J Martins
- Plant Pathology & Environmental Microbiology Department, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Laura Ramos-Sepulveda
- Department of Biology, Millersville University of Pennsylvania, Millersville, PA 17551, U.S.A
| | - Fabrício Rocha Vieira
- Plant Pathology & Environmental Microbiology Department, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - John A Pecchia
- Plant Pathology & Environmental Microbiology Department, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - David Meigs Beyer
- Plant Pathology & Environmental Microbiology Department, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Terrence H Bell
- Plant Pathology & Environmental Microbiology Department, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Yinong Yang
- Plant Pathology & Environmental Microbiology Department, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Kevin L Hockett
- Plant Pathology & Environmental Microbiology Department, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Carolee T Bull
- Plant Pathology & Environmental Microbiology Department, The Pennsylvania State University, University Park, PA 16802, U.S.A
| |
Collapse
|
13
|
Geudens N, Martins JC. Cyclic Lipodepsipeptides From Pseudomonas spp. - Biological Swiss-Army Knives. Front Microbiol 2018; 9:1867. [PMID: 30158910 PMCID: PMC6104475 DOI: 10.3389/fmicb.2018.01867] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
Cyclic lipodepsipeptides produced by Pseudomonas spp. (Ps-CLPs) are biosurfactants that constitute a diverse class of versatile bioactive natural compounds with promising application potential. While chemically diverse, they obey a common structural blue-print, allowing the definition of 14 distinct groups with multiple structurally homologous members. In addition to antibacterial and antifungal properties the reported activity profile of Ps-CLPs includes their effect on bacterial motility, biofilm formation, induced defense responses in plants, their insecticidal activity and anti-proliferation effects on human cancer cell-lines. To further validate their status of potential bioactive substances, we assessed the results of 775 biological tests on 51 Ps-CLPs available from literature. From this, a fragmented view emerges. Taken as a group, Ps-CLPs present a broad activity profile. However, reports on individual Ps-CLPs are often much more limited in the scope of organisms that are challenged or activities that are explored. As a result, our analysis shows that the available data is currently too sparse to allow biological function to be correlated to a particular group of Ps-CLPs. Consequently, certain generalizations that appear in literature with respect to the biological activities of Ps-CLPs should be nuanced. This notwithstanding, the data for the two most extensively studied Ps-CLPs does indicate they can display activities against various biological targets. As the discovery of novel Ps-CLPs accelerates, current challenges to complete and maintain a useful overview of biological activity are discussed.
Collapse
Affiliation(s)
- Niels Geudens
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - José C Martins
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
Zhang B, Wang Y, Miao J, Lu Y, Lu R, Sun X, Luo W, Chi X, Feng Z, Ge Y. Reciprocal enhancement of gene expression between the phz and prn operon in Pseudomonas chlororaphis G05. J Basic Microbiol 2018; 58:793-805. [PMID: 29995319 DOI: 10.1002/jobm.201800206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/19/2018] [Accepted: 06/24/2018] [Indexed: 11/09/2022]
Abstract
In previous studies with Pseudomonas chlororaphis G05, two operons (phzABCDEFG and prnABCD) were confirmed to respectively encode enzymes for biosynthesis of phenazine-1-carboxylic acid and pyrrolnitrin that mainly contributed to suppression of some fungal phytopathogens. Although some regulators were identified to govern their expression, it is not known how two operons coordinately interact. By constructing the phz- or/and prn- deletion mutants, we found that in comparison with the wild-type strain G05, phenazine-1-carboxylic acid production in the mutant G05Δprn obviously decreased in GA broth in the absence of prn, and pyrrolnitrin production in the mutant G05Δphz remarkably declined in the absence of phz. By generating the phzA and prnA transcriptional and translational fusions with a truncated lacZ on shuttle vector or on the chromosome, we found that expression of the phz or prn operon was correspondingly increased in the presence of the prn or phz operon at the post-transcriptional level, not at the transcriptional level. These results indicated that the presence of one operon would promote the expression of the other one operon between the phz and prn. This reciprocal enhancement would keep the strain G05 producing more different antifungal compounds coordinately and living better with growth suppression of other microorganisms.
Collapse
Affiliation(s)
- Baoshen Zhang
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Yanhua Wang
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Jing Miao
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Yang Lu
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Ruiyang Lu
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Xiaoqiang Sun
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Wangtai Luo
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Xiaoyan Chi
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Zhibin Feng
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Yihe Ge
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| |
Collapse
|
15
|
Huang R, Feng Z, Chi X, Sun X, Lu Y, Zhang B, Lu R, Luo W, Wang Y, Miao J, Ge Y. Pyrrolnitrin is more essential than phenazines for Pseudomonas chlororaphis G05 in its suppression of Fusarium graminearum. Microbiol Res 2018; 215:55-64. [PMID: 30172309 DOI: 10.1016/j.micres.2018.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/16/2018] [Accepted: 06/16/2018] [Indexed: 12/21/2022]
Abstract
Fusarium graminearum is the major causal agent of Fusarium head blight (FHB) disease in cereal crops worldwide. Infection with this fungal phytopathogen can regularly cause severe yield and quality losses and mycotoxin contamination in grains. In previous other studies, one research group reported that pyrrolnitrin had an ability to suppress of mycelial growth of F. graminearum. Other groups revealed that phenazine-1-carboxamide, a derivative of phenazine-1-carboxylic acid, could also inhibit the growth of F. graminearum and showed great potentials in the bioprotection of crops from FHB disease. In our recent work with Pseudomonas chlororaphis strain G05, however, we found that although the phz operon (phenazine biosynthetic gene cluster) was knocked out, the phenazine-deficient mutant G05Δphz still exhibited effective inhibition of the mycelial growth of some fungal phytopathogens in pathogen inhibition assay, especially including F. graminearum, Colletotrichum gloeosporioides, Botrytis cinerea. With our further investigations, including deletion and complementation of the prn operon (pyrrolnitrin biosynthetic gene cluster), purification and identification of fungal compounds, we first verified that not phenazines but pyrrolnitrin biosynthesized in P. chlororaphis G05 plays an essential role in growth suppression of F. graminearum and the bioprotection of cereal crops against FHB disease.
Collapse
Affiliation(s)
- Run Huang
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Zhibin Feng
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Xiaoyan Chi
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Xiaoqiang Sun
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Yang Lu
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Baoshen Zhang
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Ruiyang Lu
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Wangtai Luo
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Yanhua Wang
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Jing Miao
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China
| | - Yihe Ge
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025, China.
| |
Collapse
|
16
|
Secondary Metabolism and Interspecific Competition Affect Accumulation of Spontaneous Mutants in the GacS-GacA Regulatory System in Pseudomonas protegens. mBio 2018; 9:mBio.01845-17. [PMID: 29339425 PMCID: PMC5770548 DOI: 10.1128/mbio.01845-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Secondary metabolites are synthesized by many microorganisms and provide a fitness benefit in the presence of competitors and predators. Secondary metabolism also can be costly, as it shunts energy and intermediates from primary metabolism. In Pseudomonas spp., secondary metabolism is controlled by the GacS-GacA global regulatory system. Intriguingly, spontaneous mutations in gacS or gacA (Gac− mutants) are commonly observed in laboratory cultures. Here we investigated the role of secondary metabolism in the accumulation of Gac− mutants in Pseudomonas protegens strain Pf-5. Our results showed that secondary metabolism, specifically biosynthesis of the antimicrobial compound pyoluteorin, contributes significantly to the accumulation of Gac− mutants. Pyoluteorin biosynthesis, which poses a metabolic burden on the producer cells, but not pyoluteorin itself, leads to the accumulation of the spontaneous mutants. Interspecific competition also influenced the accumulation of the Gac− mutants: a reduced proportion of Gac− mutants accumulated when P. protegens Pf-5 was cocultured with Bacillus subtilis than in pure cultures of strain Pf-5. Overall, our study associated a fitness trade-off with secondary metabolism, with metabolic costs versus competitive benefits of production influencing the evolution of P. protegens, assessed by the accumulation of Gac− mutants. Many microorganisms produce antibiotics, which contribute to ecologic fitness in natural environments where microbes constantly compete for resources with other organisms. However, biosynthesis of antibiotics is costly due to the metabolic burdens of the antibiotic-producing microorganism. Our results provide an example of the fitness trade-off associated with antibiotic production. Under noncompetitive conditions, antibiotic biosynthesis led to accumulation of spontaneous mutants lacking a master regulator of antibiotic production. However, relatively few of these spontaneous mutants accumulated when a competitor was present. Results from this work provide information on the evolution of antibiotic biosynthesis and provide a framework for their discovery and regulation.
Collapse
|
17
|
Yan Q, Philmus B, Chang JH, Loper JE. Novel mechanism of metabolic co-regulation coordinates the biosynthesis of secondary metabolites in Pseudomonas protegens. eLife 2017; 6. [PMID: 28262092 PMCID: PMC5395296 DOI: 10.7554/elife.22835] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/16/2017] [Indexed: 12/02/2022] Open
Abstract
Metabolic co-regulation between biosynthetic pathways for secondary metabolites is common in microbes and can play an important role in microbial interactions. Here, we describe a novel mechanism of metabolic co-regulation in which an intermediate in one pathway is converted into signals that activate a second pathway. Our study focused on the co-regulation of 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin, two antimicrobial metabolites produced by the soil bacterium Pseudomonas protegens. We show that an intermediate in DAPG biosynthesis, phloroglucinol, is transformed by a halogenase encoded in the pyoluteorin gene cluster into mono- and di-chlorinated phloroglucinols. The chlorinated phloroglucinols function as intra- and inter-cellular signals that induce the expression of pyoluteorin biosynthetic genes, pyoluteorin production, and pyoluteorin-mediated inhibition of the plant-pathogenic bacterium Erwinia amylovora. This metabolic co-regulation provides a strategy for P. protegens to optimize the deployment of secondary metabolites with distinct roles in cooperative and competitive microbial interactions. DOI:http://dx.doi.org/10.7554/eLife.22835.001 Bacteria live almost everywhere on Earth and often compete with one another for limited resources, like space or nutrients. Certain bacteria produce molecules that are toxic to other microorganisms to give themselves a competitive advantage. These toxic molecules are more commonly referred as antibiotics, and are perhaps best known for their importance in medicine. Yet, antibiotics benefit the bacteria that produce them in other ways too. Some bacteria, for example, use antibiotics as chemical signals to communicate with one another and coordinate their activities. Some bacteria produce many antibiotics with different toxic and signaling activities. These bacteria often coordinate the production of different antibiotics such that the production of one antibiotic shuts down the production of another. This kind of coordination would allow the bacterium to focus its energy on producing only the antibiotic that gives it a competitive advantage at that time. Yet, in most cases, it was not known how the bacterial cell coordinates the production of two different antibiotics. Pseudomonas protegens is a species of bacteria that lives in soil, and produces many antibiotics that are toxic to other bacteria or fungi. The antibiotics are made via distinct pathways of chemical reactions that are catalyzed by different enzymes. However, the production of two antibiotics, called 2,4-diacetylphloroglucinol and pyoluteorin, is tightly coordinated in some strains of P. protegens. Now, Yan et al. have discovered how P. protegens coordinates the production of these two antibiotics. It turns out that the bacterium produces an enzyme that adds chlorine atoms onto one of the intermediate building blocks used to make 2,4-diacetylphloroglucinol. These “chlorinated derivatives” then activate the genes required to make the second antibiotic, pyoluteorin. The derivatives also signal to other P. protegens cells and trigger them to produce pyoluteorin too. Lastly, Yan et al. confirmed that pyoluteorin could inhibit the growth of another species of bacteria called Erwinia amylovora. These new findings highlight an important role played by chemicals that might have previously been considered as merely stepping stones in other biochemical reactions. An important challenge for the future will be to evaluate if other microbes use chemical intermediates in similar ways. Understanding the natural role of more antibiotics and their intermediates should help us to more wisely use existing antibiotics, and might eventually lead to new treatments for infections in humans and other animals. DOI:http://dx.doi.org/10.7554/eLife.22835.002
Collapse
Affiliation(s)
- Qing Yan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, United States
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Joyce E Loper
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States.,US Department of Agriculture, Agricultural Research Service, Horticultural Crops Research Laboratory, Corvallis, United States
| |
Collapse
|
18
|
Rangel LI, Henkels MD, Shaffer BT, Walker FL, Davis EW, Stockwell VO, Bruck D, Taylor BJ, Loper JE. Characterization of Toxin Complex Gene Clusters and Insect Toxicity of Bacteria Representing Four Subgroups of Pseudomonas fluorescens. PLoS One 2016; 11:e0161120. [PMID: 27580176 PMCID: PMC5006985 DOI: 10.1371/journal.pone.0161120] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 07/29/2016] [Indexed: 11/30/2022] Open
Abstract
Ten strains representing four lineages of the Pseudomonas fluorescens group (P. chlororaphis, P. corrugata, P. koreensis, and P. fluorescens subgroups) were evaluated for toxicity to the tobacco hornworm Manduca sexta and the common fruit fly Drosophila melanogaster. The three strains within the P. chlororaphis subgroup exhibited both oral and injectable toxicity to the lepidopteran M. sexta. All three strains have the gene cluster encoding the FitD insect toxin and a ΔfitD mutant of P. protegens strain Pf-5 exhibited diminished oral toxicity compared to the wildtype strain. Only one of the three strains, P. protegens Pf-5, exhibited substantial levels of oral toxicity against the dipteran D. melanogaster. Three strains in the P. fluorescens subgroup, which lack fitD, consistently showed significant levels of injectable toxicity against M. sexta. In contrast, the oral toxicity of these strains against D. melanogaster was variable between experiments, with only one strain, Pseudomonas sp. BG33R, causing significant levels of mortality in repeated experiments. Toxin complex (Tc) gene clusters, which encode insecticidal properties in Photorhabdus luminescens, were identified in the genomes of seven of the ten strains evaluated in this study. Within those seven genomes, six types of Tc gene clusters were identified, distinguished by gene content, organization and genomic location, but no correlation was observed between the presence of Tc genes and insect toxicity of the evaluated strains. Our results demonstrate that members of the P. fluorescens group have the capacity to kill insects by both FitD-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Lorena I. Rangel
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Marcella D. Henkels
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- Agricultural Research Service, US Department of Agriculture, Horticultural Crops Research Laboratory, Corvallis, Oregon, United States of America
| | - Brenda T. Shaffer
- Agricultural Research Service, US Department of Agriculture, Horticultural Crops Research Laboratory, Corvallis, Oregon, United States of America
| | - Francesca L. Walker
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Edward W. Davis
- Agricultural Research Service, US Department of Agriculture, Horticultural Crops Research Laboratory, Corvallis, Oregon, United States of America
| | - Virginia O. Stockwell
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Denny Bruck
- Agricultural Research Service, US Department of Agriculture, Horticultural Crops Research Laboratory, Corvallis, Oregon, United States of America
| | - Barbara J. Taylor
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Joyce E. Loper
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- Agricultural Research Service, US Department of Agriculture, Horticultural Crops Research Laboratory, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
19
|
Loper JE, Henkels MD, Rangel LI, Olcott MH, Walker FL, Bond KL, Kidarsa TA, Hesse CN, Sneh B, Stockwell VO, Taylor BJ. Rhizoxin analogs, orfamide A and chitinase production contribute to the toxicity of Pseudomonas protegens strain Pf-5 to Drosophila melanogaster. Environ Microbiol 2016; 18:3509-3521. [PMID: 27130686 DOI: 10.1111/1462-2920.13369] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/13/2016] [Indexed: 11/28/2022]
Abstract
Pseudomonas protegens strain Pf-5 is a soil bacterium that was first described for its capacity to suppress plant diseases and has since been shown to be lethal to certain insects. Among these is the common fruit fly Drosophila melanogaster, a well-established model organism for studies evaluating the molecular and cellular basis of the immune response to bacterial challenge. Pf-5 produces the insect toxin FitD, but a ΔfitD mutant of Pf-5 retained full toxicity against D. melanogaster in a noninvasive feeding assay, indicating that FitD is not a major determinant of Pf-5's oral toxicity against this insect. Pf-5 also produces a broad spectrum of exoenzymes and natural products with antibiotic activity, whereas a mutant with a deletion in the global regulatory gene gacA produces none of these exoproducts and also lacks toxicity to D. melanogaster. In this study, we made use of a panel of Pf-5 mutants having single or multiple mutations in the biosynthetic gene clusters for seven natural products and two exoenzymes that are produced by the bacterium under the control of gacA. Our results demonstrate that the production of rhizoxin analogs, orfamide A, and chitinase are required for full oral toxicity of Pf-5 against D. melanogaster, with rhizoxins being the primary determinant.
Collapse
Affiliation(s)
- Joyce E Loper
- Agricultural Research Service, US Department of Agriculture, 3420 N.W. Orchard Ave., Corvallis, OR, 97330, USA. .,Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA.
| | - Marcella D Henkels
- Agricultural Research Service, US Department of Agriculture, 3420 N.W. Orchard Ave., Corvallis, OR, 97330, USA.,Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Lorena I Rangel
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Marika H Olcott
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Francesca L Walker
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Kise L Bond
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Teresa A Kidarsa
- Agricultural Research Service, US Department of Agriculture, 3420 N.W. Orchard Ave., Corvallis, OR, 97330, USA.,Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Cedar N Hesse
- Agricultural Research Service, US Department of Agriculture, 3420 N.W. Orchard Ave., Corvallis, OR, 97330, USA
| | - Baruch Sneh
- Department of Molecular Biology and Ecology of Plants, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Virginia O Stockwell
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Barbara J Taylor
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
20
|
Quecine MC, Kidarsa TA, Goebel NC, Shaffer BT, Henkels MD, Zabriskie TM, Loper JE. An Interspecies Signaling System Mediated by Fusaric Acid Has Parallel Effects on Antifungal Metabolite Production by Pseudomonas protegens Strain Pf-5 and Antibiosis of Fusarium spp. Appl Environ Microbiol 2015; 82:1372-1382. [PMID: 26655755 PMCID: PMC4771327 DOI: 10.1128/aem.02574-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/03/2015] [Indexed: 01/27/2023] Open
Abstract
Pseudomonas protegens strain Pf-5 is a rhizosphere bacterium that suppresses soilborne plant diseases and produces at least seven different secondary metabolites with antifungal properties. We derived mutants of Pf-5 with single and multiple mutations in biosynthesis genes for seven antifungal metabolites: 2,4-diacetylphoroglucinol (DAPG), pyrrolnitrin, pyoluteorin, hydrogen cyanide, rhizoxin, orfamide A, and toxoflavin. These mutants were tested for inhibition of the pathogens Fusarium verticillioides and Fusarium oxysporum f. sp. pisi. Rhizoxin, pyrrolnitrin, and DAPG were found to be primarily responsible for fungal antagonism by Pf-5. Previously, other workers showed that the mycotoxin fusaric acid, which is produced by many Fusarium species, including F. verticillioides, inhibited the production of DAPG by Pseudomonas spp. In this study, amendment of culture media with fusaric acid decreased DAPG production, increased pyoluteorin production, and had no consistent influence on pyrrolnitrin or orfamide A production by Pf-5. Fusaric acid also altered the transcription of biosynthetic genes, indicating that the mycotoxin influenced antibiotic production by Pf-5 at the transcriptional level. Addition of fusaric acid to the culture medium reduced antibiosis of F. verticillioides by Pf-5 and derivative strains that produce DAPG but had no effect on antibiosis by Pf-5 derivatives that suppressed F. verticillioides due to pyrrolnitrin or rhizoxin production. Our results demonstrated the importance of three compounds, rhizoxin, pyrrolnitrin, and DAPG, in suppression of Fusarium spp. by Pf-5 and confirmed that an interspecies signaling system mediated by fusaric acid had parallel effects on antifungal metabolite production and antibiosis by the bacterial biological control organism.
Collapse
Affiliation(s)
- Maria Carolina Quecine
- Department of Genetics, College of Agriculture Luiz de Queiroz, ESALQ, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Teresa A Kidarsa
- Agricultural Research Service, U.S. Department of Agriculture, Corvallis, Oregon, USA
| | - Neal C Goebel
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Brenda T Shaffer
- Agricultural Research Service, U.S. Department of Agriculture, Corvallis, Oregon, USA
| | - Marcella D Henkels
- Agricultural Research Service, U.S. Department of Agriculture, Corvallis, Oregon, USA
| | - T Mark Zabriskie
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Joyce E Loper
- Agricultural Research Service, U.S. Department of Agriculture, Corvallis, Oregon, USA
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|