1
|
Wen T, Xu X, Ren A, Zhao G, Wu J. Genome-wide identification of terpenoid synthase family genes in Gossypium hirsutum and functional dissection of its subfamily cadinene synthase A in gossypol synthesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1162237. [PMID: 37180387 PMCID: PMC10169749 DOI: 10.3389/fpls.2023.1162237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/24/2023] [Indexed: 05/16/2023]
Abstract
Plant terpenoid synthase (TPS) family genes participate in metabolite synthesis, hormones, gossypol, etc. Here, we genome-widely identified TPS family genes in 12 land plant species. Four hundred and thirty TPS-related genes were divided into seven subfamilies. The TPS-c in Bryophytes was suggested to be the earliest subfamily, followed by the TPS-e/f and TPS-h presence in ferns. TPS-a, the largest number of genes, was derived from monocotyledonous and dicotyledonous plants. Collinearity analysis showed that 38 out of the 76 TPS genes in G. hirsutum were collinear within G. arboreum and G. raimondii. Twenty-one GhTPS-a genes belong to the cadinene synthase (GhCDN) subfamily and were divided into five groups, A, B, C, D, and E. The special cis-elements in the promoters of 12 GhCDN-A genes suggested that the JA and ethylene signaling pathways may be involved in their expression regulation. When 12 GhCDN-A genes were simultaneously silenced through virus-induced gene silencing, the glandular color of GhCDN-A-silenced plants was lighter than that of the control, supported by a gossypol content decrease based on HPLC testing, suggesting that GhCDN-A subgroup genes participate in gossypol synthesis. According to RNA-seq analysis, gossypol synthesis-related genes and disease-resistant genes in the glandular variety exhibited upregulated expression compared to the glandless variety, whereas hormone signaling-related genes were downregulated. All in all, these results revealed plant TPS gene evolution rules and dissected the TPS subfamily, GhCDN-A, function in gossypol synthesis in cotton.
Collapse
Affiliation(s)
- Tianyang Wen
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiao Xu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Aiping Ren
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Ge Zhao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiahe Wu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Kushalappa AC, Hegde NG, Yogendra KN. Metabolic pathway genes for editing to enhance multiple disease resistance in plants. JOURNAL OF PLANT RESEARCH 2022; 135:705-722. [PMID: 36036859 DOI: 10.1007/s10265-022-01409-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Diseases are one of the major constraints in commercial crop production. Genetic diversity in varieties is the best option to manage diseases. Molecular marker-assisted breeding has produced hundreds of varieties with good yields, but the resistance level is not satisfactory. With the advent of whole genome sequencing, genome editing is emerging as an excellent option to improve the inadequate traits in these varieties. Plants produce thousands of antimicrobial secondary metabolites, which as polymers and conjugates are deposited to reinforce the secondary cell walls to contain the pathogen to an initial infection area. The resistance metabolites or the structures produced from them by plants are either constitutive (CR) or induced (IR), following pathogen invasion. The production of each resistance metabolite is controlled by a network of biosynthetic R genes, which are regulated by a hierarchy of R genes. A commercial variety also has most of these R genes, as in resistant, but a few may be mutated (SNPs/InDels). A few mutated genes, in one or more metabolic pathways, depending on the host-pathogen interaction, can be edited, and stacked to increase resistance metabolites or structures produced by them, to achieve required levels of multiple pathogen resistance under field conditions.
Collapse
Affiliation(s)
- Ajjamada C Kushalappa
- Plant Science Department, McGill University, Ste.-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| | - Niranjan G Hegde
- Plant Science Department, McGill University, Ste.-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Kalenahalli N Yogendra
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India
| |
Collapse
|
3
|
Cai Y, Cai X, Wang Q, Wang P, Zhang Y, Cai C, Xu Y, Wang K, Zhou Z, Wang C, Geng S, Li B, Dong Q, Hou Y, Wang H, Ai P, Liu Z, Yi F, Sun M, An G, Cheng J, Zhang Y, Shi Q, Xie Y, Shi X, Chang Y, Huang F, Chen Y, Hong S, Mi L, Sun Q, Zhang L, Zhou B, Peng R, Zhang X, Liu F. Genome sequencing of the Australian wild diploid species Gossypium australe highlights disease resistance and delayed gland morphogenesis. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:814-828. [PMID: 31479566 PMCID: PMC7004908 DOI: 10.1111/pbi.13249] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/12/2019] [Accepted: 08/29/2019] [Indexed: 05/09/2023]
Abstract
The diploid wild cotton species Gossypium australe possesses excellent traits including resistance to disease and delayed gland morphogenesis, and has been successfully used for distant breeding programmes to incorporate disease resistance traits into domesticated cotton. Here, we sequenced the G. australe genome by integrating PacBio, Illumina short read, BioNano (DLS) and Hi-C technologies, and acquired a high-quality reference genome with a contig N50 of 1.83 Mb and a scaffold N50 of 143.60 Mb. We found that 73.5% of the G. australe genome is composed of various repeat sequences, differing from those of G. arboreum (85.39%), G. hirsutum (69.86%) and G. barbadense (69.83%). The G. australe genome showed closer collinear relationships with the genome of G. arboreum than G. raimondii and has undergone less extensive genome reorganization than the G. arboreum genome. Selection signature and transcriptomics analyses implicated multiple genes in disease resistance responses, including GauCCD7 and GauCBP1, and experiments revealed induction of both genes by Verticillium dahliae and by the plant hormones strigolactone (GR24), salicylic acid (SA) and methyl jasmonate (MeJA). Experiments using a Verticillium-resistant domesticated G. barbadense cultivar confirmed that knockdown of the homologues of these genes caused a significant reduction in resistance against Verticillium dahliae. Moreover, knockdown of a newly identified gland-associated gene GauGRAS1 caused a glandless phenotype in partial tissues using G. australe. The G. australe genome represents a valuable resource for cotton research and distant relative breeding as well as for understanding the evolutionary history of crop genomes.
Collapse
Affiliation(s)
- Yingfan Cai
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Xiaoyan Cai
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Qinglian Wang
- School of Life Science and TechnologyHenan Institute of Science and TechnologyCollaborative Innovation Center of Modern Biological Breeding of Henan ProvinceHenan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and WheatXinxiangChina
| | - Ping Wang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Yu Zhang
- Guangzhou Genedenovo Biotechnology Co. LtdGuangzhouChina
| | - Chaowei Cai
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Yanchao Xu
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Kunbo Wang
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Zhongli Zhou
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Chenxiao Wang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Shuaipeng Geng
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Bo Li
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Qi Dong
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Yuqing Hou
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Heng Wang
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Peng Ai
- Guangzhou Genedenovo Biotechnology Co. LtdGuangzhouChina
| | - Zhen Liu
- Anyang Institute of TechnologyAnyangChina
| | - Feifei Yi
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Minshan Sun
- Guangzhou Genedenovo Biotechnology Co. LtdGuangzhouChina
| | - Guoyong An
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Jieru Cheng
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Yuanyuan Zhang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Qian Shi
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Yuanhui Xie
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Xinying Shi
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Ying Chang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Feifei Huang
- Guangzhou Genedenovo Biotechnology Co. LtdGuangzhouChina
| | - Yun Chen
- Guangzhou Genedenovo Biotechnology Co. LtdGuangzhouChina
| | - Shimiao Hong
- Guangzhou Genedenovo Biotechnology Co. LtdGuangzhouChina
| | - Lingyu Mi
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Quan Sun
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Lin Zhang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | | | | | - Xiao Zhang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress BiologySchool of Life SciencesBioinformatics CenterSchool of Computer and Information EngineeringHenan UniversityKaifengChina
| | - Fang Liu
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| |
Collapse
|
4
|
Shaban M, Miao Y, Ullah A, Khan AQ, Menghwar H, Khan AH, Ahmed MM, Tabassum MA, Zhu L. Physiological and molecular mechanism of defense in cotton against Verticillium dahliae. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 125:193-204. [PMID: 29462745 DOI: 10.1016/j.plaphy.2018.02.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 05/19/2023]
Abstract
Cotton, a natural fiber producing crop of huge importance for textile industry, has been reckoned as the backbone in the economy of many developing countries. Verticillium wilt caused by Verticillium dahliae reflected as the most devastating disease of cotton crop in several parts of the world. Average losses due to attack of this disease are tremendous every year. There is urgent need to develop strategies for effective control of this disease. In the last decade, progress has been made to understand the interaction between cotton-V. dahliae and several growth and pathogenicity related genes were identified. Still, most of the molecular components and mechanisms of cotton defense against Verticillium wilt are poorly understood. However, from existing knowledge, it is perceived that cotton defense mechanism primarily depends on the pre-formed defense structures including thick cuticle, synthesis of phenolic compounds and delaying or hindering the expansion of the invader through advanced measures such as reinforcement of cell wall structure, accumulation of reactive oxygen species (ROS), release of phytoalexins, the hypersensitive response and the development of broad spectrum resistance named as, systemic acquired resistance (SAR). Investigation of these defense tactics provide valuable information about the improvement of cotton breeding strategies for the development of durable, cost effective, and broad spectrum resistant varieties. Consequently, this management approach will help to reduce the use of fungicides and also minimize other environmental hazards. In the present paper, we summarized the V. dahliae virulence mechanism and comprehensively discussed the cotton molecular mechanisms of defense such as physiological, biochemical responses with the addition of signaling pathways that are implicated towards attaining resistance against Verticillium wilt.
Collapse
Affiliation(s)
- Muhammad Shaban
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yuhuan Miao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Abid Ullah
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Anam Qadir Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Hakim Menghwar
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Aamir Hamid Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Muhammad Mahmood Ahmed
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Muhammad Adnan Tabassum
- Department of Agronomy, College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
5
|
Mao YB, Liu YQ, Chen DY, Chen FY, Fang X, Hong GJ, Wang LJ, Wang JW, Chen XY. Jasmonate response decay and defense metabolite accumulation contributes to age-regulated dynamics of plant insect resistance. Nat Commun 2017; 8:13925. [PMID: 28067238 PMCID: PMC5233801 DOI: 10.1038/ncomms13925] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/14/2016] [Indexed: 01/20/2023] Open
Abstract
Immunity deteriorates with age in animals but comparatively little is known about the temporal regulation of plant resistance to herbivores. The phytohormone jasmonate (JA) is a key regulator of plant insect defense. Here, we show that the JA response decays progressively in Arabidopsis. We show that this decay is regulated by the miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE9 (SPL9) group of proteins, which can interact with JA ZIM-domain (JAZ) proteins, including JAZ3. As SPL9 levels gradually increase, JAZ3 accumulates and the JA response is attenuated. We provide evidence that this pathway contributes to insect resistance in young plants. Interestingly however, despite the decay in JA response, older plants are still comparatively more resistant to both the lepidopteran generalist Helicoverpa armigera and the specialist Plutella xylostella, along with increased accumulation of glucosinolates. We propose a model whereby constitutive accumulation of defense compounds plays a role in compensating for age-related JA-response attenuation during plant maturation.
Collapse
Affiliation(s)
- Ying-Bo Mao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, University of CAS, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Yao-Qian Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, People's Republic of China
| | - Dian-Yang Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, University of CAS, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Fang-Yan Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, People's Republic of China
| | - Xin Fang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, University of CAS, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Gao-Jie Hong
- State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, People's Republic of China
| | - Ling-Jian Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, University of CAS, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, University of CAS, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, People's Republic of China
| | - Xiao-Ya Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, University of CAS, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
- Plant Science Research Center, Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, People's Republic of China
| |
Collapse
|
6
|
Cheng H, Lu C, Yu JZ, Zou C, Zhang Y, Wang Q, Huang J, Feng X, Jiang P, Yang W, Song G. Fine mapping and candidate gene analysis of the dominant glandless gene Gl 2 (e) in cotton (Gossypium spp.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1347-1355. [PMID: 27053187 DOI: 10.1007/s00122-016-2707-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/17/2016] [Indexed: 05/21/2023]
Abstract
Dominant glandless gene Gl 2 (e) was fine-mapped to a 15 kb region containing one candidate gene encoding an MYC transcription factor, sequence and expression level of the gene were analyzed. Cottonseed product is an excellent source of oil and protein. However, this nutrition source is greatly limited in utilization by the toxic gossypol in pigment glands. It is reported that the Gl 2 (e) gene could effectively inhibit the formation of the pigment glands. Here, three F2 populations were constructed using two pairs of near isogenic lines (NILs), which differ nearly only by the gland trait, for fine mapping of Gl 2 (e) . DNA markers were identified from recently developed cotton genome sequence. The Gl 2 (e) gene was located within a 15-kb genomic interval between two markers CS2 and CS4 on chromosome 12. Only one gene was identified in the genomic interval as the candidate for Gl 2 (e) which encodes a family member of MYC transcription factor with 475-amino acids. Unexpectedly, the results of expression analysis indicated that the MYC gene expresses in glanded lines while almost does not express in glandless lines. These results suggest that the MYC gene probably serves as a vital positive regulator in the organogenesis pathway of pigment gland, and low expression of this gene will not launch the downstream pathway of pigment gland formation. This is the first pigment gland-related gene identification in cotton and will facilitate the research on glandless trait, cotton MYC proteins and low-gossypol cotton breeding.
Collapse
Affiliation(s)
- Hailiang Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Cairui Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - John Z Yu
- USDA-ARS, Southern Plains Agricultural Research Center, Crop Germplasm Research Unit, 2881 F&B Road, College Station, TX, 77845, USA
| | - Changsong Zou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Youping Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Qiaolian Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Juan Huang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiaoxu Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Pengfei Jiang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Wencui Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Guoli Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
7
|
Tian X, Ruan J, Huang J, Fang X, Mao Y, Wang L, Chen X, Yang C. Gossypol: phytoalexin of cotton. SCIENCE CHINA-LIFE SCIENCES 2016; 59:122-9. [PMID: 26803304 DOI: 10.1007/s11427-016-5003-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/20/2015] [Indexed: 11/30/2022]
Abstract
Sesquiterpenoids are a class of 15-carbon secondary metabolites that play diverse roles in plant adaptation to environment. Cotton plants accumulate a large amount of sesquiterpene aldehydes (including gossypol) as phytoalexins against pathogens and herbivores. They are stored in pigment glands of aerial organs and in epidermal layers of roots. Several enzymes of gossypol biosynthesis pathway have been characterized, including 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) and farnesyl diphosphate synthase (FPS) that catalyze the formation of the precursor farnesyl diphosphate (FPP), (+)-δ-cadinene synthase (CDN) which is the first enzyme committed to gossypol biosynthesis, and the downstream enzymes of CYP706B1 and methyltransferase. Expressions of these genes are tightly regulated during cotton plants development and induced by jasmonate and fungi elicitors. The transcription factor GaWRKY1 has been shown to be involved in gossypol pathway regulation. Recent development of new genomic platforms and methods and releases of diploid and tetraploid cotton genome sequences will greatly facilitate the elucidation of gossypol biosynthetic pathway and its regulation.
Collapse
Affiliation(s)
- Xiu Tian
- School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Juxin Ruan
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jinquan Huang
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xin Fang
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yingbo Mao
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lingjian Wang
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaoya Chen
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.,Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai, 201602, China
| | - Changqing Yang
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
8
|
Zhang Y, Li ZX, Yu XD, Fan J, Pickett JA, Jones HD, Zhou JJ, Birkett MA, Caulfield J, Napier JA, Zhao GY, Cheng XG, Shi Y, Bruce TJA, Xia LQ. Molecular characterization of two isoforms of a farnesyl pyrophosphate synthase gene in wheat and their roles in sesquiterpene synthesis and inducible defence against aphid infestation. THE NEW PHYTOLOGIST 2015; 206:1101-1115. [PMID: 25644034 DOI: 10.1111/nph.13302] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 12/16/2014] [Indexed: 05/09/2023]
Abstract
Aphids are important pests of wheat (Triticum aestivum) that affect crop production globally. Herbivore-induced emission of sesquiterpenes can repel pests, and farnesyl pyrophosphate synthase (FPS) is a key enzyme involved in sesquiterpene biosynthesis. However, fps orthologues in wheat and their functional roles in sesquiterpene synthesis and defence against aphid infestation are unknown. Here, two fps isoforms, Tafps1 and Tafps2, were identified in wheat. Quantitative real-time polymerase chain reaction (qRT-PCR) and in vitro catalytic activity analyses were conducted to investigate expression patterns and activity. Heterologous expression of these isoforms in Arabidopsis thaliana, virus-induced gene silencing (VIGS) in wheat and aphid behavioural assays were performed to understand the functional roles of these two isoforms. We demonstrated that Tafps1 and Tafps2 played different roles in induced responses to aphid infestation and in sesquiterpene synthesis. Heterologous expression in A. thaliana resulted in repulsion of the peach aphid (Myzus persicae). Wheat plants with these two isoforms transiently silenced were significantly attractive to grain aphid (Sitobion avenae). Our results provide new insights into induced defence against aphid herbivory in wheat, in particular, the different roles of the two Tafps isoforms in both sesquiterpene biosynthesis and defence against aphid infestation.
Collapse
Affiliation(s)
- Yan Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, 11 Keyuanjing 4 Road, Laoshan District, Qingdao, 266101, China
| | - Zhi-Xia Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xiu-Dao Yu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jia Fan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - John A Pickett
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Huw D Jones
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | | | | | - John Caulfield
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | | | - Guang-Yao Zhao
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xian-Guo Cheng
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yi Shi
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, 11 Keyuanjing 4 Road, Laoshan District, Qingdao, 266101, China
| | - Toby J A Bruce
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Lan-Qin Xia
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| |
Collapse
|
9
|
Gene expression associated with intersterility in Heterobasidion. Fungal Genet Biol 2014; 73:104-19. [PMID: 25459536 DOI: 10.1016/j.fgb.2014.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/10/2014] [Accepted: 10/08/2014] [Indexed: 12/18/2022]
Abstract
Intersterility (IS) is thought to prevent mating compatibility between homokaryons that belong to different species. Although IS in Heterobasidion is regulated by the genes located at the IS loci, it is not yet known how the IS genes influence sexual compatibility and heterokaryon formation. To increase our understanding of the molecular events underlying IS, we studied mRNA abundance changes during IS compatible and incompatible interactions over time. The clustering of the transcripts into expression profiles, followed by the application of Gene Ontology (GO) enrichment pathway analysis of each of the clusters, allowed inference of biological processes participating in IS. These analyses identified events involved in mating and sexual development (i.e., linked with IS compatibility), which included processes associated with cell-cell adhesion and recognition, cell cycle control and signal transduction. We also identified events potentially involved in overriding mating between individuals belonging to different species (i.e., linked with IS incompatibility), which included reactive oxygen species (ROS) production, responses to stress (especially to oxidative stress), signal transduction and metabolic biosynthesis. Our findings thus enabled detection and characterization of gene expression changes associated with IS in Heterobasidion, as well as identification of important processes and pathways associated with this phenomenon. Overall, the results of this study increase current knowledge regarding the molecular mechanisms underpinning IS in Heterobasidion and allowed for the establishment of a vital baseline for further studies.
Collapse
|
10
|
Yang CQ, Wu XM, Ruan JX, Hu WL, Mao YB, Chen XY, Wang LJ. Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum). PHYTOCHEMISTRY 2013; 96:46-56. [PMID: 24074555 DOI: 10.1016/j.phytochem.2013.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/23/2013] [Accepted: 09/05/2013] [Indexed: 05/23/2023]
Abstract
Cotton plants accumulate gossypol and related sesquiterpene aldehydes, which function as phytoalexins against pathogens and feeding deterrents to herbivorous insects. However, to date little is known about the biosynthesis of volatile terpenes in this crop. Herein is reported that 5 monoterpenes and 11 sesquiterpenes from extracts of a glanded cotton cultivar, Gossypium hirsutum cv. CCRI12, were detected by gas chromatography-mass spectrometry (GC-MS). By EST data mining combined with Rapid Amplification of cDNA Ends (RACE), full-length cDNAs of three terpene synthases (TPSs), GhTPS1, GhTPS2 and GhTPS3 were isolated. By in vitro assays of the recombinant proteins, it was found that GhTPS1 and GhTPS2 are sesquiterpene synthases: the former converted farnesyl pyrophosphate (FPP) into β-caryophyllene and α-humulene in a ratio of 2:1, whereas the latter produced several sesquiterpenes with guaia-1(10),11-diene as the major product. By contrast, GhTPS3 is a monoterpene synthase, which produced α-pinene, β-pinene, β-phellandrene and trace amounts of other monoterpenes from geranyl pyrophosphate (GPP). The TPS activities were also supported by Virus Induced Gene Silencing (VIGS) in the cotton plant. GhTPS1 and GhTPS3 were highly expressed in the cotton plant overall, whereas GhTPS2 was expressed only in leaves. When stimulated by mechanical wounding, Verticillium dahliae (Vde) elicitor or methyl jasmonate (MeJA), production of terpenes and expression of the corresponding synthase genes were induced. These data demonstrate that the three genes account for the biosynthesis of volatile terpenes of cotton, at least of this Upland cotton.
Collapse
Affiliation(s)
- Chang-Qing Yang
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Gao W, Long L, Zhu LF, Xu L, Gao WH, Sun LQ, Liu LL, Zhang XL. Proteomic and virus-induced gene silencing (VIGS) Analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to Verticillium dahliae. Mol Cell Proteomics 2013; 12:3690-703. [PMID: 24019146 DOI: 10.1074/mcp.m113.031013] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Verticillium wilt causes massive annual losses of cotton yield, but the mechanism of cotton resistance to Verticillium dahliae is complex and poorly understood. In this study, a comparative proteomic analysis was performed in resistant cotton (Gossypium barbadense cv7124) on infection with V. dahliae. A total of 188 differentially expressed proteins were identified by mass spectrometry (MALDI-TOF/TOF) analysis and could be classified into 17 biological processes based on Gene Ontology annotation. Most of these proteins were implicated in stimulus response, cellular processes and metabolic processes. Based on the proteomic analysis, several genes involved in secondary metabolism, reactive oxygen burst and phytohormone signaling pathways were identified for further physiological and molecular analysis. The roles of the corresponding genes were further characterized by employing virus-induced gene silencing (VIGS). Based on the results, we suggest that the production of gossypol is sufficient to affect the cotton resistance to V. dahliae. Silencing of GbCAD1, a key enzyme involving in gossypol biosynthesis, compromised cotton resistance to V. dahliae. Reactive oxygen species and salicylic acid signaling may be also implicated as regulators in cotton responsive to V. dahliae according to the analysis of GbSSI2, an important regulator in the crosstalk between salicylic acid and jasmonic acid signal pathways. Moreover, brassinosteroids and jasmonic acid signaling may play essential roles in the cotton disease resistance to V. dahliae. The brassinosteroids signaling was activated in cotton on inoculation with V. dahliae and the disease resistance of cotton was enhanced after exogenous application of brassinolide. Meanwhile, jasmonic acid signaling was also activated in cotton after inoculation with V. dahliae and brassinolide application. These data provide highlights in the molecular basis of cotton resistance to V. dahliae.
Collapse
Affiliation(s)
- Wei Gao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Mao YB, Xue XY, Tao XY, Yang CQ, Wang LJ, Chen XY. Cysteine protease enhances plant-mediated bollworm RNA interference. PLANT MOLECULAR BIOLOGY 2013; 83:119-29. [PMID: 23460027 PMCID: PMC3755213 DOI: 10.1007/s11103-013-0030-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/15/2013] [Indexed: 05/17/2023]
Abstract
Oral ingestion of plant-expressed double stranded RNA (dsRNA) triggers target gene suppression in insect. An important step of this process is the transmission of dsRNA from plant to midgut cells. Insect peritrophic matrix (PM) presents a barrier that prevents large molecules from entering midgut cells. Here, we show that uptake of plant cysteine proteases, such as GhCP1 from cotton (Gossypium hirsutum) and AtCP2 from Arabidopsis, by cotton bollworm (Helicoverpa armigera) larvae resulted in attenuating the PM. When GhCP1 or AtCP2 pre-fed larvae were transferred to gossypol-containing diet, the bollworm accumulated higher content of gossypol in midgut. Larvae previously ingested GhCP1 or AtCP2 were more susceptible to infection by Dendrolimus punctatus cytoplasmic polyhedrosis virus (DpCPV), a dsRNA virus. Furthermore, the pre-fed larvae exhibited enhanced RNAi effects after ingestion of the dsRNA-expressing plant. The bollworm P450 gene CYP6AE14 is involved in the larval tolerance to gossypol; cotton plants producing dsRNA of CYP6AE14 (dsCYP6AE14) were more resistant to bollworm feeding (Mao et al. in Transgenic Res 20:665-673, 2011). We found that cotton plants harboring both 35S:dsCYP6AE14 and 35S:GhCP1 were better protected from bollworm than either of the single-transgene lines. Our results demonstrate that plant cysteine proteases, which have the activity of increasing PM permeability, can be used to improve the plant-mediated RNAi against herbivorous insects.
Collapse
Affiliation(s)
- Ying-Bo Mao
- National Key Laboratory of Plant Molecular Genetics, National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 People’s Republic of China
| | - Xue-Yi Xue
- National Key Laboratory of Plant Molecular Genetics, National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 People’s Republic of China
| | - Xiao-Yuan Tao
- National Key Laboratory of Plant Molecular Genetics, National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 People’s Republic of China
| | - Chang-Qing Yang
- National Key Laboratory of Plant Molecular Genetics, National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 People’s Republic of China
| | - Ling-Jian Wang
- National Key Laboratory of Plant Molecular Genetics, National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 People’s Republic of China
| | - Xiao-Ya Chen
- National Key Laboratory of Plant Molecular Genetics, National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 People’s Republic of China
| |
Collapse
|
13
|
XU L, ZHU LF, ZHANG XL. Research on Resistance Mechanism of Cotton to Verticillium Wilt. ZUOWU XUEBAO 2013. [DOI: 10.3724/sp.j.1006.2012.01553] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Zhou M, Zhang C, Wu Y, Tang Y. Metabolic engineering of gossypol in cotton. Appl Microbiol Biotechnol 2013; 97:6159-65. [PMID: 23775273 DOI: 10.1007/s00253-013-5032-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/31/2013] [Accepted: 05/31/2013] [Indexed: 11/24/2022]
Abstract
Cotton has long been known as a fiber plant. Besides the cotton fiber, the cottonseed oil and cottonseed protein are two other major products of cotton plants. However, the applications of the cottonseed oil and protein are limited because of the presence of toxic gossypol, which is unsafe for human and monogastric animal consumption. Meanwhile, gossypol in cotton increases the plant defense response to insect herbivores and pathogens. Consequently, gossypol has been extensively used in clinical trials in biomedical science. Over the last few years, major advances have occurred in both understanding and practice with regard to molecular regulation of gossypol pathway in cotton plant or hairy root culture. This review highlights a few major recent and ongoing developments in metabolic engineering of gossypol, as well as suggestions regarding further advances needed.
Collapse
Affiliation(s)
- Meiliang Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No 12, Haidian District, Beijing 100081, China
| | | | | | | |
Collapse
|
15
|
Molecular cloning and expression of Hedychium coronarium farnesyl pyrophosphate synthase gene and its possible involvement in the biosynthesis of floral and wounding/herbivory induced leaf volatile sesquiterpenoids. Gene 2013; 518:360-7. [PMID: 23333605 DOI: 10.1016/j.gene.2013.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/03/2013] [Accepted: 01/10/2013] [Indexed: 10/27/2022]
Abstract
Farnesyl pyrophosphate synthase (FPPS EC 2.5.1.10) catalyzes the production of farnesyl pyrophosphate (FPP), which is a key precursor for many sesquiterpenoids such as floral scent and defense volatiles against herbivore attack. Here we report a new full-length cDNA encoding farnesyl diphosphate synthase from Hedychium coronarium. The open reading frame for full-length HcFPPS encodes a protein of 356 amino acids, which is 1068 nucleotides long with calculated molecular mass of 40.7 kDa. Phylogenetic tree analysis indicates that HcFPPS belongs to the plant FPPS super-family and has strong relationship with FPPS from Musa acuminata. Expression of the HcFPPS gene in Escherichia coli yielded FPPS activity. Tissue-specific and developmental analyses of the HcFPPS mRNA and corresponding volatile sesquiterpenoid levels in H. coronarium flowers revealed that the HcFPPS might play a regulatory role in floral volatile sesquiterpenoid biosynthesis. The emission of the FPP-derived volatile terpenoid correlates with strong expression of HcFPPS induced by mechanical wounding and Udaspes folus-damage in leaves, which suggests that HcFPPS may have an important ecological function in H. coronarium vegetative organ.
Collapse
|
16
|
Farnesyl pyrophosphate synthase: a key enzyme in isoprenoid biosynthetic pathway and potential molecular target for drug development. N Biotechnol 2013; 30:114-23. [DOI: 10.1016/j.nbt.2012.07.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 07/05/2012] [Accepted: 07/05/2012] [Indexed: 11/19/2022]
|
17
|
Kumar V, Parkhi V, Joshi SG, Christensen S, Jayaprakasha GK, Patil BS, Kolomiets MV, Rathore KS. A novel, conditional, lesion mimic phenotype in cotton cotyledons due to the expression of an endochitinase gene from Trichoderma virens. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 183:86-95. [PMID: 22195581 DOI: 10.1016/j.plantsci.2011.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/02/2011] [Accepted: 11/06/2011] [Indexed: 05/31/2023]
Abstract
We have observed a novel, lesion mimic phenotype (LMP) in the cotyledons of cotton seedlings expressing an endochitinase gene from Trichoderma virens. This phenotype, however, is conditional and is elicited only when the transgenic seedlings are germinating on a medium that is devoid of mineral nutrients. The LMP manifests itself around the 5th day in the form of scattered, dry necrotic lesions on the cotyledons. The severity of the LMP is correlated with the level of transgene activity. Production of reactive oxygen species and activities of certain defense related enzymes and genes were substantially higher in the cotyledons of seedlings that were growing under mineral nutrient stress. Molecular and biochemical analyses indicated significantly higher-level activities of certain defense-related genes/enzymes at the onset of the phenotype. Treatment with methyl jasmonate can induce LMP in the cotyledons of wild-type (WT) seedlings similar to that observed in the endochitinase-expressing seedlings grown on nutrient-free medium. On the other hand, salicylic acid (SA), its functional analog, benzo(1,2,3) thiadiazole-7-carbothioic acid (BTH), and ibuprofen can rescue the LMP induced by the seedling-growth on nutrient-deficient medium. Nutrient deficiency-induced activation of a defense response appears to be the contributing factor in the development of LMP in endochitinase-expressing cotton seedlings.
Collapse
Affiliation(s)
- Vinod Kumar
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843-2123, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Mao YB, Tao XY, Xue XY, Wang LJ, Chen XY. Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms. Transgenic Res 2011; 20:665-73. [PMID: 20953975 PMCID: PMC3090577 DOI: 10.1007/s11248-010-9450-1] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 09/29/2010] [Indexed: 12/30/2022]
Abstract
RNA interference (RNAi) plays an important role in regulating gene expression in eukaryotes. Previously, we generated Arabidopsis and tobacco plants expressing double-stranded RNA (dsRNA) targeting a cotton bollworm (Helicoverpa armigera) P450 gene, CYP6AE14. Bollworms fed on transgenic dsCYP6AE14 plants showed suppressed CYP6AE14 expression and reduced growth on gossypol-containing diet (Mao et al., in Nat Biotechnol 25: 1307-1313, 2007). Here we report generation and analysis of dsRNA-expressing cotton (Gossypium hirsutum) plants. Bollworm larvae reared on T2 plants of the ds6-3 line exhibited drastically retarded growth, and the transgenic plants were less damaged by bollworms than the control. Quantitative reverse-transcription polymerase chain reaction (RT-PCR) showed that the CYP6AE14 expression level was reduced in the larvae as early as 4 h after feeding on the transgenic plants; accordingly, the CYP6AE14 protein level dropped. These results demonstrated that transgenic cotton plants expressing dsCYP6AE14 acquired enhanced resistance to cotton bollworms, and that RNAi technology can be used for engineering insect-proof cotton cultivar.
Collapse
Affiliation(s)
- Ying-Bo Mao
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, People's Republic of China.
| | | | | | | | | |
Collapse
|
19
|
Liu B, Wang H, Du Z, Li G, Ye H. Metabolic engineering of artemisinin biosynthesis in Artemisia annua L. PLANT CELL REPORTS 2011; 30:689-94. [PMID: 21184232 DOI: 10.1007/s00299-010-0967-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 11/18/2010] [Accepted: 11/30/2010] [Indexed: 05/19/2023]
Abstract
Artemisinin, a sesquiterpene lactone isolated from the Chinese medicinal plant Artemisia annua L., is an effective antimalarial agent, especially for multi-drug resistant and cerebral malaria. To date, A. annua is still the only commercial source of artemisinin. The low concentration of artemisinin in A. annua, ranging from 0.01 to 0.8% of the plant dry weight, makes artemisinin relatively expensive and difficult to meet the demand of over 100 million courses of artemisinin-based combinational therapies per year. Since the chemical synthesis of artemisinin is not commercially feasible at present, another promising approach to reduce the price of artemisinin-based antimalarial drugs is metabolic engineering of the plant to obtain a higher content of artemisinin in transgenic plants. In the past decade, we have established an Agrobacterium-mediated transformation system of A. annua, and have successfully transferred a number of genes related to artemisinin biosynthesis into the plant. The various aspects of these efforts are discussed in this review.
Collapse
Affiliation(s)
- Benye Liu
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Nanxincun 20, Haidian District, Beijing, 100093, China
| | | | | | | | | |
Collapse
|
20
|
Yang CQ, Lu S, Mao YB, Wang LJ, Chen XY. Characterization of two NADPH: cytochrome P450 reductases from cotton (Gossypium hirsutum). PHYTOCHEMISTRY 2010; 71:27-35. [PMID: 19883924 DOI: 10.1016/j.phytochem.2009.09.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 09/17/2009] [Accepted: 09/22/2009] [Indexed: 05/23/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) are commonly involved in biosynthesis of endogenous compounds and catabolism of xenobiotics, and their activities rely on a partner enzyme, cytochrome P450 reductase (CPR, E.C.1.6.2.4). Two CPR cDNAs, GhCPR1 and GhCPR2, were isolated from cotton (Gossypium hirsutum). They are 71% identical to each other at the amino acid sequence level and belong to the Class I and II of dicotyledonous CPRs, respectively. The recombinant enzymes reduced cytochrome c, ferricyanide and dichlorophenolindophenol (DCPIP) in an NADPH-dependent manner, and supported the activity of CYP73A25, a cinnamate 4-hydroxylase of cotton. Both GhCPR genes were widely expressed in cotton tissues, with a reduced expression level of GhCPR2 in the glandless cotton cultivar. Expression of GhCPR2, but not GhCPR1, was inducible by mechanical wounding and elicitation, indicating that the GhCPR2 is more related to defense reactions, including biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Chang-Qing Yang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, People's Republic of China
| | | | | | | | | |
Collapse
|
21
|
Molecular cloning, expression profiling and functional analyses of a cDNA encoding isopentenyl diphosphate isomerase from Gossypium barbadense. Biosci Rep 2009; 29:111-9. [PMID: 19055484 DOI: 10.1042/bsr20070052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Gossypol, a type of plant defence sesquiterpenoid phytoalexin, is synthesized from the MEP (2C-methyl-D-erythritol 4-phosphate) and MVA (mevalonate) pathway in the isoprenoid biosynthetic system. The key step is the isomerization of IPP (isopentenyl diphosphate) to DMAPP (dimethylallyl diphosphate), which is catalysed by IPI (IPP isomerase; EC 5.3.3.2). A full-length cDNA encoding IPI (designated GbIPI) was cloned from Gossypium barbadense by RACE (rapid amplification of cDNA ends). The full-length cDNA of GbIPI was 1205 bp and contained a 906 bp ORF (open reading frame) encoding a protein of 302 amino acids, with a predicted molecular mass of 34.39 kDa and an isoelectric point of 6.07. Amino acid sequence analysis revealed that the GbIPI has a high level of similarity to other IPIs. Southern-blot analysis revealed that GbIPI belongs to a small gene family. Expression analysis indicated that GbIPI expression is highest in stems, followed by leaves, and is lowest in roots, and that the expression of GbIPI could be induced by Verticillium dahliae Kleb, MeJA (methyl jasmonate) and SA (salicylic acid). The functional colour assay indicated that GbIPI could accelerate the accumulation of beta-carotene in Escherichia coli transformants. The cloning and functional analysis of GbIPI will be useful in increasing understanding of the role of IPI in isoprenoid biosynthesis at the molecular level.
Collapse
|
22
|
Turco E, Vizzuso C, Franceschini S, Ragazzi A, Stefanini FM. The in vitro effect of gossypol and its interaction with salts on conidial germination and viability of Fusarium oxysporum sp. vasinfectum isolates. J Appl Microbiol 2008; 103:2370-81. [PMID: 18045422 DOI: 10.1111/j.1365-2672.2007.03503.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To assess the effect of different concentrations of gossypol (0, 2, 4, 10 and 20 mg l(-1)) in combination with NaCl and Na(2)SO(4) (20 mS cm(-1)) on the conidial germination and viability of Fusarium oxysporum f.sp. vasinfectum (Fov). METHODS AND RESULTS A multinomial logistic model was developed to estimate the germination probability of Fov. The inhibitory effect was markedly evident at the two highest concentrations of gossypol; it varied among the isolates tested and with time, and it was attenuated by the presence of sodium salts. The inhibition was temporary as the germination probability increased after 8 h. Fluorescent staining revealed that gossypol either killed the conidia or retarded the elongation of the germ tubes. CONCLUSION Fov showed the ability to overcome gossypol inhibition over time, and the inhibitory effect is reduced under saline conditions. Differential responses among Fov isolates to the presence of gossypol suggest that gossypol tolerance is genetically determined in the pathogen. SIGNIFICANCE AND IMPACT OF THE STUDY This study suggests that selecting for high plant gossypol cultivars would have minimal effect on the overall Fov resistance of cotton. A new statistical model was developed to explore the statistical significance of plant-pathogen interactions.
Collapse
Affiliation(s)
- E Turco
- Dipartimento di Biotecnologie Agrarie, Sezione di Patologia vegetale, Università di Firenze, Florence, Italy.
| | | | | | | | | |
Collapse
|
23
|
Fine mapping of the dominant glandless Gene Gl 2 e in Sea-island cotton (Gossypium barbadense L.). ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11434-007-0468-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Ament K, Van Schie CC, Bouwmeester HJ, Haring MA, Schuurink RC. Induction of a leaf specific geranylgeranyl pyrophosphate synthase and emission of (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene in tomato are dependent on both jasmonic acid and salicylic acid signaling pathways. PLANTA 2006; 224:1197-208. [PMID: 16786318 DOI: 10.1007/s00425-006-0301-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 04/11/2006] [Indexed: 05/10/2023]
Abstract
Two cDNAs encoding geranylgeranyl pyrophosphate (GGPP) synthases from tomato (Lycopersicon esculentum) have been cloned and functionally expressed in Escherichia coli. LeGGPS1 was predominantly expressed in leaf tissue and LeGGPS2 in ripening fruit and flower tissue. LeGGPS1 expression was induced in leaves by spider mite (Tetranychus urticae)-feeding and mechanical wounding in wild type tomato but not in the jasmonic acid (JA)-response mutant def-1 and the salicylic acid (SA)-deficient transgenic NahG line. Furthermore, LeGGPS1 expression could be induced in leaves of wild type tomato plants by JA- or methyl salicylate (MeSA)-treatment. In contrast, expression of LeGGPS2 was not induced in leaves by spider mite-feeding, wounding, JA- or MeSA-treatment. We show that emission of the GGPP-derived volatile terpenoid (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT) correlates with expression of LeGGPS1. An exception was MeSA-treatment, which resulted in induction of LeGGPS1 but not in emission of TMTT. We show that there is an additional layer of regulation, because geranyllinalool synthase, catalyzing the first dedicated step in TMTT biosynthesis, was induced by JA but not by MeSA.
Collapse
Affiliation(s)
- Kai Ament
- Swammerdam Institute for Life Sciences, Department of Plant Physiology, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
25
|
Townsend BJ, Poole A, Blake CJ, Llewellyn DJ. Antisense suppression of a (+)-delta-cadinene synthase gene in cotton prevents the induction of this defense response gene during bacterial blight infection but not its constitutive expression. PLANT PHYSIOLOGY 2005; 138:516-28. [PMID: 15849309 PMCID: PMC1104203 DOI: 10.1104/pp.104.056010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 02/15/2005] [Accepted: 03/02/2005] [Indexed: 05/18/2023]
Abstract
In cotton (Gossypium hirsutum) the enzyme (+)-delta-cadinene synthase (CDNS) catalyzes the first committed step in the biosynthesis of cadinane-type sesquiterpenes, such as gossypol, that provide constitutive and inducible protection against pests and diseases. A cotton cDNA clone encoding CDNS (cdn1-C4) was isolated from developing embryos and functionally characterized. Southern analysis showed that CDNS genes belong to a large multigene family, of which five genomic clones were studied, including three pseudogenes and one gene that may represent another subfamily of CDNS. CDNS expression was shown to be induced in cotton infected with either the bacterial blight or verticillium wilt pathogens. Constructs for the constitutive or seed-specific antisense suppression of cdn1-C4 were introduced into cotton by Agrobacterium-mediated transformation. Gossypol levels were not reduced in the seeds of transformants with either construct, nor was the induction of CDNS expression affected in stems of the constitutive antisense plants infected with Verticillium dahliae Kleb. However, the induction of CDNS mRNA and protein in response to bacterial blight infection of cotyledons was completely blocked in the constitutive antisense plants. These results suggest that cdn1-C4 may be involved specifically in the bacterial blight response and that the CDNS multigene family comprises a complex set of genes differing in their temporal and spatial regulation and responsible for different branches of the cotton sesquiterpene pathway.
Collapse
Affiliation(s)
- Belinda J Townsend
- Commonwealth Scientific and Industrial Research Organisation-Plant Industry, Canberra, Australian Capital Territory 2601, Australia
| | | | | | | |
Collapse
|
26
|
Wang JY, Cai Y, Gou JY, Mao YB, Xu YH, Jiang WH, Chen XY. VdNEP, an elicitor from Verticillium dahliae, induces cotton plant wilting. Appl Environ Microbiol 2004; 70:4989-95. [PMID: 15294839 PMCID: PMC492334 DOI: 10.1128/aem.70.8.4989-4995.2004] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Accepted: 04/26/2004] [Indexed: 11/20/2022] Open
Abstract
Verticillium wilt is a vascular disease of cotton. The causal fungus, Verticillium dahliae, secretes elicitors in culture. We have generated approximately 1,000 5'-terminal expressed sequence tags (ESTs) from a cultured mycelium of V. dahliae. A number of ESTs were found to encode proteins harboring putative signal peptides for secretion, and their cDNAs were isolated. Heterologous expression led to the identification of a protein with elicitor activities. This protein, named V. dahliae necrosis- and ethylene-inducing protein (VdNEP), is composed of 233 amino acids and has high sequence identities with fungal necrosis- and ethylene-inducing proteins. Infiltration of the bacterially expressed His-VdNEP into Nicotiana benthamiana leaves resulted in necrotic lesion formation. In Arabidopsis thaliana, the fusion protein also triggered production of reactive oxygen species and induced the expression of PR genes. When added into suspension cultured cells of cotton (Gossypium arboreum), the fusion protein elicited the biosynthesis of gossypol and related sesquiterpene phytoalexins at low concentrations, and it induced cell death at higher concentrations. On cotton cotyledons and leaves, His-VdNEP induced dehydration and wilting, similar to symptoms caused by a crude preparation of V. dahliae elicitors. Northern blotting showed a low level of VdNEP expression in the mycelium during culture. These data suggest that VdNEP is a wilt-inducing factor and that it participates in cotton-V. dahliae interactions.
Collapse
Affiliation(s)
- Jian-Ying Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Rd., Shanghai 200032, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
27
|
Xu YH, Wang JW, Wang S, Wang JY, Chen XY. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A. PLANT PHYSIOLOGY 2004; 135:507-15. [PMID: 15133151 PMCID: PMC429402 DOI: 10.1104/pp.104.038612] [Citation(s) in RCA: 301] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2004] [Revised: 03/28/2004] [Accepted: 03/30/2004] [Indexed: 05/18/2023]
Abstract
The cotton (+)-delta-cadinene synthase (CAD1), a sesquiterpene cyclase, catalyzes a branch-point step leading to biosynthesis of sesquiterpene phytoalexins, including gossypol. CAD1-A is a member of CAD1 gene family, and its promoter contains a W-box palindrome with two reversely oriented TGAC repeats, which are the proposed binding sites of WRKY transcription factors. We isolated several WRKY cDNAs from Gossypium arboreum. One of them, GaWRKY1, encodes a protein containing a single WRKY domain and a putative N-terminal Leu zipper. Similar to genes encoding enzymes of cotton sesquiterpene pathway, GaWRKY1 was down-regulated in a glandless cotton cultivar that contained much less gossypol. GaWRKY1 showed a temporal and spatial pattern of expression comparable to that of CAD1-A in various aerial organs examined, including sepal, stigma, anther, and developing seeds. In suspension cells, expression of both GaWRKY1 and CAD1-A genes and biosynthesis of sesquiterpene aldehydes were strongly induced by a fungal elicitor preparation and methyl jasmonate. GaWRKY1 interacted with the 3x W-box derived from CAD1-A promoter in yeast (Saccharomyces cerevisiae) one-hybrid system and in vitro. Furthermore, in transgenic Arabidopsis plants, overexpression of GaWRKY1 highly activated the CAD1-A promoter, and transient assay in tobacco (Nicotiana tabacum) leaves demonstrated that W-box was required for this activation. These results suggest that GaWRKY1 participates in regulation of sesquiterpene biosynthesis in cotton, and CAD1-A is a target gene of this transcription factor.
Collapse
Affiliation(s)
- Yan-Hua Xu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
28
|
Zhao Y, Ye H, Li G, Chen D, Liu Y. Cloning and enzymology analysis of farnesyl pyrophosphate synthase gene from a superior strain ofArtemisia annua L. CHINESE SCIENCE BULLETIN-CHINESE 2003. [DOI: 10.1007/bf03183336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Cai Y, Jia JW, Crock J, Lin ZX, Chen XY, Croteau R. A cDNA clone for beta-caryophyllene synthase from Artemisia annua. PHYTOCHEMISTRY 2002; 61:523-9. [PMID: 12409018 DOI: 10.1016/s0031-9422(02)00265-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
An homology-based cloning strategy yielded a full-length cDNA from Artemisia annua that encoded a protein of 60.3 kDa which resembled a sesquiterpene synthase in sequence. Heterologous expression of the gene in Escherichia coli provided a soluble recombinant enzyme capable of catalyzing the divalent metal ion-dependent conversion of farnesyl diphosphate to beta-caryophyllene, a sesquiterpene olefin found in the essential oil of A. annua. In reaction parameters and kinetic properties, beta-caryophyllene synthase resembles other sesquiterpene synthases of angiosperms. The beta-caryophyllene synthase gene is expressed in most plant tissues during early development, and is induced in mature tissue in response to fungal elicitor thus suggesting a role for beta-caryophyllene in plant defense.
Collapse
Affiliation(s)
- Yu Cai
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, P R, China
| | | | | | | | | | | |
Collapse
|
30
|
Lu S, Xu R, Jia JW, Pang J, Matsuda SPT, Chen XY. Cloning and functional characterization of a beta-pinene synthase from Artemisia annua that shows a circadian pattern of expression. PLANT PHYSIOLOGY 2002; 130:477-86. [PMID: 12226526 PMCID: PMC166579 DOI: 10.1104/pp.006544] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2002] [Revised: 05/16/2002] [Accepted: 05/16/2002] [Indexed: 05/17/2023]
Abstract
Artemisia annua plants produce a broad range of volatile compounds, including monoterpenes, which contribute to the characteristic fragrance of this medicinal species. A cDNA clone, QH6, contained an open reading frame encoding a 582-amino acid protein that showed high sequence identity to plant monoterpene synthases. The prokaryotically expressed QH6 fusion protein converted geranyl diphosphate to (-)-beta-pinene and (-)-alpha-pinene in a 94:6 ratio. QH6 was predominantly expressed in juvenile leaves 2 weeks postsprouting. QH6 transcript levels were transiently reduced following mechanical wounding or fungal elicitor treatment, suggesting that this gene is not directly involved in defense reaction induced by either of these treatments. Under a photoperiod of 12 h/12 h (light/dark), the abundance of QH6 transcripts fluctuated in a diurnal pattern that ebbed around 3 h before daybreak (9th h in the dark phase) and peaked after 9 h in light (9th h in the light phase). The contents of (-)-beta-pinene in juvenile leaves and in emitted volatiles also varied in a diurnal rhythm, correlating strongly with mRNA accumulation. When A. annua was entrained by constant light or constant dark conditions, QH6 transcript accumulation continued to fluctuate with circadian rhythms. Under constant light, advanced cycles of fluctuation of QH6 transcript levels were observed, and under constant dark, the cycle was delayed. However, the original diurnal pattern could be regained when the plants were returned to the normal light/dark (12 h/12 h) photoperiod. This is the first report that monoterpene biosynthesis is transcriptionally regulated in a circadian pattern.
Collapse
Affiliation(s)
- Shan Lu
- National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
31
|
Luo P, Wang YH, Wang GD, Essenberg M, Chen XY. Molecular cloning and functional identification of (+)-delta-cadinene-8-hydroxylase, a cytochrome P450 mono-oxygenase (CYP706B1) of cotton sesquiterpene biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 28:95-104. [PMID: 11696190 DOI: 10.1046/j.1365-313x.2001.01133.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In cotton, gossypol and related sesquiterpene aldehydes are present in the glands of aerial tissues and in epidermal cells of roots. A cytochrome P450 was found to be expressed in aerial tissues of glanded cotton cultivars, but not or at an extremely low level in the aerial tissues of a glandless cultivar. Its cDNA was then isolated from Gossypium arboreum L. After expression in Saccharomyces cerevisiae, the P450 was found to catalyse the hydroxylation of (+)-delta-cadinene, forming 8-hydroxy-(+)-delta-cadinene. This P450 mono-oxygenase has been classified as CYP706B1, and is the first member of the CYP706 family for which a function has been determined. Sesquiterpene aldehydes and CYP706B1 transcripts were detected in roots of both the glanded and glandless cultivars and in aerial tissues of the glanded cultivar. In suspension cultured cells of G. arboreum, elicitors prepared from the phytopathogenic fungus Verticillium dahliae caused a dramatic induction of CYP706B1 expression. The expression pattern of CYP706B1 and the position at which it hydroxylates (+)-delta-cadinene suggest that it catalyses an early step in gossypol biosynthesis. Southern blotting revealed a single copy of CYP706B1 in the genome of G. arboreum. CYP706B1 holds good potential for manipulation of gossypol levels in cottonseed via genetic engineering.
Collapse
Affiliation(s)
- P Luo
- National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, People's Republic of China
| | | | | | | | | |
Collapse
|
32
|
Rivera SB, Swedlund BD, King GJ, Bell RN, Hussey CE, Shattuck-Eidens DM, Wrobel WM, Peiser GD, Poulter CD. Chrysanthemyl diphosphate synthase: isolation of the gene and characterization of the recombinant non-head-to-tail monoterpene synthase from Chrysanthemum cinerariaefolium. Proc Natl Acad Sci U S A 2001; 98:4373-8. [PMID: 11287653 PMCID: PMC31842 DOI: 10.1073/pnas.071543598] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chrysanthemyl diphosphate synthase (CPPase) catalyzes the condensation of two molecules of dimethylallyl diphosphate to produce chrysanthemyl diphosphate (CPP), a monoterpene with a non-head-to-tail or irregular c1'-2-3 linkage between isoprenoid units. Irregular monoterpenes are common in Chrysanthemum cinerariaefolium and related members of the Asteraceae family. In C. cinerariaefolium, CPP is an intermediate in the biosynthesis of the pyrethrin ester insecticides. CPPase was purified from immature chrysanthemum flowers, and the N terminus of the protein was sequenced. A C. cinerariaefolium lambda cDNA library was screened by using degenerate oligonucleotide probes based on the amino acid sequence to identify a CPPase clone that encoded a 45-kDa preprotein. The first 50 aa of the ORF constitute a putative plastidial targeting sequence. Recombinant CPPase bearing an N-terminal polyhistidine affinity tag in place of the targeting sequence was purified to homogeneity from an overproducing Escherichia coli strain by Ni(2+) chromatography. Incubation of recombinant CPPase with dimethylallyl diphosphate produced CPP. The diphosphate ester was hydrolyzed by alkaline phosphatase, and the resulting monoterpene alcohol was analyzed by GC/MS to confirm its structure. The amino acid sequence of CPPase aligns closely with that of the chain elongation prenyltransferase farnesyl diphosphate synthase rather than squalene synthase or phytoene synthase, which catalyze c1'-2-3 cyclopropanation reactions similar to the CPPase reaction.
Collapse
Affiliation(s)
- S B Rivera
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Biochemical, Molecular Genetic and Evolutionary Aspects of Defense-Related Terpenoid Metabolism in Conifers. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0079-9920(00)80006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
|