1
|
Szarzanowicz MJ, Waldburger LM, Busche M, Geiselman GM, Kirkpatrick LD, Kehl AJ, Tahmin C, Kuo RC, McCauley J, Pannu H, Cui R, Liu S, Hillson NJ, Brunkard JO, Keasling JD, Gladden JM, Thompson MG, Shih PM. Binary vector copy number engineering improves Agrobacterium-mediated transformation. Nat Biotechnol 2024:10.1038/s41587-024-02462-2. [PMID: 39496930 DOI: 10.1038/s41587-024-02462-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/02/2024] [Indexed: 11/06/2024]
Abstract
The copy number of a plasmid is linked to its functionality, yet there have been few attempts to optimize higher-copy-number mutants for use across diverse origins of replication in different hosts. We use a high-throughput growth-coupled selection assay and a directed evolution approach to rapidly identify origin of replication mutations that influence copy number and screen for mutants that improve Agrobacterium-mediated transformation (AMT) efficiency. By introducing these mutations into binary vectors within the plasmid backbone used for AMT, we observe improved transient transformation of Nicotiana benthamiana in four diverse tested origins (pVS1, RK2, pSa and BBR1). For the best-performing origin, pVS1, we isolate higher-copy-number variants that increase stable transformation efficiencies by 60-100% in Arabidopsis thaliana and 390% in the oleaginous yeast Rhodosporidium toruloides. Our work provides an easily deployable framework to generate plasmid copy number variants that will enable greater precision in prokaryotic genetic engineering, in addition to improving AMT efficiency.
Collapse
Affiliation(s)
- Matthew J Szarzanowicz
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Lucas M Waldburger
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael Busche
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Liam D Kirkpatrick
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Alexander J Kehl
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Claudine Tahmin
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Rita C Kuo
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Joshua McCauley
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hamreet Pannu
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Ruoming Cui
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Shuying Liu
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Nathan J Hillson
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jacob O Brunkard
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Jay D Keasling
- Joint BioEnergy Institute, Emeryville, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- QB3, University of California, Berkeley, Berkeley, CA, USA
- Center for Biosustainability, Danish Technical University, Kongens Lyngby, Denmark
| | - John M Gladden
- Joint BioEnergy Institute, Emeryville, CA, USA
- Sandia National Laboratories, Livermore, CA, USA
| | - Mitchell G Thompson
- Joint BioEnergy Institute, Emeryville, CA, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| | - Patrick M Shih
- Joint BioEnergy Institute, Emeryville, CA, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA.
- Innovative Genomics Institute, Berkeley, CA, USA.
| |
Collapse
|
2
|
Moffat AD, Höing L, Santos-Aberturas J, Markwalder T, Malone JG, Teufel R, Truman AW. Understanding the biosynthesis, metabolic regulation, and anti-phytopathogen activity of 3,7-dihydroxytropolone in Pseudomonas spp. mBio 2024; 15:e0102224. [PMID: 39207110 PMCID: PMC11481866 DOI: 10.1128/mbio.01022-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
The genus Pseudomonas is a prolific source of specialized metabolites with significant biological activities, including siderophores, antibiotics, and plant hormones. These molecules play pivotal roles in environmental interactions, influencing pathogenicity, inhibiting microorganisms, responding to nutrient limitation and abiotic challenges, and regulating plant growth. These properties mean that pseudomonads are suitable candidates as biological control agents against plant pathogens. Multiple transposon-based screens have identified a Pseudomonas biosynthetic gene cluster (BGC) associated with potent antibacterial and antifungal activities, which produces 7-hydroxytropolone (7-HT). In this study, we show that this BGC also makes 3,7-dihydroxytropolone (3,7-dHT), which has strong antimicrobial activity toward Streptomyces scabies, a potato pathogen. Through metabolomics and reporter assays, we unveil the involvement of cluster-situated genes in generating phenylacetyl-coenzyme A, a key precursor for tropolone biosynthesis via the phenylacetic acid catabolon. The clustering of these phenylacetic acid genes within tropolone BGCs is unusual in other Gram-negative bacteria. Our findings support the interception of phenylacetic acid catabolism via an enoyl-CoA dehydratase encoded in the BGC, as well as highlighting an essential role for a conserved thioesterase in biosynthesis. Biochemical assays were used to show that this thioesterase functions after a dehydrogenation-epoxidation step catalyzed by a flavoprotein. We use this information to identify diverse uncharacterized BGCs that encode proteins with homology to flavoproteins and thioesterases involved in tropolone biosynthesis. This study provides insights into tropolone biosynthesis in Pseudomonas, laying the foundation for further investigations into the ecological role of tropolone production.IMPORTANCEPseudomonas bacteria produce various potent chemicals that influence interactions in nature, such as metal-binding molecules, antibiotics, or plant hormones. This ability to synthesize bioactive molecules means that Pseudomonas bacteria may be useful as biological control agents to protect plants from agricultural pathogens, as well as a source of antibiotic candidates. We have identified a plant-associated Pseudomonas strain that can produce 3,7-dihydroxytropolone, which has broad biological activity and can inhibit the growth of Streptomyces scabies, a bacterium that causes potato scab. Following the identification of this molecule, we used a combination of genetic, chemical, and biochemical experiments to identify key steps in the production of tropolones in Pseudomonas species. Understanding this biosynthetic process led to the discovery of an array of diverse pathways that we predict will produce new tropolone-like molecules. This work should also help us shed light on the natural function of antibiotics in nature.
Collapse
Affiliation(s)
- Alaster D. Moffat
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Lars Höing
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | - Tim Markwalder
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jacob G. Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Robin Teufel
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Andrew W. Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
3
|
Matsumoto S, Kishida K, Nonoyama S, Sakai K, Tsuda M, Nagata Y, Ohtsubo Y. Evolution of the Tn 4371 ICE family: traR-mediated coordination of cargo gene upregulation and horizontal transfer. Microbiol Spectr 2024; 12:e0060724. [PMID: 39264161 PMCID: PMC11448139 DOI: 10.1128/spectrum.00607-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/18/2024] [Indexed: 09/13/2024] Open
Abstract
ICEKKS102Tn4677 carries a bph operon for the mineralization of polychlorinated biphenyls (PCBs)/biphenyl and belongs to the Tn4371 ICE (integrative and conjugative element) family. In this study, we investigated the role of the traR gene in ICE transfer. The traR gene encodes a LysR-type transcriptional regulator, which is conserved in sequence, positioning, and directional orientation among Tn4371 family ICEs. The traR belongs to the bph operon, and its overexpression on solid medium resulted in modest upregulation of traG (threefold), marked upregulation of xis (80-fold), enhanced ICE excision and, most notably, ICE transfer frequency. We propose the evolutional roles of traR, which upon insertion to its current position, might have connected the cargo gene activation and ICE transfer. This property of ICE, i.e., undergoing transfer under environmental conditions that lead to cargo gene activation, would instantly confer fitness advantages to bacteria newly acquiring this ICE, thereby resulting in efficient dissemination of the Tn4371 family ICEs.IMPORTANCEOnly ICEKKS102Tn4677 is proven to transfer among the widely disseminating Tn4371 family integrative and conjugative elements (ICEs) from β and γ-proteobacteria. We showed that the traR gene in ICEKKS102Tn4677, which is conserved in the ICE family with fixed location and direction, is co-transcribed with the cargo gene and activates ICE transfer. We propose that capturing of traR by an ancestral ICE to the current position established the Tn4371 family of ICEs. Our findings provide insights into the evolutionary processes that led to the widespread distribution of the Tn4371 family of ICEs across bacterial species.
Collapse
Affiliation(s)
- Satoshi Matsumoto
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kouhei Kishida
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shouta Nonoyama
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Keiichiro Sakai
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Masataka Tsuda
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yuji Nagata
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yoshiyuki Ohtsubo
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
4
|
George M, Narayanan S, Tejada-Arranz A, Plack A, Basler M. Initiation of H1-T6SS dueling between Pseudomonas aeruginosa. mBio 2024; 15:e0035524. [PMID: 38990002 PMCID: PMC11323562 DOI: 10.1128/mbio.00355-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
The Type VI secretion system (T6SS) is a multicomponent apparatus, present in many Gram-negative bacteria, which can inhibit bacterial prey in various ecological niches. Pseudomonas aeruginosa assembles one of its three T6SS (H1-T6SS) to respond to attacks from adjacent competing bacteria. Surprisingly, repeated assemblies of the H1-T6SS, termed dueling, were described in a monoculture in the absence of an attacker strain; however, the underlying mechanism was unknown. Here, we explored the role of H2-T6SS of P. aeruginosa in triggering H1-T6SS assembly. We show that H2-T6SS inactivation in P. aeruginosa causes a significant reduction in H1-T6SS dueling and that H2-T6SS activity directly triggers retaliation by the H1-T6SS. Intraspecific competition experiments revealed that elimination of H2-T6SS in non-immune prey cells conferred protection from H1-T6SS. Moreover, we show that the H1-T6SS response is triggered independently of the characterized lipase effectors of the H2-T6SS, as well as those of Acinetobacter baylyi and Vibrio cholerae. Our results suggest that H1-T6SS response to H2-T6SS in P. aeruginosa can impact intraspecific competition, particularly when the H1-T6SS effector-immunity pairs differ between strains, and could determine the outcome of multistrain colonization.IMPORTANCEThe opportunistic pathogen Pseudomonas aeruginosa harbors three different Type VI secretion systems (H1, H2, and H3-T6SS), which can translocate toxins that can inhibit bacterial competitors or inflict damage to eukaryotic host cells. Unlike the unregulated T6SS assembly in other Gram-negative bacteria, the H1-T6SS in P. aeruginosa is precisely assembled as a response to various cell damaging attacks from neighboring bacterial cells. Surprisingly, it was observed that neighboring P. aeruginosa cells repeatedly assemble their H1-T6SS toward each other. Mechanisms triggering this "dueling" behavior between sister cells were unknown. In this report, we used a combination of microscopy, genetic and intraspecific competition experiments to show that H2-T6SS initiates H1-T6SS dueling. Our study highlights the interplay between different T6SS clusters in P. aeruginosa, which may influence the outcomes of multistrain competition in various ecological settings such as biofilm formation and colonization of cystic fibrosis lungs.
Collapse
Affiliation(s)
- M. George
- Biozentrum, University of Basel, Basel, Switzerland
| | - S. Narayanan
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - A. Plack
- Biozentrum, University of Basel, Basel, Switzerland
| | - M. Basler
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Cruz AAD, Cabeo M, Durán-Viseras A, Sampedro I, Llamas I. Interference of AHL signal production in the phytophatogen Pantoea agglomerans as a sustainable biological strategy to reduce its virulence. Microbiol Res 2024; 285:127781. [PMID: 38795406 DOI: 10.1016/j.micres.2024.127781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/23/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Pantoea agglomerans is considered one of the most ubiquitous and versatile organisms that include strains that induce diseases in various crops and occasionally cause opportunistic infections in humans. To develop effective strategies to mitigate its impact on plant health and agricultural productivity, a comprehensive investigation is crucial for better understanding its pathogenicity. One proposed eco-friendly approach involves the enzymatic degradation of quorum sensing (QS) signal molecules like N-acylhomoserine lactones (AHLs), known as quorum quenching (QQ), offering potential treatment for such bacterial diseases. In this study the production of C4 and 3-oxo-C6HSL was identified in the plant pathogenic P. agglomerans CFBP 11141 and correlated to enzymatic activities such as amylase and acid phosphatase. Moreover, the heterologous expression of a QQ enzyme in the pathogen resulted in lack of AHLs production and the attenuation of the virulence by mean of drastically reduction of soft rot disease in carrots and cherry tomatoes. Additionally, the interference with the QS systems of P. agglomerans CFBP 11141 by two the plant growth-promoting and AHL-degrading bacteria (PGP-QQ) Pseudomonas segetis P6 and Bacillus toyonensis AA1EC1 was evaluated as a potential biocontrol approach for the first time. P. segetis P6 and B. toyonensis AA1EC1 demonstrated effectiveness in diminishing soft rot symptoms induced by P. agglomerans CFBP 11141 in both carrots and cherry tomatoes. Furthermore, the virulence of pathogen notably decreased when co-cultured with strain AA1EC1 on tomato plants.
Collapse
Affiliation(s)
- Alba Amaro-da Cruz
- Department of Microbiology, Faculty of Pharmacy, Cartuja Campus, University of Granada, Granada 18071, Spain
| | - Mónica Cabeo
- Department of Microbiology, Faculty of Pharmacy, Cartuja Campus, University of Granada, Granada 18071, Spain
| | - Ana Durán-Viseras
- Department of Microbiology, Faculty of Pharmacy, Cartuja Campus, University of Granada, Granada 18071, Spain
| | - Inmaculada Sampedro
- Department of Microbiology, Faculty of Pharmacy, Cartuja Campus, University of Granada, Granada 18071, Spain; Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, Granada 18106, Spain.
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, Cartuja Campus, University of Granada, Granada 18071, Spain; Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, Granada 18106, Spain.
| |
Collapse
|
6
|
Baukova A, Bogun A, Sushkova S, Minkina T, Mandzhieva S, Alliluev I, Jatav HS, Kalinitchenko V, Rajput VD, Delegan Y. New Insights into Pseudomonas spp.-Produced Antibiotics: Genetic Regulation of Biosynthesis and Implementation in Biotechnology. Antibiotics (Basel) 2024; 13:597. [PMID: 39061279 PMCID: PMC11273644 DOI: 10.3390/antibiotics13070597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Pseudomonas bacteria are renowned for their remarkable capacity to synthesize antibiotics, namely mupirocin, gluconic acid, pyrrolnitrin, and 2,4-diacetylphloroglucinol (DAPG). While these substances are extensively employed in agricultural biotechnology to safeguard plants against harmful bacteria and fungi, their potential for human medicine and healthcare remains highly promising for common science. However, the challenge of obtaining stable producers that yield higher quantities of these antibiotics continues to be a pertinent concern in modern biotechnology. Although the interest in antibiotics of Pseudomonas bacteria has persisted over the past century, many uncertainties still surround the regulation of the biosynthetic pathways of these compounds. Thus, the present review comprehensively studies the genetic organization and regulation of the biosynthesis of these antibiotics and provides a comprehensive summary of the genetic organization of antibiotic biosynthesis pathways in pseudomonas strains, appealing to both molecular biologists and biotechnologists. In addition, attention is also paid to the application of antibiotics in plant protection.
Collapse
Affiliation(s)
- Alexandra Baukova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (A.B.); (A.B.)
- Pushchino Branch of Federal State Budgetary Educational Institution of Higher Education “Russian Biotechnology University (ROSBIOTECH)”, 142290 Pushchino, Moscow Region, Russia
| | - Alexander Bogun
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (A.B.); (A.B.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| | - Tatiana Minkina
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| | - Ilya Alliluev
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| | - Hanuman Singh Jatav
- Soil Science & Agricultural Chemistry, S.K.N. Agriculture University-Jobner, Jaipur 303329, Rajasthan, India;
| | - Valery Kalinitchenko
- Institute of Fertility of Soils of South Russia, 346493 Persianovka, Rostov Region, Russia;
- All-Russian Research Institute for Phytopathology of the Russian Academy of Sciences, Institute St., 5, 143050 Big Vyazyomy, Moscow Region, Russia
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| | - Yanina Delegan
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (A.B.); (A.B.)
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| |
Collapse
|
7
|
Čaušević S, Dubey M, Morales M, Salazar G, Sentchilo V, Carraro N, Ruscheweyh HJ, Sunagawa S, van der Meer JR. Niche availability and competitive loss by facilitation control proliferation of bacterial strains intended for soil microbiome interventions. Nat Commun 2024; 15:2557. [PMID: 38519488 PMCID: PMC10959995 DOI: 10.1038/s41467-024-46933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
Microbiome engineering - the targeted manipulation of microbial communities - is considered a promising strategy to restore ecosystems, but experimental support and mechanistic understanding are required. Here, we show that bacterial inoculants for soil microbiome engineering may fail to establish because they inadvertently facilitate growth of native resident microbiomes. By generating soil microcosms in presence or absence of standardized soil resident communities, we show how different nutrient availabilities limit outgrowth of focal bacterial inoculants (three Pseudomonads), and how this might be improved by adding an artificial, inoculant-selective nutrient niche. Through random paired interaction assays in agarose micro-beads, we demonstrate that, in addition to direct competition, inoculants lose competitiveness by facilitating growth of resident soil bacteria. Metatranscriptomics experiments with toluene as selective nutrient niche for the inoculant Pseudomonas veronii indicate that this facilitation is due to loss and uptake of excreted metabolites by resident taxa. Generation of selective nutrient niches for inoculants may help to favor their proliferation for the duration of their intended action while limiting their competitive loss.
Collapse
Affiliation(s)
- Senka Čaušević
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Manupriyam Dubey
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Marian Morales
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Guillem Salazar
- Department of Biology Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Vladimir Sentchilo
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Nicolas Carraro
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Hans-Joachim Ruscheweyh
- Department of Biology Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Shinichi Sunagawa
- Department of Biology Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Jan Roelof van der Meer
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
8
|
Franco Meléndez K, Schuster L, Donahey MC, Kairalla E, Jansen MA, Reisch C, Rivers AR. MicroMPN: methods and software for high-throughput screening of microbe suppression in mixed populations. Microbiol Spectr 2024; 12:e0357823. [PMID: 38353567 PMCID: PMC10923211 DOI: 10.1128/spectrum.03578-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Screening assays are used to test if one or more microbes suppress a pathogen of interest. In the presence of more than one microbe, the screening method must be able to accurately distinguish viable pathogen cells from non-viable and non-target microbes in a sample. Current screening methods are time-consuming and require special reagents to detect viability in mixed microbial communities. Screening assays performed using soil or other complex matrices present additional challenges for screening. Here, we develop an experimental workflow based on the most probable number (MPN) assay for testing the ability of synthetic microbial communities to suppress a soil-borne pathogen. Our approach, fluorMPN, uses a fluorescently labeled pathogen and microplate format to enable high-throughput comparative screening. In parallel, we developed a command-line tool, MicroMPN, which significantly reduces the complexity of calculating MPN values from microplates. We compared the performance of the fluorMPN assay with spotting on agar and found that both methods produced strongly correlated counts of equal precision. The suppressive effect of synthetic communities on the pathogen was equally recoverable by both methods. The application of this workflow for discriminating which communities lead to pathogen reduction helps narrow down candidates for additional characterization. Together, the resources offered here are meant to facilitate and simplify the application of MPN-based assays for comparative screening projects. IMPORTANCE We created a unified set of software and laboratory protocols for screening microbe libraries to assess the suppression of a pathogen in a mixed microbial community. Existing methods of fluorescent labeling were combined with the most probable number (MPN) assay in a microplate format to enumerate the reduction of a pathogenic soil microbe from complex soil matrices. This work provides a fluorescent expression vector available from Addgene, step-by-step laboratory protocols hosted by protocols.io, and MicroMPN, a command-line software for processing plate reader outputs. MicroMPN simplifies MPN estimation from 96- and 384-well microplates. The microplate screening assay is amenable to robotic automation with standard liquid handling robots, further reducing the hands-on processing time. This tool was designed to evaluate synthetic microbial communities for use as microbial inoculates or probiotics. The fluorMPN method is also useful for screening chemical and antimicrobial libraries for pathogen suppression in complex bacterial communities like soil.
Collapse
Affiliation(s)
- Karla Franco Meléndez
- United States Department of Agriculture, Agricultural Research Service, Genomics and Bioinformatics Research Unit, Gainesville, Florida, USA
| | - Layla Schuster
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Melinda Chue Donahey
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Emily Kairalla
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - M. Andrew Jansen
- United States Department of Agriculture, Agricultural Research Service, Systematic Entomology Laboratory, Electron and Confocal Microscopy Unit, Beltsville, Maryland, USA
| | - Christopher Reisch
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Adam R. Rivers
- United States Department of Agriculture, Agricultural Research Service, Genomics and Bioinformatics Research Unit, Gainesville, Florida, USA
| |
Collapse
|
9
|
Roca A, Cabeo M, Enguidanos C, Martínez‐Checa F, Sampedro I, Llamas I. Potential of the quorum-quenching and plant-growth promoting halotolerant Bacillus toyonensis AA1EC1 as biocontrol agent. Microb Biotechnol 2024; 17:e14420. [PMID: 38532596 PMCID: PMC10966274 DOI: 10.1111/1751-7915.14420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 03/28/2024] Open
Abstract
The use of fertilizers and pesticides to control plant diseases is widespread in intensive farming causing adverse effects together with the development of antimicrobial resistance pathogens. As the virulence of many Gram-negative phytopathogens is controlled by N-acyl-homoserine lactones (AHLs), the enzymatic disruption of this type of quorum-sensing (QS) signal molecules, mechanism known as quorum quenching (QQ), has been proposed as a promising alternative antivirulence therapy. In this study, a novel strain of Bacillus toyonensis isolated from the halophyte plant Arthrocaulon sp. exhibited numerous traits associated with plant growth promotion (PGP) and degraded a broad range of AHLs. Three lactonases and an acylase enzymes were identified in the bacterial genome and verified in vitro. The AHL-degrading activity of strain AA1EC1 significantly attenuated the virulence of relevant phytopathogens causing reduction of soft rot symptoms on potato and carrots. In vivo assays showed that strain AA1EC1 significantly increased plant length, stem width, root and aerial dry weights and total weight of tomato and protected plants against Pseudomonas syringae pv. tomato. To our knowledge, this is the first report to demonstrate PGP and QQ activities in the species B. toyonensis that make this strain as a promising phytostimulant and biocontrol agent.
Collapse
Affiliation(s)
- Amalia Roca
- Department of Microbiology, Faculty of PharmacyUniversity of GranadaGranadaSpain
- Institute of Biotechnology, Biomedical Research Center (CIBM)University of GranadaGranadaSpain
| | - Mónica Cabeo
- Department of Microbiology, Faculty of PharmacyUniversity of GranadaGranadaSpain
| | - Carlos Enguidanos
- Department of Microbiology, Faculty of PharmacyUniversity of GranadaGranadaSpain
| | - Fernando Martínez‐Checa
- Department of Microbiology, Faculty of PharmacyUniversity of GranadaGranadaSpain
- Institute of Biotechnology, Biomedical Research Center (CIBM)University of GranadaGranadaSpain
| | - Inmaculada Sampedro
- Department of Microbiology, Faculty of PharmacyUniversity of GranadaGranadaSpain
- Institute of Biotechnology, Biomedical Research Center (CIBM)University of GranadaGranadaSpain
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of PharmacyUniversity of GranadaGranadaSpain
- Institute of Biotechnology, Biomedical Research Center (CIBM)University of GranadaGranadaSpain
| |
Collapse
|
10
|
Chhun A, Moriano-Gutierrez S, Zoppi F, Cabirol A, Engel P, Schaerli Y. An engineered bacterial symbiont allows noninvasive biosensing of the honey bee gut environment. PLoS Biol 2024; 22:e3002523. [PMID: 38442124 PMCID: PMC10914260 DOI: 10.1371/journal.pbio.3002523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/26/2024] [Indexed: 03/07/2024] Open
Abstract
The honey bee is a powerful model system to probe host-gut microbiota interactions, and an important pollinator species for natural ecosystems and for agriculture. While bacterial biosensors can provide critical insight into the complex interplay occurring between a host and its associated microbiota, the lack of methods to noninvasively sample the gut content, and the limited genetic tools to engineer symbionts, have so far hindered their development in honey bees. Here, we built a versatile molecular tool kit to genetically modify symbionts and reported for the first time in the honey bee a technique to sample their feces. We reprogrammed the native bee gut bacterium Snodgrassella alvi as a biosensor for IPTG, with engineered cells that stably colonize the gut of honey bees and report exposure to the molecules in a dose-dependent manner through the expression of a fluorescent protein. We showed that fluorescence readout can be measured in the gut tissues or noninvasively in the feces. These tools and techniques will enable rapid building of engineered bacteria to answer fundamental questions in host-gut microbiota research.
Collapse
Affiliation(s)
- Audam Chhun
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | - Florian Zoppi
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Amélie Cabirol
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Johnson JMB, Kunkel BN. AefR, a TetR Family Transcriptional Repressor, Regulates Several Auxin Responses in Pseudomonas syringae Strain PtoDC3000. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:155-165. [PMID: 38079389 DOI: 10.1094/mpmi-10-23-0170-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The plant hormone indole-3-acetic acid (IAA), also known as auxin, plays important roles in plant growth and development, as well as in several plant-microbe interactions. IAA also acts as a microbial signal and in many bacteria regulates metabolism, stress responses, and virulence. In the bacterial plant pathogen Pseudomonas syringae pv. tomato strain DC3000 (PtoDC3000), exposure to IAA results in large-scale transcriptional reprogramming, including the differential expression of several known virulence genes. However, how PtoDC3000 senses and responds to IAA and what aspects of its biology are regulated by IAA is not understood. To investigate the mechanisms involved in perceiving and responding to IAA, we carried out a genetic screen for mutants with altered responses to IAA. One group of mutants of particular interest carried disruptions in the aefR gene encoding a TetR family transcriptional regulator. Gene expression analysis confirmed that the aefR mutants have altered responses to IAA. Thus, AefR is the first demonstrated auxin response regulator in PtoDC3000. We also investigated several aspects of PtoDC3000 biology that are regulated by both AefR and IAA, including antibiotic resistance, motility, and virulence. The observation that the aefR mutant has altered virulence on Arabidopsis, suggests that the sector of the IAA response regulated by aefR is important during pathogenesis. Our findings also provide evidence that AefR plays a role in coordinating changes in gene expression during the transition from early to late stages of infection. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Joshua M B Johnson
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, U.S.A
| | - Barbara N Kunkel
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, U.S.A
| |
Collapse
|
12
|
Guan C, Huang Y, Zhou Y, Han Y, Liu S, Liu S, Kong W, Wang T, Zhang Y. FlhF affects the subcellular clustering of WspR through HsbR in Pseudomonas aeruginosa. Appl Environ Microbiol 2024; 90:e0154823. [PMID: 38112425 PMCID: PMC10807432 DOI: 10.1128/aem.01548-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/04/2023] [Indexed: 12/21/2023] Open
Abstract
In bacteria, the second messenger cyclic di-GMP (c-di-GMP) is synthesized and degraded by multiple diguanylate cyclases (DGCs) and phosphodiesterases. A high level of c-di-GMP induces biofilm formation and represses motility. WspR, a hybrid response regulator DGC, produces c-di-GMP when it is phosphorylated. FlhF, a signal recognition particle-type GTPase, is initially localized to the cell poles and is indispensable for polar flagellar localization in Pseudomonas aeruginosa. In this study, we report that deletion of flhF affected biofilm formation and the c-di-GMP level in P. aeruginosa. Phenotypic analysis of a flhF knockout mutant revealed increased biofilm formation, wrinkled colonies on Congo red agar, and an elevated c-di-GMP level compared to the wild-type strain, PAO1. Yeast and bacterial two-hybrid systems showed that FlhF binds to the response regulator HsbR, and HsbR binds to WspR. Deletion of hsbR or wspR in the ΔflhF background abolished the phenotype of ΔflhF. In addition, confocal microscopy demonstrated that WspR-GFP was distributed throughout the cytoplasm and formed a visible cluster at one cell pole in PAO1 and ΔhsbR, but it was mainly distributed as visible clusters at the lateral side of the periplasm and with visible clusters at both cell poles in ΔflhF. These findings suggest that FlhF influences the subcellular cluster and localization of WspR and negatively modulates WspR DGC activity in a manner dependent on HsbR. Together, our findings demonstrate a novel mechanism for FlhF modulating the lifestyle transition between motility and biofilm via HsbR to regulate the DGC activity of WspR.IMPORTANCECyclic di-GMP (c-di-GMP) is a second messenger that controls flagellum biosynthesis, adhesion, virulence, motility, exopolysaccharide production, and biofilm formation in bacteria. Recent research has shown that distinct diguanylate cyclases (DGCs) or phosphodiesterases (PDEs) produce highly specific outputs. Some DGCs and PDEs contribute to the total global c-di-GMP concentration, but others only affect local c-di-GMP in a microenvironment. However, the underlying mechanisms are unclear. Here, we report that FlhF affects the localization and DGC activity of WspR via HsbR and is implicated in local c-di-GMP signaling in Pseudomonas aeruginosa. This study establishes the link between the c-di-GMP signaling system and the flagellar localization and provides insight for understanding the complex regulatory network of c-di-GMP signaling.
Collapse
Affiliation(s)
- Congcong Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Yi Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Yun Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Yuqian Han
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Shuhui Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Shimin Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Weina Kong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Tietao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Yani Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
13
|
Fu B, Yan Q. Exopolysaccharide is required for motility, stress tolerance, and plant colonization by the endophytic bacterium Paraburkholderia phytofirmans PsJN. Front Microbiol 2023; 14:1218653. [PMID: 37670984 PMCID: PMC10475733 DOI: 10.3389/fmicb.2023.1218653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/24/2023] [Indexed: 09/07/2023] Open
Abstract
Paraburkholderia phytofirmans PsJN is an endophytic bacterium and has been shown to promote the growth and health of many different plants. Exopolysaccharide (EPS) plays important roles in plant-bacteria interaction and tolerance to environmental stresses. However, the function of EPS in PsJN and its interaction with plants remain largely unknown. In this study, a deletion mutation of bceQ gene, encoding a putative flippase for the EPS biosynthesis, was introduced in the genome of PsJN. The ΔbceQ mutant produced a significantly lower level of EPS than the wild type strain in culture media. Compared to the wild type PsJN, the ΔbceQ mutant was more sensitive to desiccation, UV damage, salt (NaCl) and iron (FeCl3) stresses, and bacteriophage infection. More importantly, the mutation of bceQ decreased the endophytic colonization of PsJN in camelina (Camelina sativa) and pea (Camelina sativa) under plant drought stress conditions. To the best of our knowledge, this is the first report that EPS production is required for the maximal colonization of an endophytic bacterium in the plant tissues under stress conditions.
Collapse
Affiliation(s)
| | - Qing Yan
- Plant Sciences and Plant Pathology Department, Montana State University, Bozeman, MT, United States
| |
Collapse
|
14
|
Wiehlmann L, Klockgether J, Hammerbacher AS, Salunkhe P, Horatzek S, Munder A, Peilert JF, Gulbins E, Eberl L, Tümmler B. A VirB4 ATPase of the mobile accessory genome orchestrates core genome-encoded features of physiology, metabolism, and virulence of Pseudomonas aeruginosa TBCF10839. Front Cell Infect Microbiol 2023; 13:1234420. [PMID: 37577372 PMCID: PMC10413270 DOI: 10.3389/fcimb.2023.1234420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Pseudomonas aeruginosa TBCF10839 is a highly virulent strain that can persist and replicate in human neutrophils. Screening of a signature-tagged mutagenesis (STM) TBCF10839 transposon library in phagocytosis tests identified a mutant that carried the transposon in the VirB4 homolog 5PG21 of an integrative and conjugative element (ICE)-associated type IV secretion system of the pKLC102 subtype. 5P21 TBCF10839 insertion mutants were deficient in metabolic versatility, secretion, quorum sensing, and virulence. The mutants were efficiently killed in phagocytosis tests in vitro and were avirulent in an acute murine airway infection model in vivo. The inactivation of 5PG21 silenced the rhl, las, and pqs operons and the gene expression for the synthesis of hydrogen cyanide, the antimetabolite l-2-amino-4-methoxy-trans-3-butenoic acid, and the H2- and H3-type VI secretion systems and their associated effectors. The mutants were impaired in the utilization of carbon sources and stored compounds that are not funneled into intermediary metabolism. This showcase demonstrates that a single gene of the mobile accessory genome can become an essential element to operate the core genome-encoded features of metabolism and virulence.
Collapse
Affiliation(s)
- Lutz Wiehlmann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Jens Klockgether
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Anna-Silke Hammerbacher
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Prabhakar Salunkhe
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Sonja Horatzek
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Antje Munder
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease, German Center for Lung Research, Hannover, Germany
| | | | - Erich Gulbins
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Burkhard Tümmler
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease, German Center for Lung Research, Hannover, Germany
| |
Collapse
|
15
|
Zhang QX, Xiong ZW, Li SY, Yin Y, Xing CL, Wen DY, Xu J, Liu Q. Regulatory roles of RpoS in the biosynthesis of antibiotics 2,4-diacetyphloroglucinol and pyoluteorin of Pseudomonas protegens FD6. Front Microbiol 2022; 13:993732. [PMID: 36583049 PMCID: PMC9793710 DOI: 10.3389/fmicb.2022.993732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
The rhizosphere microbe Pseudomonas protegens FD6 possesses beneficial traits such as the production of antibiotics like pyoluteorin (Plt) and 2,4-diacetylphloroglucinol (2,4-DAPG). The alternative RpoS (σ38 factor), as a master regulator, activates or inhibits the transcription of stationary phase genes in several biocontrol organisms. Here, we investigated the complicated function and regulatory mechanism of RpoS in the biosynthesis of 2,4-DAPG and Plt in strain FD6. Phenotypic assays suggested that ΔrpoS was impaired in biofilm formation, swimming motility, swarming motility, and resistance to stress, such as heat, H2O2 and 12% ethanol. The RpoS mutation significantly increased both 2,4-DAPG and Plt production and altered the transcription and translation of the biosynthetic genes phlA and pltL, indicating that RpoS inhibited antibiotic production by FD6 at both the transcriptional and translational levels. RpoS negatively controlled 2,4-DAPG biosynthesis and transcription of the 2,4-DAPG operon phlACBD by directly interacting with the promoter sequences of phlG and phlA. In addition, RpoS significantly inhibited Plt production and the expression of its operon pltLABCDEFG by directly binding to the promoter regions of pltR, pltL and pltF. Further analyzes demonstrated that a putative R147 mutation in the RpoS binding domain abolished its inhibitory activity on the expression of pltL and phlA. Overall, our results reveal the pleiotropic regulatory function of RpoS in P. protegens FD6 and provide the basis for improving antibiotic biosynthesis by genetic engineering in biocontrol organisms.
Collapse
Affiliation(s)
- Qing Xia Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, China,*Correspondence: Qing Xia Zhang,
| | - Zheng Wen Xiong
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Shen Yu Li
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yue Yin
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Cheng Lin Xing
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - De Yu Wen
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Jian Xu
- Jiangsu Lixiahe District Institute of Agricultural Sciences, Yangzhou, China
| | - Qin Liu
- Jiangsu Lixiahe District Institute of Agricultural Sciences, Yangzhou, China,Qin Liu,
| |
Collapse
|
16
|
Chi X, Wang Y, Miao J, Wang W, Sun Y, Yu Z, Feng Z, Cheng S, Chen L, Ge Y. EppR, a new LysR-family transcription regulator, positively influences phenazine biosynthesis in the plant growth-promoting rhizobacterium Pseudomonas chlororaphis G05. Microbiol Res 2022; 260:127050. [DOI: 10.1016/j.micres.2022.127050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
|
17
|
Cho H, Moy Y, Rudnick NA, Klein TM, Yin J, Bolar J, Hendrick C, Beatty M, Castañeda L, Kinney AJ, Jones TJ, Chilcoat ND. Development of an efficient marker-free soybean transformation method using the novel bacterium Ochrobactrum haywardense H1. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:977-990. [PMID: 35015927 PMCID: PMC9055811 DOI: 10.1111/pbi.13777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/15/2021] [Accepted: 12/28/2021] [Indexed: 05/03/2023]
Abstract
We have discovered a novel bacterium, Ochrobactrum haywardense H1 (Oh H1), which is capable of efficient plant transformation. Ochrobactrum is a new host for Agrobacterium-derived vir and T-DNA-mediated transformation. Oh H1 is a unique, non-phytopathogenic species, categorized as a BSL-1 organism. We engineered Oh H1 with repurposed Agrobacterium virulence machinery and demonstrated Oh H1 can transform numerous dicot species and at least one monocot, sorghum. We generated a cysteine auxotrophic Oh H1-8 strain containing a binary vector system. Oh H1-8 produced transgenic soybean plants with an efficiency 1.6 times that of Agrobacterium strain AGL1 and 2.9 times that of LBA4404Thy-. Oh H1-8 successfully transformed several elite Corteva soybean varieties with T0 transformation frequency up to 35%. In addition to higher transformation efficiencies, Oh H1-8 generated high-quality, transgenic events with single-copy, plasmid backbone-free insertion at frequencies higher than AGL1. The SpcN selectable marker gene is excised using a heat shock-inducible excision system resulting in marker-free transgenic events. Approximately, 24.5% of the regenerated plants contained only a single copy of the transgene and contained no vector backbone. There were no statistically significant differences in yield comparing T3 null-segregant lines to wild-type controls. We have demonstrated that Oh H1-8, combined with spectinomycin selection, is an efficient, rapid, marker-free and yield-neutral transformation system for elite soybean.
Collapse
Affiliation(s)
- Hyeon‐Je Cho
- Research and DevelopmentCorteva AgriscienceJohnstonIAUSA
| | - York Moy
- Research and DevelopmentCorteva AgriscienceJohnstonIAUSA
- Alpine Roads Inc.South San FranciscoCAUSA
| | - Nathan A. Rudnick
- Research and DevelopmentCorteva AgriscienceJohnstonIAUSA
- Relic Culture LLC.San LeandroCAUSA
| | - Theodore M. Klein
- Research and DevelopmentCorteva AgriscienceJohnstonIAUSA
- Meristematic Inc.San FranciscoCAUSA
| | - Jiaming Yin
- Research and DevelopmentCorteva AgriscienceJohnstonIAUSA
| | - Joy Bolar
- Research and DevelopmentCorteva AgriscienceJohnstonIAUSA
| | - Carol Hendrick
- Research and DevelopmentCorteva AgriscienceJohnstonIAUSA
| | - Mary Beatty
- Research and DevelopmentCorteva AgriscienceJohnstonIAUSA
| | | | | | - Todd J. Jones
- Research and DevelopmentCorteva AgriscienceJohnstonIAUSA
| | | |
Collapse
|
18
|
Liu Y, Xie N, Yu B. De Novo Biosynthesis of D- p-Hydroxyphenylglycine by a Designed Cofactor Self-Sufficient Route and Co-culture Strategy. ACS Synth Biol 2022; 11:1361-1372. [PMID: 35244401 DOI: 10.1021/acssynbio.2c00007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
d-p-Hydroxyphenylglycine (D-HPG) is an important intermediate for the synthesis of β-lactam antibiotics with an annual market demand of thousands of tons. Currently, the main production processes are via chemical approaches. Although enzymatic conversion has been investigated for D-HPG production, synthesis of the substrate DL-hydroxyphenylhydantoin is still chemically based, which suffers from high pollution and harsh reaction conditions. In this study, one cofactor self-sufficient route for D-HPG production from l-phenylalanine was newly designed and the artificial pathway was functionalized by selecting suitable enzymes and adjusting their expressions in strain Pseudomonas putida KT2440. Notably, a new R-mandelate dehydrogenase from Lactococcus lactis with relatively high activity under pH neutral conditions was successfully mined to demonstrate the biosynthetic pathway in vivo. The performance of the engineered P. putida strain was further increased by enhancing cellular NAD availability and blocking l-phenylalanine consumption. Coupled with the l-phenylalanine producer, Escherichia coli strain ATCC 31884, a stable and interactive co-culture process was also developed by engineering a "cross-link auxotrophic" system to produce D-HPG directly from glucose. Thus, this study is the first approach for the de novo biosynthesis of D-HPG by engineering a non-natural pathway and lays the foundation for further improving the efficiency of D-HPG production via a green and sustainable route.
Collapse
Affiliation(s)
- Yang Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nengzhong Xie
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences, Nanning 530007, China
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
19
|
Artuso I, Lucidi M, Visaggio D, Capecchi G, Lugli GA, Ventura M, Visca P. Genome diversity of domesticated Acinetobacter baumannii ATCC 19606 T strains. Microb Genom 2022; 8. [PMID: 35084299 PMCID: PMC8914354 DOI: 10.1099/mgen.0.000749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acinetobacter baumannii has emerged as an important opportunistic pathogen worldwide, being responsible for large outbreaks for nosocomial infections, primarily in intensive care units. A. baumannii ATCC 19606T is the species type strain, and a reference organism in many laboratories due to its low virulence, amenability to genetic manipulation and extensive antibiotic susceptibility. We wondered if frequent propagation of A. baumannii ATCC 19606T in different laboratories may have driven micro- and macro-evolutionary events that could determine inter-laboratory differences of genome-based data. By combining Illumina MiSeq, MinION and Sanger technologies, we generated a high-quality whole-genome sequence of A. baumannii ATCC 19606T, then performed a comparative genome analysis between A. baumannii ATCC 19606T strains from several research laboratories and a reference collection. Differences between publicly available ATCC 19606T genome sequences were observed, including SNPs, macro- and micro-deletions, and the uneven presence of a 52 kb prophage belonging to genus Vieuvirus. Two plasmids, pMAC and p1ATCC19606, were invariably detected in all tested strains. The presence of a putative replicase, a replication origin containing four 22-mer direct repeats, and a toxin-antitoxin system implicated in plasmid stability were predicted by in silico analysis of p1ATCC19606, and experimentally confirmed. This work refines the sequence, structure and functional annotation of the A. baumannii ATCC 19606T genome, and highlights some remarkable differences between domesticated strains, likely resulting from genetic drift.
Collapse
Affiliation(s)
- Irene Artuso
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Massimiliano Lucidi
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Daniela Visaggio
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy.,Santa Lucia Fundation IRCCS, Via Ardeatina 306-354, 00179 Rome, Italy
| | - Giulia Capecchi
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Paolo Visca
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy.,Santa Lucia Fundation IRCCS, Via Ardeatina 306-354, 00179 Rome, Italy
| |
Collapse
|
20
|
Olawole OI, Liu Q, Chen C, Gleason ML, Beattie GA. The Contributions to Virulence of the Effectors Eop1 and DspE Differ Between Two Clades of Erwinia tracheiphila Strains. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1399-1408. [PMID: 34505816 DOI: 10.1094/mpmi-06-21-0149-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Strains of Erwinia tracheiphila, causal agent of bacterial wilt of cucurbits, are divided into distinct clades. Et-melo clade strains wilt Cucumis spp. but not Cucurbita spp., thus exhibiting host specificity, whereas Et-C1 clade strains wilt Cucurbita spp. more rapidly than Cucumis melo, thus exhibiting a host preference. This study investigated the contribution of the effector proteins Eop1 and DspE to E. tracheiphila pathogenicity and host adaptation. Loss of eop1 did not enable Et-melo strains to infect squash (Cucurbita pepo) or an Et-C1 strain to induce a more rapid wilt of muskmelon (Cucumis melo), indicating that Eop1 did not function in host specificity or preference as in the related pathogen E. amylovora. However, overexpression of eop1 from Et-melo strain MDCuke but not from Et-C1 strain BHKY increased the virulence of a BHKY eop1 deletion mutant on muskmelon, demonstrating that the Eop1 variants in the two clades are distinct in their virulence functions. Loss of dspE from Et-melo strains reduced but did not eliminate virulence on hosts muskmelon and cucumber, whereas loss of dspE from an Et-C1 strain eliminated pathogenicity on hosts squash, muskmelon, and cucumber. Thus, the centrality of DspE to virulence differs in the two clades. Et-melo mutants lacking the chaperone DspF exhibited similar virulence to mutants lacking DspE, indicating that DspF is the sole chaperone for DspE in E. tracheiphila, unlike in E. amylovora. Collectively, these results provide the first functional evaluation of effectors in E. tracheiphila and demonstrate clade-specific differences in the roles of Eop1 and DspE.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Olakunle I Olawole
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, U.S.A
| | - Qian Liu
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, U.S.A
| | - Chiliang Chen
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, U.S.A
| | - Mark L Gleason
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, U.S.A
| | - Gwyn A Beattie
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, U.S.A
| |
Collapse
|
21
|
Hall JPJ, Wright RCT, Harrison E, Muddiman KJ, Wood AJ, Paterson S, Brockhurst MA. Plasmid fitness costs are caused by specific genetic conflicts enabling resolution by compensatory mutation. PLoS Biol 2021; 19:e3001225. [PMID: 34644303 PMCID: PMC8544851 DOI: 10.1371/journal.pbio.3001225] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/25/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
Plasmids play an important role in bacterial genome evolution by transferring genes between lineages. Fitness costs associated with plasmid carriage are expected to be a barrier to gene exchange, but the causes of plasmid fitness costs are poorly understood. Single compensatory mutations are often sufficient to completely ameliorate plasmid fitness costs, suggesting that such costs are caused by specific genetic conflicts rather than generic properties of plasmids, such as their size, metabolic burden, or gene expression level. By combining the results of experimental evolution with genetics and transcriptomics, we show here that fitness costs of 2 divergent large plasmids in Pseudomonas fluorescens are caused by inducing maladaptive expression of a chromosomal tailocin toxin operon. Mutations in single genes unrelated to the toxin operon, and located on either the chromosome or the plasmid, ameliorated the disruption associated with plasmid carriage. We identify one of these compensatory loci, the chromosomal gene PFLU4242, as the key mediator of the fitness costs of both plasmids, with the other compensatory loci either reducing expression of this gene or mitigating its deleterious effects by up-regulating a putative plasmid-borne ParAB operon. The chromosomal mobile genetic element Tn6291, which uses plasmids for transmission, remained up-regulated even in compensated strains, suggesting that mobile genetic elements communicate through pathways independent of general physiological disruption. Plasmid fitness costs caused by specific genetic conflicts are unlikely to act as a long-term barrier to horizontal gene transfer (HGT) due to their propensity for amelioration by single compensatory mutations, helping to explain why plasmids are so common in bacterial genomes.
Collapse
Affiliation(s)
- James P. J. Hall
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Rosanna C. T. Wright
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| | - Ellie Harrison
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Katie J. Muddiman
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - A. Jamie Wood
- Department of Biology, University of York, York, United Kingdom
- Department of Mathematics, University of York, York, United Kingdom
| | - Steve Paterson
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Michael A. Brockhurst
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
22
|
Chen L, Wang Y, Miao J, Wang Q, Liu Z, Xie W, Liu X, Feng Z, Cheng S, Chi X, Ge Y. LysR-type transcriptional regulator FinR is required for phenazine and pyrrolnitrin biosynthesis in biocontrol Pseudomonas chlororaphis strain G05. Appl Microbiol Biotechnol 2021; 105:7825-7839. [PMID: 34562115 DOI: 10.1007/s00253-021-11600-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022]
Abstract
Phenazine-1-carboxylic acid and pyrrolnitrin, the two secondary metabolites produced by Pseudomonas chlororaphis G05, serve as biocontrol agents that mainly contribute to the growth repression of several fungal phytopathogens. Although some regulators of phenazine-1-carboxylic acid biosynthesis have been identified, the regulatory pathway involving phenazine-1-carboxylic acid synthesis is not fully understood. We isolated a white conjugant G05W03 on X-Gal-containing LB agar during our screening of novel regulator candidates using transposon mutagenesis with a fusion mutant G05Δphz::lacZ as a recipient. By cloning of DNA adjacent to the site of the transposon insertion, we revealed that a LysR-type transcriptional regulator (LTTR) gene, finR, was disrupted in the conjugant G05W03. To confirm the regulatory function of FinR, we constructed the finR-knockout mutant G05ΔfinR, G05Δphz::lacZΔfinR, and G05Δprn::lacZΔfinR, using the wild-type strain G05 and its fusion mutant derivatives as recipient strains, respectively. We found that the expressions of phz and prn operons were dramatically reduced in the finR-deleted mutant. With quantification of the production of antifungal metabolites biosynthesized by the finR-negative strain G05ΔfinR, it was shown that FinR deficiency also led to decreased yield of phenazine-1-carboxylic acid and pyrrolnitrin. In addition, the pathogen inhibition assay confirmed that the production of phenazine-1-carboxylic acid was severely reduced in the absence of FinR. Transcriptional fusions and qRT-PCR verified that FinR could positively govern the transcription of the phz and prn operons. Taken together, FinR is required for antifungal metabolite biosynthesis and crop protection against some fungal pathogens.Key points• A novel regulator FinR was identified by transposon mutagenesis.• FinR regulates antifungal metabolite production.• FinR regulates the phz and prn expression by binding to their promoter regions.
Collapse
Affiliation(s)
- Lijuan Chen
- Affiliated Hospital of Ludong University, Yantai, 264025, China.,The Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, 264000, China
| | - Yanhua Wang
- The Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, 264000, China
| | - Jing Miao
- The Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, 264000, China
| | - Qijun Wang
- The Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, 264000, China
| | - Zili Liu
- The Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, 264000, China
| | - Wenqi Xie
- The Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, 264000, China
| | - Xinsheng Liu
- Affiliated Hospital of Ludong University, Yantai, 264025, China.,The Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, 264000, China
| | - Zhibin Feng
- The Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, 264000, China.,Biological Fermentation and Separation Engineering Laboratory, School of Life Sciences, Ludong University, Yantai, 264025, China
| | - Shiwei Cheng
- The Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, 264000, China.,Biological Fermentation and Separation Engineering Laboratory, School of Life Sciences, Ludong University, Yantai, 264025, China
| | - Xiaoyan Chi
- The Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, 264000, China.
| | - Yihe Ge
- The Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, 264000, China. .,Biological Fermentation and Separation Engineering Laboratory, School of Life Sciences, Ludong University, Yantai, 264025, China.
| |
Collapse
|
23
|
O-Specific Antigen-Dependent Surface Hydrophobicity Mediates Aggregate Assembly Type in Pseudomonas aeruginosa. mBio 2021; 12:e0086021. [PMID: 34372703 PMCID: PMC8406328 DOI: 10.1128/mbio.00860-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Bacteria live in spatially organized aggregates during chronic infections, where they adapt to the host environment, evade immune responses, and resist therapeutic interventions. Although it is known that environmental factors such as polymers influence bacterial aggregation, it is not clear how bacterial adaptation during chronic infection impacts the formation and spatial organization of aggregates in the presence of polymers. Here, we show that in an in vitro model of cystic fibrosis (CF) containing the polymers extracellular DNA (eDNA) and mucin, O-specific antigen is a major factor determining the formation of two distinct aggregate assembly types of Pseudomonas aeruginosa due to alterations in cell surface hydrophobicity. Our findings suggest that during chronic infection, the interplay between cell surface properties and polymers in the environment may influence the formation and structure of bacterial aggregates, which would shed new light on the fitness costs and benefits of O-antigen production in environments such as CF lungs.
Collapse
|
24
|
Yan Q, Liu M, Kidarsa T, Johnson CP, Loper JE. Two Pathway-Specific Transcriptional Regulators, PltR and PltZ, Coordinate Autoinduction of Pyoluteorin in Pseudomonas protegens Pf-5. Microorganisms 2021; 9:microorganisms9071489. [PMID: 34361923 PMCID: PMC8305169 DOI: 10.3390/microorganisms9071489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/02/2022] Open
Abstract
Antibiotic biosynthesis by microorganisms is commonly regulated through autoinduction, which allows producers to quickly amplify the production of antibiotics in response to environmental cues. Antibiotic autoinduction generally involves one pathway-specific transcriptional regulator that perceives an antibiotic as a signal and then directly stimulates transcription of the antibiotic biosynthesis genes. Pyoluteorin is an autoregulated antibiotic produced by some Pseudomonas spp. including the soil bacterium Pseudomonas protegens Pf-5. In this study, we show that PltR, a known pathway-specific transcriptional activator of pyoluteorin biosynthesis genes, is necessary but not sufficient for pyoluteorin autoinduction in Pf-5. We found that pyoluteorin is perceived as an inducer by PltZ, a second pathway-specific transcriptional regulator that directly represses the expression of genes encoding a transporter in the pyoluteorin gene cluster. Mutation of pltZ abolished the autoinducing effect of pyoluteorin on the transcription of pyoluteorin biosynthesis genes. Overall, our results support an alternative mechanism of antibiotic autoinduction by which the two pathway-specific transcriptional regulators PltR and PltZ coordinate the autoinduction of pyoluteorin in Pf-5. Possible mechanisms by which PltR and PltZ mediate the autoinduction of pyoluteorin are discussed.
Collapse
Affiliation(s)
- Qing Yan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA;
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA;
- Correspondence:
| | - Mary Liu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA;
| | - Teresa Kidarsa
- Horticultural Crops Research Laboratory, US Department of Agriculture, Agricultural Research Service, Corvallis, OR 97330, USA;
| | - Colin P. Johnson
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA;
| | - Joyce E. Loper
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA;
- Horticultural Crops Research Laboratory, US Department of Agriculture, Agricultural Research Service, Corvallis, OR 97330, USA;
| |
Collapse
|
25
|
Sun X, Ni Z, Tang J, Ding Y, Wang X, Li F. The abaI/ abaR Quorum Sensing System Effects on Pathogenicity in Acinetobacter baumannii. Front Microbiol 2021; 12:679241. [PMID: 34322102 PMCID: PMC8312687 DOI: 10.3389/fmicb.2021.679241] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/08/2021] [Indexed: 12/26/2022] Open
Abstract
Acinetobacter baumannii is a Gram-negative pathogen that has emerged as one of the most troublesome pathogens for healthcare institutions globally. Bacterial quorum sensing (QS) is a process of cell-to-cell communication that relies on the production, secretion, and detection of autoinducer (AI) signals to share information about cell density and regulate gene expression accordingly. The molecular and genetic bases of A. baumannii virulence remains poorly understood. Therefore, the contribution of the abaI/abaR QS system to growth characteristics, morphology, biofilm formation, resistance, motility, and virulence of A. baumannii was studied in detail. RNA sequencing (RNA-seq) analysis indicated that genes involved in various aspects of energy production and conversion; valine, leucine, and isoleucine degradation; and lipid transport and metabolism are associated with bacterial pathogenicity. Our work provides a new insight into the abaI/abaR QS system effects on pathogenicity in A. baumannii. We propose that targeting the acyl homoserine lactone (AHL) synthase enzyme abaI could provide an effective strategy for attenuating virulence. On the contrary, interdicting the AI synthase receptor abaR elicits unpredictable consequences, which may lead to enhanced bacterial virulence.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Zhaohui Ni
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Jie Tang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Yue Ding
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Xinlei Wang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Fan Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China.,The Key Laboratory for Bionics Engineering, Ministry of Education, Jilin University, Changchun, China.,Engineering Research Center for Medical Biomaterials of Jilin Province, Jilin University, Changchun, China.,Key Laboratory for Biomedical Materials of Jilin Province, Jilin University, Changchun, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang, China
| |
Collapse
|
26
|
Generation of Genetic Tools for Gauging Multiple-Gene Expression at the Single-Cell Level. Appl Environ Microbiol 2021; 87:AEM.02956-20. [PMID: 33608300 DOI: 10.1128/aem.02956-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/11/2021] [Indexed: 11/20/2022] Open
Abstract
Key microbial processes in many bacterial species are heterogeneously expressed in single cells of bacterial populations. However, the paucity of adequate molecular tools for live, real-time monitoring of multiple-gene expression at the single-cell level has limited the understanding of phenotypic heterogeneity. To investigate phenotypic heterogeneity in the ubiquitous opportunistic pathogen Pseudomonas aeruginosa, a genetic tool that allows gauging multiple-gene expression at the single-cell level has been generated. This tool, named pRGC, consists of a promoter-probe vector for transcriptional fusions that carries three reporter genes coding for the fluorescent proteins mCherry, green fluorescent protein (GFP), and cyan fluorescent protein (CFP). The pRGC vector has been characterized and validated via single-cell gene expression analysis of both constitutive and iron-regulated promoters, showing clear discrimination of the three fluorescence signals in single cells of a P. aeruginosa population without the need for image processing for spectral cross talk correction. In addition, two pRGC variants have been generated for either (i) integration of the reporter gene cassette into a single neutral site of P. aeruginosa chromosome that is suitable for long-term experiments in the absence of antibiotic selection or (ii) replication in bacterial genera other than Pseudomonas The easy-to-use genetic tools generated in this study will allow rapid and cost-effective investigation of multiple-gene expression in populations of environmental and pathogenic bacteria, hopefully advancing the understanding of microbial phenotypic heterogeneity.IMPORTANCE Within a bacterial population, single cells can differently express some genes, even though they are genetically identical and experience the same chemical and physical stimuli. This phenomenon, known as phenotypic heterogeneity, is mainly driven by gene expression noise and results in the emergence of bacterial subpopulations with distinct phenotypes. The analysis of gene expression at the single-cell level has shown that phenotypic heterogeneity is associated with key bacterial processes, including competence, sporulation, and persistence. In this study, new genetic tools have been generated that allow easy cloning of up to three promoters upstream of distinct fluorescent genes, making it possible to gauge multiple-gene expression at the single-cell level by fluorescence microscopy without the need for advanced image-processing procedures. A proof of concept has been provided by investigating iron uptake and iron storage gene expression in response to iron availability in P. aeruginosa.
Collapse
|
27
|
Woodcock SD, Syson K, Little RH, Ward D, Sifouna D, Brown JKM, Bornemann S, Malone JG. Trehalose and α-glucan mediate distinct abiotic stress responses in Pseudomonas aeruginosa. PLoS Genet 2021; 17:e1009524. [PMID: 33872310 PMCID: PMC8084333 DOI: 10.1371/journal.pgen.1009524] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/29/2021] [Accepted: 03/30/2021] [Indexed: 11/29/2022] Open
Abstract
An important prelude to bacterial infection is the ability of a pathogen to survive independently of the host and to withstand environmental stress. The compatible solute trehalose has previously been connected with diverse abiotic stress tolerances, particularly osmotic shock. In this study, we combine molecular biology and biochemistry to dissect the trehalose metabolic network in the opportunistic human pathogen Pseudomonas aeruginosa PAO1 and define its role in abiotic stress protection. We show that trehalose metabolism in PAO1 is integrated with the biosynthesis of branched α-glucan (glycogen), with mutants in either biosynthetic pathway significantly compromised for survival on abiotic surfaces. While both trehalose and α-glucan are important for abiotic stress tolerance, we show they counter distinct stresses. Trehalose is important for the PAO1 osmotic stress response, with trehalose synthesis mutants displaying severely compromised growth in elevated salt conditions. However, trehalose does not contribute directly to the PAO1 desiccation response. Rather, desiccation tolerance is mediated directly by GlgE-derived α-glucan, with deletion of the glgE synthase gene compromising PAO1 survival in low humidity but having little effect on osmotic sensitivity. Desiccation tolerance is independent of trehalose concentration, marking a clear distinction between the roles of these two molecules in mediating responses to abiotic stress. Author summary To survive outside their host, pathogenic bacteria must withstand various environmental stresses. The sugar molecule trehalose is associated with a range of abiotic stress tolerances, particularly osmotic shock. In this study, we analyse the trehalose metabolic network in the human pathogen Pseudomonas aeruginosa PAO1 and define its role in abiotic stress protection. We show that trehalose metabolism in PAO1 is intimately connected to the biosynthesis of branched α-glucan, or glycogen. Disruption of either trehalose or glycogen biosynthesis significantly reduces the ability of PAO1 to survive on steel work surfaces. While both trehalose and glycogen are important for stress tolerance, they counter very different stresses. Trehalose is important for the osmotic stress response, and survival in conditions of elevated salt. On the other hand, glycogen is responsible for desiccation tolerance and survival in low humidity environments. Trehalose does not apparently contribute to desiccation tolerance, marking a clear distinction between the roles of trehalose and glycogen in mediating abiotic stress responses in P. aeruginosa.
Collapse
Affiliation(s)
- Stuart D. Woodcock
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Karl Syson
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Richard H. Little
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Danny Ward
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Despoina Sifouna
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - James K. M. Brown
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Stephen Bornemann
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Jacob G. Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Grützner R, Martin P, Horn C, Mortensen S, Cram EJ, Lee-Parsons CW, Stuttmann J, Marillonnet S. High-efficiency genome editing in plants mediated by a Cas9 gene containing multiple introns. PLANT COMMUNICATIONS 2021; 2:100135. [PMID: 33898975 PMCID: PMC8060730 DOI: 10.1016/j.xplc.2020.100135] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 05/04/2023]
Abstract
The recent discovery of the mode of action of the CRISPR/Cas9 system has provided biologists with a useful tool for generating site-specific mutations in genes of interest. In plants, site-targeted mutations are usually obtained by the stable transformation of a Cas9 expression construct into the plant genome. The efficiency of introducing mutations in genes of interest can vary considerably depending on the specific features of the constructs, including the source and nature of the promoters and terminators used for the expression of the Cas9 gene and the guide RNA, and the sequence of the Cas9 nuclease itself. To optimize the efficiency of the Cas9 nuclease in generating mutations in target genes in Arabidopsis thaliana, we investigated several features of its nucleotide and/or amino acid sequence, including the codon usage, the number of nuclear localization signals (NLSs), and the presence or absence of introns. We found that the Cas9 gene codon usage had some effect on its activity and that two NLSs worked better than one. However, the highest efficiency of the constructs was achieved by the addition of 13 introns into the Cas9 coding sequence, which dramatically improved the editing efficiency of the constructs. None of the primary transformants obtained with a Cas9 gene lacking introns displayed a knockout mutant phenotype, whereas between 70% and 100% of the primary transformants generated with the intronized Cas9 gene displayed mutant phenotypes. The intronized Cas9 gene was also found to be effective in other plants such as Nicotiana benthamiana and Catharanthus roseus.
Collapse
Affiliation(s)
- Ramona Grützner
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Patrick Martin
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle (Saale), Germany
| | - Claudia Horn
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | | | - Erin J. Cram
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Carolyn W.T. Lee-Parsons
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Johannes Stuttmann
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle (Saale), Germany
| | - Sylvestre Marillonnet
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| |
Collapse
|
29
|
Burkholderia thailandensis Methylated Hydroxyalkylquinolines: Biosynthesis and Antimicrobial Activity in Cocultures. Appl Environ Microbiol 2020; 86:AEM.01452-20. [PMID: 33008823 DOI: 10.1128/aem.01452-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/15/2020] [Indexed: 02/04/2023] Open
Abstract
The bacterium Burkholderia thailandensis produces an arsenal of secondary metabolites that have diverse structures and roles in the ecology of this soil-dwelling bacterium. In coculture experiments, B. thailandensis strain E264 secretes an antimicrobial that nearly eliminates another soil bacterium, Bacillus subtilis strain 168. To identify the antimicrobial, we used a transposon mutagenesis approach. This screen identified antimicrobial-defective mutants with insertions in the hmqA, hmqC, and hmqF genes involved in biosynthesis of a family of 2-alkyl-4(1H)-quinolones called 4-hydroxy-3-methyl-2-alkenylquinolines (HMAQs), which are closely related to the Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs). Insertions also occurred in the previously uncharacterized gene BTH_II1576 ("hmqL"). The results confirm that BTH_II1576 is involved in generating N-oxide derivatives of HMAQs (HMAQ-NOs). Synthetic HMAQ-NO is active against B. subtilis 168, showing ∼50-fold more activity than HMAQ. Both the methyl group and the length of the carbon side chain account for the high activity of HMAQ-NO. The results provide new information on the biosynthesis and activities of HMAQs and reveal new insight into how these molecules might be important for the ecology of B. thailandensis IMPORTANCE The soil bacterium Burkholderia thailandensis produces 2-alkyl-4(1H)-quinolones that are mostly methylated 4-hydroxyalkenylquinolines, a family of relatively unstudied metabolites similar to molecules also synthesized by Pseudomonas aeruginosa Several of the methylated 4-hydroxyalkenylquinolines have antimicrobial activity against other species. We show that Bacillus subtilis strain 168 is particularly susceptible to N-oxidated methylalkenylquinolines (HMAQ-NOs). We confirmed that HMAQ-NO biosynthesis requires the previously unstudied protein HmqL. These results provide new information about the biology of 2-alkyl-4(1H)-quinolones, particularly the methylated 4-hydroxyalkenylquinolines, which are unique to B. thailandensis This study also has importance for understanding B. thailandensis secondary metabolites and has implications for potential therapeutic development.
Collapse
|
30
|
Carroll D, Holden N, Gifford ML, Dupuy LX. Framework for Quantification of the Dynamics of Root Colonization by Pseudomonas fluorescens Isolate SBW25. Front Microbiol 2020; 11:585443. [PMID: 33101260 PMCID: PMC7545031 DOI: 10.3389/fmicb.2020.585443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/08/2020] [Indexed: 01/13/2023] Open
Abstract
Colonization of the root surface, or rhizoplane, is one of the first steps for soil-borne bacteria to become established in the plant microbiome. However, the relative contributions of processes, such as bacterial attachment and proliferation is not well characterized, and this limits our ability to comprehend the complex dynamics of microbial communities in the rhizosphere. The work presented here addresses this knowledge gap. A model system was developed to acquire quantitative data on the colonization process of lettuce (Lactuca sativa L. cultivar. All Year Round) roots by Pseudomonas fluorescens isolate SBW25. A theoretical framework is proposed to calculate attachment rate and quantify the relative contribution of bacterial attachment to colonization. This allows the assessment of attachment rates on the root surface beyond the short time period during which it can be quantified experimentally. All techniques proposed are generic and similar analyses could be applied to study various combinations of plants and bacteria, or to assess competition between species. In the future this could allow for selection of microbial traits that improve early colonization and maintenance of targeted isolates in cropping systems, with potential applications for the development of biological fertilizers.
Collapse
Affiliation(s)
- Daire Carroll
- Ecological Sciences, The James Hutton Institute, Dundee, United Kingdom.,School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Nicola Holden
- Northern Faculty, Scotland's Rural College, Aberdeen, United Kingdom
| | - Miriam L Gifford
- School of Life Sciences, University of Warwick, Coventry, United Kingdom.,Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Lionel X Dupuy
- Neiker, Department of Conservation of Natural Resources, Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
31
|
Carraro N, Richard X, Sulser S, Delavat F, Mazza C, van der Meer JR. An analog to digital converter controls bistable transfer competence development of a widespread bacterial integrative and conjugative element. eLife 2020; 9:57915. [PMID: 32720896 PMCID: PMC7423338 DOI: 10.7554/elife.57915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/24/2020] [Indexed: 01/08/2023] Open
Abstract
Conjugative transfer of the integrative and conjugative element ICEclc in Pseudomonas requires development of a transfer competence state in stationary phase, which arises only in 3–5% of individual cells. The mechanisms controlling this bistable switch between non-active and transfer competent cells have long remained enigmatic. Using a variety of genetic tools and epistasis experiments in P. putida, we uncovered an ‘upstream’ cascade of three consecutive transcription factor-nodes, which controls transfer competence initiation. One of the uncovered transcription factors (named BisR) is representative for a new regulator family. Initiation activates a feedback loop, controlled by a second hitherto unrecognized heteromeric transcription factor named BisDC. Stochastic modelling and experimental data demonstrated the feedback loop to act as a scalable converter of unimodal (population-wide or ‘analog’) input to bistable (subpopulation-specific or ‘digital’) output. The feedback loop further enables prolonged production of BisDC, which ensures expression of the ‘downstream’ functions mediating ICE transfer competence in activated cells. Phylogenetic analyses showed that the ICEclc regulatory constellation with BisR and BisDC is widespread among Gamma- and Beta-proteobacteria, including various pathogenic strains, highlighting its evolutionary conservation and prime importance to control the behaviour of this wide family of conjugative elements. Mobile DNA elements are pieces of genetic material that can jump from one bacterium to another, and even across species. They are often useful to their host, for example carrying genes that allow bacteria to resist antibiotics. One example of bacterial mobile DNA is the ICEclc element. Usually, ICEclc sits passively within the bacterium’s own DNA, but in a small number of cells, it takes over, hijacking its host to multiply and to get transferred to other bacteria. Cells that can pass on the elements cannot divide, and so this ability is ultimately harmful to individual bacteria. Carrying ICEclc can therefore be positive for a bacterium but passing it on is not in the cell’s best interest. On the other hand, mobile DNAs like ICEclc have evolved to be disseminated as efficiently as possible. To shed more light on this tense relationship, Carraro et al. set out to identify the molecular mechanisms ICEclc deploys to control its host. Experiments using mutant bacteria revealed that for ICEclc to successfully take over the cell, a number of proteins needed to be produced in the correct order. In particular, a protein called BisDC triggers a mechanism to make more of itself, creating a self-reinforcing ‘feedback loop’. Mathematical simulations of the feedback loop showed that it could result in two potential outcomes for the cell. In most of the ‘virtual cells’, ICEclc ultimately remained passive; however, in a few, ICEclc managed to take over its hosts. In this case, the feedback loop ensured that there was always enough BisDC to maintain ICEclc’s control over the cell. Further analyses suggested that this feedback mechanism is also common in many other mobile DNA elements, including some that help bacteria to resist drugs. These results are an important contribution to understand how mobile DNAs manipulate their bacterial host in order to propagate and disperse. In the future, this knowledge could help develop new strategies to combat the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Nicolas Carraro
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Xavier Richard
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.,Department of Mathematics, University of Fribourg, Fribourg, Switzerland
| | - Sandra Sulser
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - François Delavat
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.,UMR CNRS 6286 UFIP, University of Nantes, Nantes, France
| | - Christian Mazza
- Department of Mathematics, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
32
|
Pip serves as an intermediate in RpoS-modulated phz2 expression and pyocyanin production in Pseudomonas aeruginosa. Microb Pathog 2020; 147:104409. [PMID: 32707314 DOI: 10.1016/j.micpath.2020.104409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 11/22/2022]
Abstract
Pyocyanin, a main virulence factor that is produced by Pseudomonas aeruginosa, plays an important role in pathogen-host interaction during infection. Two copies of phenazine-biosynthetic operons on genome, phz1 (phzA1B1C1D1E1F1G1) and phz2 (phzA2B2C2D2E2F2G2), contribute to phenazine biosynthesis. In our previous study, we found that RpoS positively regulates expression of the phz2 operon and pyocyanin biosynthesis in P. aeruginosa PAO1. In this work, when a TetR-family regulator gene, pip, was knocked out, we found that pyocyanin production was dramatically reduced, indicating that Pip positively regulates pyocyanin biosynthesis. With further phenazines quantification and β-galactosidase assay, we confirmed that Pip positively regulates phz2 expression, but does not regulate phz1 expression. In addition, while the rpoS gene was deleted, expression of pip was down-regulated. Expression of rpoS in the wild-type PAO1 strain, however, was similar to that in the Pip-deficient mutant PAΔpip, suggesting that expression of pip could positively be regulated by RpoS, whereas rpoS could not be regulated by Pip. Taken together, we drew a conclusion that Pip might serve as an intermediate in RpoS-modulated expression of the phz2 operon and pyocyanin biosynthesis in P. aeruginosa.
Collapse
|
33
|
Nonoyama S, Kishida K, Sakai K, Nagata Y, Ohtsubo Y, Tsuda M. A transcriptional regulator, IscR, of Burkholderia multivorans acts as both repressor and activator for transcription of iron-sulfur cluster-biosynthetic isc operon. Res Microbiol 2020; 171:319-330. [PMID: 32628999 DOI: 10.1016/j.resmic.2020.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/26/2020] [Indexed: 11/18/2022]
Abstract
Bacterial iron-sulfur (Fe-S) clusters are essential cofactors for many metabolic pathways, and Fe-S cluster-containing proteins (Fe-S proteins) regulate the expression of various important genes. However, biosynthesis of such clusters has remained unknown in genus Burkholderia. Here, we clarified that Burkholderia multivorans ATCC 17616 relies on the ISC system for the biosynthesis of Fe-S clusters, and that the biosynthetic genes are organized as an isc operon, whose first gene encodes IscR, a transcriptional regulatory Fe-S protein. Transcription of the isc operon was repressed and activated under iron-rich and -limiting conditions, respectively, and Fur, an iron-responsive global transcriptional regulator, was indicated to indirectly regulate the expression of isc operon. Further analysis using a ΔiscR mutant in combination with a constitutive expression system of IscR and its derivatives indicated transcriptional repression and activation of isc operon by holo- and apo-forms of IscR, respectively, through their binding to the sequences within an isc promoter-containing (Pisc) fragment. Biochemical analysis using the Pisc fragment suggested that the apo-IscR binding sequence differs from the holo-IscR binding sequence. The results obtained in this study revealed a unique regulatory system for the expression of the ATCC 17616 isc operon that has not been observed in other genera.
Collapse
Affiliation(s)
- Shouta Nonoyama
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan.
| | - Kouhei Kishida
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan.
| | - Keiichiro Sakai
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan.
| | - Yuji Nagata
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan.
| | - Yoshiyuki Ohtsubo
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan.
| | - Masataka Tsuda
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan.
| |
Collapse
|
34
|
Yan Q, Rogan CJ, Pang YY, Davis EW, Anderson JC. Ancient co-option of an amino acid ABC transporter locus in Pseudomonas syringae for host signal-dependent virulence gene regulation. PLoS Pathog 2020; 16:e1008680. [PMID: 32673374 PMCID: PMC7386598 DOI: 10.1371/journal.ppat.1008680] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/28/2020] [Accepted: 06/03/2020] [Indexed: 01/09/2023] Open
Abstract
Pathogenic bacteria frequently acquire virulence traits via horizontal gene transfer, yet additional evolutionary innovations may be necessary to integrate newly acquired genes into existing regulatory pathways. The plant bacterial pathogen Pseudomonas syringae relies on a horizontally acquired type III secretion system (T3SS) to cause disease. T3SS-encoding genes are induced by plant-derived metabolites, yet how this regulation occurs, and how it evolved, is poorly understood. Here we report that the two-component system AauS-AauR and substrate-binding protein AatJ, proteins encoded by an acidic amino acid-transport (aat) and -utilization (aau) locus in P. syringae, directly regulate T3SS-encoding genes in response to host aspartate and glutamate signals. Mutants of P. syringae strain DC3000 lacking aauS, aauR or aatJ expressed lower levels of T3SS genes in response to aspartate and glutamate, and had decreased T3SS deployment and virulence during infection of Arabidopsis. We identified an AauR-binding motif (Rbm) upstream of genes encoding T3SS regulators HrpR and HrpS, and demonstrated that this Rbm is required for maximal T3SS deployment and virulence of DC3000. The Rbm upstream of hrpRS is conserved in all P. syringae strains with a canonical T3SS, suggesting AauR regulation of hrpRS is ancient. Consistent with a model of conserved function, an aauR deletion mutant of P. syringae strain B728a, a bean pathogen, had decreased T3SS expression and growth in host plants. Together, our data suggest that, upon acquisition of T3SS-encoding genes, a strain ancestral to P. syringae co-opted an existing AatJ-AauS-AauR pathway to regulate T3SS deployment in response to specific host metabolite signals.
Collapse
Affiliation(s)
- Qing Yan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Conner J. Rogan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Yin-Yuin Pang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Edward W. Davis
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Jeffrey C. Anderson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
35
|
Global Regulatory Roles of the Histidine-Responsive Transcriptional Repressor HutC in Pseudomonas fluorescens SBW25. J Bacteriol 2020; 202:JB.00792-19. [PMID: 32291279 DOI: 10.1128/jb.00792-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/04/2020] [Indexed: 12/19/2022] Open
Abstract
HutC is known as a transcriptional repressor specific for histidine utilization (hut) genes in Gram-negative bacteria, including Pseudomonas fluorescens SBW25. However, its precise mode of protein-DNA interactions hasn't been examined with purified HutC proteins. Here, we performed electrophoretic mobility shift assay (EMSA) and DNase I footprinting using His6-tagged HutC and biotin-labeled probe of the hut promoter (PhutU). Results revealed a complex pattern of HutC oligomerization, and the specific protein-DNA interaction is disrupted by urocanate, a histidine derivative, in a concentration-dependent manner. Next, we searched for putative HutC-binding sites in the SBW25 genome. This led to the identification of 143 candidate targets with a P value less than 10-4 HutC interaction with eight selected candidate sites was subsequently confirmed by EMSA analysis, including the type IV pilus assembly protein PilZ, phospholipase C (PlcC) for phosphatidylcholine hydrolyzation, and key regulators of cellular nitrogen metabolism (NtrBC and GlnE). Finally, an isogenic hutC deletion mutant was subjected to transcriptome sequencing (RNA-seq) analysis and phenotypic characterization. When bacteria were grown on succinate and histidine, hutC deletion caused upregulation of 794 genes and downregulation of 525 genes at a P value of <0.05 with a fold change cutoff of 2.0. The hutC mutant displayed an enhanced spreading motility and pyoverdine production in laboratory media, in addition to the previously reported growth defect on the surfaces of plants. Together, our data indicate that HutC plays global regulatory roles beyond histidine catabolism through low-affinity binding with operator sites located outside the hut locus.IMPORTANCE HutC in Pseudomonas is a representative member of the GntR/HutC family of transcriptional regulators, which possess a N-terminal winged helix-turn-helix (wHTH) DNA-binding domain and a C-terminal substrate-binding domain. HutC is generally known to repress expression of histidine utilization (hut) genes through binding to the PhutU promoter with urocanate (the first intermediate of the histidine degradation pathway) as the direct inducer. Here, we first describe the detailed molecular interactions between HutC and its PhutU target site in a plant growth-promoting bacterium, P. fluorescens SBW25, and further show that HutC possesses specific DNA-binding activities with many targets in the SBW25 genome. Subsequent RNA-seq analysis and phenotypic assays revealed an unexpected global regulatory role of HutC for successful bacterial colonization in planta.
Collapse
|
36
|
Azimi S, Roberts AEL, Peng S, Weitz JS, McNally A, Brown SP, Diggle SP. Allelic polymorphism shapes community function in evolving Pseudomonas aeruginosa populations. ISME JOURNAL 2020; 14:1929-1942. [PMID: 32341475 DOI: 10.1038/s41396-020-0652-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 12/31/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that chronically infects the lungs of individuals with cystic fibrosis (CF) by forming antibiotic-resistant biofilms. Emergence of phenotypically diverse isolates within CF P. aeruginosa populations has previously been reported; however, the impact of heterogeneity on social behaviors and community function is poorly understood. Here we describe how this heterogeneity impacts on behavioral traits by evolving the strain PAO1 in biofilms grown in a synthetic sputum medium for 50 days. We measured social trait production and antibiotic tolerance, and used a metagenomic approach to analyze and assess genomic changes over the duration of the evolution experiment. We found that (i) evolutionary trajectories were reproducible in independently evolving populations; (ii) over 60% of genomic diversity occurred within the first 10 days of selection. We then focused on quorum sensing (QS), a well-studied P. aeruginosa trait that is commonly mutated in strains isolated from CF lungs. We found that at the population level, (i) evolution in sputum medium selected for decreased the production of QS and QS-dependent traits; (ii) there was a significant correlation between lasR mutant frequency, the loss of protease, and the 3O-C12-HSL signal, and an increase in resistance to clinically relevant β-lactam antibiotics, despite no previous antibiotic exposure. Overall, our findings provide insights into the effect of allelic polymorphism on community functions in diverse P. aeruginosa populations. Further, we demonstrate that P. aeruginosa population and evolutionary dynamics can impact on traits important for virulence and can lead to increased tolerance to β-lactam antibiotics.
Collapse
Affiliation(s)
- Sheyda Azimi
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, GA, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Aled E L Roberts
- Microbiology & Infectious Diseases Group, Institute of Life Science, Swansea University Medical School, Swansea, UK
| | - Shengyun Peng
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joshua S Weitz
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, GA, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Samuel P Brown
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, GA, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Stephen P Diggle
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, GA, USA. .,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
37
|
Wang K, Kai L, Zhang K, Hao M, Yu Y, Xu X, Yu Z, Chen L, Chi X, Ge Y. Overexpression of phzM contributes to much more production of pyocyanin converted from phenazine-1-carboxylic acid in the absence of RpoS in Pseudomonas aeruginosa. Arch Microbiol 2020; 202:1507-1515. [PMID: 32222778 DOI: 10.1007/s00203-020-01837-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/15/2020] [Accepted: 02/14/2020] [Indexed: 11/29/2022]
Abstract
Pyocyanin produced by Pseudomonas aeruginosa is a key virulence factor that often causes heavy damages to airway and lung in patients. Conversion of phenazine-1-carboxylic acid to pyocyanin involves an extrametabolic pathway that contains two enzymes encoded, respectively, by phzM and phzS. In this study, with construction of the rpoS-deficient mutant, we first found that although phenazine production increased, pyocyanin produced in the mutant YTΔrpoS was fourfold much higher than that in the wild-type strain YT. To investigate this issue, we constructed phzM-lacZ fusion on a vector and on the chromosome. By quantifying β-galactosidase activities, we confirmed that expression of the phzM was up-regulated when the rpoS gene was inactivated. However, no changes occurred in the expression of phzS and phzH when the rpoS was knocked out. Taken together, overproduction of the SAM-dependent methyltransferase (PhzM) might contribute to the increased pyocyanin in the absence of RpoS in P. aeruginosa.
Collapse
Affiliation(s)
- Kewen Wang
- Department of Applied and Environmental Microbiology, Ludong University, Yantai, 264000, China
| | - Le Kai
- Department of Applied and Environmental Microbiology, Ludong University, Yantai, 264000, China
| | - Kailu Zhang
- Department of Applied and Environmental Microbiology, Ludong University, Yantai, 264000, China
| | - Mengyue Hao
- Department of Applied and Environmental Microbiology, Ludong University, Yantai, 264000, China
| | - Yanjie Yu
- Department of Applied and Environmental Microbiology, Ludong University, Yantai, 264000, China
| | - Xinyu Xu
- Department of Applied and Environmental Microbiology, Ludong University, Yantai, 264000, China
| | - Zhifen Yu
- Affiliated Hospital, Ludong University, Yantai, 264025, China
| | - Lijuan Chen
- Affiliated Hospital, Ludong University, Yantai, 264025, China
| | - Xiaoyan Chi
- Department of Applied and Environmental Microbiology, Ludong University, Yantai, 264000, China.
| | - Yihe Ge
- Department of Applied and Environmental Microbiology, Ludong University, Yantai, 264000, China. .,Affiliated Hospital, Ludong University, Yantai, 264025, China.
| |
Collapse
|
38
|
Jordana-Lluch E, Garcia V, Kingdon ADH, Singh N, Alexander C, Williams P, Hardie KR. A Simple Polymicrobial Biofilm Keratinocyte Colonization Model for Exploring Interactions Between Commensals, Pathogens and Antimicrobials. Front Microbiol 2020; 11:291. [PMID: 32161578 PMCID: PMC7054238 DOI: 10.3389/fmicb.2020.00291] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/10/2020] [Indexed: 12/15/2022] Open
Abstract
Skin offers protection against external insults, with the skin microbiota playing a crucial defensive role against pathogens that gain access when the skin barrier is breached. Linkages between skin microbes, biofilms and disease have not been well established although single-species biofilm formation by skin microbiota in vitro has been extensively studied. Consequently, the purpose of this work was to optimize and validate a simple polymicrobial biofilm keratinocyte model for investigating commensal, pathogen and keratinocyte interactions and for evaluating therapeutic agents or health promoting interventions. The model incorporates the commensals (Staphylococcus epidermidis and Micrococcus luteus) and pathogens (Staphylococcus aureus and Pseudomonas aeruginosa) which form robust polymicrobial biofilms on immortalized keratinocytes (HaCat cells). We observed that the commensals reduce the damage caused to the keratinocyte monolayer by either pathogen. When the commensals were combined with P. aeruginosa and S. aureus, much thinner biofilms were observed than those formed by the pathogens alone. When P. aeruginosa was inoculated with S. epidermidis in the presence or absence of M. luteus, the commensals formed a layer between the keratinocytes and pathogen. Although S. aureus completely inhibited the growth of M. luteus in dual-species biofilms, inclusion of S. epidermidis in triple or quadruple species biofilms, enabled M. luteus to retain viability. Using this polymicrobial biofilm keratinocyte model, we demonstrate that a quorum sensing (QS) deficient S. aureus agr mutant, in contrast to the parent, failed to damage the keratinocyte monolayer unless supplied with the exogenous cognate autoinducing peptide. In addition, we show that treatment of the polymicrobial keratinocyte model with nanoparticles containing an inhibitor of the PQS QS system reduced biofilm thickness and P. aeruginosa localization in mono- and polymicrobial biofilms.
Collapse
Affiliation(s)
- Elena Jordana-Lluch
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Vanina Garcia
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alexander D H Kingdon
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Nishant Singh
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Cameron Alexander
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Paul Williams
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Kim R Hardie
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
39
|
Conjugative Transfer of IncP-9 Catabolic Plasmids Requires a Previously Uncharacterized Gene, mpfK, Whose Homologs Are Conserved in Various MPF T-Type Plasmids. Appl Environ Microbiol 2019; 85:AEM.01850-19. [PMID: 31604768 DOI: 10.1128/aem.01850-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/02/2019] [Indexed: 11/20/2022] Open
Abstract
Conjugative transfer of bacterial plasmids to recipient cells is often mediated by type IV secretion machinery. Experimental investigations into the minimal gene sets required for efficient conjugative transfer suggest that such gene sets are variable, depending on plasmids. We have been analyzing the conjugative transfer of Pseudomonas-derived and IncP-9 plasmids, NAH7 and pWW0, whose conjugation systems belong to the MPFT type. Our deletion analysis and synthetic biology analysis in this study showed that these plasmids require previously uncharacterized genes, mpfK (formerly orf34) and its functional homolog, kikA, respectively, for their efficient conjugative transfer. MpfK was localized in periplasm and had four cysteine residues whose intramolecular or intermolecular disulfide bond formation was suggested to be important for efficient conjugative transfer. The mpfK homologs were specifically carried by many MPFT-type plasmids, including non-IncP-9 plasmids, such as R388 and R751. Intriguingly, the mpfK homologs from the two non-IncP-9 plasmids were not required for conjugation of their plasmids, but were able to complement efficiently the transfer defect of the NAH7 mpfK mutant. Our results suggested the importance of the mpfK homologs for conjugative transfer of MPFT-type plasmids.IMPORTANCE IncP-9 plasmids are important mobile genetic elements for the degradation of various aromatic hydrocarbons. Elucidation of conjugative transfer of such plasmids is expected to greatly contribute to our understanding of its role in the bioremediation of polluted environments. The present study mainly focused on the conjugation system of NAH7, a well-studied and naphthalene-catabolic IncP-9 plasmid. Our analysis showed that the NAH7 conjugation system uniquely requires, in addition to the conserved components of the type IV secretion system (T4SS), a previously uncharacterized periplasmic protein, MpfK, for successful conjugation. Our findings collectively revealed a unique type of T4SS-associated conjugation system in the IncP-9 plasmids.
Collapse
|
40
|
Noirot-Gros MF, Forrester S, Malato G, Larsen PE, Noirot P. CRISPR interference to interrogate genes that control biofilm formation in Pseudomonas fluorescens. Sci Rep 2019; 9:15954. [PMID: 31685917 PMCID: PMC6828691 DOI: 10.1038/s41598-019-52400-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 10/12/2019] [Indexed: 12/11/2022] Open
Abstract
Bacterial biofilm formation involves signaling and regulatory pathways that control the transition from motile to sessile lifestyle, production of extracellular polymeric matrix, and maturation of the biofilm 3D structure. Biofilms are extensively studied because of their importance in biomedical, ecological and industrial settings. Gene inactivation is a powerful approach for functional studies but it is often labor intensive, limiting systematic gene surveys to the most tractable bacterial hosts. Here, we adapted the CRISPR interference (CRISPRi) system for use in diverse strain isolates of P. fluorescens, SBW25, WH6 and Pf0-1. We found that CRISPRi is applicable to study complex phenotypes such as cell morphology, motility and biofilm formation over extended periods of time. In SBW25, CRISPRi-mediated silencing of genes encoding the GacA/S two-component system and regulatory proteins associated with the cylic di-GMP signaling messenger produced swarming and biofilm phenotypes similar to those obtained after gene inactivation. Combined with detailed confocal microscopy of biofilms, our study also revealed novel phenotypes associated with extracellular matrix biosynthesis as well as the potent inhibition of SBW25 biofilm formation mediated by the PFLU1114 operon. We conclude that CRISPRi is a reliable and scalable approach to investigate gene networks in the diverse P. fluorescens group.
Collapse
Affiliation(s)
| | - Sara Forrester
- Biosciences Division, Argonne National Laboratory, Lemont, IL60439, United States
| | - Grace Malato
- Biosciences Division, Argonne National Laboratory, Lemont, IL60439, United States
| | - Peter E Larsen
- Biosciences Division, Argonne National Laboratory, Lemont, IL60439, United States.,Department of Bioengineering, University of Illinois Chicago, Chicago, IL60607, United States
| | - Philippe Noirot
- Biosciences Division, Argonne National Laboratory, Lemont, IL60439, United States
| |
Collapse
|
41
|
Shyntum DY, Nkomo NP, Shingange NL, Gricia AR, Bellieny-Rabelo D, Moleleki LN. The Impact of Type VI Secretion System, Bacteriocins and Antibiotics on Bacterial Competition of Pectobacterium carotovorum subsp. brasiliense and the Regulation of Carbapenem Biosynthesis by Iron and the Ferric-Uptake Regulator. Front Microbiol 2019; 10:2379. [PMID: 31681235 PMCID: PMC6813493 DOI: 10.3389/fmicb.2019.02379] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022] Open
Abstract
The complexity of plant microbial communities provides a rich model for investigating biochemical and regulatory strategies involved in interbacterial competition. Within these niches, the soft rot Enterobacteriaceae (SRE) represents an emerging group of plant-pathogens causing soft rot/blackleg diseases resulting in economic losses worldwide in a variety of crops. A preliminary screening using next-generation sequencing of 16S rRNA comparatively analyzing healthy and diseased potato tubers, identified several taxa from Proteobacteria to Firmicutes as potential potato endophytes/plant pathogens. Subsequent to this, a range of molecular and computational techniques were used to determine the contribution of antimicrobial factors such as bacteriocins, carbapenem and type VI secretion system (T6SS), found in an aggressive SRE (Pectobacterium carotovorum subsp. brasiliense strain PBR1692 - Pcb1692) against these endophytes/plant pathogens. The results showed growth inhibition of several Proteobacteria by Pcb1692 depends either on carbapenem or pyocin production. Whereas for targeted Firmicutes, only the Pcb1692 pyocin seems to play a role in growth inhibition. Furthermore, production of carbapenem by Pcb1692 was observably dependent on the presence of environmental iron and oxygen. Additionally, upon deletion of fur, slyA and expI regulators, carbapenem production ceased, implying a complex regulatory mechanism involving these three genes. Finally, the results demonstrated that although T6SS confers no relevant advantage during in vitro competition, a significant attenuation in competition by the mutant strain lacking a functional T6SS was observed in planta. IMPORTANCE Soft rot Enterobacteriaceae (SRE) represents important phytopathogens causing soft rot/blackleg diseases in a variety of crops leading to huge economic losses worldwide. These pathogens have been isolated alongside other bacteria from different environments such as potato tubers, stems, roots and from the soil. In these environments, SREs coexist with other bacteria where they have to compete for scarce nutrients and other resources. In this report, we show that Pectobacterium carotovorum subsp. brasiliense strain PBR1692 - Pcb1692, which represents one of the SREs, inhibits growth of several different bacteria by producing different antimicrobial compounds. These antimicrobial compounds can be secreted inside or outside the plant host, allowing Pcb1692 to effectively colonize different types of ecological niches. By analyzing the genome sequences of several SREs, we show that other SREs likely deploy similar antimicrobials to target other bacteria.
Collapse
Affiliation(s)
- Divine Yufetar Shyntum
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry, Agriculture and Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Ntombikayise Precious Nkomo
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry, Agriculture and Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Ntwanano Luann Shingange
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Alessandro Rino Gricia
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry, Agriculture and Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Daniel Bellieny-Rabelo
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry, Agriculture and Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Lucy Novungayo Moleleki
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry, Agriculture and Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
42
|
Re-evaluation of a Tn5::gacA mutant of Pseudomonas syringae pv. tomato DC3000 uncovers roles for uvrC and anmK in promoting virulence. PLoS One 2019; 14:e0223637. [PMID: 31600319 PMCID: PMC6786584 DOI: 10.1371/journal.pone.0223637] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/25/2019] [Indexed: 12/16/2022] Open
Abstract
Pseudomonas syringae is a taxon of plant pathogenic bacteria that can colonize and proliferate within the interior space of leaf tissue. This process requires P. syringae to rapidly upregulate the production of virulence factors including a type III secretion system (T3SS) that suppress host defenses. GacS/A is a two-component system that regulates virulence of many plant and animal pathogenic bacteria including P. syringae. We recently investigated the virulence defect of strain AC811, a Tn5::gacA mutant of P. syringae pv. tomato DC3000 that is less virulent on Arabidopsis. We discovered that decreased virulence of AC811 is not caused by loss of GacA function. Here, we report the molecular basis of the virulence defect of AC811. We show that AC811 possesses a nonsense mutation in anmK, a gene predicted to encode a 1,6-anhydromuramic acid kinase involved in cell wall recycling. Expression of a wild-type allele of anmK partially increased growth of AC811 in Arabidopsis leaves. In addition to the defective anmK allele, we also show that the Tn5 insertion in gacA exerts a polar effect on uvrC, a downstream gene encoding a regulator of DNA damage repair. Expression of the wild-type anmK allele together with increased expression of uvrC fully restored the virulence of AC811 during infection of Arabidopsis. These results demonstrate that defects in anmK and uvrC are together sufficient to account for the decreased virulence of AC811, and suggest caution is warranted in assigning phenotypes to GacA function based on insertional mutagenesis of the gacA-uvrC locus.
Collapse
|
43
|
Hook AL, Flewellen JL, Dubern JF, Carabelli AM, Zaid IM, Berry RM, Wildman RD, Russell N, Williams P, Alexander MR. Simultaneous Tracking of Pseudomonas aeruginosa Motility in Liquid and at the Solid-Liquid Interface Reveals Differential Roles for the Flagellar Stators. mSystems 2019; 4:e00390-19. [PMID: 31551402 PMCID: PMC6759568 DOI: 10.1128/msystems.00390-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/01/2019] [Indexed: 01/19/2023] Open
Abstract
Bacteria sense chemicals, surfaces, and other cells and move toward some and away from others. Studying how single bacterial cells in a population move requires sophisticated tracking and imaging techniques. We have established quantitative methodology for label-free imaging and tracking of individual bacterial cells simultaneously within the bulk liquid and at solid-liquid interfaces by utilizing the imaging modes of digital holographic microscopy (DHM) in three dimensions (3D), differential interference contrast (DIC), and total internal reflectance microscopy (TIRM) in two dimensions (2D) combined with analysis protocols employing bespoke software. To exemplify and validate this methodology, we investigated the swimming behavior of a Pseudomonas aeruginosa wild-type strain and isogenic flagellar stator mutants (motAB and motCD) within the bulk liquid and at the surface at the single-cell and population levels. Multiple motile behaviors were observed that could be differentiated by speed and directionality. Both stator mutants swam slower and were unable to adjust to the near-surface environment as effectively as the wild type, highlighting differential roles for the stators in adapting to near-surface environments. A significant reduction in run speed was observed for the P. aeruginosa mot mutants, which decreased further on entering the near-surface environment. These results are consistent with the mot stators playing key roles in responding to the near-surface environment.IMPORTANCE We have established a methodology to enable the movement of individual bacterial cells to be followed within a 3D space without requiring any labeling. Such an approach is important to observe and understand how bacteria interact with surfaces and form biofilm. We investigated the swimming behavior of Pseudomonas aeruginosa, which has two flagellar stators that drive its swimming motion. Mutants that had only either one of the two stators swam slower and were unable to adjust to the near-surface environment as effectively as the wild type. These results are consistent with the mot stators playing key roles in responding to the near-surface environment and could be used by bacteria to sense via their flagella when they are near a surface.
Collapse
Affiliation(s)
- Andrew L Hook
- Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - James L Flewellen
- Immune Receptor Activation Laboratory, The Francis Crick Institute, London, United Kingdom
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London, United Kingdom
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, United Kingdom
| | - Jean-Frédéric Dubern
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alessandro M Carabelli
- Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Irwin M Zaid
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, United Kingdom
| | - Richard M Berry
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, United Kingdom
| | - Ricky D Wildman
- Department of Chemical and Environmental Engineering, School of Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Noah Russell
- Marine Biological Association, The Laboratory, Plymouth, United Kingdom
| | - Paul Williams
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Morgan R Alexander
- Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
44
|
Production of Norspermidine Contributes to Aminoglycoside Resistance in pmrAB Mutants of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2019; 63:AAC.01044-19. [PMID: 31383668 DOI: 10.1128/aac.01044-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/25/2019] [Indexed: 12/18/2022] Open
Abstract
Emergence of resistance to polymyxins in Pseudomonas aeruginosa is mainly due to mutations in two-component systems that promote the addition of 4-amino-4-deoxy-l-arabinose to the lipopolysaccharide (LPS) through upregulation of operon arnBCADTEF-ugd (arn) expression. Here, we demonstrate that mutations occurring in different domains of histidine kinase PmrB or in response regulator PmrA result in coresistance to aminoglycosides and colistin. All seventeen clinical strains tested exhibiting such a cross-resistance phenotype were found to be pmrAB mutants. As shown by gene deletion experiments, the decreased susceptibility of the mutants to aminoglycosides was independent from operon arn but required the efflux system MexXY-OprM and the products of three genes, PA4773-PA4774-PA4775, that are cotranscribed and activated with genes pmrAB Gene PA4773 (annotated as speD2 in the PAO1 genome) and PA4774 (speE2) are predicted to encode enzymes involved in biosynthesis of polyamines. Comparative analysis of cell surface extracts of an in vitro selected pmrAB mutant, called AB16.2, and derivatives lacking PA4773, PA4774, and PA4775 revealed that these genes were needed for norspermidine production via a pathway that likely uses 1,3-diaminopropane, a precursor of polyamines. Altogether, our results suggest that norspermidine decreases the self-promoted uptake pathway of aminoglycosides across the outer membrane and, thereby, potentiates the activity of efflux pump MexXY-OprM.
Collapse
|
45
|
Interference with Pseudomonas aeruginosa Quorum Sensing and Virulence by the Mycobacterial Pseudomonas Quinolone Signal Dioxygenase AqdC in Combination with the N-Acylhomoserine Lactone Lactonase QsdA. Infect Immun 2019; 87:IAI.00278-19. [PMID: 31308081 DOI: 10.1128/iai.00278-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/26/2019] [Indexed: 11/20/2022] Open
Abstract
The nosocomial pathogen Pseudomonas aeruginosa regulates its virulence via a complex quorum sensing network, which, besides N-acylhomoserine lactones, includes the alkylquinolone signal molecules 2-heptyl-3-hydroxy-4(1H)-quinolone (Pseudomonas quinolone signal [PQS]) and 2-heptyl-4(1H)-quinolone (HHQ). Mycobacteroides abscessus subsp. abscessus, an emerging pathogen, is capable of degrading the PQS and also HHQ. Here, we show that although M. abscessus subsp. abscessus reduced PQS levels in coculture with P. aeruginosa PAO1, this did not suffice for quenching the production of the virulence factors pyocyanin, pyoverdine, and rhamnolipids. However, the levels of these virulence factors were reduced in cocultures of P. aeruginosa PAO1 with recombinant M. abscessus subsp. massiliense overexpressing the PQS dioxygenase gene aqdC of M. abscessus subsp. abscessus, corroborating the potential of AqdC as a quorum quenching enzyme. When added extracellularly to P. aeruginosa cultures, AqdC quenched alkylquinolone and pyocyanin production but induced an increase in elastase levels. When supplementing P. aeruginosa cultures with QsdA, an enzyme from Rhodococcus erythropolis which inactivates N-acylhomoserine lactone signals, rhamnolipid and elastase levels were quenched, but HHQ and pyocyanin synthesis was promoted. Thus, single quorum quenching enzymes, targeting individual circuits within a complex quorum sensing network, may also elicit undesirable regulatory effects. Supernatants of P. aeruginosa cultures grown in the presence of AqdC, QsdA, or both enzymes were less cytotoxic to human epithelial lung cells than supernatants of untreated cultures. Furthermore, the combination of both aqdC and qsdA in P. aeruginosa resulted in a decline of Caenorhabditis elegans mortality under P. aeruginosa exposure.
Collapse
|
46
|
Selection of reference genes for measuring the expression of aiiO in Ochrobactrum quorumnocens A44 using RT-qPCR. Sci Rep 2019; 9:13129. [PMID: 31511547 PMCID: PMC6739375 DOI: 10.1038/s41598-019-49474-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/22/2019] [Indexed: 11/09/2022] Open
Abstract
Reverse transcription quantitative PCR (RT-qPCR), a method of choice for quantification of gene expression changes, requires stably expressed reference genes for normalization of data. So far, no reference genes were established for the Alphaproteobacteria of the genus Ochrobactrum. Here, we determined reference genes for gene expression studies in O. quorumnocens A44. Strain A44 was cultured under 10 different conditions and the stability of expression of 11 candidate genes was evaluated using geNorm, NormFinder and BestKeeper. Most stably expressed genes were found to be rho, gyrB and rpoD. Our results can facilitate the choice of reference genes in the related Ochrobactrum strains. O. quorumnocens A44 is able to inactivate a broad spectrum of N-acyl homoserine lactones (AHLs) - the quorum sensing molecules of many Gram-negative bacteria. This activity is attributed to AiiO hydrolase, yet it remains unclear whether AHLs are the primary substrate of this enzyme. Using the established RT-qPCR setup, we found that the expression of the aiiO gene upon exposure to two AHLs, C6-HLS and 3OC12-HSL, does not change above the 1-fold significance threshold. The implications of this finding are discussed in the light of the role of quorum sensing-interfering enzymes in the host strains.
Collapse
|
47
|
Wu X, Chi X, Wang Y, Zhang K, Kai L, He Q, Tang J, Wang K, Sun L, Hao X, Xie W, Ge Y. vfr, A Global Regulatory Gene, is Required for Pyrrolnitrin but not for Phenazine-1-carboxylic Acid Biosynthesis in Pseudomonas chlororaphis G05. THE PLANT PATHOLOGY JOURNAL 2019; 35:351-361. [PMID: 31481858 PMCID: PMC6706016 DOI: 10.5423/ppj.oa.01.2019.0011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 06/10/2023]
Abstract
In our previous study, pyrrolnitrin produced in Pseudomonas chlororaphis G05 plays more critical role in suppression of mycelial growth of some fungal pathogens that cause plant diseases in agriculture. Although some regulators for pyrrolnitrin biosynthesis were identified, the pyrrolnitrin regulation pathway was not fully constructed. During our screening novel regulator candidates, we obtained a white conjugant G05W02 while transposon mutagenesis was carried out between a fusion mutant G05ΔphzΔprn::lacZ and E. coli S17-1 (pUT/mini-Tn5Kan). By cloning and sequencing of the transposon-flanking DNA fragment, we found that a vfr gene in the conjugant G05W02 was disrupted with mini-Tn5Kan. In one other previous study on P. fluorescens, however, it was reported that the deletion of the vfr caused increased production of pyrrolnitrin and other antifungal metabolites. To confirm its regulatory function, we constructed the vfr-knockout mutant G05Δvfr and G05ΔphzΔprn::lacZΔvfr. By quantifying β-galactosidase activities, we found that deletion of the vfr decreased the prn operon expression dramatically. Meanwhile, by quantifying pyrrolnitrin production in the mutant G05Δvfr, we found that deficiency of the Vfr caused decreased pyrrolnitrin production. However, production of phenazine-1-carboxylic acid was same to that in the wild-type strain G05. Taken together, Vfr is required for pyrrolnitrin but not for phenazine-1-carboxylic acid biosynthesis in P. chlororaphis G05.
Collapse
Affiliation(s)
- Xia Wu
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025,
China
| | - Xiaoyan Chi
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025,
China
| | - Yanhua Wang
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025,
China
| | - Kailu Zhang
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025,
China
| | - Le Kai
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025,
China
| | - Qiuning He
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025,
China
| | - Jinxiu Tang
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025,
China
| | - Kewen Wang
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025,
China
| | - Longshuo Sun
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025,
China
| | - Xiuying Hao
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830001,
China
| | - Weihai Xie
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025,
China
| | - Yihe Ge
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai 264025,
China
| |
Collapse
|
48
|
Sun L, Chi X, Feng Z, Wang K, Kai L, Zhang K, Cheng S, Hao X, Xie W, Ge Y. phz1 contributes much more to phenazine-1-carboxylic acid biosynthesis than phz2 in Pseudomonas aeruginosa rpoS mutant. J Basic Microbiol 2019; 59:914-923. [PMID: 31294863 DOI: 10.1002/jobm.201900165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/07/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022]
Abstract
Pseudomonas aeruginosa PAO1, a common opportunistic bacterial pathogen, contains two phenazine-biosynthetic operons, phz1 (phzA1 B1 C1 D1 E1 F1 G1 ) and phz2 (phzA2 B2 C2 D2 E2 F2 G2 ). Each of two operons can independently encode a set of enzymes involving in the biosynthesis of phenazine-1-carboxylic acid. As a global transcriptional regulator, RpoS mediates a lot of genes involving secondary metabolites biosynthesis in many bacteria. In an other previous study, it was reported that RpoS deficiency caused overproduction of pyocyanin, a derivative of phenazine-1-carboxylic acid in P. aeruginosa PAO1. But it is not known how RpoS mediates the expression of each of two phz operons and modulates phenazine-1-carboxylic acid biosynthesis in detail. In this study, by deleting the rpoS gene in the mutant PNΔphz1 and the mutant PNΔphz2, we found that the phz1 operon contributes much more to phenazine-1-carboxylic acid biosynthesis than the phz2 operon in the absence of RpoS. With the construction of the translational and transcriptional fusion vectors with the truncated lacZ reporter gene, we demonstrated that RpoS negatively regulates the expression of phz1 and positively controls the expression of phz2, and the regulation of phenazine-1-carboxylic acid biosynthesis mediated by RopS occurs at the posttranscriptional level, not at the transcriptional level. Obviously, two copies of phz operons and their differential expression mediated by RpoS might help P. aeruginosa adapt to its diverse environments and establish infection in its hosts.
Collapse
Affiliation(s)
- Longshuo Sun
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Xiaoyan Chi
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Zhibin Feng
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Kewen Wang
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Le Kai
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Kailu Zhang
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Shiwei Cheng
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Xiuying Hao
- Laboratory of Applied and Environmental Microbiology, Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Weihai Xie
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Yihe Ge
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| |
Collapse
|
49
|
Little RH, Woodcock SD, Campilongo R, Fung RKY, Heal R, Humphries L, Pacheco-Moreno A, Paulusch S, Stigliano E, Vikeli E, Ward D, Malone JG. Differential Regulation of Genes for Cyclic-di-GMP Metabolism Orchestrates Adaptive Changes During Rhizosphere Colonization by Pseudomonas fluorescens. Front Microbiol 2019; 10:1089. [PMID: 31156596 PMCID: PMC6531821 DOI: 10.3389/fmicb.2019.01089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/30/2019] [Indexed: 12/02/2022] Open
Abstract
Bacteria belonging to the Pseudomonas genus are highly successful colonizers of the plant rhizosphere. The ability of different Pseudomonas species to live either commensal lifestyles or to act as agents of plant-growth promotion or disease is reflected in a large, highly flexible accessory genome. Nevertheless, adaptation to the plant environment involves a commonality of phenotypic outputs such as changes to motility, coupled with synthesis of nutrient uptake systems, stress-response molecules and adherence factors including exopolysaccharides. Cyclic-di-GMP (cdG) is a highly important second messenger involved in the integration of environmental signals with appropriate adaptive responses and is known to play a central role in mediating effective rhizosphere colonization. In this study, we examined the transcription of multiple, reportedly plant-upregulated cdG metabolism genes during colonization of the wheat rhizosphere by the plant-growth-promoting strain P. fluorescens SBW25. While transcription of the tested genes generally increased in the rhizosphere environment, we additionally observed a tightly orchestrated response to environmental cues, with a distinct transcriptional pattern seen for each gene throughout the colonization process. Extensive phenotypical analysis of deletion and overexpression strains was then conducted and used to propose cellular functions for individual cdG signaling genes. Finally, in-depth genetic analysis of an important rhizosphere colonization regulator revealed a link between cdG control of growth, motility and stress response, and the carbon sources available in the rhizosphere.
Collapse
Affiliation(s)
- Richard H Little
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Stuart D Woodcock
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Rosaria Campilongo
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Rowena K Y Fung
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Robert Heal
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Libby Humphries
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Alba Pacheco-Moreno
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | - Egidio Stigliano
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Eleni Vikeli
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Danny Ward
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Jacob G Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom.,School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
50
|
Contribution of Active Iron Uptake to Acinetobacter baumannii Pathogenicity. Infect Immun 2019; 87:IAI.00755-18. [PMID: 30718286 DOI: 10.1128/iai.00755-18] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/25/2019] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter baumannii is an important nosocomial pathogen. Mechanisms that allow A. baumannii to cause human infection are still poorly understood. Iron is an essential nutrient for bacterial growth in vivo, and the multiplicity of iron uptake systems in A. baumannii suggests that iron acquisition contributes to the ability of A. baumannii to cause infection. In Gram-negative bacteria, active transport of ferrisiderophores and heme relies on the conserved TonB-ExbB-ExbD energy-transducing complex, while active uptake of ferrous iron is mediated by the Feo system. The A. baumannii genome invariably contains three tonB genes (tonB1, tonB2, and tonB3), whose role in iron uptake is poorly understood. Here, we generated A. baumannii mutants with knockout mutations in the feo and/or tonB gene. We report that tonB3 is essential for A. baumannii growth under iron-limiting conditions, whereas tonB1, tonB2, and feoB appear to be dispensable for ferric iron uptake. tonB3 deletion resulted in reduced intracellular iron content despite siderophore overproduction, supporting a key role of TonB3 in iron uptake. In contrast to the case for tonB1 and tonB2, the promoters of tonB3 and feo contain functional Fur boxes and are upregulated in iron-poor media. Both TonB3 and Feo systems are required for growth in complement-free human serum and contribute to resistance to the bactericidal activity of normal human serum, but only TonB3 appears to be essential for virulence in insect and mouse models of infection. Our findings highlight a central role of the TonB3 system for A. baumannii pathogenicity. Hence, TonB3 represents a promising target for novel antibacterial therapies and for the generation of attenuated vaccine strains.
Collapse
|