1
|
Ababa G, Hailu W, Shiferaw T, Fekadu W, Alamerew S. Adult-plant resistance to leaf scald and net form net blotch in food barley genotypes at a hot spot location in Ethiopia. Heliyon 2024; 10:e40529. [PMID: 39650173 PMCID: PMC11625138 DOI: 10.1016/j.heliyon.2024.e40529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/11/2024] Open
Abstract
Globally, the fungal pathogens Rhynchosporium graminicola and Pyrenophora teres f. teres produce foliar diseases that significantly reduce barley yield. These diseases are known as leaf scald and net form net blotch, respectively. One hundred food barley genotypes in reaction to the diseases were assessed in Ethiopia's natural environment. Since Ethiopia is a secondary center of genetic diversity in barley and consequently its pathogens, this assessment is certainly of interest in identifying new sources of resistance and using the identified genotypes in breeding. In addition, effect of the diseases on yield and yield components of food barley and the association between the parameters were studied. A simple lattice design was used for the field testing. Ten center rows (5 m2) were assessed for grain yield, and the results were converted to t ha-1. Eyal classes and Eyal and Brown reaction types were used to evaluate the reactions of barley genotypes in one year breeding scheme. The association between the independent and dependent variables was examined using Pearson correlation in ellipses predictor. The Logistic and Gompertz models were employed to analyses disease rates. The maximum grain yield (6.7 t ha-1) and lowest grain yield (1.7 t ha-1) were recorded by genotypes HB#P356 and SARC#P42, respectively. Among evaluated genotypes, 21 % were susceptible, 44 % were moderately susceptible, 20 % were moderately resistant, and 15 % were resistant to leaf scald disease. Genotypes like HB#P1235, HB#P1244, HB#P1251, HB#P386 and the other 11 demonstrated resistance reactions to leaf scald disease. In reverse, the 17 genotypes, including HB#P394, SARC#P5, SARC#P29, and SARC#P12, were susceptible to scald disease. The reactions of genotypes to net form net blotch disease were as follows: 12 % were susceptible, 77 % were moderately susceptible, 8 % were moderately resistant, and 3 % were resistant. A few genotypes, including HB#P340, SARC#P10, and SARC#P14, were susceptible to net form net blotch. Genotypes, HB#P1319, HB#P825, and HB#P830, showed resistance to net form net blotch disease. Consequently, in later breeding schemes, these genotypes, which are resistant to leaf scald and net form net blotch, can be utilized as a parental genotype for crossing and variety development. Moreover, these genotypes can also be important as a genetic resource for future breeding and genetic research. Plant height and the severity of both diseases showed an adverse association (r = -0.1), suggesting that barley breeders should take these two factors into account when designing targeted their breeding program.
Collapse
Affiliation(s)
- Girma Ababa
- Department of Plant Protection (Plant Pathology), Holetta Agricultural Research Center (HARC), Ethiopian Institute of Agricultural Research (EIAR), Holetta, Addis Ababa, Ethiopia
| | - Wami Hailu
- Department of Plant Science (Plant Breeding), Holetta Agricultural Research Center (HARC), Ethiopian Institute of Agricultural Research (EIAR), Holetta, Addis Ababa, Ethiopia
| | - Tigist Shiferaw
- Department of Plant Science (Plant Breeding), Holetta Agricultural Research Center (HARC), Ethiopian Institute of Agricultural Research (EIAR), Holetta, Addis Ababa, Ethiopia
| | - Wondimu Fekadu
- Department of Plant Science (Plant Breeding), Holetta Agricultural Research Center (HARC), Ethiopian Institute of Agricultural Research (EIAR), Holetta, Addis Ababa, Ethiopia
| | - Sentayehu Alamerew
- Department of Plant Science (Plant Breeding), Holetta Agricultural Research Center (HARC), Ethiopian Institute of Agricultural Research (EIAR), Holetta, Addis Ababa, Ethiopia
| |
Collapse
|
2
|
Ijaz U, Zhao C, Shahbala S, Zhou M. Genome-Wide Association Study for Identification of Marker-Trait Associations Conferring Resistance to Scald from Globally Collected Barley Germplasm. PHYTOPATHOLOGY 2024; 114:1637-1645. [PMID: 38451589 DOI: 10.1094/phyto-01-24-0043-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Scald is one of the major economically important foliar diseases in barley, causing up to 40% yield loss in susceptible varieties. The identification of quantitative trait loci and elite alleles that confer resistance to scald is imperative in reducing the threats to barley production. In this study, genome-wide association studies were conducted using a panel of 697 barley genotypes to identify quantitative trait loci for scald resistance. Field experiments were conducted over three consecutive years. Among different models used for genome-wide association studies analysis, FarmCPU was shown to be the best-suited model. Nineteen significant marker-trait associations related to scald resistance were identified across six different chromosomes. Eleven of these marker-trait associations correspond to previously reported scald resistance genes Rrs1, Rrs4, and Rrs2, respectively. Eight novel marker-trait associations were identified in this study, with the candidate genes encoding a diverse class of proteins, including region leucine-rich repeats, AP2/ERF transcription factor, homeodomain-leucine zipper, and protein kinase family proteins. The combination of identified superior alleles significantly reduces disease severity scores. The results will be valuable for marker-assisted breeding for developing scald-resistant varieties.
Collapse
Affiliation(s)
- Usman Ijaz
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia
| | - Sergey Shahbala
- School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia
| |
Collapse
|
3
|
Karki M, Chu C, Anderson K, Nandety RS, Fiedler JD, Schachterle J, Bruggeman RS, Liu Z, Yang S. Genome-Wide Association Study of Host Resistance to Hessian Fly in Barley. PHYTOPATHOLOGY 2024; 114:752-759. [PMID: 37913750 DOI: 10.1094/phyto-06-23-0192-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The Hessian fly (HF), Mayetiola destructor (Diptera: Cecidomyiidae), is one of the most devastating insect pests of cereals including wheat, barley, and rye. Although wheat is the preferred host for HF, this continuously evolving pest has been emerging as a threat to barley production. However, characterization and identification of genetic resistance to HF has not been conducted in barley. In the present study, we used a genome-wide association study (GWAS) to identify barley resistance loci to HF using a geographically diverse set of 234 barley accessions. The results showed that around 90% of barley lines were highly susceptible, indicating a significant vulnerability to HF in barley, and a total of 29 accessions were resistant, serving as potential resistance resources. GWAS with a mixed linear model revealed two marker-trait associations, both on chromosome 4H. The resistance loci and associated markers will facilitate barley improvement and development for breeders. In addition, our results are fundamental for genetic studies to understand the HF resistance mechanism in barley.
Collapse
Affiliation(s)
- Manila Karki
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
| | - Chenggen Chu
- Sugarbeet and Potato Research Unit, Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Fargo, ND 58102
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102
| | - Kirk Anderson
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Fargo, ND 58102
| | - Raja Sekhar Nandety
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Fargo, ND 58102
| | - Jason D Fiedler
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Fargo, ND 58102
| | - Jeffrey Schachterle
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Fargo, ND 58102
| | - Robert S Bruggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
| | - Shengming Yang
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Fargo, ND 58102
| |
Collapse
|
4
|
Metwally RA, Soliman SA, Abdalla H, Abdelhameed RE. Trichoderma cf. asperellum and plant-based titanium dioxide nanoparticles initiate morphological and biochemical modifications in Hordeum vulgare L. against Bipolaris sorokiniana. BMC PLANT BIOLOGY 2024; 24:118. [PMID: 38368386 PMCID: PMC10873961 DOI: 10.1186/s12870-024-04785-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/31/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Spot blotch is a serious foliar disease of barley (Hordeum vulgare L.) plants caused by Bipolaris sorokiniana, which is a hemibiotrophic ascomycete that has a global impact on productivity. Some Trichoderma spp. is a promising candidate as a biocontrol agent as well as a plant growth stimulant. Also, the application of nanomaterials in agriculture limits the use of harmful agrochemicals and helps improve the yield of different crops. The current study was carried out to evaluate the effectiveness of Trichoderma. cf. asperellum and the biosynthesized titanium dioxide nanoparticles (TiO2 NPs) to manage the spot blotch disease of barley caused by B. sorokiniana and to assess the plant's innate defense response. RESULTS Aloe vera L. aqueous leaf extract was used to biosynthesize TiO2 NPs by reducing TiCl4 salt into TiO2 NPs and the biosynthesized NPs were detected using SEM and TEM. It was confirmed that the NPs are anatase-crystalline phases and exist in sizes ranging from 10 to 25 nm. The T. cf. asperellum fungus was detected using morphological traits and rDNA ITS analysis. This fungus showed strong antagonistic activity against B. sorokiniana (57.07%). Additionally, T. cf. asperellum cultures that were 5 days old demonstrated the best antagonistic activity against the pathogen in cell-free culture filtrate. Also, B. sorokiniana was unable to grow on PDA supplemented with 25 and 50 mg/L of TiO2 NPs, and the diameter of the inhibitory zone increased with increasing TiO2 NPs concentration. In an in vivo assay, barley plants treated with T. cf. asperellum or TiO2 NPs were used to evaluate their biocontrol efficiency against B. sorokiniana, in which T. cf. asperellum and TiO2 NPs enhanced the growth of the plant without displaying disease symptoms. Furthermore, the physiological and biochemical parameters of barley plants treated with T. cf. asperellum or TiO2 NPs in response to B. sorokiniana treatment were quantitively estimated. Hence, T. cf. asperellum and TiO2 NPs improve the plant's tolerance and reduce the growth inhibitory effect of B. sorokiniana. CONCLUSION Subsequently, T. cf. asperellum and TiO2 NPs were able to protect barley plants against B. sorokiniana via enhancement of chlorophyll content, improvement of plant health, and induction of the barley innate defense system. The present work emphasizes the major contribution of T. cf. asperellum and the biosynthesized TiO2 NPs to the management of spot blotch disease in barley plants, and ultimately to the enhancement of barley plant quality and productivity.
Collapse
Affiliation(s)
- Rabab A Metwally
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Shereen A Soliman
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Hanan Abdalla
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Reda E Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
5
|
Esmail SM, Jarquín D, Börner A, Sallam A. Genome-wide association mapping highlights candidate genes and immune genotypes for net blotch and powdery mildew resistance in barley. Comput Struct Biotechnol J 2023; 21:4923-4932. [PMID: 37867969 PMCID: PMC10585327 DOI: 10.1016/j.csbj.2023.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/08/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023] Open
Abstract
Net blotch (NB) and powdery mildew (PM) are major barley diseases with the potential to cause a dramatic loss in grain yield. Breeding for resistant barley genotypes in combination with identifying candidate resistant genes will accelerate the genetic improvement for resistance to NB and PM. To address this challenge, a set of 122 highly diverse barley genotypes from 34 countries were evaluated for NB and PM resistance under natural infection for in two growing seasons. Moreover, four yield traits; plant height (Ph), spike length (SL), spike weight (SW), and the number of spikelets per spike (NOS) were recorded. High genetic variation was found among genotypes in all traits scored in this study. No significant phenotypic correlation was found in the resistance between PM and NB. Immune genotypes for NB and PM were identified. A total of 21 genotypes were immune to both diseases. Of the 21 genotypes, the German genotype HOR_9570 was selected as the most promising genotype that can be used for future breeding programs. Furthermore, a genome-wide association study (GWAS) was used to identify resistant alleles to PM and NB. The results of GWAS revealed a set of 14 and 25 significant SNPs that were associated with increased resistance to PM and NB, respectively. This study provided very important genetic resources that are highly resistant to the Egyptian PM and NB pathotypes and revealed SNP markers that can be utilized to genetically improve resistance to PM and NB.
Collapse
Affiliation(s)
- Samar M. Esmail
- Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Diego Jarquín
- Department of Agronomy, University of Florida, Gainesville, FL 32611, USA
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Ahmed Sallam
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
- Department of Genetics, Faculty of Agriculture, Assiut University, 71526 Assiut, Egypt
| |
Collapse
|
6
|
Alhashel AF, Fiedler JD, Nandety RS, Skiba RM, Bruggeman RS, Baldwin T, Friesen TL, Yang S. Genetic and physical localization of a major susceptibility gene to Pyrenophora teres f. maculata in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:118. [PMID: 37103563 PMCID: PMC10140075 DOI: 10.1007/s00122-023-04367-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/17/2023] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE Genetic characterization of a major spot form net blotch susceptibility locus to using linkage mapping to identify a candidate gene and user-friendly markers in barley. Spot form net blotch (SFNB), caused by the necrotrophic fungal pathogen Pyrenophora teres f. maculata (Ptm), is an economically important foliar diseases in barley. Although various resistance loci have been identified, breeding for SFNB-resistant varieties has been hampered due to the complex virulence profile of Ptm populations. One resistance locus in the host may be effective against one specific isolate, but it may confer susceptibility to other isolates. A major susceptibility QTL on chromosome 7H, named Sptm1, was consistently identified in many studies. In the present study, we conduct fine mapping to localize Sptm1 with high resolution. A segregating population was developed from selected F2 progenies of the cross Tradition (S) × PI 67381 (R), in which the disease phenotype was determined by the Sptm1 locus alone. Disease phenotypes of critical recombinants were confirmed in the following two consecutive generations. Genetic mapping anchored the Sptm1 gene to an ⁓400 kb region on chromosome 7H. Gene prediction and annotation identified six protein-coding genes in the delimited Sptm1 region, and the gene encoding a putative cold-responsive protein kinase was selected as a strong candidate. Therefore, providing fine localization and candidate of Sptm1 for functional validation, our study will facilitate the understanding of susceptibility mechanism underlying the barley-Ptm interaction and offers a potential target for gene editing to develop valuable materials with broad-spectrum resistance to SFNB.
Collapse
Affiliation(s)
- Abdullah F Alhashel
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jason D Fiedler
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Raja Sekhar Nandety
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Ryan M Skiba
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Robert S Bruggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Thomas Baldwin
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Shengming Yang
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA.
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA.
- Cereals Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA.
| |
Collapse
|
7
|
Ababa G, Kesho A, Tadesse Y, Amare D. Reviews of taxonomy, epidemiology, and management practices of the barley scald ( Rhynchosporium graminicola) disease. Heliyon 2023; 9:e14315. [PMID: 36938428 PMCID: PMC10018571 DOI: 10.1016/j.heliyon.2023.e14315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023] Open
Abstract
Barley scald is very important in temperate and wet regions worldwide and has become one of the most important foliar diseases. Before the development of recent technologies, several scientists had argued that Rhynchosporium secalis is the causal agent of scald disease. However, the causal agent of this disease was revised and recognized as Rhynchosporium commune. Again recently, Rhynchosporium graminicola was suggested to be replaced as the causal agent of R. commune. The disease outbreak is depending on cool and frequent rainfall. Because of scald disease significance, numerous management practices have been advocated. Then, resistance materials, and mixing of resistant and susceptible cultivars have been used as the best management methods. Several studies have demonstrated that some cultivars and landraces of barley are resistant to scald disease during the seedling and adult growth stages. The first cultivar is "Atlas 46″ which was created from the cultivar "Turk". From biological method: Bacillus polymyxa, Paenibacillus polymyxa KaI245, and Bacillus subtilis are very effective in treating this disease. Finally, as a last option, different fungicides have been suggested. Pathogenicity testing, seed treatments, tillage, cultivar mixtures, and biological control are all commonly overlooked in developing countries. Cultural practices such as times of fungicide application, appropriate time of sowing to scape disease, and tillage practices which are adopted for other diseases are greatly missed for scald disease. Then, we are intended to assess the various findings available on barley scald biology, taxonomy, and management.
Collapse
|
8
|
Clare SJ, Çelik Oğuz A, Effertz K, Karakaya A, Azamparsa MR, Brueggeman RS. Wild barley (Hordeum spontaneum) and landraces (Hordeum vulgare) from Turkey contain an abundance of novel Rhynchosporium commune resistance loci. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:15. [PMID: 36662256 DOI: 10.1007/s00122-023-04245-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Rhynchosporium commune is a globally devastating pathogen of barley. Wild and landrace barley are underutilized, however, contain an abundance of loci that can be used as potential sources of resistance. Rhynchosporium commune, the causal agent of the disease scald or leaf blotch of barley, is a hemibiotrophic fungal pathogen of global importance, responsible for yield losses ranging from 30 to 40% on susceptible varieties. To date, over 150 resistance loci have been characterized in barley. However, due to the suspected location of the R. commune host jump in Europe, European germplasm has been the primary source used to screen for R. commune resistance leaving wild (Hordeum spontaneum) and landrace (H. vulgare) barley populations from the center of origin largely underutilized. A diverse population consisting of 94 wild and 188 barley landraces from Turkey were genotyped using PCR-GBS amplicon sequencing and screened with six Turkish R. commune isolates. The isolates were collected from distinct geographic regions of Turkey with two from the Aegean region, two from central Turkey and two from the Fertile Crescent region. The data set was utilized for association mapping analysis with a total of 21 loci identified, of which 12 were novel, indicating that these diverse primary barley gene pools contain an abundance of novel R. commune resistances that could be utilized for resistance breeding.
Collapse
Affiliation(s)
- Shaun J Clare
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99163, USA
| | - Arzu Çelik Oğuz
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Dışkapı, 06110, Ankara, Turkey
| | - Karl Effertz
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99163, USA
| | - Aziz Karakaya
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Dışkapı, 06110, Ankara, Turkey
| | - Mohammad Reza Azamparsa
- Department of Plant Protection, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Robert S Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99163, USA.
- Department of Crop and Soil Sciences, College of Agricultural, Human, and Natural Resource Sciences, Washington State University, Johnson Hall Rm. 115, PO Box 646420, Pullman, WA, 99164-6420, USA.
| |
Collapse
|
9
|
Clare SJ, Duellman KM, Richards JK, Poudel RS, Merrick LF, Friesen TL, Brueggeman RS. Association mapping reveals a reciprocal virulence/avirulence locus within diverse US Pyrenophora teres f. maculata isolates. BMC Genomics 2022; 23:285. [PMID: 35397514 PMCID: PMC8994276 DOI: 10.1186/s12864-022-08529-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/17/2022] [Indexed: 12/31/2022] Open
Abstract
Abstract
Background
Spot form net blotch (SFNB) caused by the necrotrophic fungal pathogen Pyrenophora teres f. maculata (Ptm) is an economically important disease of barley that also infects wheat. Using genetic analysis to characterize loci in Ptm genomes associated with virulence or avirulence is an important step to identify pathogen effectors that determine compatible (virulent) or incompatible (avirulent) interactions with cereal hosts. Association mapping (AM) is a powerful tool for detecting virulence loci utilizing phenotyping and genotyping data generated for natural populations of plant pathogenic fungi.
Results
Restriction-site associated DNA genotyping-by-sequencing (RAD-GBS) was used to generate 4,836 single nucleotide polymorphism (SNP) markers for a natural population of 103 Ptm isolates collected from Idaho, Montana and North Dakota. Association mapping analyses were performed utilizing the genotyping and infection type data generated for each isolate when challenged on barley seedlings of thirty SFNB differential barley lines. A total of 39 marker trait associations (MTAs) were detected across the 20 barley lines corresponding to 30 quantitative trait loci (QTL); 26 novel QTL and four that were previously mapped in Ptm biparental populations. These results using diverse US isolates and barley lines showed numerous barley-Ptm genetic interactions with seven of the 30 Ptm virulence/avirulence loci falling on chromosome 3, suggesting that it is a reservoir of diverse virulence effectors. One of the loci exhibited reciprocal virulence/avirulence with one haplotype predominantly present in isolates collected from Idaho increasing virulence on barley line MXB468 and the alternative haplotype predominantly present in isolates collected from North Dakota and Montana increasing virulence on barley line CI9819.
Conclusions
Association mapping provided novel insight into the host pathogen genetic interactions occurring in the barley-Ptm pathosystem. The analysis suggests that chromosome 3 of Ptm serves as an effector reservoir in concordance with previous reports for Pyrenophora teres f. teres, the causal agent of the closely related disease net form net blotch. Additionally, these analyses identified the first reported case of a reciprocal pathogen virulence locus. However, further investigation of the pathosystem is required to determine if multiple genes or alleles of the same gene are responsible for this genetic phenomenon.
Collapse
|
10
|
Pandey C, Großkinsky DK, Westergaard JC, Jørgensen HJL, Svensgaard J, Christensen S, Schulz A, Roitsch T. Identification of a bio-signature for barley resistance against Pyrenophora teres infection based on physiological, molecular and sensor-based phenotyping. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111072. [PMID: 34763864 DOI: 10.1016/j.plantsci.2021.111072] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 09/19/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Necrotic and chlorotic symptoms induced during Pyrenophora teres infection in barley leaves indicate a compatible interaction that allows the hemi-biotrophic fungus Pyrenophora teres to colonise the host. However, it is unexplored how this fungus affects the physiological responses of resistant and susceptible cultivars during infection. To assess the degree of resistance in four different cultivars, we quantified visible symptoms and fungal DNA and performed expression analyses of genes involved in plant defence and ROS scavenging. To obtain insight into the interaction between fungus and host, we determined the activity of 19 key enzymes of carbohydrate and antioxidant metabolism. The pathogen impact was also phenotyped non-invasively by sensor-based multireflectance and -fluorescence imaging. Symptoms, regulation of stress-related genes and pathogen DNA content distinguished the cultivar Guld as being resistant. Severity of net blotch symptoms was also strongly correlated with the dynamics of enzyme activities already within the first day of infection. In contrast to the resistant cultivar, the three susceptible cultivars showed a higher reflectance over seven spectral bands and higher fluorescence intensities at specific excitation wavelengths. The combination of semi high-throughput physiological and molecular analyses with non-invasive phenotyping enabled the identification of bio-signatures that discriminates the resistant from susceptible cultivars.
Collapse
Affiliation(s)
- Chandana Pandey
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Denmark
| | - Dominik K Großkinsky
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Bioresources Unit, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria
| | - Jesper Cairo Westergaard
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Denmark
| | - Hans J L Jørgensen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Denmark
| | - Jesper Svensgaard
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Denmark
| | - Svend Christensen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Denmark
| | - Alexander Schulz
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Denmark.
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Denmark; Department of Adaptive Biotechnologies, Global Change Research Institute, CAS, Brno, Czechia
| |
Collapse
|
11
|
Clare SJ, Çelik Oğuz A, Effertz K, Sharma Poudel R, See D, Karakaya A, Brueggeman RS. Genome-wide association mapping of Pyrenophora teres f. maculata and Pyrenophora teres f. teres resistance loci utilizing natural Turkish wild and landrace barley populations. G3 GENES|GENOMES|GENETICS 2021; 11:6332006. [PMID: 34849783 PMCID: PMC8527468 DOI: 10.1093/g3journal/jkab269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/26/2021] [Indexed: 11/15/2022]
Abstract
Unimproved landraces and wild relatives of crops are sources of genetic diversity that
were lost post domestication in modern breeding programs. To tap into this rich resource,
genome-wide association studies in large plant genomes have enabled the rapid genetic
characterization of desired traits from natural landrace and wild populations. Wild barley
(Hordeum spontaneum), the progenitor of domesticated barley
(Hordeum vulgare), is dispersed across Asia and North Africa, and has
co-evolved with the ascomycetous fungal pathogens Pyrenophora teres f.
teres and P. teres f. maculata, the
causal agents of the diseases net form of net blotch and spot form of net blotch,
respectively. Thus, these wild and local adapted barley landraces from the region of
origin of both the host and pathogen represent a diverse gene pool to identify new sources
of resistance, due to millions of years of co-evolution. The barley—P.
teres pathosystem is governed by complex genetic interactions with dominant,
recessive, and incomplete resistances and susceptibilities, with many isolate-specific
interactions. Here, we provide the first genome-wide association study of wild and
landrace barley from the Fertile Crescent for resistance to both forms of P.
teres. A total of 14 loci, four against P. teres f.
maculata and 10 against P. teres f.
teres, were identified in both wild and landrace populations, showing
that both are genetic reservoirs for novel sources of resistance. We also highlight the
importance of using multiple algorithms to both identify and validate additional loci.
Collapse
Affiliation(s)
- Shaun J Clare
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA
| | - Arzu Çelik Oğuz
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Dışkapı, Ankara 06110, Turkey
| | - Karl Effertz
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA
| | | | - Deven See
- Wheat Health, Genetics and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA 99163, USA
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA
| | - Aziz Karakaya
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Dışkapı, Ankara 06110, Turkey
| | - Robert S Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA
| |
Collapse
|
12
|
Alhashel AF, Sharma Poudel R, Fiedler J, Carlson CH, Rasmussen J, Baldwin T, Friesen TL, Brueggeman RS, Yang S. Genetic mapping of host resistance to the Pyrenophora teres f. maculata isolate 13IM8.3. G3-GENES GENOMES GENETICS 2021; 11:6377783. [PMID: 34586371 DOI: 10.1093/g3journal/jkab341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/17/2021] [Indexed: 11/12/2022]
Abstract
Spot form net blotch (SFNB), caused by the necrotrophic fungal pathogen Pyrenophora teres f. maculata (Ptm), is a foliar disease of barley that results in significant yield losses in major growing regions worldwide. Understanding the host-parasite interactions between pathogen virulence/avirulence genes and the corresponding host susceptibility/resistance genes is important for the deployment of genetic resistance against SFNB. Two recombinant inbred mapping populations were developed to characterize genetic resistance/susceptibility to the Ptm isolate 13IM8.3, which was collected from Idaho (ID). An Illumina Infinium array was used to produce a genome wide marker set. Quantitative trait loci (QTL) analysis identified ten significant resistance/susceptibility loci, with two of the QTL being common to both populations. One of the QTL on 5H appears to be novel, while the remaining loci have been reported previously. Single nucleotide polymorphisms (SNPs) closely linked to or delimiting the significant QTL have been converted to user-friendly markers. Loci and associated molecular markers identified in this study will be useful in genetic mapping and deployment of the genetic resistance to SFNB in barley.
Collapse
Affiliation(s)
- Abdullah Fahad Alhashel
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Roshan Sharma Poudel
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
| | - Jason Fiedler
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
- Cereals Crops Research Unit, Edward T. Schafer Agriculture Research Center, USDA-ARS, Fargo, ND 58102, USA
| | - Craig H Carlson
- Cereals Crops Research Unit, Edward T. Schafer Agriculture Research Center, USDA-ARS, Fargo, ND 58102, USA
| | - Jack Rasmussen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
| | - Thomas Baldwin
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
- Cereals Crops Research Unit, Edward T. Schafer Agriculture Research Center, USDA-ARS, Fargo, ND 58102, USA
| | - Robert S Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
| | - Shengming Yang
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
- Cereals Crops Research Unit, Edward T. Schafer Agriculture Research Center, USDA-ARS, Fargo, ND 58102, USA
| |
Collapse
|
13
|
Importance of Landraces in Cereal Breeding for Stress Tolerance. PLANTS 2021; 10:plants10071267. [PMID: 34206299 PMCID: PMC8309184 DOI: 10.3390/plants10071267] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
The renewed focus on cereal landraces is a response to some negative consequences of modern agriculture and conventional breeding which led to a reduction of genetic diversity. Cereal landraces are still cultivated on marginal lands due to their adaptability to unfavourable conditions, constituting an important source of genetic diversity usable in modern plant breeding to improve the adaptation to abiotic or biotic stresses, yield performance and quality traits in limiting environments. Traditional agricultural production systems have played an important role in the evolution and conservation of wide variability in gene pools within species. Today, on-farm and ex situ conservation in gene bank collections, together with data sharing among researchers and breeders, will greatly benefit cereal improvement. Many efforts are usually made to collect, organize and phenotypically and genotypically analyse cereal landrace collections, which also utilize genomic approaches. Their use in breeding programs based on genomic selection, and the discovery of beneficial untapped QTL/genes/alleles which could be introgressed into modern varieties by MAS, pyramiding or biotechnological tools, increase the potential for their better deployment and exploitation in breeding for a more sustainable agricultural production, particularly enhancing adaptation and productivity in stress-prone environments to cope with current climate changes.
Collapse
|
14
|
Tamang P, Richards JK, Solanki S, Ameen G, Sharma Poudel R, Deka P, Effertz K, Clare SJ, Hegstad J, Bezbaruah A, Li X, Horsley RD, Friesen TL, Brueggeman RS. The Barley HvWRKY6 Transcription Factor Is Required for Resistance Against Pyrenophora teres f. teres. Front Genet 2021; 11:601500. [PMID: 33519904 PMCID: PMC7844392 DOI: 10.3389/fgene.2020.601500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022] Open
Abstract
Barley is an important cereal crop worldwide because of its use in the brewing and distilling industry. However, adequate supplies of quality malting barley are threatened by global climate change due to drought in some regions and excess precipitation in others, which facilitates epidemics caused by fungal pathogens. The disease net form net blotch caused by the necrotrophic fungal pathogen Pyrenophora teres f. teres (Ptt) has emerged as a global threat to barley production and diverse populations of Ptt have shown a capacity to overcome deployed genetic resistances. The barley line CI5791 exhibits remarkably effective resistance to diverse Ptt isolates from around the world that maps to two major QTL on chromosomes 3H and 6H. To identify genes involved in this effective resistance, CI5791 seed were γ-irradiated and two mutants, designated CI5791-γ3 and CI5791-γ8, with compromised Ptt resistance were identified from an M2 population. Phenotyping of CI5791-γ3 and -γ8 × Heartland F2 populations showed three resistant to one susceptible segregation ratios and CI5791-γ3 × -γ8 F1 individuals were susceptible, thus these independent mutants are in a single allelic gene. Thirty-four homozygous mutant (susceptible) CI5791-γ3 × Heartland F2 individuals, representing 68 recombinant gametes, were genotyped via PCR genotype by sequencing. The data were used for single marker regression mapping placing the mutation on chromosome 3H within an approximate 75 cM interval encompassing the 3H CI5791 resistance QTL. Sequencing of the mutants and wild-type (WT) CI5791 genomic DNA following exome capture identified independent mutations of the HvWRKY6 transcription factor located on chromosome 3H at ∼50.7 cM, within the genetically delimited region. Post transcriptional gene silencing of HvWRKY6 in barley line CI5791 resulted in Ptt susceptibility, confirming that it functions in NFNB resistance, validating it as the gene underlying the mutant phenotypes. Allele analysis and transcript regulation of HvWRKY6 from resistant and susceptible lines revealed sequence identity and upregulation upon pathogen challenge in all genotypes analyzed, suggesting a conserved transcription factor is involved in the defense against the necrotrophic pathogen. We hypothesize that HvWRKY6 functions as a conserved signaling component of defense mechanisms that restricts Ptt growth in barley.
Collapse
Affiliation(s)
- Prabin Tamang
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Jonathan K Richards
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA, United States
| | - Shyam Solanki
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Gazala Ameen
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Roshan Sharma Poudel
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Priyanka Deka
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, United States
| | - Karl Effertz
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Shaun J Clare
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Justin Hegstad
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Achintya Bezbaruah
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, United States
| | - Xuehui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Richard D Horsley
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States.,Cereal Crops Research Unit, United States Department of Argiculture - Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Robert S Brueggeman
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States.,Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
15
|
Büttner B, Draba V, Pillen K, Schweizer G, Maurer A. Identification of QTLs conferring resistance to scald (Rhynchosporium commune) in the barley nested association mapping population HEB-25. BMC Genomics 2020; 21:837. [PMID: 33246416 PMCID: PMC7694317 DOI: 10.1186/s12864-020-07258-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Barley scald, caused by the fungus Rhynchosporium commune, is distributed worldwide to all barley growing areas especially in cool and humid climates. Scald is an economically important leaf disease resulting in yield losses of up to 40%. To breed resistant cultivars the identification of quantitative trait loci (QTLs) conferring resistance to scald is necessary. Introgressing promising resistance alleles of wild barley is a way to broaden the genetic basis of scald resistance in cultivated barley. Here, we apply nested association mapping (NAM) to map resistance QTLs in the barley NAM population HEB-25, comprising 1420 lines in BC1S3 generation, derived from crosses of 25 wild barley accessions with cv. Barke. RESULTS In scald infection trials in the greenhouse variability of resistance across and within HEB-25 families was found. NAM based on 33,005 informative SNPs resulted in the identification of eight reliable QTLs for resistance against scald with most wild alleles increasing resistance as compared to cv. Barke. Three of them are located in the region of known resistance genes and two in the regions of QTLs, respectively. The most promising wild allele was found at Rrs17 in one specific wild donor. Also, novel QTLs with beneficial wild allele effects on scald resistance were detected. CONCLUSIONS To sum up, wild barley represents a rich resource for scald resistance. As the QTLs were linked to the physical map the identified candidate genes will facilitate cloning of the scald resistance genes. The closely linked flanking molecular markers can be used for marker-assisted selection of the respective resistance genes to integrate them in elite cultivars.
Collapse
Affiliation(s)
- Bianca Büttner
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Freising, Germany
| | - Vera Draba
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Halle, Germany
| | - Klaus Pillen
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Halle, Germany
| | - Günther Schweizer
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Freising, Germany
| | - Andreas Maurer
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Halle, Germany.
| |
Collapse
|
16
|
Zhang X, Ovenden B, Milgate A. Recent insights into barley and Rhynchosporium commune interactions. MOLECULAR PLANT PATHOLOGY 2020; 21:1111-1128. [PMID: 32537933 PMCID: PMC7368125 DOI: 10.1111/mpp.12945] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/18/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Rhynchosporium commune is the causal pathogen of scald in barley (Hordeum vulgare), a foliar disease that can reduce yield by up to 40% in susceptible cultivars. R. commune is found worldwide in all temperate growing regions and is regarded as one of the most economically important barley pathogens. It is a polycyclic pathogen with the ability to rapidly evolve new virulent strains in response to resistance genes deployed in commercial cultivars. Hence, introgression and pyramiding of different loci for resistance (qualitative or quantitative) through marker-assisted selection is an effective way to improve scald resistance in barley. This review summarizes all 148 resistance quantitative trait loci reported at the date of submission of this review and projects them onto the barley physical map, where it is clear many loci co-locate on chromosomes 3H and 7H. We have summarized the major named resistance loci and reiterated the renaming of Rrs15 (CI8288) to Rrs17. This review provides a comprehensive resource for future discovery and breeding efforts of qualitative and quantitative scald resistance loci.
Collapse
Affiliation(s)
- Xuechen Zhang
- NSW Department of Primary IndustriesWagga Wagga Agricultural InstituteWagga WaggaNSWAustralia
| | - Ben Ovenden
- NSW Department of Primary IndustriesWagga Wagga Agricultural InstituteWagga WaggaNSWAustralia
| | - Andrew Milgate
- NSW Department of Primary IndustriesWagga Wagga Agricultural InstituteWagga WaggaNSWAustralia
| |
Collapse
|
17
|
Looseley ME, Griffe LL, Büttner B, Wright KM, Bayer MM, Coulter M, Thauvin JN, Middlefell-Williams J, Maluk M, Okpo A, Kettles N, Werner P, Byrne E, Avrova A. Characterisation of barley landraces from Syria and Jordan for resistance to rhynchosporium and identification of diagnostic markers for Rrs1 Rh4. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1243-1264. [PMID: 31965232 DOI: 10.1007/s00122-020-03545-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Diagnostic markers for Rrs1Rh4 have been identified by testing for associations between SNPs within the Rrs1 interval in 150 barley genotypes and their resistance to Rhynchosporium commune isolates recognised by lines containing Rrs1. Rhynchosporium or barley scald, caused by the destructive fungal pathogen Rhynchosporium commune, is one of the most economically important diseases of barley in the world. Barley landraces from Syria and Jordan demonstrated high resistance to rhynchosporium in the field. Genotyping of a wide range of barley cultivars and landraces, including known sources of different Rrs1 genes/alleles, across the Rrs1 interval, followed by association analysis of this genotypic data with resistance phenotypes to R. commune isolates recognised by Rrs1, allowed the identification of diagnostic markers for Rrs1Rh4. These markers are specific to Rrs1Rh4 and do not detect other Rrs1 genes/alleles. The Rrs1Rh4 diagnostic markers represent a resource that can be exploited by breeders for the sustainable deployment of varietal resistance in new cultivars. Thirteen out of the 55 most resistant Syrian and Jordanian landraces were shown to contain markers specific to Rrs1Rh4. One of these lines came from Jordan, with the remaining 12 lines from different locations in Syria. One of the Syrian landraces containing Rrs1Rh4 was also shown to have Rrs2. The remaining landraces that performed well against rhynchosporium in the field are likely to contain other resistance genes and represent an important novel resource yet to be exploited by European breeders.
Collapse
Affiliation(s)
- Mark E Looseley
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Lucie L Griffe
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- RAGT Seeds Ltd, Grange Road, Ickleton, Saffron Walden, Essex, CB10 1TA, UK
| | - Bianca Büttner
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Am Gereuth 2, 85354, Freising, Germany
| | - Kathryn M Wright
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Micha M Bayer
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Max Coulter
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Jean-Noël Thauvin
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | | | - Marta Maluk
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Aleksandra Okpo
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | | | - Peter Werner
- KWS UK Limited, Thriplow, Royston, Herts, SG8 7RE, UK
| | - Ed Byrne
- KWS UK Limited, Thriplow, Royston, Herts, SG8 7RE, UK
| | - Anna Avrova
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK.
| |
Collapse
|
18
|
Adhikari A, Steffenson BJ, Smith KP, Smith M, Dill-Macky R. Identification of quantitative trait loci for net form net blotch resistance in contemporary barley breeding germplasm from the USA using genome-wide association mapping. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1019-1037. [PMID: 31900499 DOI: 10.1007/s00122-019-03528-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
Association mapping study conducted in a population of 3490 elite barley breeding lines from ten barley breeding programs of the USA identified 12 QTLs for resistance/susceptibility to net form of net blotch. Breeding resistant varieties is the best management strategy for net form of net blotch (NFNB) in barley (Hordeum vulgare L.) caused by Pyrenophora teres f. teres (Ptt). Several resistance QTL have been previously identified in barley via linkage mapping and genome-wide association studies (GWAS). A GWAS conducted in a collection of advanced breeding lines (n = 3490) representing elite germplasm from ten barley breeding programs of the USA identified 42 unique marker-trait associations (MTA) for NFNB resistance. The lines were genotyped with 3072 SNP markers and phenotyped with four Ptt isolates in controlled environment. The lines were used to construct 13 different GWAS panels. Efficient mixed model association method with principal components and kinship was used for GWAS. Significance threshold for MTA was set at a false discovery rate of 0.05. Two, eight, six, one and 25 MTA were identified in chromosomes 1H, 3H, 4H, 5H and 6H, respectively. Based on genetic positions and linkage disequilibrium, these MTA's correspond to two, three, two, one and four QTLs in chromosome 1H, 3H, 4H, 5H and 6H, respectively. A comparison with previous linkage and GWAS studies revealed several previously identified and novel QTLs. Moreover, different genomic regions were found to be responsible for NFNB resistance in two-row versus six-row germplasm. The germplasm-specific SNP markers with additive effects and allelic distribution is reported to facilitate breeders in selection of markers for MAS to introgress novel net blotch resistance.
Collapse
Affiliation(s)
- Anil Adhikari
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, 55108, USA.
- Soil and Crop Science Department, Texas A&M University, College Station, TX, 77845, USA.
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Kevin P Smith
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Madeleine Smith
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Ruth Dill-Macky
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, 55108, USA.
| |
Collapse
|
19
|
Clare SJ, Wyatt NA, Brueggeman RS, Friesen TL. Research advances in the Pyrenophora teres-barley interaction. MOLECULAR PLANT PATHOLOGY 2020; 21:272-288. [PMID: 31837102 PMCID: PMC6988421 DOI: 10.1111/mpp.12896] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Pyrenophora teres f. teres and P. teres f. maculata are significant pathogens that cause net blotch of barley. An increased number of loci involved in P. teres resistance or susceptibility responses of barley as well as interacting P. teres virulence effector loci have recently been identified through biparental and association mapping studies of both the pathogen and host. Characterization of the resistance/susceptibility loci in the host and the interacting effector loci in the pathogen will provide a path for targeted gene validation for better-informed release of resistant barley cultivars. This review assembles concise consensus maps for all loci published for both the host and pathogen, providing a useful resource for the community to be used in pathogen characterization and barley breeding for resistance to both forms of P. teres.
Collapse
Affiliation(s)
- Shaun J. Clare
- Department of Plant PathologyNorth Dakota State UniversityFargoND58108‐6050USA
| | - Nathan A. Wyatt
- Department of Plant PathologyNorth Dakota State UniversityFargoND58108‐6050USA
| | - Robert S. Brueggeman
- Department of Plant PathologyNorth Dakota State UniversityFargoND58108‐6050USA
- Present address:
Department of Crop and Soil ScienceWashington State UniversityPullmanWA99164‐6420
| | - Timothy L. Friesen
- Department of Plant PathologyNorth Dakota State UniversityFargoND58108‐6050USA
- USDA‐ARS Cereal Crops Research UnitNorthern Crop Science LaboratoryEdward T. Schafer Agricultural Research Center1616 Albrecht Boulevard NFargoND58102‐2765USA
| |
Collapse
|