1
|
Li N, Cui J, Zhao J, An C, Wei Z, Shen Y, Sun C, Wang C, Zhan S, Li X, Wang A, Luo D, Wang Y. Dual-loaded nano pesticide system based on industrial grade scaleable carrier materials with combinatory efficacy and improved safety. J Nanobiotechnology 2024; 22:349. [PMID: 38902761 PMCID: PMC11188194 DOI: 10.1186/s12951-024-02628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
Repeated and widespread use of single chemical pesticides raises concerns about efficiency and safety, developing multi-component synergistic pesticides provides a new route for efficient control of diseases. Most commercial compound formulations are open systems with non-adjustable released rates, resulting in a high frequency of applications. Meanwhile, although nano pesticide delivery systems constructed with different carrier materials have been extensively studied, realizing their actual scale-up production still has important practical significance due to the large-scale field application. In this study, a boscalid and pyraclostrobin dual-loaded nano pesticide system (BPDN) was constructed with industrial-grade carrier materials to facilitate the realization of large-scale production. The optimal industrial-scale preparation mechanism of BPDN was studied with surfactants as key factors. When agricultural emulsifier No.600 and polycarboxylate are used as the ratio of 1:2 in the preparation process, the BPDN has a spherical structure with an average size of 270 nm and exhibits superior physical stability. Compared with commercial formulation, BPDN maintains rate-stabilized release up to 5 times longer, exhibits better dispersion and spreading performance on foliar, has more than 20% higher deposition amounts, and reduces loss. A single application of BPDN could efficiently control tomato gray mold during the growing period of tomatoes due to extended duration and combinatory effectiveness, reducing two application times and labor costs. Toxicology tests on various objects systematically demonstrated that BPDN has improved safety for HepG2 cells, and nontarget organism earthworms. This research provides insight into creating safe, efficient, and environmentally friendly pesticide production to reduce manual operation times and labor costs. Accompanied by production strategies that can be easily scaled up industrially, this contributes to the efficient use of resources for sustainable agriculture.
Collapse
Affiliation(s)
- Ningjun Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianxia Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianjiang Zhao
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding, 071000, China
| | - Changcheng An
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zheng Wei
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yue Shen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Changjiao Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chong Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shenshan Zhan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xingye Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Anqi Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dan Luo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
2
|
Khadiri M, Boubaker H, Laasli SE, Farhaoui A, Ezrari S, Radouane N, Radi M, Askarne L, Barka EA, Lahlali R. Unlocking Nature's Secrets: Molecular Insights into Postharvest Pathogens Impacting Moroccan Apples and Innovations in the Assessment of Storage Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:553. [PMID: 38498518 PMCID: PMC10891559 DOI: 10.3390/plants13040553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/29/2024] [Accepted: 02/14/2024] [Indexed: 03/20/2024]
Abstract
Apple production holds a prominent position in Morocco's Rosaceae family. However, annual production can fluctuate due to substantial losses caused by fungal diseases affecting stored apples. Our findings emphasize that the pre-storage treatment of apples, disinfection of storage facilities, box type, and fruit sorting are pivotal factors affecting apple losses during storage. Additionally, the adopted preservation technique was significantly correlated with the percentage of damage caused by fungal infections. Blue mold accounts for nearly three-quarters of the diseases detected, followed by gray rot with a relatively significant incidence. This study has revealed several fungal diseases affecting stored apples caused by pathogens such as Penicillium expansum, Botrytis cinerea, Alternaria alternata, Trichothecium roseum, Fusarium avenaceum, Cadophora malorum, and Neofabraea vagabunda. Notably, these last two fungal species have been reported for the first time in Morocco as pathogens of stored apples. These data affirm that the high losses of apples in Morocco, attributed primarily to P. expansum and B. cinerea, pose a significant threat in terms of reduced production and diminished fruit quality. Hence, adopting controlled atmosphere storage chambers and implementing good practices before apple storage is crucial.
Collapse
Affiliation(s)
- Mohammed Khadiri
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco; (M.K.); (S.-E.L.); (A.F.)
- Laboratoire de Biotechnologies Microbiennes et Protection des Végétaux, Faculté des Sciences, Université Ibn Zhor, BP 8106, Agadir 80000, Morocco; (H.B.); (L.A.)
| | - Hassan Boubaker
- Laboratoire de Biotechnologies Microbiennes et Protection des Végétaux, Faculté des Sciences, Université Ibn Zhor, BP 8106, Agadir 80000, Morocco; (H.B.); (L.A.)
| | - Salah-Eddine Laasli
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco; (M.K.); (S.-E.L.); (A.F.)
| | - Abdelaaziz Farhaoui
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco; (M.K.); (S.-E.L.); (A.F.)
- Department of Biology, Laboratory of Biotechnology and Valorization of Bio-Resources (BioVaR), Faculty of Sciences, Moulay Ismail University, BP 11201, Zitoune, Meknes 50000, Morocco
| | - Said Ezrari
- Microbiology Unit, Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Medicine and Pharmacy Oujda, University Mohammed Premier, Oujda 60000, Morocco
| | - Nabil Radouane
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco;
| | - Mohammed Radi
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco; (M.K.); (S.-E.L.); (A.F.)
- Laboratory of Environment and Valorization of Microbial and Plant Resources, Faculty of Sciences, Moulay Ismail University, BP 11201, Zitoune, Meknes 50000, Morocco
| | - Latifa Askarne
- Laboratoire de Biotechnologies Microbiennes et Protection des Végétaux, Faculté des Sciences, Université Ibn Zhor, BP 8106, Agadir 80000, Morocco; (H.B.); (L.A.)
| | - Essaid Ait Barka
- Induced Resistance and Plant Biosection Research Unit-EA 4707-USC INRAE1488, Reims Cham-pagne-Ardenne University, 51687 Reims, France
| | - Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco; (M.K.); (S.-E.L.); (A.F.)
| |
Collapse
|
3
|
Malandrakis AA, Kavroulakis N, Chrysikopoulos CV. Zinc nanoparticles: Mode of action and efficacy against boscalid-resistant Alternaria alternata isolates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154638. [PMID: 35314223 DOI: 10.1016/j.scitotenv.2022.154638] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/01/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The antifungal potential of ZnO-NPs against Alternaria alternata isolates with reduced sensitivity to the succinate dehydrogenase inhibitor (SDHI) boscalid, resulting from target site modifications, was evaluated in vitro and in vivo. ZnO-NPs could effectively inhibit mycelial growth in a dose-dependent way in both boscalid (BOSC) sensitive (BOSC-S) and resistant (BOSC-R) isolates. The fungitoxic effect of ZnO-NPs against the pathogen was significantly enhanced when combined with boscalid compared to the individual treatments in all phenotype cases (BOSC-S/R) both in vitro and in vivo. Fungitoxic effect of ZnO-NPs could be, at least partly, attributed to zinc ion release as indicated by the positive correlation between sensitivities to the nanoparticles and their ionic counterpart ZnSO4 and the alleviation of the ZnO-NPs fungitoxic action in the presence of the strong chelating agent EDTA. The superior effectiveness of ZnO-NPs against A. alternata, compared to ZnSO4, could be due to nanoparticle properties interfering with cellular ion homeostasis mechanisms. The observed additive action of the oxidative phosphorylation-uncoupler fluazinam (FM) against all phenotypes indicates a possible role of ATP-dependent ion efflux mechanism in the mode of action of ZnO-NPs. A potential role of ROS production in the fungitoxic action of ZnO-NPs was evident by the additive/synergistic action of salicylhydroxamate (SHAM), which blocks the alternative oxidase antioxidant action. Mixture of ZnO-NPs and boscalid, resulting in a "capping" effect for the nanoparticles and significantly reducing their mean size, probably accounted for the synergistic effect of the mixture against both sensitive and resistant A. alternata isolates. Summarizing, results indicated that ZnO-NPs can be effectively used against A. alternata both alone or in combination with boscalid, providing an effective tool for combating SDHI-resistance and reducing the environmental fingerprint of synthetic fungicides.
Collapse
Affiliation(s)
| | - Nektarios Kavroulakis
- Hellenic Agricultural Organization "Demeter", Institute for Olive Tree, Subtropical Plants and Viticulture, Agrokipio-Souda, 73164 Chania, Greece
| | | |
Collapse
|
4
|
Malandrakis AA, Krasagakis N, Kavroulakis N, Ilias A, Tsagkarakou A, Vontas J, Markakis E. Fungicide resistance frequencies of Botrytis cinerea greenhouse isolates and molecular detection of a novel SDHI resistance mutation. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 183:105058. [PMID: 35430062 DOI: 10.1016/j.pestbp.2022.105058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Sensitivity of B. cinerea to commonly used fungicides against Gray mold with emphasis to the newer quinone outside inhibitor (QoIs), and succinate dehydrogenase inhibitors (SDHIs) was assessed during a monitoring survey from vegetable greenhouses in four representative regions of Crete. 42% from a total of 168 isolates were simultaneously resistant to boscalid, fluopyram, pyraclostrobin and fenhexamid but not to fludioxonil making this phenylpyrrole fungicide an excellent anti-resistance antifungal agent. Isolates with double resistance to SDHIs and QoIs were found in very high frequencies indicating a selection towards double resistance due to the use of pyraclostrobin-boscalid mixtures. A number of sdhB resistance mutations (H272R, N230I and P225F/H) were found in isolates also carrying the G143A cytb resistance mutation in the above isolates. A novel sdhB point mutation (I274V) was identified for the first time in B. cinerea isolates collected from greenhouses with a fluopyram spray history with specific resistance to SDHIs. A PCR-RFLP diagnostic assay was developed for the detection of this mutation in the sdhB gene. Mutations P225F/H and I274V were found to be associated with fitness penalties in terms of mycelial growth, sporulation or pathogenicity. Results suggest that, in order to retain effective control of gray mold in Crete, appropriate anti-resistance strategies should be implemented taking into account the high double SDHI and QoI resistance frequencies. Additional studies for monitoring the already known and the new SDHI-resistance mutations, are necessary in order to hinder the further spread and establishment of single or double resistant isolates of B. cinerea detected in greenhouses in Crete.
Collapse
Affiliation(s)
- Anastasios A Malandrakis
- School of Environmental Engineering, Technical University of Crete, 73100 Chania, Greece; Pesticide Science Lab, Agricultural University of Athens, 75 Iera Odos, 118 55 Athens, Greece; Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization DIMITRA, Agrokipio-Souda, 73164 Chania, Greece.
| | - Nikolaos Krasagakis
- Laboratory of Mycology, Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, N.AG.RE.F., Hellenic Agricultural Organization DIMITRA, 32(A) Kastorias street, Mesa Katsabas 71307, Heraklion, Greece
| | - Nektarios Kavroulakis
- Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization DIMITRA, Agrokipio-Souda, 73164 Chania, Greece
| | - Aris Ilias
- Laboratory of Entomology and Agricultural Zoology, Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, N.AG.RE.F., Hellenic Agricultural Organization DIMITRA, 32A Kastorias street, Mesa Katsabas, 71307, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, GR-700 13 Heraklion, Crete, Greece
| | - Anastasia Tsagkarakou
- Laboratory of Entomology and Agricultural Zoology, Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, N.AG.RE.F., Hellenic Agricultural Organization DIMITRA, 32A Kastorias street, Mesa Katsabas, 71307, Heraklion, Greece
| | - John Vontas
- Pesticide Science Lab, Agricultural University of Athens, 75 Iera Odos, 118 55 Athens, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, GR-700 13 Heraklion, Crete, Greece
| | - Emmanouil Markakis
- Laboratory of Mycology, Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, N.AG.RE.F., Hellenic Agricultural Organization DIMITRA, 32(A) Kastorias street, Mesa Katsabas 71307, Heraklion, Greece.
| |
Collapse
|
5
|
Liu S, Wang J, Guo N, Sun H, Ma H, Zhang H, Shi J. Talaromyces funiculosus, a Novel Causal Agent of Maize Ear Rot and Its Sensitivity to Fungicides. PLANT DISEASE 2021; 105:3978-3984. [PMID: 34156277 DOI: 10.1094/pdis-04-21-0686-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ear rot is one of the most prevalent and destructive diseases of maize. During field surveys, it was found that a Penicillium ear rot broke out in some areas of Shanxi, Shaanxi, Hebei, and Tianjin in China, with an incidence of 3 to 90%. A Penicillium sp. was isolated from diseased kernels covered with greyish green mold, and three isolates were identified by morphologic and molecular characteristics. The pathogenicity of isolate ZBS205 to maize ears was further determined by artificial inoculation in a field. Furthermore, the sensitivity of isolate ZBS205 against six commonly used fungicides was also evaluated. According to macro- and micromorphologic characteristics, isolate ZBS205 was generally identical to Talaromyces funiculosus (teleomorph of Penicillium funiculosum). The partial gene sequences of the nuclear ribosomal ITS1-5.8S-ITS2 (ITS) region, β-tubulin, putative ribosome biogenesis protein (Tsr1), and the second largest subunit of the RNA polymerase II (RPB2) from isolates ZBS205, D49-1, and S73-1 showed the highest nucleotide identity to T. funiculosus strain X33, and the phylogenetic analysis conducted by the neighbor-joining method with the combined data of the four genes demonstrated that these three isolates clustered with T. funiculosus strain X33. These results suggested that the fungus isolated from diseased maize kernels was T. funiculosus. Pathogenicity testing showed that the T. funiculosus isolate ZBS205 was pathogenic to maize ears, which showed symptoms of rotted cob and deteriorated kernels. This is the first report of T. funiculosus as the definitive pathogen causing maize ear rot. The result of fungal sensitivity against fungicides showed that pyraclostrobin exhibited the highest toxicity to mycelial growth and could be used as a candidate agent for the prevention and control of T. funiculosus ear rot. The results of the present study provide a basis for understanding ear rot caused by T. funiculosus, and they should play an important role in disease management.
Collapse
Affiliation(s)
- Shusen Liu
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, IPM (Integrated Pest Management) Centre of Hebei Province; Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, Baoding 071000, China
| | - Jinhui Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Ning Guo
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, IPM (Integrated Pest Management) Centre of Hebei Province; Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, Baoding 071000, China
| | - Hua Sun
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, IPM (Integrated Pest Management) Centre of Hebei Province; Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, Baoding 071000, China
| | - Hongxia Ma
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, IPM (Integrated Pest Management) Centre of Hebei Province; Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, Baoding 071000, China
| | - Haijian Zhang
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, IPM (Integrated Pest Management) Centre of Hebei Province; Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, Baoding 071000, China
| | - Jie Shi
- Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, IPM (Integrated Pest Management) Centre of Hebei Province; Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, Baoding 071000, China
| |
Collapse
|
6
|
Lamfalusy T, Soros C. Development of analytical protocol for the investigation of transformation products of pre-harvest fungicides in fruits using LC-MS/MS methods. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1206-1217. [PMID: 33938400 DOI: 10.1080/19440049.2021.1914865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Chemical protection of plants is critical to permit all-year-long availability of plant products. These chemical agents are transformed both biotically and abiotically after spraying. Our purpose was to develop a workflow which is suitable to investigate those transformation products from plant matrices. Two field trials were set up in two years in two different plant matrices (apples, cherries) to develop a workflow to map the transformation products (TP) of three selected pre-harvest fungicides (boscalid, fluopyram, pyraclostrobin) in the fruits. Modified QuEChERS extraction method was applied for the extraction of TPs from the fruit matrices. We used liquid chromatograph-mass spectrometers to identify and confirm the transformation products of fungicides. LC-QTOF-MS method was suitable to map the key fragmentation routes of parent fungicides. Based on fragmentation pathways, MRM (multiple-reaction monitoring) transitions of fungicide-metabolites mentioned in the literature were predicted. HPLC-QTRAP-MS in target mode was successfully applied to monitor trace level of metabolites and in some cases their isomers. For confirmation of the identified metabolites, LC-QTOF-MS was used. Five earlier-documented as well as one novel transformation product (deschloro-FLP) were found in the investigated fruit samples, the latter has not been reported in plant matrices so far. Area-normalisation method was used to follow the relative concentration of the transformation products in the fruits as a function of time.
Collapse
Affiliation(s)
- Tamas Lamfalusy
- Department of Applied Chemistry, Faculty of Food Science, Szent István University, Budapest, Hungary
| | - Csilla Soros
- Department of Applied Chemistry, Faculty of Food Science, Szent István University, Budapest, Hungary
| |
Collapse
|
7
|
Samaras Α, Ntasiou P, Myresiotis C, Karaoglanidis G. Multidrug resistance of Penicillium expansum to fungicides: whole transcriptome analysis of MDR strains reveals overexpression of efflux transporter genes. Int J Food Microbiol 2020; 335:108896. [PMID: 33070085 DOI: 10.1016/j.ijfoodmicro.2020.108896] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/27/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
Penicillium expansum is the most common apple fruit postharvest spoilage agent that causes a disease known as Blue Mold. Disease control is based on fungicide use. However, development of resistance to fungicides hampers the success of this control method. Fungicide sensitivity monitoring studies in Greece revealed the presence of pathogen strains exhibiting simultaneous resistance to different chemically unrelated compounds (multidrug resistance, MDR). This study was initiated aiming primarily to test the hypothesis that the MDR phenotype is associated with overexpression of efflux transporter genes and to determine the fitness of the MDR isolates. The monitoring study (n = 264) and the measurements of sensitivity in terms of EC50 values to 9 different compounds revealed that almost 5% of the population was of the MDR type. In the selected MDR isolates, the highest resistant factors were calculated for fludioxonil and pyraclostrobin, while the same isolates were moderately resistant to cyprodinil, thiophanate methyl and fluxapyroxad. In the resistant strains no target site mutations were detected in the target genes of each fungicide class, while in addition, a synergistic activity was observed between fungicides and the drug transporter modulator verapamil in some isolates. To obtain a direct insight on the resistance mechanism, the transcriptome of 2 MDR and 1 sensitive isolates was sequenced using Illumina HiSeq 2500 and differences in efflux transporter gene expression profile were figured out. Gene expression profiling analysis was performed before and after the exposure of fungal mycelia to fludioxonil. This analysis revealed the up-regulation of several MFS transporter genes and a limited number of ABC transporter genes either before or after the exposure to fludioxonil in the MDR isolates. Expression results for genes with the highest expression levels were verified by qRT-PCR assays. Fitness components measurements revealed that MDR isolates were of lower mycelial growth and pathogenicity compared to sensitive strains but they were producing higher number of conidia. The above mentioned data represent the first report of MDR in P. expansum associated with overexpression of drug efflux transporters and contribute to our knowledge in the mechanisms associated with fungicide resistance development in this fungal species.
Collapse
Affiliation(s)
- Αnastasios Samaras
- Aristotle University of Thessaloniki, Faculty of Agriculture, Forestry and Natural Environment, Laboratory of Plant Pathology, POB 269, 54124 Thessaloniki, Greece
| | - Panagiota Ntasiou
- Aristotle University of Thessaloniki, Faculty of Agriculture, Forestry and Natural Environment, Laboratory of Plant Pathology, POB 269, 54124 Thessaloniki, Greece
| | - Charalampos Myresiotis
- Aristotle University of Thessaloniki, Faculty of Agriculture, Forestry and Natural Environment, Laboratory of Plant Pathology, POB 269, 54124 Thessaloniki, Greece
| | - George Karaoglanidis
- Aristotle University of Thessaloniki, Faculty of Agriculture, Forestry and Natural Environment, Laboratory of Plant Pathology, POB 269, 54124 Thessaloniki, Greece.
| |
Collapse
|
8
|
Effect of benzothiadiazole treatment on improving the mitochondrial energy metabolism involved in induced resistance of apple fruit during postharvest storage. Food Chem 2020; 302:125288. [DOI: 10.1016/j.foodchem.2019.125288] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/25/2019] [Accepted: 07/28/2019] [Indexed: 01/01/2023]
|
9
|
Takale BS, Thakore RR, Mallarapu R, Gallou F, Lipshutz BH. A Sustainable 1-Pot, 3-Step Synthesis of Boscalid Using Part per Million Level Pd Catalysis in Water. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00455] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Balaram S. Takale
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Ruchita R. Thakore
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Rushil Mallarapu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
- Fairfield Ludlowe High School, 785 Unquowa Ave., Fairfield, Connecticut 06890, United States
| | | | - Bruce H. Lipshutz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
10
|
|
11
|
Devendar P, Qu RY, Kang WM, He B, Yang GF. Palladium-Catalyzed Cross-Coupling Reactions: A Powerful Tool for the Synthesis of Agrochemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8914-8934. [PMID: 30060657 DOI: 10.1021/acs.jafc.8b03792] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pd-catalyzed cross-coupling reactions have become essential tools for the construction of carbon-carbon and carbon-heteroatom bonds. Over the last three decades, great efforts have been made with cross-coupling chemistry in the discovery, development, and commercialization of innovative new pharmaceuticals and agrochemicals (mainly herbicides, fungicides, and insecticides). In view of the growing interest in both modern crop protection and cross-coupling chemistry, this review gives a comprehensive overview of the successful applications of various Pd-catalyzed cross-coupling methodologies, which have been implemented as key steps in the synthesis of agrochemicals (on R&D and pilot-plant scales) such as the Heck, Suzuki, Sonogashira, Stille, and Negishi reactions, as well as decarboxylative, carbonylative, α-arylative, and carbon-nitrogen bond bond-forming cross-coupling reactions. Some perspectives and challenges for these catalytic coupling processes in the discovery of agrochemicals are briefly discussed in the final section. The examples chosen demonstrate that cross-coupling chemistry approaches open-up new, low-cost, and more efficient industrial routes to existing agrochemicals, and such methods also have the capability to lead the new generation of pesticides with novel modes of action for sustainable crop protection.
Collapse
Affiliation(s)
- Ponnam Devendar
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University (CCNU) , Wuhan 430079 , P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health , Central China Normal University (CCNU) , Wuhan 430079 , P. R. China
| | - Ren-Yu Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University (CCNU) , Wuhan 430079 , P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health , Central China Normal University (CCNU) , Wuhan 430079 , P. R. China
| | - Wei-Ming Kang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University (CCNU) , Wuhan 430079 , P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health , Central China Normal University (CCNU) , Wuhan 430079 , P. R. China
| | - Bo He
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University (CCNU) , Wuhan 430079 , P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health , Central China Normal University (CCNU) , Wuhan 430079 , P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University (CCNU) , Wuhan 430079 , P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health , Central China Normal University (CCNU) , Wuhan 430079 , P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300071 , P. R. China
| |
Collapse
|
12
|
Malandrakis AA, Vattis KN, Markoglou AN, Karaoglanidis GS. Characterization of boscalid-resistance conferring mutations in the SdhB subunit of respiratory complex II and impact on fitness and mycotoxin production in Penicillium expansum laboratory strains. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 138:97-103. [PMID: 28456312 DOI: 10.1016/j.pestbp.2017.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 05/12/2023]
Abstract
Laboratory mutants of Penicillium expansum highly resistant (Rfs: 90 to >500, based on EC50s) to Succinate Dehydrogenase Inhibitors (SDHIs) were isolated after UV-mutagenesis and selection on media containing boscalid. A positive correlation was found between sensitivity of isolates to boscalid and other SDHIs such as isopyrazam and carboxin but not to fungicides affecting other cellular pathways or processes, such as the triazole flusilazole, the phenylpyrrole fludioxonil, the anilinopyrimidine cyprodinil and the benzimidazole benomyl. Most of the boscalid-resistant strains were more sensitive to the SDHI fluopyram and the QoI pyraclostrobin. In order to investigate the mechanism responsible for the observed resistance profiles, part of the SdhB subunit isolated the wild type and boscalid-resistant isolates, was genetically characterized. Comparison of the deduced amino-acid sequence between resistant and wild-type isolates revealed two point mutations at a position corresponding to codon 272 of the respective SdhB protein in Botrytis cinerea. The substitution of histidine by arginine was found in boscalid-resistant isolates which were equally sensitive to fluopyram compared with the wild-type whereas the replacement of histidine by tyrosine was found in strains with increased sensitivity to fluopyram. No adverse effects of resistance mutations were observed on fitness determining parameters such as osmotic sensitivity, sporulation and pathogenicity, while mycelial growth rate and spore germination was negatively affected in some of the mutants studied. P. expansum mutant strains displayed significantly perturbed patulin and citrinin levels as compared to the wild-type parent strain both in vitro and in vivo as revealed by thin layer (TLC) and high performance liquid chromatography (HPLC).
Collapse
Affiliation(s)
- Anastasios A Malandrakis
- Pesticide Science Laboratory, Agricultural University of Athens, 75 Iera Odos, 118 55 Athens, Greece.
| | - Konstantinos N Vattis
- Pesticide Science Laboratory, Agricultural University of Athens, 75 Iera Odos, 118 55 Athens, Greece
| | - Anastasios N Markoglou
- Pesticide Science Laboratory, Agricultural University of Athens, 75 Iera Odos, 118 55 Athens, Greece
| | - George S Karaoglanidis
- Plant Pathology Laboratory, Faculty of Agriculture, Aristotelian University of Thessaloniki, PO Box 269, 54124 Thessaloniki, Greece
| |
Collapse
|
13
|
Volovych I, Neumann M, Schmidt M, Buchner G, Yang JY, Wölk J, Sottmann T, Strey R, Schomäcker R, Schwarze M. A novel process concept for the three step Boscalid® synthesis. RSC Adv 2016. [DOI: 10.1039/c6ra10484c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A three phase microemulsion system was applied for a more sustainable synthesis of the fungicide Boscalid®.
Collapse
Affiliation(s)
- I. Volovych
- Technische Universität Berlin
- Institut für Chemie
- 10623 Berlin
- Germany
| | - M. Neumann
- Technische Universität Berlin
- Institut für Chemie
- 10623 Berlin
- Germany
| | - M. Schmidt
- Technische Universität Berlin
- Institut für Chemie
- 10623 Berlin
- Germany
| | - G. Buchner
- Technische Universität Berlin
- Institut für Chemie
- 10623 Berlin
- Germany
| | - Ji-Yoon Yang
- Universität zu Köln
- Institut für Physikalische Chemie
- 50939 Köln
- Germany
| | - J. Wölk
- Universität zu Köln
- Institut für Physikalische Chemie
- 50939 Köln
- Germany
| | - T. Sottmann
- Universität Stuttgart
- Institut für Physikalische Chemie
- 70569 Stuttgart
- Germany
- Universität zu Köln
| | - R. Strey
- Universität zu Köln
- Institut für Physikalische Chemie
- 50939 Köln
- Germany
| | - R. Schomäcker
- Technische Universität Berlin
- Institut für Chemie
- 10623 Berlin
- Germany
| | - M. Schwarze
- Technische Universität Berlin
- Institut für Chemie
- 10623 Berlin
- Germany
- Technische Universität Berlin
| |
Collapse
|
14
|
Malandrakis AA, Markoglou AN, Konstantinou S, Doukas EG, Kalampokis JF, Karaoglanidis GS. Molecular characterization, fitness and mycotoxin production of benzimidazole-resistant isolates of Penicillium expansum. Int J Food Microbiol 2013; 162:237-44. [PMID: 23454814 DOI: 10.1016/j.ijfoodmicro.2013.01.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/15/2013] [Accepted: 01/23/2013] [Indexed: 11/16/2022]
Abstract
Penicillium expansum field-strains resistant to benzimidazole fungicides were isolated in high frequency from decayed apple fruit collected from packinghouses and processing industries located in the region of Imathia, N. Greece. In vitro fungitoxicity tests resulted in the identification of two different resistant phenotypes: highly (BEN-HR) and moderately (BEN-MR) carbendazim-resistant. Thirty seven percent of the isolated P. expansum strains belonged to the BEN-HR phenotype, carried no apparent fitness penalties and exhibited resistance levels higher than 60 based on EC50 values. Cross resistance studies with other benzimidazole fungicides showed that all BEN-HR and BEN-MR isolates were also less sensitive to benomyl and thiabendazole. Fungitoxicity tests on the response of BEN-HR isolates to fungicides belonging to other chemical classes revealed no cross-resistance relationships between benzimidazoles and the phenylpyrrole fludioxonil, the dicarboximide iprodione, the anilinopyrimidine cyprodinil, the QoI pyraclostrobin, the imidazole imazalil and the triazole tebuconazole, indicating that a target-site modification is probably responsible for the BEN-HR phenotype observed. Contrary to the above, some BEN-MR isolates exhibited an increased sensitivity to cyprodinil compared to benzimidazole-sensitive ones. BEN-MR isolates had fitness parameters similar to the benzimidazole-sensitive isolates except for conidia production which appeared significantly decreased. Analysis of mycotoxin production (patulin and citrinin) showed that all benzimidazole-resistant isolates produced mycotoxins at concentrations significantly higher than sensitive isolates both on culture medium and on artificially inoculated apple fruit. Comparison of the β-tubulin gene DNA sequence between resistant and sensitive isolates revealed a point mutation resulting from the E198A substitution of the corresponding protein in most but not all HR isolates tested. Molecular analysis of the β-tubulin gene in moderately resistant isolates did not reveal any amino acid substitution. This is the first report on the existence and distribution of highly mycotoxigenic field isolates of P. expansum resistant to the benzimidazoles indicating a high potential risk of increased mycotoxin contamination of pome fruit and by-products.
Collapse
Affiliation(s)
- Anastasios A Malandrakis
- Pesticide Science Laboratory, Agricultural University of Athens, 75 Iera Odos, 118 55 Athens, Greece.
| | | | | | | | | | | |
Collapse
|
15
|
Reddy SN, Gupta S, Gajbhiye VT. Adsorption-desorption and leaching of pyraclostrobin in Indian soils. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2013; 48:948-959. [PMID: 23998307 DOI: 10.1080/03601234.2013.816600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pyraclostrobin is a new broad-spectrum foliar applied and seed protectant fungicide of the strobilurin group. In this paper, adsorption-desorption of pyraclostrobin has been investigated in three different soils viz. Inceptisol (sandy loam, Delhi), Vertisol (sandy clay, Hyderabad) and Ultisol (sandy clay loam, Thrissur). Effect of organic matter and clay content on sorption was also studied in Inceptisol of Delhi. Leaching potential of pyraclostrobin as influenced by rainfall was studied in intact soil columns to confirm the results of adsorption-desorption studies. The adsorption studies were carried out at initial concentrations of 0.05, 0.1, 0.5, 1 and 1.5 μg mL(-1). The distribution coefficient (Kd) values in three test soils ranged from 4.91 to 18.26 indicating moderate to high adsorption. Among the three test soils, adsorption was the highest in Ultisol (Kd 18.26), followed by Vertisol (Kd 9.87) and Inceptisol (Kd 4.91). KF value was also highest for Ultisol soil (66.21), followed by Vertisol (40.88) and Inceptisol (8.59). S-type adsorption isotherms were observed in all the three test soils. Kd values in organic carbon-removed soil and clay-removed soil were 3.57 and 2.83 respectively, indicating lower adsorption than normal Inceptisol. Desorption studies were carried out at initial concentrations of 0.5, 1 and 1.5 μg mL(-1). Desorption was the greatest in Inceptisol, followed by Vertisol and Ultisol. Amounts of pyraclostrobin desorbed in three desorption cycles for different concentrations were 23.1-25.3%, 9.4-20.7% and 8.1-13.6% in Inceptisol, Vertisol and Ultisol respectively. Desorption was higher in clay fraction-removed and organic carbonremoved soils than normal Inceptisol. Desorption was slower than adsorption in all the test soils, indicating hysteresis effect (with hysteresis coefficient values varying from 0.05 to 0.20). Low values of hysteresis coefficient suggest high hysteresis effect indicating easy and strong adsorption, and slow desorption, of pyraclostrobin in soils. Higher hysteresis coefficient values in organic carbon removed soil (0.25-0.30) and clay fraction removed soil (0.28-0.36) as compared to normal Inceptisol soil suggest relatively weak adsorption and easy desorption of pyraclostrobin. Results of regression analysis suggest that the organic matter and pH of the soil play a major role in adsorption of pyraclostrobin. Leaching studies were carried out in intact soil columns in Inceptisol. The columns were leached with different amounts of water simulating different amounts of rainfall. The results suggest that most of the pyraclostrobin residues will remain present in the top soil layers even under high rainfall conditions and chances of pyraclostrobin moving to lower soil depth are almost negligible.
Collapse
Affiliation(s)
- S Navakishore Reddy
- Division of Agricultural Chemicals, Indian Agricultural Research Institute, New Delhi, India
| | | | | |
Collapse
|
16
|
Yin YN, Kim YK, Xiao CL. Molecular characterization of pyraclostrobin resistance and structural diversity of the cytochrome b gene in Botrytis cinerea from apple. PHYTOPATHOLOGY 2012; 102:315-322. [PMID: 22085296 DOI: 10.1094/phyto-08-11-0234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Botrytis cinerea isolates obtained from apple orchards were screened for resistance to the quinone outside inhibitor (QoI) pyraclostrobin. Of the 220 isolates tested, 43 (19.5%) were resistant to pyraclostrobin. Analysis of partial sequences of the cytochrome b gene (cyt b) in five pyraclostrobin-resistant (PR) and five pyraclostrobin-sensitive (PS) isolates showed that PR isolates harbored the point mutation leading to the substitution of glycine by alanine at codon position 143 in cyt b (G143A). Two pairs of allele-specific primers were designed based on this point mutation, and allele-specific polymerase chain reaction analysis with these primers showed that all 73 PR isolates (including 30 collected from decayed apple fruit) harbored the G143A mutation but PS isolates did not. Six pairs of primers were designed to analyze the presence of various introns in cyt b. There were six types (I to VI) of cyt b present in 247 isolates of B. cinerea collected from various apple-production areas in Washington State. Of the 247 isolates, 23 had type I cyt b containing all four introns (Bcbi-67/68, Bcbi-131/132, Bcbi-143/144, and Bcbi-164), 176 had type II cyt b containing three introns (Bcbi-67/68, Bcbi-131/132, and Bcbi-164), six had type III cyt b containing two introns (Bcbi-67/68 and Bcbi-131/132), one had type IV cyt b containing two introns (Bcbi-131/132 and Bcbi-164), one had type V cyt b containing only the Bcbi-131/132 intron, and 40 had type VI cyt b containing no introns. This is the first report of types III to VI cyt b present in B. cinerea. All 73 PR isolates did not carry the Bcbi-143/144 intron in cyt b. Of the 247 isolates tested, >90% did not carry the Bcbi-143/144 intron in cyt b, suggesting that B. cinerea populations from apple pose a high inherent risk for the development of resistance to QoIs because the presence of this intron in cyt b prevents the occurrence of G143A-mediated resistance. Analysis of genetic background based on three microsatellite primers showed that PR isolates originated from different lineages, and there was no correlation between cyt b types (I, II, and III) and the genetic background of the isolates; however, isolates carrying type VI cyt b might originate from the same lineage.
Collapse
Affiliation(s)
- Y N Yin
- Department of Plant Pathology, Washington State University, Tree Fruit Research and Extension Center, Wenatchee, WA 98801, USA
| | | | | |
Collapse
|
17
|
Kim YK, Xiao CL. Stability and fitness of pyraclostrobin- and boscalid-resistant phenotypes in field isolates of Botrytis cinerea from apple. PHYTOPATHOLOGY 2011; 101:1385-1391. [PMID: 21692646 DOI: 10.1094/phyto-04-11-0123] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Phenotype stability, fitness, and competitive ability of pyraclostrobin- and boscalid-resistant isolates of Botrytis cinerea from apple were investigated. Stability of resistance was determined after consecutive transfers on potato dextrose agar (PDA) or being cycled on apple fruit. In vitro fitness components mycelial growth, osmotic sensitivity, conidial germination, and sporulation were evaluated on agar media. Pathogenicity, virulence and sporulation on apple fruit were evaluated at both 20 and 0°C. Competition between fungicide-resistant and -sensitive isolates on apple fruit also was evaluated. Resistance to the two fungicides was retained at levels similar to that of the initial generation after 20 and 10 transfers on PDA and five and three disease cycles on apple fruit at 20 and 0°C, respectively. Great variability in individual fitness components tested was observed among isolates within the same phenotype groups either sensitive or resistant to the fungicides but, when compared as phenotype groups, there were no significant differences in the mean values of these fitness components between resistant and sensitive phenotypes except that the phenotype resistant only to boscalid produced fewer conidia in vitro than sensitive isolates. Resistant isolates were as pathogenic and virulent on apple fruit as sensitive isolates. There was no significant correlation between the values of individual fitness components tested and the level of resistance to pyraclostrobin or boscalid, except that virulence at 20°C positively correlated with the level of resistance to the two fungicides. The final frequency of pyraclostrobin-resistant individuals in the populations was significantly decreased compared with the initial generation and no boscalid-resistant individuals were detected after four disease cycles on apple fruit inoculated with a pair mixture of a dual-sensitive isolate and one isolate each of the three phenotypes resistant to pyraclostrobin, boscalid, or both. The results suggest that resistance of B. cinerea to pyraclostrobin and boscalid was stable in the absence of the fungicides and that resistance to the two fungicides did not significantly impair individual fitness components tested. However, both pyraclostrobin- and boscalid-resistant isolates exhibited competitive disadvantage over the dual-sensitive isolate on apple fruit.
Collapse
Affiliation(s)
- Y K Kim
- Department of Plant Pathology, Washington State University, Wenatchee, WA, USA
| | | |
Collapse
|
18
|
Yin YN, Kim YK, Xiao CL. Molecular characterization of boscalid resistance in field isolates of Botrytis cinerea from apple. PHYTOPATHOLOGY 2011; 101:986-995. [PMID: 21469935 DOI: 10.1094/phyto-01-11-0016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Botrytis cinerea isolates obtained from apple orchards were screened for resistance to boscalid. Boscalid-resistant (BosR) isolates were classified into four phenotypes based on the levels of the concentration that inhibited fungal growth by 50% relative to control. Of the 220 isolates tested, 42 were resistant to boscalid, with resistant phenotypes ranging from low to very high resistance. There was cross resistance between boscalid and carboxin. Analysis of partial sequences of the iron-sulfur subunit of succinate dehydrogenase gene in B. cinerea (BcSdhB) from 13 BosR and 9 boscalid-sensitive (BosS) isolates showed that point mutations in BcSdhB leading to amino acid substitutions at the codon position 272 from histidine to either tyrosine (H272Y) or arginine (H272R) were correlated with boscalid resistance. Allele-specific polymerase chain reaction (PCR) analysis of 66 BosR isolates (including 24 additional isolates obtained from decayed apple fruit) showed that 19 carried the point mutation H272Y and 46 had the point mutation H272R, but 1 BosR isolate gave no amplification product. Analysis of the BcSdhB sequence of this isolate revealed a different point mutation at codon 225, resulting in a substitution of proline (P) by phenylalanine (F) (P225F). The results indicated that H272R/Y in BcSdhB were the dominant genotypes of mutants in field BosR isolates from apple. A multiplex allele-specific PCR assay was developed to detect point mutations H272R/Y in a single PCR amplification. Levels of boscalid resistance ranged from low to very high within isolates carrying either the H272R or H272Y mutation, indicating that, among BosR isolates, different BosR phenotypes (levels of resistance) were not associated with particular types of point mutations (H272R versus H272Y) in BcSdhB. Analysis of genetic relationships between 39 BosR and 56 BosS isolates based on three microsatellite markers showed that 39 BosR isolates and 30 BosS isolates were clustered into two groups, and the third group consisted of only BosS isolates, suggesting that the development of resistance to boscalid in B. cinerea likely is not totally random, and resistant populations may come from specific genetic groups.
Collapse
Affiliation(s)
- Y N Yin
- Department of Plant Pathology, Washington State University, Tree Fruit Research and Extension Center, Wenatchee, WA 98801, USA
| | | | | |
Collapse
|
19
|
Kim YK, Xiao CL. Resistance to Pyraclostrobin and Boscalid in Populations of Botrytis cinerea from Stored Apples in Washington State. PLANT DISEASE 2010; 94:604-612. [PMID: 30754475 DOI: 10.1094/pdis-94-5-0604] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Gray mold caused by Botrytis cinerea is a major postharvest disease of apple. Pristine, a formulated mixture of pyraclostrobin and boscalid, was recently registered for use on apple. Pristine applied within 2 weeks before harvest is effective in controlling gray mold in stored apple fruit. To determine the baseline sensitivity of B. cinerea populations to these fungicides, 40 isolates from organic and 80 from conventional apple orchards where Pristine had not been used were tested for mycelial growth or conidial germination on fungicide-amended media. To monitor fungicide resistance, gray-mold-decayed apple fruit originating from orchards in which Pristine had been used were sampled from a fruit packinghouse. Isolates of B. cinerea recovered from the fruit were tested for resistance to the two fungicides. In the in vivo study in the orchards, Pristine was applied to fruit 1 day before harvest. Fruit were then harvested, wounded, and inoculated with isolates exhibiting different fungicide-resistance phenotypes. Fruit were stored at 0°C for 8 weeks for decay development. The effective concentration that inhibits mycelial growth by 50% relative to the control (EC50) values for sensitive isolates ranged from 0.008 to 0.132 μg/ml (mean = 0.043, n = 116) for pyraclostrobin and from 0.003 to 0.183 μg/ml (mean = 0.075, n = 117) for Pristine in a mycelial growth assay on potato dextrose agar. The EC50 values of boscalid for sensitive isolates ranged from 0.065 to 1.538 μg/ml (mean = 0.631, n = 29) in a conidial germination assay on water agar. Four isolates were resistant to pyraclostrobin, with resistance factors (RFs) ranging from 12 to 4,193. Of the four pyraclostrobin-resistant isolates, one also was resistant to boscalid (RF = 14) and Pristine (RF = 373), and two exhibited reduced sensitivity to Pristine (RF = 16 and 17). The minimum inhibitory concentration for conidial germination (for boscalid) or mycelial growth (for pyraclostrobin and Pristine) of sensitive isolates was 5 μg/ml, which is thus recommended as a discriminatory concentration for phenotyping isolates for resistance to these fungicides. Of the 56 isolates obtained from decayed apple fruit that had been exposed to Pristine, 11 (approximately 20%) were resistant to both pyraclostrobin and boscalid and 1 was resistant only to pyraclostrobin. Of the additional 43 isolates obtained from decayed apple fruit originating from an organic orchard, 3 were resistant only to pyraclostrobin, 2 were resistant only to boscalid, and 2 were resistant to both fungicides. It appeared that there was no cross resistance between pyraclostrobin and boscalid because of the existence of isolates resistant only to either pyraclostrobin or boscalid. Pristine applied at label rate in the orchard failed to control gray mold on apple fruit inoculated with the Pristine-resistant isolates. This is the first report of multiple resistance to pyraclostrobin, boscalid, and Pristine in field populations of B. cinerea. Our results suggest that the development of dual resistance to pyraclostrobin and boscalid in B. cinerea populations could result in the failure to control gray mold with Pristine.
Collapse
Affiliation(s)
- Y K Kim
- Department of Plant Pathology, Washington State University, Tree Fruit Research and Extension Center, Wenatchee 98801
| | - C L Xiao
- Department of Plant Pathology, Washington State University, Tree Fruit Research and Extension Center, Wenatchee 98801
| |
Collapse
|