1
|
Martín-Cacheda L, Röder G, Abdala-Roberts L, Moreira X. Test of Specificity in Signalling between Potato Plants in Response to Infection by Fusarium Solani and Phytophthora Infestans. J Chem Ecol 2024; 50:562-572. [PMID: 38904862 PMCID: PMC11493820 DOI: 10.1007/s10886-024-01521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/29/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
Plant-plant signalling via volatile organic compounds (VOCs) in response to insect herbivory has been widely studied, but its occurrence and specificity in response to pathogen attack has received much less attention. To fill this gap, we carried out a greenhouse experiment using two fungal pathogens (Fusarium solani and Phytophthora infestans) to test for specificity in VOC induction and signalling between potato plants (Solanum tuberosum). We paired potato plants in plastic cages, one acting as VOC emitter and the other as receiver, and subjected emitters to one of the following treatments: no infection (control), infected by F. solani, or infected by P. infestans. We measured total emission and composition of VOCs released by emitter plants to test for pathogen-specificity in VOC induction, and then conducted a pathogen infection bioassay to assess resistance levels on receiver plants by subjecting half of the receivers of each emitter treatment to F. solani infection and the other half to P. infestans infection. This allowed us to test for specificity in plant VOC signalling by comparing its effects on conspecific and heterospecific sequential infections. Results showed that infection by neither F. solani or P. infestans produced quantitative (total emissions) or qualitative (compositional) changes in VOC emissions. Mirroring these patterns, emitter infection treatment (control vs. pathogen infection) did not produce a significant change in pathogen infection levels on receiver plants in any case (i.e., either for conspecific or heterospecific sequential infections), indicating a lack of signalling effects which precluded pathogen-based specificity in signalling. We discuss possible mechanisms for lack of pathogen effects on VOC emissions and call for future work testing for pathogen specificity in plant-plant signalling and its implications for plant-pathogen interactions under ecologically relevant scenarios involving infections by multiple pathogens.
Collapse
Affiliation(s)
- Lucía Martín-Cacheda
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, Pontevedra, Galicia, 36080, Spain.
| | - Gregory Röder
- Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, 2000, Switzerland
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116,, Yucatán, Itzimná, 97000. Mérida, México
| | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, Pontevedra, Galicia, 36080, Spain.
| |
Collapse
|
2
|
Patarroyo C, Lucca F, Dupas S, Restrepo S. Reconstructing the Global Migration History of Phytophthora infestans Toward Colombia. PHYTOPATHOLOGY 2024; 114:2151-2161. [PMID: 38888504 DOI: 10.1094/phyto-05-24-0163-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The evolution of new variants of plant pathogens is one of the biggest challenges to controlling and managing plant diseases. Of the forces driving these evolutionary processes, global migration events are particularly important for widely distributed diseases such as potato late blight, caused by the oomycete Phytophthora infestans. However, little is known about its migration routes outside North America and Europe. This work used genotypic data from population studies to elucidate the migration history originating the Colombian P. infestans population. For this purpose, a dataset of 1,706 P. infestans genotypes was recollected, representing North and South America, Europe, and Asia. Descriptive analysis and historical records from North America and Europe were used to propose three global migration hypotheses, differing on the origin of the disease (Mexico or Peru) and the hypothesis that it returned to South America from Europe. These scenarios were tested using approximate Bayesian computation. According to this analysis, the most probable scenario (posterior probability = 0.631) was the one proposing a Peruvian origin for P. infestans, an initial migration toward Colombia and Mexico, and a later event from Mexico to the United States and then to Europe and Asia, with no return to northern South America. In Colombia, the scenario considering a single migration from Peru and posterior migrations within Colombia was the most probable, with a posterior probability of 0.640. The obtained results support the hypothesis of a Peruvian origin for P. infestans followed by rare colonization events worldwide.
Collapse
Affiliation(s)
- Camilo Patarroyo
- Department of Biological Sciences, Universidad de los Andes, Bogotá 111711, Colombia
- UMR EGCE (Evolution, Génome, Comportement et Ecologie), Université Paris-Sud-CNRS-IRD, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Florencia Lucca
- National Institute of Agricultural Technology, Potato Research Group, Experimental Agricultural Station, Balcarce 7620, República Argentina
| | - Stéphane Dupas
- UMR EGCE (Evolution, Génome, Comportement et Ecologie), Université Paris-Sud-CNRS-IRD, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Silvia Restrepo
- Department of Biological Sciences, Universidad de los Andes, Bogotá 111711, Colombia
- Boyce Thompson Institute, Ithaca, NY 14853, U.S.A
| |
Collapse
|
3
|
Naqvi SAH, Farhan M, Ahmad M, Kiran R, Fatima N, Shahbaz M, Akram M, Sathiya Seelan JS, Ali A, Ahmad S. Deciphering fungicide resistance in Phytophthora: mechanisms, prevalence, and sustainable management approaches. World J Microbiol Biotechnol 2024; 40:302. [PMID: 39150639 DOI: 10.1007/s11274-024-04108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
The genus Phytophthora contains more than 100 plant pathogenic species that parasitize a wide range of plants, including economically important fruits, vegetables, cereals, and forest trees, causing significant losses. Global agriculture is seriously threatened by fungicide resistance in Phytophthora species, which makes it imperative to fully comprehend the mechanisms, frequency, and non-chemical management techniques related to resistance mutations. The mechanisms behind fungicide resistance, such as target-site mutations, efflux pump overexpression, overexpression of target genes and metabolic detoxification routes for fungicides routinely used against Phytophthora species, are thoroughly examined in this review. Additionally, it assesses the frequency of resistance mutations in various Phytophthora species and geographical areas, emphasizing the rise of strains that are resistant to multiple drugs. The effectiveness of non-chemical management techniques, including biological control, host resistance, integrated pest management plans, and cultural practices, in reducing fungicide resistance is also thoroughly evaluated. The study provides important insights for future research and the development of sustainable disease management strategies to counter fungicide resistance in Phytophthora species by synthesizing current information and identifying knowledge gaps.
Collapse
Affiliation(s)
- Syed Atif Hasan Naqvi
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Farhan
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Ahmad
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Rafia Kiran
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Noor Fatima
- Department of Botany, Lahore College for Women University, Lahore, 44444, Punjab, Pakistan
| | - Muhammad Shahbaz
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Muhammad Akram
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Jaya Seelan Sathiya Seelan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Amjad Ali
- Department of Plant Protection, Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, 58140, Sivas, Turkey
| | - Salman Ahmad
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, 40100, Punjab, Pakistan
| |
Collapse
|
4
|
Coomber A, Saville A, Ristaino JB. Evolution of Phytophthora infestans on its potato host since the Irish potato famine. Nat Commun 2024; 15:6488. [PMID: 39103347 DOI: 10.1038/s41467-024-50749-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
Phytophthora infestans is a major oomycete plant pathogen, responsible for potato late blight, which led to the Irish Potato Famine from 1845-1852. Since then, potatoes resistant to this disease have been bred and deployed worldwide. Their resistance (R) genes recognize pathogen effectors responsible for virulence and then induce a plant response stopping disease progression. However, most deployed R genes are quickly overcome by the pathogen. We use targeted sequencing of effector and R genes on herbarium specimens to examine the joint evolution in both P. infestans and potato from 1845-1954. Currently relevant effectors are historically present in P. infestans, but with alternative alleles compared to modern reference genomes. The historic FAM-1 lineage has the virulent Avr1 allele and the ability to break the R1 resistance gene before breeders deployed it in potato. The FAM-1 lineage is diploid, but later, triploid US-1 lineages appear. We show that pathogen virulence genes and host resistance genes have undergone significant changes since the Famine, from both natural and artificial selection.
Collapse
Affiliation(s)
- Allison Coomber
- Department of Entomology and Plant Pathology, NC State University, Raleigh, NC, USA
- Functional Genomics Program, NC State University, Raleigh, NC, USA
| | - Amanda Saville
- Department of Entomology and Plant Pathology, NC State University, Raleigh, NC, USA
| | - Jean Beagle Ristaino
- Department of Entomology and Plant Pathology, NC State University, Raleigh, NC, USA.
- Emerging Plant Disease and Global Food Security Cluster, NC State University, Raleigh, NC, USA.
| |
Collapse
|
5
|
Vo NNT, Yang A, Leesutthiphonchai W, Liu Y, Hughes TR, Judelson HS. Transcription factor binding specificities of the oomycete Phytophthora infestans reflect conserved and divergent evolutionary patterns and predict function. BMC Genomics 2024; 25:710. [PMID: 39044130 PMCID: PMC11267843 DOI: 10.1186/s12864-024-10630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Identifying the DNA-binding specificities of transcription factors (TF) is central to understanding gene networks that regulate growth and development. Such knowledge is lacking in oomycetes, a microbial eukaryotic lineage within the stramenopile group. Oomycetes include many important plant and animal pathogens such as the potato and tomato blight agent Phytophthora infestans, which is a tractable model for studying life-stage differentiation within the group. RESULTS Mining of the P. infestans genome identified 197 genes encoding proteins belonging to 22 TF families. Their chromosomal distribution was consistent with family expansions through unequal crossing-over, which were likely ancient since each family had similar sizes in most oomycetes. Most TFs exhibited dynamic changes in RNA levels through the P. infestans life cycle. The DNA-binding preferences of 123 proteins were assayed using protein-binding oligonucleotide microarrays, which succeeded with 73 proteins from 14 families. Binding sites predicted for representatives of the families were validated by electrophoretic mobility shift or chromatin immunoprecipitation assays. Consistent with the substantial evolutionary distance of oomycetes from traditional model organisms, only a subset of the DNA-binding preferences resembled those of human or plant orthologs. Phylogenetic analyses of the TF families within P. infestans often discriminated clades with canonical and novel DNA targets. Paralogs with similar binding preferences frequently had distinct patterns of expression suggestive of functional divergence. TFs were predicted to either drive life stage-specific expression or serve as general activators based on the representation of their binding sites within total or developmentally-regulated promoters. This projection was confirmed for one TF using synthetic and mutated promoters fused to reporter genes in vivo. CONCLUSIONS We established a large dataset of binding specificities for P. infestans TFs, representing the first in the stramenopile group. This resource provides a basis for understanding transcriptional regulation by linking TFs with their targets, which should help delineate the molecular components of processes such as sporulation and host infection. Our work also yielded insight into TF evolution during the eukaryotic radiation, revealing both functional conservation as well as diversification across kingdoms.
Collapse
Affiliation(s)
- Nguyen N T Vo
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Ally Yang
- Department of Molecular Genetics and Donnelly Center, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Wiphawee Leesutthiphonchai
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
- Current address: Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Yulong Liu
- Department of Molecular Genetics and Donnelly Center, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Timothy R Hughes
- Department of Molecular Genetics and Donnelly Center, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
6
|
Weng L, Tang Z, Sardar MF, Yu Y, Ai K, Liang S, Alkahtani J, Lyv D. Unveiling the frontiers of potato disease research through bibliometric analysis. Front Microbiol 2024; 15:1430066. [PMID: 39027102 PMCID: PMC11257026 DOI: 10.3389/fmicb.2024.1430066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024] Open
Abstract
Research on potato diseases had been widely reported, but a systematic review of potato diseases was lacking. Here, bibliometrics was used to systematically analyze the progress of potato disease. The publications related to "potato" and "disease" were searched in the Web of Science (WOS) from 2014 to 2023. The results showed that a total of 2095 publications on potato diseases were retrieved, with the annual publication output increasing year by year at a growth rate of 8.52%. The main countries where publications were issued were the United States, China, and India. There was relatively close cooperation observed between China, the United States, and the United Kingdom in terms of international collaboration, while international cooperation by India was less extensive. Based on citation analysis and trending topics, potential future research directions include nanoparticles, which provides highly effective carriers for biologically active substances due to their small dimensions, extensive surface area, and numerous binding sites; machine learning, which facilitates rapid identification of relevant targets in extensive datasets, thereby accelerating the process of disease diagnosis and fungicide innovation; and synthetic communities composed of various functional microorganisms, which demonstrate more stable effects in disease prevention and control.
Collapse
Affiliation(s)
- Ling Weng
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
- Key Laboratory of Germplasm Innovation of Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Zhurui Tang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
- Key Laboratory of Germplasm Innovation of Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Muhammad Fahad Sardar
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, China
| | - Ying Yu
- Soil and Fertilizer Institute, Anhui Academy of Agricultural Sciences (National Agricultural Experimental Station for Soil Quality, Taihe)/Key Laboratory of Nutrient Cycling and Arable Land Conservation of Anhui Province, Hefei, China
| | - Keyu Ai
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Shurui Liang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jawaher Alkahtani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Dianqiu Lyv
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
- Key Laboratory of Germplasm Innovation of Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
7
|
Rodenburg SYA, de Ridder D, Govers F, Seidl MF. Oomycete Metabolism Is Highly Dynamic and Reflects Lifestyle Adaptations. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:571-582. [PMID: 38648121 DOI: 10.1094/mpmi-12-23-0200-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The selective pressure of pathogen-host symbiosis drives adaptations. How these interactions shape the metabolism of pathogens is largely unknown. Here, we use comparative genomics to systematically analyze the metabolic networks of oomycetes, a diverse group of eukaryotes that includes saprotrophs as well as animal and plant pathogens, with the latter causing devastating diseases with significant economic and/or ecological impacts. In our analyses of 44 oomycete species, we uncover considerable variation in metabolism that can be linked to lifestyle differences. Comparisons of metabolic gene content reveal that plant pathogenic oomycetes have a bipartite metabolism consisting of a conserved core and an accessory set. The accessory set can be associated with the degradation of defense compounds produced by plants when challenged by pathogens. Obligate biotrophic oomycetes have smaller metabolic networks, and taxonomically distantly related biotrophic lineages display convergent evolution by repeated gene losses in both the conserved as well as the accessory set of metabolisms. When investigating to what extent the metabolic networks in obligate biotrophs differ from those in hemibiotrophic plant pathogens, we observe that the losses of metabolic enzymes in obligate biotrophs are not random and that gene losses predominantly influence the terminal branches of the metabolic networks. Our analyses represent the first metabolism-focused comparison of oomycetes at this scale and will contribute to a better understanding of the evolution of oomycete metabolism in relation to lifestyle adaptation. Numerous oomycete species are devastating plant pathogens that cause major damage in crops and natural ecosystems. Their interactions with hosts are shaped by strong selection, but how selection affects adaptation of the primary metabolism to a pathogenic lifestyle is not yet well established. By pan-genome and metabolic network analyses of distantly related oomycete pathogens and their nonpathogenic relatives, we reveal considerable lifestyle- and lineage-specific adaptations. This study contributes to a better understanding of metabolic adaptations in pathogenic oomycetes in relation to lifestyle, host, and environment, and the findings will help in pinpointing potential targets for disease control. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Sander Y A Rodenburg
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
- Bioinformatics Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
| | - Michael F Seidl
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
- Theoretical Biology and Bioinformatics Group, Department of Biology, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
8
|
Wu KT, Spychalla P, Pereyra M, Liou M, Chen Y, Silva E, Gevens A. Impacts of a Commercially Available Horticultural Oil Biopesticide (EF-400) on the Tomato- Phytophthora infestans Pathosystem. PLANT DISEASE 2024; 108:1533-1543. [PMID: 38105459 DOI: 10.1094/pdis-12-22-2968-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Biopesticide fungicides are naturally derived compounds that offer protection from plant diseases through various modes of action, including antimicrobial activity and upregulation of defense responses in host plants. These plant protectants provide a sustainable and safe alternative to conventional pesticides in integrated disease management programs and are especially salient in the management of high-risk and economically important diseases such as late blight of tomato and potato, for which host resistance options are limited. In this study, a commercially available biopesticide, EF400 comprised of clove (8.2%), rosemary (8.1%), and peppermint oils (6.7%) (Anjon AG, Corcoran, CA), was investigated for its effects on the Phytophthora infestans-tomato pathosystem. Specifically, we evaluated the impact of EF400 on P. infestans growth in culture, disease symptoms in planta, and activation of host defenses through monitoring transcript accumulation of defense-related genes. The application timing and use rate of EF400 were further investigated for managing tomato late blight. EF400 delayed the onset of tomato late blight symptoms, although not as effectively as the copper hydroxide fungicide Champ WG (Nufarm Americas Inc., Alsip, IL). Pathogen mycelial growth and sporangial quantity on late blight-susceptible tomato leaves were significantly reduced with EF400. The biopesticide also had an enhancing or suppressing effect on the transcript accumulation of three defense-related genes: Pin2, PR1a, and PR1b. Our work in exploring a commercially available horticultural oil biopesticide meaningfully contributed to the essential knowledge base for optimizing recommendations for the management of tomato late blight.
Collapse
Affiliation(s)
- Kuantin Tina Wu
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706
| | - Pia Spychalla
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706
| | - Matthew Pereyra
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706
| | - Michael Liou
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706
| | - Yu Chen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706
| | - Erin Silva
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706
| | - Amanda Gevens
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
9
|
Martini F, Jijakli MH, Gontier E, Muchembled J, Fauconnier ML. Harnessing Plant's Arsenal: Essential Oils as Promising Tools for Sustainable Management of Potato Late Blight Disease Caused by Phytophthora infestans-A Comprehensive Review. Molecules 2023; 28:7302. [PMID: 37959721 PMCID: PMC10650712 DOI: 10.3390/molecules28217302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Potato late blight disease is caused by the oomycete Phytophthora infestans and is listed as one of the most severe phytopathologies on Earth. The current environmental issues require new methods of pest management. For that reason, plant secondary metabolites and, in particular, essential oils (EOs) have demonstrated promising potential as pesticide alternatives. This review presents the up-to-date work accomplished using EOs against P. infestans at various experimental scales, from in vitro to in vivo. Additionally, some cellular mechanisms of action on Phytophthora spp., especially towards cell membranes, are also presented for a better understanding of anti-oomycete activities. Finally, some challenges and constraints encountered for the development of EOs-based biopesticides are highlighted.
Collapse
Affiliation(s)
- Florian Martini
- Joint and Research Unit, 1158 BioEcoAgro Junia, 59000 Lille, France;
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium;
- Laboratory of Plant Biology and Innovation, BIOPI-UPJV, UMRT BioEcoAgro INRAE1158, UFR Sciences of University of Picardie Jules Verne, 33 rue Saint Leu, 80000 Amiens, France;
| | - M. Haïssam Jijakli
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium;
| | - Eric Gontier
- Laboratory of Plant Biology and Innovation, BIOPI-UPJV, UMRT BioEcoAgro INRAE1158, UFR Sciences of University of Picardie Jules Verne, 33 rue Saint Leu, 80000 Amiens, France;
| | - Jérôme Muchembled
- Joint and Research Unit, 1158 BioEcoAgro Junia, 59000 Lille, France;
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium;
| |
Collapse
|
10
|
Troussieux S, Gilgen A, Souche JL. Fighting Tomato Fungal Diseases with a Biocontrol Product Based on Amoeba Lysate. PLANTS (BASEL, SWITZERLAND) 2023; 12:3603. [PMID: 37896066 PMCID: PMC10609735 DOI: 10.3390/plants12203603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
New solutions to reduce the use of chemical pesticides to combat plant diseases and to meet societal and political demands are needed to achieve sustainable agriculture. Tomato production, both in greenhouses and in open fields, is affected by numerous pathogens. The aim of this study is to assess the possibility of controlling both late blight and powdery mildew in tomatoes with a single biocontrol product currently under registration. The biocontrol product AXP12, based on the lysate of Willaertia magna C2c Maky, has already proved its efficacy against downy mildew of grapevine and potato late blight. Its ability to elicit tomato defenses and its efficacy in the greenhouse and in the field were tested. This study establishes that AXP12 stimulates the tomato genes involved in plant defense pathways and has the capacity to combat in greenhouse and field both late blight (Phytophtora infestans) and powdery mildew (Oidium neolycopersici and Leveillula taurica) of tomato.
Collapse
|
11
|
Zhao B, Yu H, Liu D, Wang J, Feng X, He F, Qi T, Du C, Wang L, Wang H, Li F. Combined Transcriptome and Metabolome Analysis Reveals Adaptive Defense Responses to DON Induction in Potato. Int J Mol Sci 2023; 24:ijms24098054. [PMID: 37175760 PMCID: PMC10179060 DOI: 10.3390/ijms24098054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Phytophthora infestans poses a serious threat to potato production, storage, and processing. Understanding plant immunity triggered by fungal elicitors is important for the effective control of plant diseases. However, the role of the potato stress response to Fusarium toxin deoxynivalenol (DON)-induced stress is still not fully understood. In this study, the metabolites of DON-treated potato tubers were studied for four time intervals using UPLC-MS/MS. We identified 676 metabolites, and differential accumulation metabolite analysis showed that alkaloids, phenolic acids, and flavonoids were the major differential metabolites that directly determined defense response. Transcriptome data showed that differentially expressed genes (DEGs) were significantly enriched in phenylpropane and flavonoid metabolic pathways. Weighted gene co-expression network analysis (WGCNA) identified many hub genes, some of which modulate plant immune responses. This study is important for understanding the metabolic changes, transcriptional regulation, and physiological responses of active and signaling substances during DON induction, and it will help to design defense strategies against Phytophthora infestans in potato.
Collapse
Affiliation(s)
- Biao Zhao
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Hang Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Dan Liu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Jiaqi Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Xu Feng
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fumeng He
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Tianshuai Qi
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Chong Du
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Linlin Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Haifeng Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Fenglan Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
12
|
Qiu M, Tian M, Yong S, Sun Y, Cao J, Li Y, Zhang X, Zhai C, Ye W, Wang M, Wang Y. Phase-specific transcriptional patterns of the oomycete pathogen Phytophthora sojae unravel genes essential for asexual development and pathogenic processes. PLoS Pathog 2023; 19:e1011256. [PMID: 36952577 PMCID: PMC10072465 DOI: 10.1371/journal.ppat.1011256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/04/2023] [Accepted: 02/28/2023] [Indexed: 03/25/2023] Open
Abstract
Oomycetes are filamentous microorganisms easily mistaken as fungi but vastly differ in physiology, biochemistry, and genetics. This commonly-held misconception lead to a reduced effectiveness by using conventional fungicides to control oomycetes, thus it demands the identification of novel functional genes as target for precisely design oomycetes-specific microbicide. The present study initially analyzed the available transcriptome data of the model oomycete pathogen, Phytophthora sojae, and constructed an expression matrix of 10,953 genes across the stages of asexual development and host infection. Hierarchical clustering, specificity, and diversity analyses revealed a more pronounced transcriptional plasticity during the stages of asexual development than that in host infection, which drew our attention by particularly focusing on transcripts in asexual development stage to eventually clustered them into 6 phase-specific expression modules. Three of which respectively possessing a serine/threonine phosphatase (PP2C) expressed during the mycelial and sporangium stages, a histidine kinase (HK) expressed during the zoospore and cyst stages, and a bZIP transcription factor (bZIP32) exclusive to the cyst germination stage were selected for down-stream functional validation. In this way, we demonstrated that PP2C, HK, and bZIP32 play significant roles in P. sojae asexual development and virulence. Thus, these findings provide a foundation for further gene functional annotation in oomycetes and crop disease management.
Collapse
Affiliation(s)
- Min Qiu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mengjun Tian
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Saijiang Yong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yaru Sun
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jingting Cao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yaning Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xin Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chunhua Zhai
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ming Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Yang K, Yan Q, Wang Y, Zhu W, Wang X, Li X, Peng H, Zhou Y, Jing M, Dou D. Engineering crop Phytophthora resistance by targeting pathogen-derived PI3P for enhanced catabolism. PLANT COMMUNICATIONS 2023; 4:100460. [PMID: 36217305 PMCID: PMC10030320 DOI: 10.1016/j.xplc.2022.100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/24/2022] [Accepted: 10/06/2022] [Indexed: 05/04/2023]
Abstract
Phytophthora pathogens lead to numerous economically damaging plant diseases worldwide, including potato late blight caused by P. infestans and soybean root rot caused by P. sojae. Our previous work showed that Phytophthora pathogens may generate abundant phosphatidylinositol 3-phosphate (PI3P) to promote infection via direct association with RxLR effectors. Here, we designed a disease control strategy for metabolizing pathogen-derived PI3P by expressing secreted Arabidopsis thaliana phosphatidylinositol-4-phosphate 5-kinase 1 (AtPIP5K1), which can phosphorylate PI3P to PI(3,4)P2. We fused AtPIP5K1 with the soybean PR1a signal peptide (SP-PIP5K1) to enable its secretion into the plant apoplast. Transgenic soybean and potato plants expressing SP-PIP5K1 showed substantially enhanced resistance to various P. sojae and P. infestans isolates, respectively. SP-PIP5K1 significantly reduced PI3P accumulation during P. sojae and soybean interaction. Knockout or inhibition of PI3 kinases (PI3Ks) in P. sojae compromised the resistance mediated by SP-PIP5K1, indicating that SP-PIP5K1 action requires a supply of pathogen-derived PI3P. Furthermore, we revealed that SP-PIP5K1 can interfere with the action of P. sojae mediated by the RxLR effector Avr1k. This novel disease control strategy has the potential to confer durable broad-spectrum Phytophthora resistance in plants through a clear mechanism in which catabolism of PI3P interferes with RxLR effector actions.
Collapse
Affiliation(s)
- Kun Yang
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiang Yan
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China; Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210095, China
| | - Yi Wang
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenyi Zhu
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaodan Wang
- College of Plant Protection, China Agricultural University, Beijing 100091, China
| | - Xiaobo Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangdong, Guangzhou 510640, China
| | - Hao Peng
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Yang Zhou
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Maofeng Jing
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China.
| | - Daolong Dou
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China; College of Plant Protection, China Agricultural University, Beijing 100091, China.
| |
Collapse
|
14
|
Yang K, Wang Y, Li J, Du Y, Zhai Y, Liang D, Shen D, Ji R, Ren X, Peng H, Jing M, Dou D. The Pythium periplocum elicitin PpEli2 confers broad-spectrum disease resistance by triggering a novel receptor-dependent immune pathway in plants. HORTICULTURE RESEARCH 2023; 10:uhac255. [PMID: 37533673 PMCID: PMC10390855 DOI: 10.1093/hr/uhac255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/14/2022] [Indexed: 08/04/2023]
Abstract
Elicitins are microbe-associated molecular patterns produced by oomycetes to elicit plant defense. It is still unclear whether elicitins derived from non-pathogenic oomycetes can be used as bioactive molecules for disease control. Here, for the first time we identify and characterize an elicitin named PpEli2 from the soil-borne oomycete Pythium periplocum, which is a non-pathogenic mycoparasite colonizing the root ecosystem of diverse plant species. Perceived by a novel cell surface receptor-like protein, REli, that is conserved in various plants (e.g. tomato, pepper, soybean), PpEli2 can induce hypersensitive response cell death and an immunity response in Nicotiana benthamiana. Meanwhile, PpEli2 enhances the interaction between REli and its co-receptor BAK1. The receptor-dependent immune response triggered by PpEli2 is able to protect various plant species against Phytophthora and fungal infections. Collectively, our work reveals the potential agricultural application of non-pathogenic elicitins and their receptors in conferring broad-spectrum resistance for plant protection.
Collapse
Affiliation(s)
- Kun Yang
- Key Laboratory of Biological Interaction and Crop Health, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Wang
- Key Laboratory of Biological Interaction and Crop Health, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jialu Li
- Key Laboratory of Biological Interaction and Crop Health, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaxin Du
- Key Laboratory of Biological Interaction and Crop Health, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Zhai
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Dong Liang
- Key Laboratory of Biological Interaction and Crop Health, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Danyu Shen
- Key Laboratory of Biological Interaction and Crop Health, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xuexiang Ren
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Hao Peng
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | | | - Daolong Dou
- Key Laboratory of Biological Interaction and Crop Health, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Lin L, Yang Z, Tao M, Shen D, Cui C, Wang P, Wang L, Jing M, Qian G, Shao X. Lysobacter enzymogenes prevents Phytophthora infection by inhibiting pathogen growth and eliciting plant immune responses. FRONTIERS IN PLANT SCIENCE 2023; 14:1116147. [PMID: 36743479 PMCID: PMC9892905 DOI: 10.3389/fpls.2023.1116147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
The Phytophthora pathogen causes enormous damage to important agricultural plants. This group of filamentous pathogens is phylogenetically distant from fungi, making them difficult to control by most chemical fungicides. Lysobacter enzymogenes OH11 (OH11) is a biocontrol bacterium that secretes HSAF (Heat-Stable Antifungal Factor) as a broad-spectrum antifungal weapon. Here, we showed that OH11 could also control a variety of plant Phytophthora diseases caused by three major oomycetes (P. sojae, P. capsici and P. infestans). We provided abundant evidence to prove that OH11 protected host plants from Phytophthora pathogen infection by inhibiting mycelial growth, digesting cysts, suppressing cyst germination, and eliciting plant immune responses. Interestingly, the former two processes required the presence of HSAF, while the latter two did not. This suggested that L. enzymogenes could prevent Phytophthora infection via multiple previously unknown mechanisms. Therefore, this study showed that L. enzymogenes could serve as a promising alternative resource for promoting plant resistance to multiple Phytophthora pathogens.
Collapse
Affiliation(s)
- Long Lin
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, China
| | - Zixiang Yang
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, China
| | - Min Tao
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, China
| | - Danyu Shen
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, China
| | - Chuanbin Cui
- Department of Plant Pathology, Shaanxi Provincial Tobacco Corporation of CNTC, Xi’an, China
| | - Pingping Wang
- Department of Plant Pathology, Shaanxi Provincial Tobacco Corporation of CNTC, Xi’an, China
| | - Limin Wang
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, China
| | - Maofeng Jing
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, China
| | - Guoliang Qian
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, China
| | - Xiaolong Shao
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
16
|
Kostov K, Andonova-Lilova B, Smagghe G. Inhibitory activity of carbon quantum dots against Phytophthora infestans and fungal plant pathogens and their effect on dsRNA-induced gene silencing. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2146533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Kaloyan Kostov
- Department of Functional Genetics, Abiotic and Biotic Stress, Agrobioinstitute, Agricultural Academy, Sofia, Bulgaria
| | - Boika Andonova-Lilova
- Department of Agrobiotechnology, Agrobioinstitute, Agricultural Academy, Sofia, Bulgaria
| | - Guy Smagghe
- Molecular and Cellular Life Sciences, Department of Biology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
17
|
Troussieux S, Gilgen A, Souche JL. A New Biocontrol Tool to Fight Potato Late Blight Based on Willaertia magna C2c Maky Lysate. PLANTS (BASEL, SWITZERLAND) 2022; 11:2756. [PMID: 36297781 PMCID: PMC9607421 DOI: 10.3390/plants11202756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Potato late blight (PLB) is one of the most destructive disease affecting potatoes. Late blight control relies almost exclusively on the use of chemical pesticides, including copper products, which are efficient but controversial due to their environmental toxicity. Societal pressure and the quest for more sustainable agriculture reinforce the need for natural plant protection products. To respond to this demand, we tested the lysate of the amoeba Willaertia magna C2c Maky on PLB. This active substance exhibits plant protection properties against grape downy mildew thanks to a dual mode of action (plant elicitor and antifungal direct effect). We hypothesized that this active substance might also have an effect against other diseases caused by oomycetes on other crops, such as potato. In vitro, in planta, and in-field studies were conducted. The collected data demonstrate that the lysate of the amoeba Willaertia magna C2c Maky is able to elicit potato defenses, and direct fungicidal activity against Phytophtora infestans was observed. Proof of efficacy was first obtained in greenhouse, with up to 80% disease reduction, and confirmed in field trials. Formulated products provided up to 77% protection in field in the case of low infestation (28%) and up to 49% protection when the untreated plants were 100% destroyed. Willaertia magna C2c Maky was also able to significantly increase yield by up to 30% in field trials.
Collapse
|
18
|
Situ J, Xi P, Lin L, Huang W, Song Y, Jiang Z, Kong G. Signal and regulatory mechanisms involved in spore development of Phytophthora and Peronophythora. Front Microbiol 2022; 13:984672. [PMID: 36160220 PMCID: PMC9500583 DOI: 10.3389/fmicb.2022.984672] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Oomycetes cause hundreds of destructive plant diseases, threatening agricultural production and food security. These fungus-like eukaryotes show multiple sporulation pattern including the production of sporangium, zoospore, chlamydospore and oospore, which are critical for their survival, dispersal and infection on hosts. Recently, genomic and genetic technologies have greatly promoted the study of molecular mechanism of sporulation in the genus Phytophthora and Peronophythora. In this paper, we characterize the types of asexual and sexual spores and review latest progress of these two genera. We summarize the genes encoding G protein, mitogen-activated protein kinase (MAPK) cascade, transcription factors, RNA-binding protein, autophagy-related proteins and so on, which function in the processes of sporangium production and cleavage, zoospore behaviors and oospore formation. Meanwhile, various molecular, chemical and electrical stimuli in zoospore behaviors are also discussed. Finally, with the molecular mechanism of sporulation in Phytophthora and Peronophythora is gradually being revealed, we propose some thoughts for the further research and provide the alternative strategy for plant protection against phytopathogenic oomycetes.
Collapse
Affiliation(s)
- Junjian Situ
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Pinggen Xi
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Long Lin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Weixiong Huang
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yu Song
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zide Jiang
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Guanghui Kong
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
- *Correspondence: Guanghui Kong,
| |
Collapse
|
19
|
Abdelrahman O, Yagi S, El Siddig M, El Hussein A, Germanier F, De Vrieze M, L’Haridon F, Weisskopf L. Evaluating the Antagonistic Potential of Actinomycete Strains Isolated From Sudan's Soils Against Phytophthora infestans. Front Microbiol 2022; 13:827824. [PMID: 35847058 PMCID: PMC9277107 DOI: 10.3389/fmicb.2022.827824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Soil microorganisms play crucial roles in soil fertility, e.g., through decomposing organic matter, cycling nutrients or through beneficial interactions with plants. Actinomycetes are a major component of soil inhabitants; they are prolific producers of specialized metabolites, among which many antibiotics. Here we report the isolation and characterization of 175 Actinomycetes from rhizosphere and bulk soil samples collected in 18 locations in Sudan. We evaluated the strains' metabolic potential for plant protection by testing their ability to inhibit the mycelial growth of the oomycete Phytophthora infestans, which is one of the most devastating plant pathogens worldwide. Most strains significantly reduced the oomycete's growth in direct confrontational in vitro assays. A significant proportion of the tested strains (15%) were able to inhibit P. infestans to more than 80%, 23% to 50%-80%, while the remaining 62% had inhibition percentages lesser than 50%. Different morphologies of P. infestans mycelial growth and sporangia formation were observed upon co-inoculation with some of the Actinomycetes isolates, such as the production of fewer, thinner hyphae without sporangia leading to a faint growth morphology, or on the contrary, of clusters of thick-walled hyphae leading to a bushy, or "frozen" morphology. These morphologies were caused by strains differing in activity levels but phylogenetically closely related with each other. To evaluate whether the isolated Actinomycetes could also inhibit the pathogen's growth in planta, the most active strains were tested for their ability to restrict disease progress in leaf disc and full plant assays. Five of the active strains showed highly significant protection of potato leaves against the pathogen in leaf disc assays, as well as substantial reduction of disease progress in full plants assays. Using cell-free filtrates instead of the bacterial spores also led to full protection against disease on leaf discs, which highlights the strong crop protective potential of the secreted metabolites that could be applied as leaf spray. This study demonstrates the strong anti-oomycete activity of soil- and rhizosphere-borne Actinomycetes and highlights their significant potential for the development of sustainable solutions based on either cell suspensions or cell-free filtrates to safeguard potatoes from their most damaging pathogen.
Collapse
Affiliation(s)
- Ola Abdelrahman
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Botany, University of Khartoum, Khartoum, Sudan
| | - Sakina Yagi
- Department of Botany, University of Khartoum, Khartoum, Sudan
| | | | - Adil El Hussein
- Department of Botany, University of Khartoum, Khartoum, Sudan
| | - Fanny Germanier
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Mout De Vrieze
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Laure Weisskopf
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
20
|
Shen LL, Waheed A, Wang YP, Nkurikiyimfura O, Wang ZH, Yang LN, Zhan J. Mitochondrial Genome Contributes to the Thermal Adaptation of the Oomycete Phytophthora infestans. Front Microbiol 2022; 13:928464. [PMID: 35836411 PMCID: PMC9273971 DOI: 10.3389/fmicb.2022.928464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
As a vital element of climate change, elevated temperatures resulting from global warming present new challenges to natural and agricultural sustainability, such as ecological disease management. Mitochondria regulate the energy production of cells in responding to environmental fluctuation, but studying their contribution to the thermal adaptation of species is limited. This knowledge is needed to predict future disease epidemiology for ecology conservation and food security. Spatial distributions of the mitochondrial genome (mtDNA) in 405 Phytophthora infestans isolates originating from 15 locations were characterized. The contribution of MtDNA to thermal adaptation was evaluated by comparative analysis of mtDNA frequency and intrinsic growth rate, relative population differentiation in nuclear and mtDNA, and associations of mtDNA distribution with local geography climate conditions. Significant variation in frequency, intrinsic growth rate, and spatial distribution was detected in mtDNA. Population differentiation in mtDNA was significantly higher than that in the nuclear genome, and spatial distribution of mtDNA was strongly associated with local climatic conditions and geographic parameters, particularly air temperature, suggesting natural selection caused by a local temperature is the main driver of the adaptation. Dominant mtDNA grew faster than the less frequent mtDNA. Our results provide useful insights into the evolution of pathogens under global warming. Given its important role in biological functions and adaptation to local air temperature, mtDNA intervention has become an increasing necessity for future disease management. To secure ecological integrity and food production under global warming, a synergistic study on the interactive effect of changing temperature on various components of biological and ecological functions of mitochondria in an evolutionary frame is urgently needed.
Collapse
Affiliation(s)
- Lin-Lin Shen
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Abdul Waheed
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Yan-Ping Wang
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, China
| | - Oswald Nkurikiyimfura
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zong-Hua Wang
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Li-Na Yang
- Institute of Oceanography, Minjiang University, Fuzhou, China
- *Correspondence: Li-Na Yang
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
21
|
Afanasenko OS, Khiutti AV, Mironenko NV, Lashina NM. Transmission of potato spindle tuber viroid between <i>Phytophthora infestans</i> and host plants. Vavilovskii Zhurnal Genet Selektsii 2022; 26:272-280. [PMID: 35774366 PMCID: PMC9167824 DOI: 10.18699/vjgb-22-34] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/03/2022] [Accepted: 02/03/2021] [Indexed: 12/27/2022] Open
Abstract
Potato spindle tuber viroid (PSTVd) is a naked, circular, single-stranded RNA (356–363 nucleotides in length) which lacks any protein-coding sequences. It is an economically important pathogen and is classified as a high-risk plant quarantine disease. Moreover, it is known that PSTVd is mechanically transmitted by vegetative plant propagation through infected pollen, and by aphids. The aim of this study is to determine the possibility of viroid transmission by potato pathogen Phytophthora infestans (Mont.) de Bary. PSTVd-infected (strain VP87) potato cultivars Gala, Colomba, and Riviera were inoculated with P. infestans isolate PiVZR18, and in 7 days, after the appearance of symptoms, re-isolation of P. infestans on rye agar was conducted. RT-PCR diagnostics of PSTVd in a mixture of mycelia and sporangia were positive after 14 days of cultivation on rye agar. The PSTVd-infected P. infestans isolate PiVZR18v+ was used to inoculate the healthy, viroid-free plants of potato cv. Gala and tomato cv. Zagadka. After 60 days, an amplification fragment of PSTVd was detected in the tissues of one plant of tomato cv. Zagadka by RT-PCR with the primer set P3/P4, indicating successful transmission of PSTVd by P. infestans isolate PiVZR18v+. This result was confirmed by sequencing of the RT-PCR amplicon with primers P3/P4. The partial sequence of this amplicon was identical (99.5 %) to PSTVd strain VP87. RT-PCR showed the possibility of viroid stability in a pure culture of P. infestans isolate PiVZR18v+ after three consecutive passages on rye agar. PSTVd was not detected after the eighth passage on rye agar in P. infestans subculture. These results are initial evidence of potato viroid PSTVd being bidirectionally transferred between P. infestans and host plants
Collapse
|
22
|
Potentiality of Formulated Bioagents from Lab to Field: A Sustainable Alternative for Minimizing the Use of Chemical Fungicide in Controlling Potato Late Blight. SUSTAINABILITY 2022. [DOI: 10.3390/su14084383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Late blight of potato caused by an oomycete, Phytophthora infestans (Mont.) De Bary limits the production of potato worldwide. Late blight management has been based on chemical fungicide application, and the repeated use of these fungicides introduces new and more aggressive genotypes, which can rapidly overcome host resistance. Therefore, innovative and effective control measures are needed if fungicide use is to be reduced or eliminated. Some potential formulated bacterial bioagents viz. Pseudomonas putida (BDISO64RanP) and Bacillus subtilis (BDISO36ThaR), and fungal bioagents viz. Trichoderma paraviridicens (BDISOF67R) and T. erinaceum (BDISOF91R), were evaluated for their performance in controlling late blight of potato under growth chamber and field conditions. Both artificial inoculation and field experiments revealed that eight sprays of these bacterial (P. putida and B. subtilis) and fungal (T. erinaceum) bioagents were found to be most effective at reducing late blight severity by 99% up until 60 days after planting (DAP), whereas these bioagents were found to be partially effective until 70 DAP, reducing late blight severity by 46 to 60% and 58 to 60% in the field and growth chamber conditions, respectively. However, these bioagents can reduce the spray frequencies of Curzate M8 by 50% (four sprays instead of eight) when applied together with this fungicide. Economic analysis revealed that T6 (eight sprays of formulated P. putida + B. subtilis + four sprays of Curzate M8) and T16 (eight sprays of formulated P. putida, B. subtilis, and T. erinaceum + four sprays of Curzate M8) performed better in consecutive two years, applying less fungicidal spray compared to T1 (eight sprays of Curzate M8 (Positive control)), which indicated that the return ranged, by Bangladeshi Currency (Taka), from 0.85 to 0.90 over the investment of Bangladeshi Currency (Taka) 1.00 in these treatments, and these results together highlight the possibility of using bioagents in reducing late blight of potato under a proper warning system to reduce the application frequency of chemical fungicide.
Collapse
|
23
|
Fehr M, Koch A, Merget B, Winter C. Quinazolinone Alkaloid Febrifugine and its Analogues to Control Phytopathogenic Diseases Caused by Oomycete Fungi. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Christian Winter
- BASF SE Crop Protection Research Carl-Bosch-Strasse 38 67056 Ludwigshafen GERMANY
| |
Collapse
|
24
|
Golubeva TS, Cherenko VA, Sinitsyna OI, Kochetov AV. Molecular and Genetic Aspects of Potato Response to Late Blight Infection. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422020053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Puidet B, Mabon R, Guibert M, Kiiker R, Soonvald L, Le VH, Eikemo H, Dewaegeneire P, Saubeau G, Chatot C, Aurousseau F, Cooke DEL, Lees AK, Abuley IK, Hansen JG, Corbière R, Leclerc M, Andrivon D. Examining Phenotypic Traits Contributing to the Spread in Northern European Potato Crops of EU_41_A2, a New Clonal Lineage of Phytophthora infestans. PHYTOPATHOLOGY 2022; 112:414-421. [PMID: 34080915 DOI: 10.1094/phyto-12-20-0542-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Until recently, genotypes of Phytophthora infestans were regionally distributed in Europe, with populations in western Europe being dominated by clonal lineages and those in northern Europe being genetically diverse because of frequent sexual reproduction. However, since 2013 a new clonal lineage (EU_41_A2) has successfully established itself and expanded in the sexually recombining P. infestans populations of northern Europe. The objective of this study was to study phenotypic traits of the new clonal lineage of P. infestans, which may explain its successful establishment and expansion within sexually recombining populations. Fungicide sensitivity, aggressiveness, and virulence profiles of isolates of EU_41_A2 were analyzed and compared with those of the local sexual populations from Denmark, Norway, and Estonia. None of the phenotypic data obtained from the isolates collected from Denmark, Estonia, and Norway independently explained the invasive success of EU_41_A2 within sexual Nordic populations. Therefore, we hypothesize that the expansion of this new genotype could result from a combination of fitness traits and more favorable environmental conditions that have emerged in response to climate change.
Collapse
Affiliation(s)
- Britt Puidet
- Estonian University of Life Sciences, 51006 Tartu, Estonia
| | | | | | - Riinu Kiiker
- Estonian University of Life Sciences, 51006 Tartu, Estonia
- Estonian Crop Research Institute, 48309 Jõgeva, Estonia
| | - Liina Soonvald
- Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Vinh Hong Le
- Norwegian Institute of Bioeconomy Research, 1433 Ås, Norway
| | - Håvard Eikemo
- Norwegian Institute of Bioeconomy Research, 1433 Ås, Norway
| | - Pauline Dewaegeneire
- Sipre and FN3PT-inov3PT, 76110 Bretteville Du Grand Caux and 62217 Achicourt, France
| | | | - Catherine Chatot
- Florimond Desprez Veuve & Fils, 59242 Cappelle-en-Pévèle, France
- Germicopa Breeding, 29520 Châteauneuf du Faou, France
| | - Frédérique Aurousseau
- Sipre and FN3PT-inov3PT, 76110 Bretteville Du Grand Caux and 62217 Achicourt, France
| | - David E L Cooke
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Alison K Lees
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Isaac K Abuley
- Aarhus University, Nordre Ringgade 1, 8000 Aarhus, Denmark
| | - Jens G Hansen
- Aarhus University, Nordre Ringgade 1, 8000 Aarhus, Denmark
| | | | | | | |
Collapse
|
26
|
Improving the Biocontrol Potential of Endophytic Bacteria Bacillus subtilis with Salicylic Acid against Phytophthora infestans-Caused Postharvest Potato Tuber Late Blight and Impact on Stored Tubers Quality. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Potato (Solanum tuberosum L.) tubers are a highly important food crop in many countries due to their nutritional value and health-promoting properties. Postharvest disease caused by Phytophthora infestans leads to the significant decay of stored potatoes. The main objective of this study was to evaluate the effects of the endophytic bacteria, Bacillus subtilis (strain 10–4), or its combination with salicylic acid (SA), on some resistance and quality traits of stored Ph. infestans-infected potato tubers. The experiments were conducted using hydroponically grown potato mini-tubers, infected prior to storage with Ph. infestans, and then coated with B. subtilis, alone and in combination with SA, which were then stored for six months. The results revealed that infection with Ph. infestans significantly increased tuber late blight incidence (up to 90–100%) and oxidative and osmotic damage (i.e., malondialdehyde and proline) in tubers. These phenomena were accompanied by a decrease in starch, reducing sugars (RS), and total dry matter (TDM) contents and an increase in amylase (AMY) activity. Moreover, total glycoalkaloids (GA) (α-solanine, α-chaconine) notably increased in infected tubers, exceeding (by 1.6 times) permissible safe levels (200 mg/kg FW). Treatments with B. subtilis or its combination with SA decreased Ph. infestans-activated tuber late blight incidence (by 30–40%) and reduced oxidative and osmotic damages (i.e., malondialdehyde and proline) and AMY activity in stored, infected tubers. Additionally, these treatments decreased pathogen-activated GA accumulation and increased ascorbic acid in stored tubers. Thus, the results indicated that endophytic bacteria B. subtilis, individually, and especially in combination with SA, have the potential to increase potato postharvest resistance to late blight and improve tuber quality in long-term storage.
Collapse
|
27
|
Hu X, Persson Hodén K, Liao Z, Åsman A, Dixelius C. Phytophthora infestans Ago1-associated miRNA promotes potato late blight disease. THE NEW PHYTOLOGIST 2022; 233:443-457. [PMID: 34605025 DOI: 10.1111/nph.17758] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Phytophthora spp. cause serious damage to plants by exploiting a large number of effector proteins and small RNAs (sRNAs). Several reports have described modulation of host RNA biogenesis and defence gene expression. Here, we analysed Phytophthora infestans Argonaute (Ago) 1 associated small RNAs during potato leaf infection. Small RNAs were co-immunoprecipitated, deep sequenced and analysed against the P. infestans and potato genomes, followed by transcript analyses and transgenic assays on a predicted target. Extensive targeting of potato and pathogen-derived sRNAs to a range of mRNAs was observed, including 638 sequences coding for resistance (R) proteins in the host genome. The single miRNA encoded by P. infestans (miR8788) was found to target a potato alpha/beta hydrolase-type encoding gene (StABH1), a protein localized to the plasma membrane. Analyses of stable transgenic potato lines harbouring overexpressed StABH1 or artificial miRNA gene constructs demonstrated the importance of StABH1 during infection by P. infestans. miR8788 knock-down strains showed reduced growth on potato, and elevated StABH1 expression levels were observed when plants were inoculated with the two knock-down strains compared to the wild-type strain 88069. The findings of our study suggest that sRNA encoded by P. infestans can affect potato mRNA, thereby expanding our knowledge of the multifaceted strategies this species uses to facilitate infection.
Collapse
Affiliation(s)
- Xinyi Hu
- Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO Box 7080, S-75007, Uppsala, Sweden
| | - Kristian Persson Hodén
- Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO Box 7080, S-75007, Uppsala, Sweden
| | - Zhen Liao
- Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO Box 7080, S-75007, Uppsala, Sweden
| | - Anna Åsman
- Department of Molecular Sciences, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO Box 7015, S-75007, Uppsala, Sweden
| | - Christina Dixelius
- Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO Box 7080, S-75007, Uppsala, Sweden
| |
Collapse
|
28
|
Feng S, Jin L, Tang S, Jian Y, Li Z. Combination of rhizosphere bacteria isolated from resistant potato plants for biocontrol of potato late blight. PEST MANAGEMENT SCIENCE 2022; 78:166-176. [PMID: 34467614 DOI: 10.1002/ps.6618] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Potato late blight (PLB) caused by Phytophthora infestans is one of the most devastating plant diseases. The heavy use of chemical control agents is at odds with the development of sustainable and environmentally friendly agriculture practices. It is necessary to screen the antagonistic microorganisms of P. infestans and provide a new choice of PLB biocontrol. RESULTS In vitro, eight bacterial strains (A, B, C, D, E, F, G, H) isolated from the rhizosphere of resistant potato plants had a significant inhibitory effect on the mycelium growth of P. infestans, and the inhibition rate was 35.02-79.20%. These isolates were assigned to Streptomyces, Pseudomonas, Saccharothrix and Nocardiopsis by phylogenetic analysis of 16S rRNA genes. Their physiological and biochemical characteristics suggested that they can produce cellulase and catalase, which may help to inhibit the infection of P. infestans. In vivo, each strain significantly inhibited the infection of P. infestans after individual inoculation into potato tubers, and no strains posed a pathogenic threat to tubers. In the field environment, multibacterial treatment significantly reduced the disease index. Compared with the control, multibacterial and single H treatment significantly increased the microbial species and abundance of the potato rhizosphere and enriched potential beneficial bacteria such as Rhizobiaceae. Meanwhile, multi-bacterial and single H treatment significantly reduced the abundance of Enterobacteriaceae and Bacillaceae. CONCLUSION Our results provide some valuable native strains from the potato rhizosphere with the ability to inhibit P. infestans in vivo and in vitro, which may be a new option for PLB biocontrol. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shun Feng
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Liang Jin
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Shicai Tang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Yongfei Jian
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
29
|
Dufková H, Berka M, Greplová M, Shejbalová Š, Hampejsová R, Luklová M, Domkářová J, Novák J, Kopačka V, Brzobohatý B, Černý M. The Omics Hunt for Novel Molecular Markers of Resistance to Phytophthora infestans. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010061. [PMID: 35009065 PMCID: PMC8747139 DOI: 10.3390/plants11010061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 05/08/2023]
Abstract
Wild Solanum accessions are a treasured source of resistance against pathogens, including oomycete Phytophthora infestans, causing late blight disease. Here, Solanum pinnatisectum, Solanum tuberosum, and the somatic hybrid between these two lines were analyzed, representing resistant, susceptible, and moderately resistant genotypes, respectively. Proteome and metabolome analyses showed that the infection had the highest impact on leaves of the resistant plant and indicated, among others, an extensive remodeling of the leaf lipidome. The lipidome profiling confirmed an accumulation of glycerolipids, a depletion in the total pool of glycerophospholipids, and showed considerable differences between the lipidome composition of resistant and susceptible genotypes. The analysis of putative resistance markers pinpointed more than 100 molecules that positively correlated with resistance including phenolics and cysteamine, a compound with known antimicrobial activity. Putative resistance protein markers were targeted in an additional 12 genotypes with contrasting resistance to P. infestans. At least 27 proteins showed a negative correlation with the susceptibility including HSP70-2, endochitinase B, WPP domain-containing protein, and cyclase 3. In summary, these findings provide insights into molecular mechanisms of resistance against P. infestans and present novel targets for selective breeding.
Collapse
Affiliation(s)
- Hana Dufková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (H.D.); (M.B.); (Š.S.); (M.L.); (J.N.); (B.B.)
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (H.D.); (M.B.); (Š.S.); (M.L.); (J.N.); (B.B.)
| | - Marie Greplová
- Potato Research Institute, Ltd., 58001 Havlíčkův Brod, Czech Republic; (M.G.); (R.H.); (J.D.)
| | - Šarlota Shejbalová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (H.D.); (M.B.); (Š.S.); (M.L.); (J.N.); (B.B.)
| | - Romana Hampejsová
- Potato Research Institute, Ltd., 58001 Havlíčkův Brod, Czech Republic; (M.G.); (R.H.); (J.D.)
| | - Markéta Luklová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (H.D.); (M.B.); (Š.S.); (M.L.); (J.N.); (B.B.)
| | - Jaroslava Domkářová
- Potato Research Institute, Ltd., 58001 Havlíčkův Brod, Czech Republic; (M.G.); (R.H.); (J.D.)
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (H.D.); (M.B.); (Š.S.); (M.L.); (J.N.); (B.B.)
| | | | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (H.D.); (M.B.); (Š.S.); (M.L.); (J.N.); (B.B.)
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic; (H.D.); (M.B.); (Š.S.); (M.L.); (J.N.); (B.B.)
- Correspondence: ; Tel.: +42-0-545-133-37
| |
Collapse
|
30
|
Ivanov AA, Ukladov EO, Golubeva TS. Phytophthora infestans: An Overview of Methods and Attempts to Combat Late Blight. J Fungi (Basel) 2021; 7:1071. [PMID: 34947053 PMCID: PMC8707485 DOI: 10.3390/jof7121071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/20/2022] Open
Abstract
Phytophthora infestans (Mont.) de Bary is one of the main pathogens in the agricultural sector. The most affected are the Solanaceae species, with the potato (Solanum tuberosum) and the tomato (Solanum lycopersicum) being of great agricultural importance. Ornamental Solanaceae can also host the pests Petunia spp., Calibrachoa spp., as well as the wild species Solanum dulcamara, Solanum sarrachoides, etc. Annual crop losses caused by this pathogen are highly significant. Although the interaction between P. infestans and the potato has been investigated for a long time, further studies are still needed. This review summarises the basic approaches in the fight against the late blight over the past 20 years and includes four sections devoted to methods of control: (1) fungicides; (2) R-gene-based resistance of potato species; (3) RNA interference approaches; (4) other approaches to control P. infestans. Based on the latest advances, we have provided a description of the significant advantages and disadvantages of each approach.
Collapse
Affiliation(s)
- Artemii A. Ivanov
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Egor O. Ukladov
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Tatiana S. Golubeva
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| |
Collapse
|
31
|
Luo M, Sun X, Qi Y, Zhou J, Wu X, Tian Z. Phytophthora infestans RXLR effector Pi04089 perturbs diverse defense-related genes to suppress host immunity. BMC PLANT BIOLOGY 2021; 21:582. [PMID: 34886813 PMCID: PMC8656059 DOI: 10.1186/s12870-021-03364-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The oomycete pathogen secretes many effectors into host cells to manipulate host defenses. For the majority of effectors, the mechanisms related to how they alter the expression of host genes and reprogram defenses are not well understood. In order to investigate the molecular mechanisms governing the influence that the Phytophthora infestans RXLR effector Pi04089 has on host immunity, a comparative transcriptome analysis was conducted on Pi04089 stable transgenic and wild-type potato plants. RESULTS Potato plants stably expressing Pi04089 were more susceptible to P. infestans. RNA-seq analysis revealed that 658 upregulated genes and 722 downregulated genes were characterized in Pi04089 transgenic lines. A large number of genes involved in the biological process, including many defense-related genes and certain genes that respond to salicylic acid, were suppressed. Moreover, the comparative transcriptome analysis revealed that Pi04089 significantly inhibited the expression of many flg22 (a microbe-associated molecular pattern, PAMP)-inducible genes, including various Avr9/Cf-9 rapidly elicited (ACRE) genes. Four selected differentially expressed genes (StWAT1, StCEVI57, StKTI1, and StP450) were confirmed to be involved in host resistance against P. infestans when they were transiently expressed in Nicotiana benthamiana. CONCLUSION The P. infestans effector Pi04089 was shown to suppress the expression of many resistance-related genes in potato plants. Moreover, Pi04089 was found to significantly suppress flg22-triggered defense signaling in potato plants. This research provides new insights into how an oomycete effector perturbs host immune responses at the transcriptome level.
Collapse
Affiliation(s)
- Ming Luo
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, 430070, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, Hubei, China
- Potato Engineering and Technology Research Center (HZAU), Wuhan, 430070, Hubei, China
| | - Xinyuan Sun
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, 430070, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, Hubei, China
- Potato Engineering and Technology Research Center (HZAU), Wuhan, 430070, Hubei, China
| | - Yetong Qi
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, 430070, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, Hubei, China
- Potato Engineering and Technology Research Center (HZAU), Wuhan, 430070, Hubei, China
| | - Jing Zhou
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, 430070, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, Hubei, China
- Potato Engineering and Technology Research Center (HZAU), Wuhan, 430070, Hubei, China
| | - Xintong Wu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, 430070, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, Hubei, China
- Potato Engineering and Technology Research Center (HZAU), Wuhan, 430070, Hubei, China
| | - Zhendong Tian
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, 430070, Hubei, China.
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, Hubei, China.
- Potato Engineering and Technology Research Center (HZAU), Wuhan, 430070, Hubei, China.
- Hubei Hongshan laboratory. Huazhong Agricultural University (HZAU), No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China.
| |
Collapse
|
32
|
Léger G, Novinscak A, Biessy A, Lamarre S, Filion M. In Tuber Biocontrol of Potato Late Blight by a Collection of Phenazine-1-Carboxylic Acid-Producing Pseudomonas spp. Microorganisms 2021; 9:microorganisms9122525. [PMID: 34946127 PMCID: PMC8704545 DOI: 10.3390/microorganisms9122525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022] Open
Abstract
Phenazine-1-carboxylic acid (PCA) produced by plant-beneficial Pseudomonas spp. is an antibiotic with antagonistic activities against Phytophthora infestans, the causal agent of potato late blight. In this study, a collection of 23 different PCA-producing Pseudomonas spp. was confronted with P. infestans in potato tuber bioassays to further understand the interaction existing between biocontrol activity and PCA production. Overall, the 23 strains exhibited different levels of biocontrol activity. In general, P. orientalis and P. yamanorum strains showed strong disease reduction, while P. synxantha strains could not effectively inhibit the pathogen’s growth. No correlation was found between the quantities of PCA produced and biocontrol activity, suggesting that PCA cannot alone explain P. infestans’ growth inhibition by phenazine-producing pseudomonads. Other genetic determinants potentially involved in the biocontrol of P. infestans were identified through genome mining in strains displaying strong biocontrol activity, including siderophores, cyclic lipopeptides and non-ribosomal peptide synthase and polyketide synthase hybrid clusters. This study represents a step forward towards better understanding the biocontrol mechanisms of phenazine-producing Pseudomonas spp. against potato late blight.
Collapse
Affiliation(s)
- Geneviève Léger
- Biology Department, Université de Moncton, Moncton, NB E1A 3E9, Canada; (G.L.); (S.L.)
| | - Amy Novinscak
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, Agassiz, BC V0M 1A2, Canada;
| | - Adrien Biessy
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 7B5, Canada;
| | - Simon Lamarre
- Biology Department, Université de Moncton, Moncton, NB E1A 3E9, Canada; (G.L.); (S.L.)
| | - Martin Filion
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 7B5, Canada;
- Correspondence:
| |
Collapse
|
33
|
Kalyandurg PB, Sundararajan P, Dubey M, Ghadamgahi F, Zahid MA, Whisson SC, Vetukuri RR. Spray-Induced Gene Silencing as a Potential Tool to Control Potato Late Blight Disease. PHYTOPATHOLOGY 2021; 111:2168-2175. [PMID: 33973799 DOI: 10.1094/phyto-02-21-0054-sc] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Phytophthora infestans causes late blight disease on potato and tomato and is currently controlled by resistant cultivars or intensive fungicide spraying. Here, we investigated an alternative means for late blight control by spraying potato leaves with double-stranded RNAs (dsRNA) that target the P. infestans genes essential for infection. First, we showed that the sporangia of P. infestans expressing green fluorescent protein (GFP) can take up in vitro synthesized dsRNAs homologous to GFP directly from their surroundings, including leaves, which led to the reduced relative expression of GFP. We further demonstrate the potential of spray-induced gene silencing (SIGS) in controlling potato late blight disease by targeting developmentally important genes in P. infestans such as guanine-nucleotide binding protein β-subunit (PiGPB1), haustorial membrane protein (PiHmp1), cutinase (PiCut3), and endo-1,3(4)-β-glucanase (PiEndo3). Our results demonstrate that SIGS can potentially be used to mitigate potato late blight; however, the degree of disease control is dependent on the selection of the target genes.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Pruthvi B Kalyandurg
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma 234 22, Sweden
| | - Poorva Sundararajan
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma 234 22, Sweden
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala 75651, Sweden
| | - Farideh Ghadamgahi
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma 234 22, Sweden
- Department of Crop Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, 9177948978 Mashhad-Iran, Iran
| | - Muhammad Awais Zahid
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma 234 22, Sweden
| | - Stephen C Whisson
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Ramesh R Vetukuri
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma 234 22, Sweden
| |
Collapse
|
34
|
Kanetis LI, Pittas L, Nikoloudakis N, Cooke DEL, Ioannou N. Characterization of Phytophthora infestans Populations in Cyprus, the Southernmost Potato-Producing European Country. PLANT DISEASE 2021; 105:3407-3417. [PMID: 34003038 DOI: 10.1094/pdis-12-20-2694-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cyprus is the southernmost island country of Europe, located in the Mediterranean. Despite its limited area, potato production is considered an integral source of the national agricultural revenue. During 2010-2012, a late blight epidemic period for the country, the population structure of Phytophthora infestans was analyzed via a sample of 539 isolates collected from all of the main potato-cultivating regions of Cyprus. We determined mating type, mefenoxam sensitivity, and genetic polymorphism at 12 simple sequence repeat (SSRs) loci. Although both mating types were detected in the country, a gradual but dynamic shift toward A2 dominance was manifested over time. The pathogen population also demonstrated reduced sensitivity to the phenylamide fungicide, since 96.2% of the tested isolates had high (70.3%) and intermediate (25.9%) resistance to mefenoxam, which suggests that it should be replaced with other active ingredients in local disease management strategies. The genotypic analysis also revealed the predominance of the highly aggressive mefenoxam-insensitive EU_13_A2 lineage across the country, with a frequency of 79.2%. Other samples comprised an older lineage EU_2_A1 (19.5%), a very low proportion of EU_23_A1 (0.37%), and others that did not match any known lineage (0.92%). SSRs data supported triploid genomes among the dominant lineages, and patterns of their asexual population history were also apparent. A high subclonal variation of the 13_A2 population was detected, which suggested introduction events of this widespread genotype to Cyprus from major tuber-exporting countries. Present data indicate the severe impact of inoculum migration to the structure of the local population; thus, current phytosanitary procedures should be reconsidered and possibly attuned. This is the first comprehensive study to elucidate the diversity of P. infestans in Cyprus and could serve as a baseline for future monitoring of this highly adaptive plant pathogen, given that late blight management strategies should be constantly refined according to the traits of the dominant genotypes of P. infestans.
Collapse
Affiliation(s)
- Loukas I Kanetis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Lambros Pittas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Nikolaos Nikoloudakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | | | - Nikolaos Ioannou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
35
|
Rodenburg SYA, Seidl MF, de Ridder D, Govers F. Uncovering the Role of Metabolism in Oomycete-Host Interactions Using Genome-Scale Metabolic Models. Front Microbiol 2021; 12:748178. [PMID: 34707596 PMCID: PMC8543037 DOI: 10.3389/fmicb.2021.748178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
Metabolism is the set of biochemical reactions of an organism that enables it to assimilate nutrients from its environment and to generate building blocks for growth and proliferation. It forms a complex network that is intertwined with the many molecular and cellular processes that take place within cells. Systems biology aims to capture the complexity of cells, organisms, or communities by reconstructing models based on information gathered by high-throughput analyses (omics data) and prior knowledge. One type of model is a genome-scale metabolic model (GEM) that allows studying the distributions of metabolic fluxes, i.e., the "mass-flow" through the network of biochemical reactions. GEMs are nowadays widely applied and have been reconstructed for various microbial pathogens, either in a free-living state or in interaction with their hosts, with the aim to gain insight into mechanisms of pathogenicity. In this review, we first introduce the principles of systems biology and GEMs. We then describe how metabolic modeling can contribute to unraveling microbial pathogenesis and host-pathogen interactions, with a specific focus on oomycete plant pathogens and in particular Phytophthora infestans. Subsequently, we review achievements obtained so far and identify and discuss potential pitfalls of current models. Finally, we propose a workflow for reconstructing high-quality GEMs and elaborate on the resources needed to advance a system biology approach aimed at untangling the intimate interactions between plants and pathogens.
Collapse
Affiliation(s)
- Sander Y. A. Rodenburg
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, Netherlands
- Bioinformatics Group, Wageningen University & Research, Wageningen, Netherlands
| | - Michael F. Seidl
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, Netherlands
- Theoretical Biology & Bioinformatics group, Department of Biology, Utrecht University, Wageningen, Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University & Research, Wageningen, Netherlands
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
36
|
Qiao L, Lan C, Capriotti L, Ah-Fong A, Nino Sanchez J, Hamby R, Heller J, Zhao H, Glass NL, Judelson HS, Mezzetti B, Niu D, Jin H. Spray-induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1756-1768. [PMID: 33774895 DOI: 10.1101/2021.02.01.429265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/01/2021] [Accepted: 03/06/2021] [Indexed: 05/21/2023]
Abstract
Recent discoveries show that fungi can take up environmental RNA, which can then silence fungal genes through environmental RNA interference. This discovery prompted the development of Spray-Induced Gene Silencing (SIGS) for plant disease management. In this study, we aimed to determine the efficacy of SIGS across a variety of eukaryotic microbes. We first examined the efficiency of RNA uptake in multiple pathogenic and non-pathogenic fungi, and an oomycete pathogen. We observed efficient double-stranded RNA (dsRNA) uptake in the fungal plant pathogens Botrytis cinerea, Sclerotinia sclerotiorum, Rhizoctonia solani, Aspergillus niger and Verticillium dahliae, but no uptake in Colletotrichum gloeosporioides, and weak uptake in a beneficial fungus, Trichoderma virens. For the oomycete plant pathogen, Phytophthora infestans, RNA uptake was limited and varied across different cell types and developmental stages. Topical application of dsRNA targeting virulence-related genes in pathogens with high RNA uptake efficiency significantly inhibited plant disease symptoms, whereas the application of dsRNA in pathogens with low RNA uptake efficiency did not suppress infection. Our results have revealed that dsRNA uptake efficiencies vary across eukaryotic microbe species and cell types. The success of SIGS for plant disease management can largely be determined by the pathogen's RNA uptake efficiency.
Collapse
Affiliation(s)
- Lulu Qiao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Chi Lan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
| | - Luca Capriotti
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Audrey Ah-Fong
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Jonatan Nino Sanchez
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Rachael Hamby
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Jens Heller
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, The Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hongwei Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
| | - N Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, The Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Howard S Judelson
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Bruno Mezzetti
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Dongdong Niu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Hailing Jin
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| |
Collapse
|
37
|
Qiao L, Lan C, Capriotti L, Ah‐Fong A, Nino Sanchez J, Hamby R, Heller J, Zhao H, Glass NL, Judelson HS, Mezzetti B, Niu D, Jin H. Spray-induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1756-1768. [PMID: 33774895 PMCID: PMC8428832 DOI: 10.1111/pbi.13589] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/01/2021] [Accepted: 03/06/2021] [Indexed: 05/20/2023]
Abstract
Recent discoveries show that fungi can take up environmental RNA, which can then silence fungal genes through environmental RNA interference. This discovery prompted the development of Spray-Induced Gene Silencing (SIGS) for plant disease management. In this study, we aimed to determine the efficacy of SIGS across a variety of eukaryotic microbes. We first examined the efficiency of RNA uptake in multiple pathogenic and non-pathogenic fungi, and an oomycete pathogen. We observed efficient double-stranded RNA (dsRNA) uptake in the fungal plant pathogens Botrytis cinerea, Sclerotinia sclerotiorum, Rhizoctonia solani, Aspergillus niger and Verticillium dahliae, but no uptake in Colletotrichum gloeosporioides, and weak uptake in a beneficial fungus, Trichoderma virens. For the oomycete plant pathogen, Phytophthora infestans, RNA uptake was limited and varied across different cell types and developmental stages. Topical application of dsRNA targeting virulence-related genes in pathogens with high RNA uptake efficiency significantly inhibited plant disease symptoms, whereas the application of dsRNA in pathogens with low RNA uptake efficiency did not suppress infection. Our results have revealed that dsRNA uptake efficiencies vary across eukaryotic microbe species and cell types. The success of SIGS for plant disease management can largely be determined by the pathogen's RNA uptake efficiency.
Collapse
Affiliation(s)
- Lulu Qiao
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
- Department of Microbiology & Plant PathologyCenter for Plant Cell BiologyInstitute for Integrative Genome BiologyUniversity of CaliforniaRiversideCAUSA
| | - Chi Lan
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Luca Capriotti
- Department of Microbiology & Plant PathologyCenter for Plant Cell BiologyInstitute for Integrative Genome BiologyUniversity of CaliforniaRiversideCAUSA
- Department of Agricultural, Food and Environmental SciencesMarche Polytechnic UniversityAnconaItaly
| | - Audrey Ah‐Fong
- Department of Microbiology & Plant PathologyCenter for Plant Cell BiologyInstitute for Integrative Genome BiologyUniversity of CaliforniaRiversideCAUSA
| | - Jonatan Nino Sanchez
- Department of Microbiology & Plant PathologyCenter for Plant Cell BiologyInstitute for Integrative Genome BiologyUniversity of CaliforniaRiversideCAUSA
| | - Rachael Hamby
- Department of Microbiology & Plant PathologyCenter for Plant Cell BiologyInstitute for Integrative Genome BiologyUniversity of CaliforniaRiversideCAUSA
| | - Jens Heller
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCAUSA
- Environmental Genomics and Systems Biology DivisionThe Lawrence Berkeley National LaboratoryBerkeleyCAUSA
| | - Hongwei Zhao
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - N. Louise Glass
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCAUSA
- Environmental Genomics and Systems Biology DivisionThe Lawrence Berkeley National LaboratoryBerkeleyCAUSA
| | - Howard S. Judelson
- Department of Microbiology & Plant PathologyCenter for Plant Cell BiologyInstitute for Integrative Genome BiologyUniversity of CaliforniaRiversideCAUSA
| | - Bruno Mezzetti
- Department of Microbiology & Plant PathologyCenter for Plant Cell BiologyInstitute for Integrative Genome BiologyUniversity of CaliforniaRiversideCAUSA
- Department of Agricultural, Food and Environmental SciencesMarche Polytechnic UniversityAnconaItaly
| | - Dongdong Niu
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
- Department of Microbiology & Plant PathologyCenter for Plant Cell BiologyInstitute for Integrative Genome BiologyUniversity of CaliforniaRiversideCAUSA
| | - Hailing Jin
- Department of Microbiology & Plant PathologyCenter for Plant Cell BiologyInstitute for Integrative Genome BiologyUniversity of CaliforniaRiversideCAUSA
| |
Collapse
|
38
|
Allwood JW, Williams A, Uthe H, van Dam NM, Mur LAJ, Grant MR, Pétriacq P. Unravelling Plant Responses to Stress-The Importance of Targeted and Untargeted Metabolomics. Metabolites 2021; 11:558. [PMID: 34436499 PMCID: PMC8398504 DOI: 10.3390/metabo11080558] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/19/2022] Open
Abstract
Climate change and an increasing population, present a massive global challenge with respect to environmentally sustainable nutritious food production. Crop yield enhancements, through breeding, are decreasing, whilst agricultural intensification is constrained by emerging, re-emerging, and endemic pests and pathogens, accounting for ~30% of global crop losses, as well as mounting abiotic stress pressures, due to climate change. Metabolomics approaches have previously contributed to our knowledge within the fields of molecular plant pathology and plant-insect interactions. However, these remain incredibly challenging targets, due to the vast diversity in metabolite volatility and polarity, heterogeneous mixtures of pathogen and plant cells, as well as rapid rates of metabolite turn-over. Unravelling the systematic biochemical responses of plants to various individual and combined stresses, involves monitoring signaling compounds, secondary messengers, phytohormones, and defensive and protective chemicals. This demands both targeted and untargeted metabolomics approaches, as well as a range of enzymatic assays, protein assays, and proteomic and transcriptomic technologies. In this review, we focus upon the technical and biological challenges of measuring the metabolome associated with plant stress. We illustrate the challenges, with relevant examples from bacterial and fungal molecular pathologies, plant-insect interactions, and abiotic and combined stress in the environment. We also discuss future prospects from both the perspective of key innovative metabolomic technologies and their deployment in breeding for stress resistance.
Collapse
Affiliation(s)
- James William Allwood
- Environmental and Biochemical Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Alex Williams
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, UK;
- Department of Animal and Plant Sciences, Biosciences, The University of Sheffield Western Bank, Sheffield S10 2TN, UK
| | - Henriette Uthe
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Molecular Interaction Ecology Group, Friedrich-Schiller University Jena, Puschstr. 4, 04103 Leipzig, Germany; (H.U.); (N.M.v.D.)
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Molecular Interaction Ecology Group, Friedrich-Schiller University Jena, Puschstr. 4, 04103 Leipzig, Germany; (H.U.); (N.M.v.D.)
| | - Luis A. J. Mur
- Institute of Biological, Environmental and Rural Sciences (IBERS), Edward Llwyd Building, Aberystwyth University, Aberystwyth SY23 3DA, UK;
| | - Murray R. Grant
- Gibbet Hill Campus, School of Life Sciences, The University of Warwick, Coventry CV4 7AL, UK;
| | - Pierre Pétriacq
- UMR 1332 Fruit Biology and Pathology, Centre INRAE de Nouvelle Aquitaine Bordeaux, University of Bordeaux, 33140 Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine-Bordeaux, 33140 Villenave d’Ornon, France
| |
Collapse
|
39
|
Yuan XL, Zhang CS, Kong FY, Zhang ZF, Wang FL. Genome Analysis of Phytophthora nicotianae JM01 Provides Insights into Its Pathogenicity Mechanisms. PLANTS 2021; 10:plants10081620. [PMID: 34451665 PMCID: PMC8400872 DOI: 10.3390/plants10081620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022]
Abstract
Phytophthora nicotianae is a widely distributed plant pathogen that can cause serious disease and cause significant economic losses to various crops, including tomatoes, tobacco, onions, and strawberries. To understand its pathogenic mechanisms and explore strategies for controlling diseases caused by this pathogen, we sequenced and analyzed the whole genome of Ph. nicotianae JM01. The Ph. nicotianae JM01 genome was assembled using a combination of approaches including shotgun sequencing, single-molecule sequencing, and the Hi-C technique. The assembled Ph. nicotianae JM01 genome is about 95.32 Mb, with contig and scaffold N50 54.23 kb and 113.15 kb, respectively. The average GC content of the whole-genome is about 49.02%, encoding 23,275 genes. In addition, we identified 19.15% of interspersed elements and 0.95% of tandem elements in the whole genome. A genome-wide phylogenetic tree indicated that Phytophthora diverged from Pythium approximately 156.32 Ma. Meanwhile, we found that 252 and 285 gene families showed expansion and contraction in Phytophthora when compared to gene families in Pythium. To determine the pathogenic mechanisms Ph. nicotianae JM01, we analyzed a suite of proteins involved in plant-pathogen interactions. The results revealed that gene duplication contributed to the expansion of Cell Wall Degrading Enzymes (CWDEs) such as glycoside hydrolases, and effectors such as Arg-Xaa-Leu-Arg (RXLR) effectors. In addition, transient expression was performed on Nicotiana benthamiana by infiltrating with Agrobacterium tumefaciens cells containing a cysteine-rich (SCR) protein. The results indicated that SCR can cause symptoms of hypersensitive response. Moreover, we also conducted comparative genome analysis among four Ph. nicotianae genomes. The completion of the Ph. nicotianae JM01 genome can not only help us understand its genomic characteristics, but also help us discover genes involved in infection and then help us understand its pathogenic mechanisms.
Collapse
Affiliation(s)
- Xiao-Long Yuan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (X.-L.Y.); (F.-Y.K.); (Z.-F.Z.)
- Special Crops Research Center of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Cheng-Sheng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (X.-L.Y.); (F.-Y.K.); (Z.-F.Z.)
- Special Crops Research Center of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Correspondence: (C.-S.Z.); (F.-L.W.); Tel.: +86-532-88701035 (C.-S.Z. & F.-L.W.)
| | - Fan-Yu Kong
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (X.-L.Y.); (F.-Y.K.); (Z.-F.Z.)
- Special Crops Research Center of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Zhong-Feng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (X.-L.Y.); (F.-Y.K.); (Z.-F.Z.)
- Special Crops Research Center of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Feng-Long Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (X.-L.Y.); (F.-Y.K.); (Z.-F.Z.)
- Special Crops Research Center of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Correspondence: (C.-S.Z.); (F.-L.W.); Tel.: +86-532-88701035 (C.-S.Z. & F.-L.W.)
| |
Collapse
|
40
|
Zhou Y, Yang K, Yan Q, Wang X, Cheng M, Si J, Xue X, Shen D, Jing M, Tyler BM, Dou D. Targeting of anti-microbial proteins to the hyphal surface amplifies protection of crop plants against Phytophthora pathogens. MOLECULAR PLANT 2021; 14:1391-1403. [PMID: 33965632 DOI: 10.1016/j.molp.2021.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/14/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Phytophthora pathogens are a persistent threat to the world's commercially important agricultural crops, including potato and soybean. Current strategies aim at reducing crop losses rely mostly on disease-resistance breeding and chemical pesticides, which can be frequently overcome by the rapid adaptive evolution of pathogens. Transgenic crops with intrinsic disease resistance offer a promising alternative and continue to be developed. Here, we explored Phytophthora-derived PI3P (phosphatidylinositol 3-phosphate) as a novel control target, using proteins that bind this lipid to direct secreted anti-microbial peptides and proteins (AMPs) to the surface of Phytophthora pathogens. In transgenic Nicotiana benthamiana, soybean, and potato plants, significantly enhanced resistance to different pathogen isolates was achieved by expression of two AMPs (GAFP1 or GAFP3 from the Chinese medicinal herb Gastrodia elata) fused with a PI3P-specific binding domain (FYVE). Using the soybean pathogen P. sojae as an example, we demonstrated that the FYVE domain could boost the activities of GAFPs in multiple independent assays, including those performed in vitro, in vivo, and in planta. Mutational analysis of P. sojae PI3K1 and PI3K2 genes of this pathogen confirmed that the enhanced activities of the targeted GAFPs were correlated with PI3P levels in the pathogen. Collectively, our study provides a new strategy that could be used to confer resistance not only to Phytophthora pathogens in many plants but also potentially to many other kinds of plant pathogens with unique targets.
Collapse
Affiliation(s)
- Yang Zhou
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Yang
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiang Yan
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaodan Wang
- College of Plant Protection, China Agricultural University, Beijing 100091, China
| | - Ming Cheng
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Jierui Si
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Xue Xue
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Danyu Shen
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Maofeng Jing
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China.
| | - Brett M Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.
| | - Daolong Dou
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China; College of Plant Protection, China Agricultural University, Beijing 100091, China.
| |
Collapse
|
41
|
Cucak M, de Andrade Moral R, Fealy R, Lambkin K, Kildea S. Opportunities for Improved Potato Late Blight Management in the Republic of Ireland: Field Evaluation of the Modified Irish Rules Crop Disease Risk Prediction Model. PHYTOPATHOLOGY 2021; 111:1349-1360. [PMID: 33439033 DOI: 10.1094/phyto-01-20-0011-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Potato late blight remains the most significant disease threat of potato cultivation globally, often requiring expensive, time-consuming, and environmentally unfriendly approaches to disease management. The goal of this research was to evaluate whether an estimation of potato late blight risk based on environmental factors can be reliably used to adjust the standard potato late blight management practices and the role of cultivar resistance under growing conditions and contemporary Phytophthora infestans populations in the Republic of Ireland. The modified Irish Rules model made it possible to reduce fungicide usage by 58.7% on average, compared with current standard practices used by growers and without adversely compromising disease control and yield, with similar results achieved by the half-dose program. Host resistance levels were found to be correlated with a delay in the initiation of the epidemics, final foliar disease levels, and reduction of fungicide usage. Disease levels on the highly resistant cultivars remained low, and a clear selection pattern toward the P. infestans genotypes EU_13_A2 and EU_6_A1 was observed. An increase in the frequency of strains belonging to genotypes EU_13_A2 and EU_6_A1 was also observed to occur in the latter part of the trial growing seasons. Because of the increasingly dynamic nature of the population structure, associated with the continued evolution of the P. infestans population and the arrival of EU_36_A2 in the Republic of Ireland, routine population monitoring is necessary to ensure that potato late blight control strategies remain effective.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Mladen Cucak
- Teagasc Crops Research Centre, Oak Park, Carlow R93 XE12, Ireland
- Department of Geography, Maynooth University, Maynooth W23 F2H6, Ireland
| | | | - Rowan Fealy
- Department of Geography, Maynooth University, Maynooth W23 F2H6, Ireland
| | - Keith Lambkin
- The Irish Meteorological Service (Met Éireann), Glasnevin Hill, Dublin D09 Y921, Ireland
| | - Steven Kildea
- Teagasc Crops Research Centre, Oak Park, Carlow R93 XE12, Ireland
| |
Collapse
|
42
|
Hong Y, Meng J, He X, Zhang Y, Liu Y, Zhang C, Qi H, Luan Y. Editing miR482b and miR482c Simultaneously by CRISPR/Cas9 Enhanced Tomato Resistance to Phytophthora infestans. PHYTOPATHOLOGY 2021; 111:1008-1016. [PMID: 33258411 DOI: 10.1094/phyto-08-20-0360-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Late blight, caused by Phytophthora infestans, is severely damaging to the global tomato industry. Micro-RNAs (miRNAs) have been widely demonstrated to play vital roles in plant resistance by repressing their target genes. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) method has been continuously improved and extensively applied to edit plant genomes. However, editing multiplex miRNAs by CRISPR/Cas9 in tomato has not been studied yet. We knocked out miR482b and miR482c simultaneously in tomato through the multiplex CRISPR/Cas9 system. Two transgenic plants with silenced miR482b and miR482c simultaneously and one transgenic line with silenced miR482b alone were obtained. Compared with wild-type plants, the disease symptoms of three transgenic plants upon infection were reduced, accompanied by increased expression of their common target nucleotide binding site-leucine-rich repeat genes and decreased levels of reactive oxygen species. Furthermore, silencing miR482b and miR482c simultaneously was more resistant than silencing miR482b alone in tomato. More importantly, we found that knocking out miR482b and miR482c can elicit expression perturbation of other miRNAs, suggesting cross-regulation between miRNAs. Our study demonstrated that editing miR482b and miR482c simultaneously with CRISPR/Cas9 is an efficient strategy for generating pathogen-resistant tomatoes, and cross-regulation between miRNAs may reveal the novel mechanism in tomato-P. infestans interactions.
Collapse
Affiliation(s)
- Yuhui Hong
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaoli He
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yuanyuan Zhang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yarong Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Chengwei Zhang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100000, China
| | - Hongyan Qi
- College of Horticulture, Shenyang Agricultural University/Key Laboratory of Protected Horticulture, Ministry of Education/Northern National & Local Joint Engineering Research Center of Horticultural Facilities Design and Application Technology (Liaoning), Shenyang 110866, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
43
|
Ah‐Fong AM, Boyd AM, Matson ME, Judelson HS. A Cas12a-based gene editing system for Phytophthora infestans reveals monoallelic expression of an elicitor. MOLECULAR PLANT PATHOLOGY 2021; 22:737-752. [PMID: 33724663 PMCID: PMC8126191 DOI: 10.1111/mpp.13051] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/28/2021] [Accepted: 02/16/2021] [Indexed: 05/03/2023]
Abstract
Phytophthora infestans is a destructive pathogen of potato and a model for investigations of oomycete biology. The successful application of a CRISPR gene editing system to P. infestans is so far unreported. We discovered that it is difficult to express CRISPR/Cas9 but not a catalytically inactive form in transformants, suggesting that the active nuclease is toxic. We were able to achieve editing with CRISPR/Cas12a using vectors in which the nuclease and its guide RNA were expressed from a single transcript. Using the elicitor gene Inf1 as a target, we observed editing of one or both alleles in up to 13% of transformants. Editing was more efficient when guide RNA processing relied on the Cas12a direct repeat instead of ribozyme sequences. INF1 protein was not made when both alleles were edited in the same transformant, but surprisingly also when only one allele was altered. We discovered that the isolate used for editing, 1306, exhibited monoallelic expression of Inf1 due to insertion of a copia-like element in the promoter of one allele. The element exhibits features of active retrotransposons, including a target site duplication, long terminal repeats, and an intact polyprotein reading frame. Editing occurred more often on the transcribed allele, presumably due to differences in chromatin structure. The Cas12a system not only provides a tool for modifying genes in P. infestans, but also for other members of the genus by expanding the number of editable sites. Our work also highlights a natural mechanism that remodels oomycete genomes.
Collapse
Affiliation(s)
- Audrey M.V. Ah‐Fong
- Department of Microbiology and Plant PathologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - Amy M. Boyd
- Department of Microbiology and Plant PathologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - Michael E.H. Matson
- Department of Microbiology and Plant PathologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - Howard S. Judelson
- Department of Microbiology and Plant PathologyUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
44
|
Mazumdar P, Singh P, Kethiravan D, Ramathani I, Ramakrishnan N. Late blight in tomato: insights into the pathogenesis of the aggressive pathogen Phytophthora infestans and future research priorities. PLANTA 2021; 253:119. [PMID: 33963935 DOI: 10.1007/s00425-021-03636-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
This review provides insights into the molecular interactions between Phytophthora infestans and tomato and highlights research gaps that need further attention. Late blight in tomato is caused by the oomycota hemibiotroph Phytophthora infestans, and this disease represents a global threat to tomato farming. The pathogen is cumbersome to control because of its fast-evolving nature, ability to overcome host resistance and inefficient natural resistance obtained from the available tomato germplasm. To achieve successful control over this pathogen, the molecular pathogenicity of P. infestans and key points of vulnerability in the host plant immune system must be understood. This review primarily focuses on efforts to better understand the molecular interaction between host pathogens from both perspectives, as well as the resistance genes, metabolomic changes, quantitative trait loci with potential for improvement in disease resistance and host genome manipulation via transgenic approaches, and it further identifies research gaps and provides suggestions for future research priorities.
Collapse
Affiliation(s)
- Purabi Mazumdar
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Pooja Singh
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Dharane Kethiravan
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Idd Ramathani
- National Crops Resources Research Institute, Gayaza Road Namulonge, 7084, Kampala, Uganda
| | - N Ramakrishnan
- ECSE, School of Engineering, Monash University Malaysia, 47500, Bandar Sunway, Malaysia
| |
Collapse
|
45
|
Persson Hodén K, Hu X, Martinez G, Dixelius C. smartPARE: An R Package for Efficient Identification of True mRNA Cleavage Sites. Int J Mol Sci 2021; 22:4267. [PMID: 33924042 PMCID: PMC8073297 DOI: 10.3390/ijms22084267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 11/30/2022] Open
Abstract
Degradome sequencing is commonly used to generate high-throughput information on mRNA cleavage sites mediated by small RNAs (sRNA). In our datasets of potato (Solanum tuberosum, St) and Phytophthora infestans (Pi), initial predictions generated high numbers of cleavage site predictions, which highlighted the need of improved analytic tools. Here, we present an R package based on a deep learning convolutional neural network (CNN) in a machine learning environment to optimize discrimination of false from true cleavage sites. When applying smartPARE to our datasets on potato during the infection process by the late blight pathogen, 7.3% of all cleavage windows represented true cleavages distributed on 214 sites in P. infestans and 444 sites in potato. The sRNA landscape of the two organisms is complex with uneven sRNA production and cleavage regions widespread in the two genomes. Multiple targets and several cases of complex regulatory cascades, particularly in potato, was revealed. We conclude that our new analytic approach is useful for anyone working on complex biological systems and with the interest of identifying cleavage sites particularly inferred by sRNA classes beyond miRNAs.
Collapse
Affiliation(s)
| | | | | | - Christina Dixelius
- The Swedish University of Agricultural Sciences, Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007 Uppsala, Sweden; (K.P.H.); (X.H.); (G.M.)
| |
Collapse
|
46
|
Jedelská T, Luhová L, Petřivalský M. Nitric oxide signalling in plant interactions with pathogenic fungi and oomycetes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:848-863. [PMID: 33367760 DOI: 10.1093/jxb/eraa596] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/18/2020] [Indexed: 05/11/2023]
Abstract
Nitric oxide (NO) and reactive nitrogen species have emerged as crucial signalling and regulatory molecules across all organisms. In plants, fungi, and fungi-like oomycetes, NO is involved in the regulation of multiple processes during their growth, development, reproduction, responses to the external environment, and biotic interactions. It has become evident that NO is produced and used as a signalling and defence cue by both partners in multiple forms of plant interactions with their microbial counterparts, ranging from symbiotic to pathogenic modes. This review summarizes current knowledge on the role of NO in plant-pathogen interactions, focused on biotrophic, necrotrophic, and hemibiotrophic fungi and oomycetes. Actual advances and gaps in the identification of NO sources and fate in plant and pathogen cells are discussed. We review the decisive role of time- and site-specific NO production in germination, oriented growth, and active penetration by filamentous pathogens of the host tissues, as well in pathogen recognition, and defence activation in plants. Distinct functions of NO in diverse interactions of host plants with fungal and oomycete pathogens of different lifestyles are highlighted, where NO in interplay with reactive oxygen species governs successful plant colonization, cell death, and establishment of resistance.
Collapse
Affiliation(s)
- Tereza Jedelská
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Lenka Luhová
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| |
Collapse
|
47
|
Saintenac C, Cambon F, Aouini L, Verstappen E, Ghaffary SMT, Poucet T, Marande W, Berges H, Xu S, Jaouannet M, Favery B, Alassimone J, Sánchez-Vallet A, Faris J, Kema G, Robert O, Langin T. A wheat cysteine-rich receptor-like kinase confers broad-spectrum resistance against Septoria tritici blotch. Nat Commun 2021; 12:433. [PMID: 33469010 PMCID: PMC7815785 DOI: 10.1038/s41467-020-20685-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 12/02/2020] [Indexed: 01/29/2023] Open
Abstract
The poverty of disease resistance gene reservoirs limits the breeding of crops for durable resistance against evolutionary dynamic pathogens. Zymoseptoria tritici which causes Septoria tritici blotch (STB), represents one of the most genetically diverse and devastating wheat pathogens worldwide. No fully virulent Z. tritici isolates against synthetic wheats carrying the major resistant gene Stb16q have been identified. Here, we use comparative genomics, mutagenesis and complementation to identify Stb16q, which confers broad-spectrum resistance against Z. tritici. The Stb16q gene encodes a plasma membrane cysteine-rich receptor-like kinase that was recently introduced into cultivated wheat and which considerably slows penetration and intercellular growth of the pathogen.
Collapse
Affiliation(s)
- Cyrille Saintenac
- grid.503180.f0000 0004 0613 5360Université Clermont Auvergne, INRAE, GDEC, 63000 Clermont-Ferrand, France
| | - Florence Cambon
- grid.503180.f0000 0004 0613 5360Université Clermont Auvergne, INRAE, GDEC, 63000 Clermont-Ferrand, France
| | - Lamia Aouini
- grid.4818.50000 0001 0791 5666Wageningen University and Research (Wageningen Plant Research, Biointeractions and Plant Health), PO Box 16, 6700AA Wageningen, The Netherlands ,grid.169077.e0000 0004 1937 2197Present Address: Department of Agronomy, Purdue University, West Lafayette, IN 47907 USA
| | - Els Verstappen
- grid.4818.50000 0001 0791 5666Wageningen University and Research (Wageningen Plant Research, Biointeractions and Plant Health), PO Box 16, 6700AA Wageningen, The Netherlands
| | - Seyed Mahmoud Tabib Ghaffary
- grid.4818.50000 0001 0791 5666Wageningen University and Research (Wageningen Plant Research, Biointeractions and Plant Health), PO Box 16, 6700AA Wageningen, The Netherlands ,Present Address: Seed and Plant Improvement Research Department, Safiabad Agricultural and Natural Resources Research and Education Center, AREEO, Dezful, Iran
| | - Théo Poucet
- grid.503180.f0000 0004 0613 5360Université Clermont Auvergne, INRAE, GDEC, 63000 Clermont-Ferrand, France ,grid.11480.3c0000000121671098Present Address: Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, 48080 Bilbao, Spain ,grid.412041.20000 0001 2106 639XPresent Address: Université de Bordeaux, 146 rue Leo-Saignat, Bordeaux, Cedex 33076 France
| | - William Marande
- grid.507621.7CNRGV (Centre National des Ressources Génomiques Végétales), INRAE, UPR 1258 Castanet-Tolosan, France
| | - Hélène Berges
- grid.507621.7CNRGV (Centre National des Ressources Génomiques Végétales), INRAE, UPR 1258 Castanet-Tolosan, France ,grid.508749.7Present Address: Inari Agriculture, One Kendall Square Building 600/700, Cambridge, MA 02139 USA
| | - Steven Xu
- grid.463419.d0000 0001 0946 3608United States Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102 USA
| | - Maëlle Jaouannet
- grid.4444.00000 0001 2112 9282INRAE, Université Côte d’Azur, CNRS, ISA, 06903 Sophia Antipolis, France
| | - Bruno Favery
- grid.4444.00000 0001 2112 9282INRAE, Université Côte d’Azur, CNRS, ISA, 06903 Sophia Antipolis, France
| | - Julien Alassimone
- grid.5801.c0000 0001 2156 2780Plant Pathology, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| | - Andrea Sánchez-Vallet
- grid.5801.c0000 0001 2156 2780Plant Pathology, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland ,grid.5690.a0000 0001 2151 2978Present Address: Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA). Campus de Montegancedo-UPM, 28223-Pozuelo de Alarcón Madrid, Spain
| | - Justin Faris
- grid.463419.d0000 0001 0946 3608United States Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102 USA
| | - Gert Kema
- grid.4818.50000 0001 0791 5666Wageningen University and Research (Wageningen Plant Research, Biointeractions and Plant Health), PO Box 16, 6700AA Wageningen, The Netherlands ,grid.4818.50000 0001 0791 5666Present Address: Wageningen University (Laboratory of Phytopathology), 6700AA Wageningen, The Netherlands
| | - Oliver Robert
- Florimond-Desprez, 3 rue Florimond-Desprez, BP 41, 59242 Cappelle-en-Pevele, France
| | - Thierry Langin
- grid.503180.f0000 0004 0613 5360Université Clermont Auvergne, INRAE, GDEC, 63000 Clermont-Ferrand, France
| |
Collapse
|
48
|
Invertases in Phytophthora infestans Localize to Haustoria and Are Programmed for Infection-Specific Expression. mBio 2020; 11:mBio.01251-20. [PMID: 33051363 PMCID: PMC7554665 DOI: 10.1128/mbio.01251-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The oomycete Phytophthora infestans, the causal agent of potato and tomato blight, expresses two extracellular invertases. Unlike typical fungal invertases, the P. infestans genes are not sucrose induced or glucose repressed but instead appear to be under developmental control. Transcript levels of both genes were very low in mycelia harvested from artificial medium but high in preinfection stages (sporangia, zoospores, and germinated cysts), high during biotrophic growth in leaves and tubers, and low during necrotrophy. Genome-wide analyses of metabolic enzymes and effectors indicated that this expression profile was fairly unusual, matched only by a few other enzymes, such as carbonic anhydrases and a few RXLR effectors. Genes for other metabolic enzymes were typically downregulated in the preinfection stages. Overall metabolic gene expression during the necrotrophic stage of infection clustered with artificial medium, while the biotrophic phase formed a separate cluster. Confocal microscopy of transformants expressing green fluorescent protein (GFP) fusions indicated that invertase protein resided primarily in haustoria during infection. This localization was not attributable to haustorium-specific promoter activity. Instead, the N-terminal regions of proteins containing signal peptides were sufficient to deliver proteins to haustoria. Invertase expression during leaf infection was linked to a decline in apoplastic sucrose, consistent with a role of the enzymes in plant pathogenesis. This was also suggested by the discovery that invertase genes occur across multiple orders of oomycetes but not in most animal pathogens or a mycoparasite.IMPORTANCE Oomycetes cause hundreds of diseases in economically and environmentally significant plants. How these microbes acquire host nutrients is not well understood. Many oomycetes insert specialized hyphae called haustoria into plant cells, but unlike their fungal counterparts, a role in nutrition has remained unproven. The discovery that Phytophthora invertases localize to haustoria provides the first strong evidence that these structures participate in feeding. Since regions of proteins containing signal peptides targeted proteins to the haustorium-plant interface, haustoria appear to be the primary machinery for secreting proteins during biotrophic pathogenesis. Although oomycete invertases were acquired laterally from fungi, their expression patterns have adapted to the Phytophthora lifestyle by abandoning substrate-level regulation in favor of developmental control, allowing the enzymes to be produced in anticipation of plant colonization. This study highlights how a widely distributed hydrolytic enzyme has evolved new behaviors in oomycetes.
Collapse
|
49
|
Rogozhin EA, Vasilchenko AS, Barashkova AS, Smirnov AN, Zavriev SK, Demushkin VP. Peptide Extracts from Seven Medicinal Plants Discovered to Inhibit Oomycete Phytophthora infestans, a Causative Agent of Potato Late Blight Disease. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1294. [PMID: 33007947 PMCID: PMC7599828 DOI: 10.3390/plants9101294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022]
Abstract
We report the inhibitory effect of peptide extracts obtained from seven medicinal plants against a causative agent of late blight disease Phytophthora infestans. We find that all the extracts possess inhibitory activity toward the zoospores output, zoosporangium germination, and the development of P. infestans on potato disc tubers at different quantitative levels. Based on the biological effects detected, an extract of common horsetail (Equisetum arvense) biomass is recognized as the most effective and is selected for further structural analysis. We perform a combination of amino acid analysis and MALDI-TOF mass spectrometry, which reveal the presence of Asn/Asp- and Gln/Glu-rich short peptides with molecular masses in the range of 500-900 Da and not exceeding 1500 Da as the maximum. Analytical anion-exchange HPLC is successfully applied for separation of the peptide extract from common horsetail (E. arvense). We collect nine dominant components that are combined in two groups with differences in retention times. The N-terminal amino acid sequence of the prevalent compounds after analytical ion-exchange HPLC allows us to identify them as peptide fragments of functionally active proteins associated with photosynthesis, aquatic transport, and chitin binding. The anti-oomycete effects may be associated with the conversion of ribulose-1,5-bisphosphate carboxylase/oxygenase to produce a number of biologically active anionic peptides with possible regulatory functions. These data inform our knowledge regarding biologically active peptide fragments; they are the components of programmed or induced proteolysis of plant proteins and can realize secondary antimicrobial functions.
Collapse
Affiliation(s)
- Eugene A. Rogozhin
- Shemyakin and Ovchinnikov Institite of Bioorganic Chemistry Russian Academy of Sciences, 117997 Moscow, Russia; (A.S.B.); (S.K.Z.); (V.P.D.)
- Gause Institute of New Antibiotics, 119021 Moscow, Russia
- All-Russian Institute of Plant Protection, 196608 St.-Petersburg-Pushkin, Russia
| | - Alexey S. Vasilchenko
- Institute of Biological and Agricultural Biology (X-Bio) Tyumen State University, Russian Federation, 625003 Tyumen, Russia;
| | - Anna S. Barashkova
- Shemyakin and Ovchinnikov Institite of Bioorganic Chemistry Russian Academy of Sciences, 117997 Moscow, Russia; (A.S.B.); (S.K.Z.); (V.P.D.)
- Institute of Biological and Agricultural Biology (X-Bio) Tyumen State University, Russian Federation, 625003 Tyumen, Russia;
| | - Alexey N. Smirnov
- Timiryazev Russian State Agrarian University, 127550 Moscow, Russia;
| | - Sergey K. Zavriev
- Shemyakin and Ovchinnikov Institite of Bioorganic Chemistry Russian Academy of Sciences, 117997 Moscow, Russia; (A.S.B.); (S.K.Z.); (V.P.D.)
| | - Vladimir P. Demushkin
- Shemyakin and Ovchinnikov Institite of Bioorganic Chemistry Russian Academy of Sciences, 117997 Moscow, Russia; (A.S.B.); (S.K.Z.); (V.P.D.)
| |
Collapse
|
50
|
Lee Y, Cho KS, Seo JH, Sohn KH, Prokchorchik M. Improved Genome Sequence and Gene Annotation Resource for the Potato Late Blight Pathogen Phytophthora infestans. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1025-1028. [PMID: 32310703 DOI: 10.1094/mpmi-02-20-0023-a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phytophthora infestans is a devastating pathogen causing potato late blight (Solanum tuberosum). Here we report the sequencing, assembly and genome annotation for two Phytophthora infestans isolates sampled in Republic of Korea. Genome sequencing was carried out using long read (Oxford Nanopore) and short read (Illumina Nextseq) sequencing technologies that significantly improved the contiguity and quality of P. infestans genome assembly. Our resources would help researchers better understand the molecular mechanisms by which P. infestans causes late blight disease in the future.
Collapse
Affiliation(s)
- Yoonyoung Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Kwang-Soo Cho
- Potato Research Team, Highland Agriculture Research Institute, Rural Development Administration, Gangwon 25342, Republic of Korea
| | - Jin-Hee Seo
- Potato Research Team, Highland Agriculture Research Institute, Rural Development Administration, Gangwon 25342, Republic of Korea
| | - Kee Hoon Sohn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Maxim Prokchorchik
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|